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Abstract—Developing pole-to-ground (PG) fault models for
Modular Multilevel Converters (MMC) is not straightforward
due to the fault asymmetry and converter switching concerning
blocking characteristics. Various studies have been carried out
regarding transient simulation of PG faults. However, there is a
lack of analytical models for the first stage of the fault. Therefore,
this work proposes an approximated analytical model for PG
faults in half-bridge MMCs. Closed-form expressions for the
MMC contribution to the fault and the fault current are derived.
We show that separating the solutions in different resonant
frequencies represents the system dynamics and facilitates the
interpretation of the phenomena. When compared to system
calculated by Ordinary Differential Equations (ODEs), the
proposed model provided a good approximation for a wide range
of parameters. When compared to the full PSCAD solution, the
analytical model was able to precisely calculate the peak fault
current value, which confirmed its validity.

Keywords—Analytical model, MMC, Pole-to-ground fault,
Short-circuit, VSC-HVDC.

I. INTRODUCTION

MODULAR multilevel converters (MMCs) are viewed
as an enabling technology for the transition from AC

grids to multiterminal High-Voltage Direct Current (HVDC)
systems, shaping the grid of the future concerning the use of
renewables and allowing the interconnection of asynchronous
systems [1].

However, challenges such as DC grid control and protection
must be overcome before transitioning from point-to-point
HVDC technology to multiterminal systems [2]. In order to
design reliable and stable DC grids, control and protection
systems must operate properly when the system is subjected
to pole-to-ground (PG) or pole-to-pole (PP) faults. Thus,
the system behaviour during faults must be well understood,
which is crucial in designing control systems for unbalanced
conditions, as in [3]–[6]. Although numerical models and
simulations are more precise than approximated analytical
models, a more in-depth understanding of the system
behaviour is achieved when analytical models are used, which
highlights its importance.

Developing fault models for MMC-HVDC systems is a
complex task. As the MMC submodules can operate in
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different states: inserted, bypassed or blocked, the fault
model must be separated into different time periods where
the equations defining the fault dynamics can be simplified
[7]–[10]. It is well known that PP faults result in higher fault
currents than PG faults and their equivalent circuit model is
simpler than for PG faults because of the fault symmetry. In
this context, various studies have been published regarding
PP faults [7]–[9], [11]–[14]. However, PG faults are much
more likely to occur than PP faults [15] and the topological
differences between both types of faults prevent the PP fault
models being used directly in PG faults. Thus, PG fault
analytical models should also be studied.

Accordingly, [15] analyses the influence of wind power
plant control methods in PG faults. The study was performed
considering detailed models, but focusing on the stage after
converter blocking. A similar study was performed by [16],
where approximated analytical expressions were derived for
the contribution of the AC grid to PG faults after the
converters were blocked. The influence of MMC control
on the fault currents is considered in [17]. However, the
study focused on developing Ordinary Differential Equations
(ODEs) that describe the multiterminal system fault dynamics,
which are useful for numerical evaluation, but did not provide
an analytical solution. In [18], the transient behaviour of a
multiterminal HVDC system during PG faults was analysed
using simulations but no analytical equations were given.

Precise models that consider the details of the system
dynamics can be used [19], [20]. However, due to the
system size and complexity, the analytical solutions can
become complex or lose interpretability. Thus, this research
provides approximated analytical solutions that can model
the PG fault dynamics, preserving the frequency content
and waveform of the variables during the first stage of the
fault. We show that the system solution can be separated in
different resonant frequencies, which represents the system
dynamics and facilitates the interpretation of the phenomena.
This paper focuses on symmetrical monopole configuration
with half-bridge MMCs, because it is the most common
MMC-HVDC configuration [21].

The main contribution of the paper is the development of
a precise analytical pole-to-ground fault model, which can be
used in HVDC studies, e.g. design of DC reactors and DC
breakers, providing the participation of each system parameter
in the system currents and voltages. The paper is organized as
follows. Section II introduces characteristics of the half-bridge
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MMC subjected to PG faults and describes the proposed
circuit model. Section III presents the approximated analytical
solution. Section IV presents the assessment of the proposed
model. Finally, conclusions are drawn in Section V. In order
to provide seamless reproducibility, the equations and data in
Section III are available in [22].

II. THE MMC DURING A POLE-TO-GROUND FAULT

A three-phase circuit of a half-bridge MMC subjected
to PG faults is shown in Fig. 1. The three-phase MMC
comprises six arms; three on the top and three on the
bottom. Each arm is formed by an arm inductor (Larm) and
N series-connected submodules (SMs). The arm losses are
represented by Rarm. The DC side equivalent capacitance
(submarine cable capacitance and DC side filter, if fitted)
is represented by Cb. Fig. 1 also shows the AC grounding,
represented by the star-point-reactor (SPR), though other
AC grounding schemes may also be used, e.g. a zig-zag
transformer [23], [24]. The SPR is used to provide a ground
path in the converter’s AC side and to rebalance any voltage
unbalances due to control or monopole faults that could cause
DC current flow in the transformers [23]. The SPR phase
inductance (Lspr) is chosen to provide a low-impedance path
for the DC current and a high-impedance path for the AC
current [25]. The SPR resistor (Rspr) is used to mitigate any
resonance between the SPR and the system [25].

Without loss of generality, all the analyses of this work are
performed considering that the fault happens on the positive
pole, which can be also applied to the negative pole, using
their symmetry.

AC grid

Idc

...
...

...

Rarm

Larm

SM SM

SM SM SM

SM
...

...
...

SM SM

SM SM SM

Lspr

Rspr 2
Vdc

2
Vdc

SM

Rarm

Larm

Rarm

Larm

Rarm

Larm

Rarm

Larm

Rarm

Larm

Idc

Cb

Cb

Fig. 1. MMC circuit diagram subjected to faults.

The MMC fault analysis is commonly divided into three
stages [7], [8]. The first is the capacitive discharge stage,
that is the period between the fault inception and the and the
blocking of the converter. After the converter is blocked, the
AC transient infeed stage starts, in which the energy stored in
the arm inductors is released into the fault. After the inductors
discharge the stored energy, the fault is fed by the AC grid in

the AC steady-state infeed stage. This work analyses the first
stage, as its understanding is crucial for control and protection
systems.

A pole-to-ground (PG) fault may happen in overhead lines
by direct or indirect contact with the ground, and, in cables
by damage of the insulation. In overhead lines, the fault
path can be established directly, from the conductor to the
ground, or indirectly, through the tower. In cables, the fault
path is established from the conductor to the sheath to the
next grounding point [19], [26].

In order to define a proper equivalent circuit for the
faulted system, the influence of each component in the fault
current must be analysed. To simplify the circuit, components
that do not affect the fault behaviour can be neglected
without compromising the model precision. Although some
consequences of PG faults on DC systems are well known,
e.g., the voltage drop in the faulted pole and voltage rise in
the non-faulted pole [24], [26], better understanding is needed
regarding the variables and system configurations that can
affect the fault behaviour. Considering this, the influence of
the grounding and fault time instant on the fault behaviour is
analysed next. Then, the equivalent circuit model of the faulted
system is presented.

A. Influence of grounding
As the interface transformer is commonly connected in delta

on the converter side, the fault loop is formed between the
fault point and the DC side capacitance and the SPR (or
other AC grounding scheme). If both grounding points are
removed, the AC voltage neutral point will be shifted to the
pole DC voltage value (Fig. 2) and the fault current will have
no contribution. This behaviour, although desirable for the
current, is prohibitive because of the large overvoltage imposed
to the system [21].
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Fig. 2. MMC AC voltage during a PG fault, without a grounding point.

The SPR provides a fixed grounding reference on the AC
side. However, Lspr is chosen to provide a high-impedance
path for non-DC currents. As in the first milliseconds the
fault currents are composed invariably of non-DC components
(mix of oscillatory components and exponentially decaying
DC components), the SPR presents high-impedance values
to these currents. Thus, in the capacitive discharge state, the
SPR current contribution to the fault can be neglected and the
ground path formed by it can be considered an open-circuit.

The low-impedance path is provided by the DC side
capacitance. When a fault happens, the energy stored in
the line’s/cable’s capacitance or in another DC capacitor
is discharged into the fault showing oscillatory behaviour.
Therefore, the DC side capacitance must be taken into account
during the first stage of the fault.



B. Influence of the fault time instant

As the equivalent capacitance in each arm varies over time,
preliminary analysis on the fault behaviour could presume that
the dynamics would be influenced by the instant the fault
happens. However, while this might be true for a single-phase
MMC, it does not hold for a three-phase MMC. Let nap, nbp
and ncp be the number of inserted capacitors at instant t on
positive arms of phases A, B and C, respectively, and let vu
and vl be the upper and lower arms voltages, respectively.
Moreover, let N be the total number of SMs in each arm. The
number of inserted SMs is given by [27]:

nxp = N
vxc − vxs
vΣ
p

(1)

where x = a, b, c indicates the three phases, vc = (vu + vl)/2
is the internal voltage, vs is the output voltage and vΣ

p is the
sum of the voltages in each positive arm. Thus, assuming
that the converter is generating balanced output voltages at
frequency ωg , vc is balanced and equal to Vdc/2 and vΣ

p is
equal to Vdc, the three-phase output voltages are:

vas =
1

2
Vdc cosωgt

vbs =
1

2
Vdc cosωgt− 2π/3

vcs =
1

2
Vdc cosωgt+ 2π/3

(2)

Taking the average number of inserted SMs (navgp ), it yields:

navgp =
∑

x=a,b,c

nxp
3

=
N

3

∑
x=a,b,c

Vdc/2− vxs
Vdc

= N/2 (3)

Equation (3) shows that the average number of inserted SMs
across the three phases of positive and negative arms is N/2.
Hence, assuming that all submodules are charged with the
same voltage, the average voltage generated by the MMC on
the DC side is Vdc/2, regardless of the fault time instant. Thus,
if the aforementioned conditions are true, no difference will
be observed if two identical faults are simulated at different
time instants. If the submodules are not balanced or alternative
control methods or fault current suppression method such as
[11], [28], [29] are used, the result of (3) might change.

In order to confirm this result, Fig. 3a shows navgp during
faults that were simulated with 1 ms of difference up to a
range of 40 ms (in the system described in Section IV). It can
be noticed that navgp remains close to N/2, according to (3).
As a result, Fig. 3b shows that the current waveform is almost
the same, regardless of the fault instant. The waveforms were
shifted in time to align them with respect to the fault instant.

C. The equivalent circuit model for the arms

When defining circuit models for PP faults, the converter is
commonly modelled as three branches of equivalent capacitors
in series with Larm and Rarm. The initial condition for the
voltage of the equivalent capacitor is considered equal to
Vdc/2. This model assumes that the submodule capacitors do
not charge during the fault and that they only discharge into
the fault. Although this assumption is correct for PP faults, it
may not be correct for PG faults.
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Fig. 3. Superposition of waveforms recorded at different fault instants. a)
average number of inserted SMs on the positive arms and b) fault current.

Even considering that navgp = N/2, one cannot define
a unique equivalent capacitance for the positive or negative
arms, regardless of time. This happens because of the
non-linear relation defined by the series equivalent of
capacitances. As the inverse of the series equivalent is equal
to the sum of the inverses of each capacitance, the arms
equivalent capacitances will change non-linearly over time, as
well as their sum.

Another difference between converter behaviour during PG
and PP faults is the fault path. In a PP fault, a short-circuit is
formed between both arms and the fault. Thus, the converter
stored energy is dissipated into the fault. On the other hand,
in a PG fault, no short-circuit path is established between the
arms and the fault, and the converter does not discharge into
the fault. In this case, the converter energy is kept constant
with slight variations. This difference between PP and PG
faults with respect to the stored energy inside the converter can
be observed when the sum of voltage in the SMs of positive
vΣ
p and negative vΣ

n arms are analysed. As Fig. 4 shows, vΣ
p

and vΣ
n hold their value while in the PP fault vΣ

p and vΣ
n drop

following a capacitor discharge behaviour. In this example,
the converter was intentionally not blocked to emphasize the
difference in the discharge pattern due to PP and PG faults,
but in a real case, the converter would be blocked before the
submodules voltage collapses to zero.
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Fig. 4. Sum of SM voltages in positive and negative arms compared to the
average converter voltage a) PG fault and b) PP fault.

As the converter keeps the voltage during a PG fault, the
simplest circuit representation for each arm would be a DC



voltage source equal to Vdc/2 in series with Larm and Rarm.
Though we acknowledge that the control will influence the
arms voltages, this influence is less prominent in the first
milliseconds of the fault [30].

III. APPROXIMATED ANALYTICAL SOLUTION

The circuit model resulting from the hypotheses discussed
in Section II is shown in Fig. 5. Differently from PP faults,
in which a short-circuit model can be established considering
only one converter, in PG faults both converters connected
to the faulted line must be considered. If only one converter
is considered, there will be no return path for the currents
at the sound pole, which will affect the precision of the
model. Another approximation of the model in Fig. 5 is
that the voltage at all arms on both converters is Vdc/2.
This consideration would lead to a zero pre-fault steady-state
current (Idc = 0) in both converters. However, Idc can be
added later to the solution with no loss of precision. Although
the DC side capacitance is distributed among the cables/lines
and the terminal capacitances, in the approximated model of
Fig. 5 it was considered concentrated in Cb.

In order to allow seamless reproducibility, the full equations
and data associated with this model are available in [22].

The circuit elements of Fig. 5 are defined as follows:
Ra = Rarm/3, La = Larm/3, Cb is the DC bus capacitor,
Ldc represents the conductor series inductance plus any DC
inductor used to limit the fault current, Rdc represents the
losses in Ldc and Rf is the fault resistance. The subscripts 1

and 2 refer to terminals 1 and 2, respectively.
Applying Kirchhoff’s voltage and current laws to the circuit

of Fig. 5 produces the following system of ODEs

dic1
dt

=
Vdc − vbp1 − vbn1

La1
− Ra1

La1
ic1 (4a)

dibp1

dt
=
vbp1+vbn1−Vdc+Ra1ic1

La1
+
vbp1−Rdc1ifp1−Rf ift

Ldc1
(4b)

dibn1

dt
=
vbp1+vbn1−Vdc+Ra1ic1

La1
+
vbn1−vbn2−Rdcifn1

Ldc
(4c)

dic2
dt

=
Vdc − vbp2 − vbn2

La2
− Ra2

La2
ic2 (4d)

dibp2

dt
=
vbp2+vbn2−Vdc+Ra2ic2

La2
+
vbp2−Rdc2ifp2−Rf ift

Ldc2
(4e)

dibn2

dt
=
vbp2+vbn2−Vdc+Ra2ic2

La2
+
vbn2−vbn1−Rdcifn2

Ldc
(4f)

dvbp1

dt
= − 1

Cb1
ibp1 (4g)

dvbn1

dt
= − 1

Cb1
ibn1 (4h)

dvbp2

dt
= − 1

Cb2
ibp2 (4i)

dvbn2

dt
= − 1

Cb2
ibn2 (4j)

where, Ldc = Ldc1 +Ldc2, Rdc = Rdc1 +Rdc2 and ift =
ifp1+ifp2. As (4) is linear, the system has a solution. However,

the size of the problem makes an exact closed-form solution
unfeasible.

The system in (4) can be transformed to the frequency
domain using the Laplace transform and then simplified to
obtain an approximated analytical solution. In the Laplace
transform, the initial condition for the voltages is Vdc/2 and for
the currents is 0, following the considerations described at the
beginning of this Section. For the sake of simplicity, only the
development and solutions for ic1, ibp1 and ibn1 are presented.
The currents ic2, ibp2 and ibn2 are obtained by symmetry and
the voltages are obtained using (4g) to (4j).

At this point, it is convenient to define frequencies and
time constants to represent the expressions in the frequency
domain in the most compact form. Let the system equivalent
frequencies be:

ωa1 =
1√

Cb1La1

ωdc1 =
1√

Cb1Ldc

ω1dc1 =
1√

Cb1Ldc1

and



ωa2 =
1√

Cb2La2

ωdc2 =
1√

Cb2Ldc

ω2dc2 =
1√

Cb2Ldc2

and let the system equivalent time constants be:

τa1 =
2La1

Ra1

τf1 =
2Ldc1

Rf

τa1R =
2Ldc

Ra1

τa1L =
2La1

Rdc

,



τa2 =
2La2

Ra2

τf2 =
2Ldc2

Rf

τa2R =
2Ldc

Ra2

τa2L =
2La2

Rdc

and



τdc1 =
2Ldc1

Rdc1

τdc2 =
2Ldc2

Rdc2

τdc =
2Ldc

Rdc

The Laplace transform of ic1(t), ibp1(t) and ibn1(t) are,
respectively:

Ic1(s) = Qc1(s)/P (s) (5a)
Ibp1(s) = Qbp1(s)/P (s) (5b)
Ibn1(s) = Qbn1(s)/P (s) (5c)

where P (s) contains the system poles and Qc1(s), Qbp1(s),
Qbn1(s) contain the system zeros. The complete expression of
these variables can be found in [22].

Inverting (5) back to the time domain requires the roots
of P (s) to be known, so that P (s) can be factored and the
partial fraction expansion is applied. However, as it is not
possible to find an algebraic solution with a polynomial of
degree greater than four (see Abel–Ruffini Theorem), P (s)
has to be reduced to a lower degree polynomial. This can be
achieved by neglecting the system resistances. If the system
resistances are neglected, P (s) reduces from:

P (s)=p9s
9+p8s

8+p7s
7+p6s

6+p5s
5+p4s

4+p3s
3+p2s

2+p1s+p0

(6)
to:

P (s) ≈ p8s
8 + p6s

6 + p4s
4 + p2s

2 + p0 (7)

and one can make the substitution s2 = u and P (u) becomes
a polynomial of degree four, where p8 = 2 and,
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Fig. 5. System in PG fault at the capacitive discharge stage.

p6 = 2ω2
1dc1 + 2ω2

2dc2 + 4ω2
a1 + 4ω2

a2 + 2ω2
dc1 + 2ω2

dc2 (8)

p4 = 2(ω2
1dc1 + ω2

2dc2)(ω2
dc2 + ω2

dc1 + 2ω2
a2 + 2ω2

a1)

+ 4(ω2
a1+ω2

a2)(ω2
dc2+ω2

dc1)+8ω2
a1ω

2
a2+2ω2

1dc1ω
2
2dc2

− 2ω2
a1(ω2

1dc1 + ω2
dc1)− 2ω2

a2(ω2
dc2 + ω2

2dc2)

(9)

(10)

p2 = 2ω2
1dc1ω

2
2dc2(ω2

a1 + ω2
a2 + ω2

dc1 + ω2
dc2)

+ 4ω2
a1ω

2
a2(ω2

1dc1 + ω2
2dc2 + ω2

dc1 + ω2
dc2)

+ 2ω2
1dc1(ω2

a1ω
2
dc2 + 2ω2

a2ω
2
dc1 + ω2

a2ω
2
dc2)

+ 2ω2
2dc2(ω2

a1ω
2
dc1 + 2ω2

a1ω
2
dc2 + ω2

a2ω
2
dc1)

p0 = 2ω2
1dc1ω

2
2dc2(ω2

a1ω
2
a2 + ω2

a1ω
2
dc2 + ω2

a2ω
2
dc1)

+ 2ω2
a1ω

2
a2(ω2

1dc1ω
2
dc2 + ω2

2dc2ω
2
dc1) (11)

Qc1(s) reduces from a full 5-th order polynomial to:

Qc1(s) =
Vdc

Cb1La1Ldc1
(s4 + qc2s

2 + qc0) (12)

where,

qc2 = ω2
2dc2 + 2ω2

a2 + ω2
dc1 + ω2

dc2 (13a)

qc0 = ω2
2dc2(ω2

a2 + ω2
dc1 + ω2

dc2 − 1/ω2
1dc1ω

2
a2ω

2
dc1)

+ ω2
a2(2ω2

dc1 + ω2
dc2)

(13b)

Qbp1(s) reduces from a full 7-th order polynomial to:

Qbp1(s) =
Vdc
Ldc1

(s6 + qp4s
4 + qp2s

2 + qp0) (14)

where,

qp4 = ω2
2dc2 + ω2

a1 + 2ω2
a2 + ω2

dc1 + ω2
dc2 (15a)

qp2 = ω2
2dc2(ω2

a1 + ω2
a2 + ω2

dc1 + ω2
dc2)

+ ω2
a2(2ω2

a1 + 2ω2
dc1 + ω2

dc2) + ω2
a1ω

2
dc2

(15b)

qp0 = ω2
2dc2(ω2

a1ω
2
a2 + ω2

a1ω
2
dc2 + ω2

a2ω
2
dc1)

+ ω2
a1ω

2
a2(ω2

dc2 + ω2
2dc2/ω

2
1dc1ω

2
dc1)

(15c)

and Qbn1(s) reduces from a full 5-th order polynomial to:

Qbn1(s) = − Vdc
Cb1La1Ldc1

(s4 + qn2s
2 + qn0) (16)

where,

qn2 = ω2
2dc2 + 2ω2

a2 + ω2
dc2 +

ω2
2dc2ω

2
a2

ω2
1dc1ω

2
a1

ω2
dc1 (17a)

qn0 = ω2
2dc2(ω2

a2 + ω2
dc2 +

ω2
a2

ω2
a1

ω2
dc1)

+ ω2
a2(ω2

dc2 +
ω2

2dc2

ω2
1dc1

ω2
dc1)

(17b)

Considering this approximation and supposing the roots of
P (s) are ω2

1 , ω2
2 , ω2

3 , ω2
4 , such that:

P (s) = 2(s2 + ω2
1)(s2 + ω2

2)(s2 + ω2
3)(s2 + ω2

4) (18)

The inverse Laplace transform of (5) is:

ic1(t)=
Vdc/Cb1

La1Ldc1

( sinω1t

kω1
+

sinω2t

kω2
+

sinω3t

kω3
+

sinω4t

kω4

)
(19a)

ibp1(t)=
Vdc
Ldc1

( sinω1t

kω1
+

sinω2t

kω2
+

sinω3t

kω3
+

sinω4t

kω4

)
(19b)

ibn1(t)=
Vdc/Cb1

La1Ldc1

( sinω1t

kω1
+

sinω2t

kω2
+

sinω3t

kω3
+

sinω4t

kω4

)
(19c)

where kω1, kω2, kω3 and kω4 are different in (19) as they
are calculated using (20) and (21):

kω1 =
2ω1(ω2

2 − ω2
1)(ω2

3 − ω2
1)(ω2

4 − ω2
1)

−q6xω6
1 + q4xω4

1 − q2xω2
1 + q0x

kω2 =
2ω2(ω2

1 − ω2
2)(ω2

3 − ω2
2)(ω2

4 − ω2
2)

−q6xω6
2 + q4xω4

2 − q2xω2
2 + q0x

kω3 =
2ω3(ω2

1 − ω2
3)(ω2

2 − ω2
3)(ω2

4 − ω2
3)

−q6xω6
3 + q4xω4

3 − q2xω2
3 + q0x

kω4 =
2ω4(ω2

1 − ω2
4)(ω2

2 − ω2
4)(ω2

3 − ω2
4)

−q6xω6
4 + q4xω4

4 − q2xω2
4 + q0x

(20)



ic1


q6x = 0

q4x = 1

q2x = qc2

q0x = qc0

ibp1


q6x = 1

q4x = qp4

q2x = qp2

q0x = qp0

ibn1


q6x = 0

q4x = 1

q2x = qn2

q0x = qn0

(21)

If the system losses are not neglected, the sinusoidal terms
of (19) will be multiplied by exponential terms e

−t
τ1 , e

−t
τ2 , e

−t
τ3

and e
−t
τ4 , they will have a phase summed in the argument, and

ω1, ω2, ω3 and ω4 will be slightly shifted, where the time
constants τ1, τ2, τ3 and τ4 are the real parts of the roots of
the full P (s).

As the reduced P (s) has an algebraic solution, the
undamped resonance frequencies ω1, ω2, ω3 and ω4 can be
found exactly. Nevertheless, the size of the exact expressions
would make them impractical. Therefore, it is useful to derive
approximated expressions for the resonance frequencies. The
first frequency (ω1) can be derived by transforming the circuit
to the frequency domain, calculating the Thévenin equivalent
circuit connected to both Cb1 and finding the frequency that
results in equivalent impedance to be zero. Similarly, ω2 is
obtained using the same procedure with Cb2. Next, ω3 and ω4

are obtained using Vieta’s formulas. Using this approach, the
undamped resonance frequencies are:

ω1 =

√√√√
ω2
a2+

ω2
dc2

2
+
ω2

2dc2

2
+

√(Ldc1 ω
2
dc2

2Ldc2

)2

+ω4
a2 (22)

ω2 =

√√√√
ω2
a1+

ω2
dc1

2
+
ω2

2dc1

2
+

√(Ldc2 ω
2
dc1

2Ldc1

)2

+ω4
a1 (23)

ω3 =

√
1

2

(
−ω2

1−ω2
2 +a1+

√
(ω2

1 +ω2
2−a1)2−a2−a3

)
(24)

ω4 =

√
1

2

(
−ω2

1−ω2
2 +a1−

√
(ω2

1 +ω2
2−a1)2−a2−a3

)
(25)

where,

a1 = 2(ω2
dc1+ω2

dc2+ω2
a1+ω2

a2)+
Ldc2ω

2
dc1

Ldc1
+
Ldc1ω

2
dc2

Ldc2
(26a)

a2 = 4
2ω2

a1ω
2
a2(ω2

dc1ω
2
2dc2 + ω2

dc2ω
2
1dc1)

ω2
1ω

2
2

(26b)

a3 = 4
ω2

1dc1ω
2
2dc2(ω2

a1ω
2
dc2 + ω2

a2ω
2
dc1)

ω2
1ω

2
2

(26c)

Similarly, approximated expressions for the time constants
can be derived, approximating the equivalent circuit connected
to each capacitor:

τ1 = 1/2
(
τ−1
a1L + τ−1

dc

)−1
+ 1/2

(
τ−1
a1 + τ−1

a1R

)−1
(27a)

τ2 = 1/2
(
τ−1
a2L + τ−1

dc

)−1
+ 1/2

(
τ−1
a2 + τ−1

a2R

)−1
(27b)

τ3 = 2
(
τ−1
dc1 + τ−1

dc2

)−1
(27c)

τ4 =
(
τ−1
f1 + τ−1

f2 + τ−1
dc

)−1

(27d)

TABLE I
TEST SYSTEM PARAMETERS.

Vdc = 640 kV La1 = 42.4 mH La2 = 56.5 mH Ldc1 = 115 mH
Idc = 0.5 kA Ra1 = 0.45 Ω Ra2 = 0.59 Ω Rdc1 = 1 Ω

Rf = 1 Ω Cb1 = 4 µF Cb2 = 3 µF Ldc2 = 180 mH
Rdc2 = 2 Ω

Finally, the pre-fault DC current can be considered by
adding Idc to ic1(t) and −Idc to ic2(t).

Equation (19) reveals that ic1(t), ibp1(t) and ibn1(t) are
a sum of four oscillations, and that the contribution of
each oscillation to the final response is governed by system
parameters, summarized in (20). This can be extended to
ic2(t), ibp2(t), ibn2(t) and to the voltages vbp1(t), vbn1(t),
vbp2(t) and vbn2(t). This is a benefit of the analytical solution,
to demonstrate the behaviour of each system variable and
to express in closed-form expressions the frequency of each
oscillation. The system behaviour subjected to faults can then
be used, for example, in protection and control systems,
suppressing unwanted oscillations caused by a fault.

IV. ASSESSMENT OF THE PROPOSED MODEL

In order to assess the precision of the proposed model,
the expressions (19) to (27) were compared in time domain
with the numerical solution of the system of ODEs in (4).
The ODEs solver was the explicit Runge-Kutta (4,5) formula
pair with variable step and 10−6 absolute error tolerance. The
system parameters are summarized in Table I. The results for
ic1(t), ibp1(t) and ibn1(t) are shown in Fig. 6, which confirms
that the proposed model is precise, even with slight deviations
in the end due to the approximated exponential decays.
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Fig. 6. Comparison in the time domain between the full numerical solution
and the approximated solution. a) ic1(t); b) ibp1(t) and c) ibn1(t).

To assess the validity of the proposed model not only for
the parameters of Table I but also for a range of values, a
parameter-sensitivity test was performed. The system’s basic
parameters Cb1, Cb2, La1, La2, Ldc1, Ldc2 and Rf were varied
in a range from 1/5 to 5 times the values shown in Table I and
the analytical solution and ODE numerical solution of ic1, ibp1
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Fig. 7. Average error between the numerical ODEs solution and the
approximated analytical solution of ic1, ibp1 and ibn1 for a range of
parameters.

ad ibn1 were calculated and compared. The base Rf was raised
to 5 Ω to increase the range of analysis. Then, the average
error during the first 5 ms was taken and the relative error
was calculated dividing the average error by the peak value
of each variable, as shown in (28), where eavg is the average
error, xan is the analytical solution, xode is the numerical ODE
solution and N is the total number of samples. The results are
shown in Fig. 7, where the bars represent the average error
and the stems represent the maximum error.

eavg =
1

N

N∑
k=1

|xan(k)− xode(k)|
max(xode)

(28)

In Fig. 7, it can be observed that the approximated solution
was valid not only for a specific set of parameters but also for
a wide range of values. From 1/5 to 5, there is a difference

of 25 times the parameter values, which highlights how the
analyzed range was wide. In most cases, the average errors
were less than 3% and the maximum average error was 5.1%
for Cb1 = 0.8 µF. Variations in Cb1 and Ldc1 influenced the
response more than the other parameters because Cb1 and Ldc1

are directly related to the resonant frequencies, which greatly
influence the solution. The higher maximum errors were due
to the approximated exponential decays, which increased the
deviation near the end of the 5 ms. Therefore, the results
confirmed that the proposed equations can be used to calculate
PG fault currents in MMC-HVDC systems that respect the
solution hypotheses.

However, the ODEs do not represent other MMC-HVDC
system characteristics, such as travelling waves, skin effect,
lines’ distributed parameters and converter control dynamics.
Thus, to analyse if the validity of the proposed solution can
also be extended to these scenarios, the approximated solution
was compared to the fault waveforms of a two-terminal
MMC-HVDC system, modelled in PSCAD. The system was
adapted from [31]. The DC link was modelled using the
frequency-dependent model. The line configuration was based
on [32]. The converters were not blocked during the fault. The
fault was simulated at 25 km from MMC 1, with Rf = 5 Ω.
The pre-fault values were Idc = 0.5 kA and Vdc = 640 kV.
The DC inductors were equal to 40 mH and 30 mH for the
MMC 1 and MMC 2, respectively.

When transforming the line frequency-dependent distributed
parameters to fixed-frequency lumped parameters, some
challenges arise. Figure 8 shows the variation of the line
resistance and inductance with frequency.
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Fig. 8. Variation of line parameters with frequency. a) resistance; b)
inductance.

As can be observed in Fig. 8, the lumped parameters taken
from DC are different from the ones taken at each resonance
frequency. If DC is chosen, the parameters will represent
precisely the DC power flow but will not be precise in the
transients, which have frequencies ω1, ω2, ω3 and ω4. If
any of the resonant frequencies is chosen, the parameters
will be precise for that frequency but will present errors
for different ones. A simple approach to this problem is to
consider specific Rdc1, Ldc1, Rdc2 and Ldc2 at each resonant
frequency, calculate the oscillatory components separately
using the specific parameters and then sum the response. Using



this approach, the fault current ifp1 is shown in Fig. 9 in
comparison to the PSCAD simulation.
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Fig. 9. Comparison in time domain between the PSCAD simulation and the
approximated solution of ifp1(t).

As can be observed in Fig. 9, the proposed approximated
solution, although neglecting the travelling wave effect, was
able to represent the first milliseconds of the fault, including
the fault current peak value, an important parameter for
protection system design. The accuracy of this value explains
the previous assumptions, in which the resistances were
neglected for the calculations. This in turn is a consequence of
the PG fault, which does not result in great energy dissipation.
The dominant frequency of ifp1 in the PSCAD simulation was
calculated as 937.3 rad/s, a value very close to ω4 = 952.2 rad/s
obtained with the analytical model.

V. CONCLUSIONS

Although transient simulations of PG faults in MMC-HVDC
systems can be found in the literature, there is a lack of
analytical models that describe the system dynamics subjected
to faults. Therefore, this paper proposed an approximated
analytical model for MMC-HVDC systems that represents the
system dynamics during the converter capacitive discharge
stage of PG faults. The analytical model revealed that
the system dynamics can be described by a sum of four
oscillatory components with defined resonant frequencies
and exponential decays. The expressions for each resonant
frequency and time constant were derived. Although numerical
models and simulations are more accurate than approximated
analytical models, the description of the system behaviour is
an advantage of the latter. The described behaviour enhances
the understanding about the system’s control, protection and
stability. Considering this, the importance of this study must
be highlighted.

As obtaining an exact solution was not feasible due to
the system size and complexity, approximations were made
using hypotheses about the converters’ control, grounding
and steady-state values, as well as about the transmission
line transient characteristics. When comparing to the system
simulated by ODEs, the proposed model provided an accurate
approximation for a vast range of system parameters. When
comparing to the full PSCAD solution, the analytical model
was able to precisely calculate the dominant resonant
frequency and the peak fault current value, important
parameters for the design of control and protection systems.

The presented contributions extend those found in the
literature, providing a more in-depth understanding of the PG
fault transient behaviour of MMC-HVDC systems with respect
to the converter’s voltages and currents.
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