
MASTER THESIS

Markers recognition in a

camera-based calibration system

for immersive applications

Author: Andrea Tresaco

Supervisor (Fraunhofer): Volker Hahn

Supervisor (UPC): Josep R. Casas

November 2009

Pg. 2 Report

This report is the result of my project (PFC) carried out at Fraunhofer IGD (Institut für

Graphische und Datenverarbeitung) in the department of Imaging and Medical Recognition

in Darmstadt (Germany).

The department of Imaging is working on applications dealing with immersive media and

teleconferencing into the European project hArtes.

I would like to thank Ferrán Marqués for helping me to find a contact in Germany disposed

to offer a project to a Spanish student. I would also thank the person who reply my petition

and offered me the opportunity to make my project and supervise it in Germany, Volker

Hahn, and also Josep R. Casas who offered to supervise it in UPC in Spain.

Specially, I would like to thank my parents, sister and Rubén for their unconditional support

and love.

I would also thank Neri for being from the first day of university until now by my side.

And finally thanks to Michael for helping me with IPP troubles.

Markers recognition in a camera-based calibration system for immersive applications Pg. 3

Table of Contents

TABLE OF CONTENTS ___ 3

1. INTRODUCTION___ 5

1.1. The hArtes Project ... 5

1.2. hArtes Scenario and Objectives of IGD .. 6

Scenario of the hArtes Project..6

Objectives of IGD in hArtes ..7

Proposal of a solution ...9

1.3. The Objective of my Project.. 12

2. STATE OF THE ART __ 14

2.1. Image pre-processing ... 14

Pixel brightness transformation: Gray-scale transformation..14

Local pre-processing ..15

2.2. Segmentation... 16

2.3. Shape Classification ... 18

Region identification: Labelling ...18

Region based- shape representation and description ...19

2.4. Object Recognition .. 21

Invariance: Local features...22

Detector + Descriptor: SIFT ...27

3. OUR CONTRIBUTION _______________________________________ 38

3.1. Usage of existing code property of IGD .. 50

4. TOOLS AND IMPLEMENTATION ______________________________ 52

4.1. Requirements... 52

4.2. Tools ... 52

4.3. OpenCV.. 53

4.4. Implementation... 54

C++ project structure ...54

Design of GUI and functionality of Options ...56

5. RESULTS ___ 73

6. CONCLUSIONS ___ 107

7. REFERENCES __ 109

Pg. 4 Report

A. RIDLEY AND CALVARD’S METHOD ____________________________ 111

B. MORPHOLOGICAL OPERATORS ______________________________ 114

C. HOW ARE IMAGES FORMED? ________________________________ 115

D. GEOMETRY OF IMAGE FORMATION____________________________ 119

Coordinate transformation: homogeneous coordinates...120

Image formation (geometrical) ...122

E. PHYSICS OF LIGHT: RADIOMETRY _____________________________ 127

F. SENSING ___ 130

G. NOISE ___ 134

H. RADIOMETRICS CONCEPTS __________________________________ 135

I. REPORT OF SIFT ALGORITHM IN MATLAB ______________________ 137

Markers recognition in a camera-based calibration system for immersive applications Pg. 5

1. Introduction

1.1. The hArtes Project

My project is part of a European project called hArtes (Holistic approach to real time

configurable embedded systems) developed by the collaboration of different European

enterprises, research institutions and universities from Germany, France, United Kingdom,

Italy and The Netherlands.

The Cognitive Computing and Medical Imaging Department of the Fraunhofer Institute for

Computer Graphics (Fraunhofer-Institut für Graphische Datenverarbeitung IGD)

contributes to the project by using the hArtes platform for the development of a real-time

system for immersive audio, which will be an integrative part of an HD video based

telepresence system. The system will allow users to be virtually present at any place they

like by using the capabilities of an HD omnidirectional video camera system which, in

combination with a microphone array for 3D sound recording, will be used for real time

capturing. The audiovisual data will be rendered by an immersive video projection system

complemented by a 3D rendering based on wavefield synthesis.

Omnidirectional Camera

Microphone Array

Group Meeting

Immersive Video Projection System

Loudspeaker- / Camera Array

Projector Array

LAN

Audio / Video

Capture System
AV-Encoder

Terminal

Office

AV Capturing /

Encoding

Audiovisual

Rendering

System

Fig. 1.1 System Overview telepresence for group meeting. Audio system in the above

branch and video system in branch below.

Pg. 6 Report

The telepresence approach reached by Fraunhofer is designed as an immersive platform

combining high definition 360 degrees video recording and playback with 3D audio using

the possibilities of parallel signal processing and audiovisual array technology as shown in

Fig. 1.1. A microphone array records the sounds that will be reproduced inside the

immersive environment (where the user is) thanks to loudspeakers and the visual

rendering system provides images to projector array which projects image onto the

cylindrical surface of the immersive platform. Its scalable camera system exploits the

potential of common graphics hardware for real time stitching and transmission of ultra

high definition video panoramas providing resolutions far beyond actual HD video

technology. Its immersive video projection environment gives users the impression of

being virtually present at any location at any time.

The system could be used for a range of applications including:

 High end video-conferencing

 Live broadcasting of sport events, theatre and music events.

 Interactive multimedia presentations

 360 degrees cinema, theatres or concerts

 immersive gaming

My project is a contribution to the calibration of a projectors array and camera-based

system by analyzing features of markers through image processing techniques.

1.2. hArtes Scenario and Objectives of IGD

In this point the elements forming the scenario of the immersive platform and the

objectives of our project are described.

Scenario of the hArtes Project

Fig. 1.2 shows the scenario built by Fraunhofer institute in Darmstadt for the development

of different projects and studies dealing with hArtes project.

Markers recognition in a camera-based calibration system for immersive applications Pg. 7

Fig. 1.2 Room of IGD where the immersive scenario is placed

In the room of our work we can find a central cylindrical surface surrounded by eight

projectors and cameras fixed to this central structure and separated 45 degrees from each

other. The cameras are fixed above the projectors (in the same vertical structure) to

record what on the cylindrical structure is projected. There is also a group of loudspeakers

and microphones covering the inside surface of the cylinder as can be seen in Fig. 1.3.

Fig. 1.3 Loudspeakers can be seen from above inside the cylindrical structure

With the description of the scenario the two differentiated parts of study can be easily

seen; one is dealing with audio and the other one dealing with video. By combining these

two systems, the immersive impression pursued by hArtes can be reached and all the

applications described in Section 1.1 can be implemented.

In our particular case we are interested in video branch of the system described.

Objectives of IGD in hArtes

Once we know the scenario we are prepared to face the situation.

Pg. 8 Report

The projectors, fixed to the central cylindrical structure, project an image onto the

cylindrical surface. This images projected are coming from a computer and can be single

images or videos (already saved in the computer or real time recorded by a

omnidirectional system of video cameras as shown in Fig. 1.4 below).

Fig. 1.4 Omnidirectional camera system

There are eight projectors surrounding the 360 degrees panorama covering each of them

an angle of 45 degrees. The objective of hArtes project is that, if a user projects an image

or video through the eight projectors onto the cylindrical surface and a user is inside the

cylindrical structure he has the impression of being in the scene projected. That means

that, as a user is inside the structure he sees a scenario, decided depending on the

application (it can be a computer game, a concert, a museum….), in which he is evolved

as it reality was (immersion).

In practice, this theoretical strategy presents some problems in the projection.

Human sight is very sensitive to continuity, colour and brightness changes in image. So if

we project a video (real time or recorded) and someone, who is inside the structure, finds

a change (continuity, colour and brightness) in the junction between projections coming

from neighbouring projectors the immersive sensation is lost. (see Fig. 1.5)

Fig. 1.5 Junction between two consecutive projections projected on a non planar surface

Markers recognition in a camera-based calibration system for immersive applications Pg. 9

So one objective of IGD in the context of hArtes project is to correct those misalignments

or overlapping in the junctions between projections so the changes are not noticeable for

the person who is inside.

Proposal of a solution

Once we know which the problem is, we have to propose a solution.

We wanted to apply the necessary corrections in the calibration system in order to obtain

unnoticeable variations between consecutive projections and that can be done at the same

time image is projected or a priori, so at this point we came across a question which would

determine the direction of our project.

What is better, to make a continuous calibration of the system as it works or a pre-

calibration of the system and then running the application desired?

We analyse the possibility of working in real time or not. After some readings we decided

that real time was not a necessary condition. The decision was taken considering the

features of the system and the complexity of algorithm execution. On one hand, the

system is designed to be in a fixed place (non-portable) so once calibrated it will maintain

its features for a certain period of time and the process can be done once a week, a

month, a year... what user decides to ensure the calibration of the system. On the other

hand, if the algorithm has to be runned on real time, the number of parameters (extrinsic

and intrinsic) to consider and operations required have to be as simple and fast as

possible to allow real time execution. This fact increases the difficulty of the

implementation of the algorithm. If we do not consider real time we can make all operations

we consider necessary to provide an accurate system for markers extraction.

So the solution we chose was to make a pre-calibration of the system which can be

reached by working directly with the projections recorded by the camera placed above the

projectors and facing the problem as an image processing problem.

To reach the objective we have brought up the global solution described in Fig. 1.6.

Pg. 10 Report

Fig. 1.6 Block diagram of our proposal of solution for avoiding misalignments and

discontinuities between consecutive projections

First of all, the proposed strategy is to create a grid, an ideal grid, consisting on 9 black

squares with a small white hole in the middle, which will be our reference for the whole

process. From now on, in this report, these squares are called markers.

Secondly the image formed by all markers will be projected onto cylindrical surface see

Fig. 1.7.

Markers Detection and

Extraction

Comparing ideal markers with

real ones

Correction of the misalignment

(Calibration)

Working with overlappings

areas and junctions

Markers recognition in a camera-based calibration system for immersive applications Pg. 11

Fig. 1.7 Up: image created by us to become our reference image (grid) for calibration.

Down: projection of our grid onto the cylindrical surface. As can be seen the contours and

markers appeared deformed due to projection onto a non planar surface.

As the surface on which we are projecting is not planar, the ideal markers appeared in

different positions and orientations in the projected image and with some of their form-

features modified as described in Section 2.4. Depending on the distance and orientation

of each projector (although all the system is metrical built there can be some errors)

markers can appear in very different positions and deformed so it makes it necessary to

identify where are the markers, comparing this position to the ideal and then correcting the

Pg. 12 Report

misalignment between them. In order to determine which is the correct position we have

some external markers forming part of the structure. These markers are different from

internal ones described above; they are four circles fixed in a specific distance to the

structure and they are also affected by projective and affine features as well as in internal

case. Once detected those external markers we will have four fixed points perfectly

identified and which should be always in the same well-known place so they are a very

good reference to correct the position of projector by adjusting the distances between ideal

external and internal markers.

Once calibrated the problems remaining in the overlapping areas and junctions should be

corrected to give a total immersive appreciation.

1.3. The Objective of my Project

My objective inside hArtes, and as a result my project, is the first point in the global solution

shown in Fig. 1.6, markers detection and extraction (see Fig. 1.8)

Fig. 1.8 Our objective in hArtes project

My project consists in the development of an application (GUI) in C++ language capable of

determine univocally which of the parts in the image are the markers desired and reject the

areas undesired in the image. By applying image processing functions and

transformations we come across markers detection and extraction.

The objective of my project is to develop an application in C++ language to univocally

determine which regions in the image captured from the camera (image projected by

projectors onto the cylindrical surface) are markers and which ones not through

techniques of image processing.

In our project we come across different problems.

 Light conditions: The image captured by the camera is not uniformly illuminated.

The light is not equally applied in each part of the scene and can vary depending on

the room or space where the system is placed or the focus light used. Depending

on the focus light we will find shadows which can difficult and also cause wrong

detections in the univocal determination of the markers in the image

Markers Detection and

Extraction

Markers recognition in a camera-based calibration system for immersive applications Pg. 13

 Markers form: As introduced in Proposal of solution (Section 1.2) our markers

detector should be able to detect between two forms of markers; internal markers,

which are black squares with a hole in the middle; and external markers which are

orange circles with a black hole in the middle. The techniques of image processing

used to determine squares and circles are different. So the application has to be

able to detect both of them.

 Perspective and affine problems: When we project internal and external markers in

the borders they become rectangles and ellipses, due to the surface‟s form. These

two features are important, so we are not only looking for squares and circles but

also rectangles and ellipses.

Taking all these points into account we have implemented a GUI in C++ language to work

with images through image processing techniques.

In what follows, in Sections 2.2, 2.3 and 2.4, segmentation, shape classification and object

recognition techniques are explained. As pre-processing techniques preceding the

classification process can greatly enhance recognition accuracy, we have included in our

system a first pre-processing step explained in Section 2.1. Thereafter, once we know the

techniques available, in Section 3 we discuss the suitable methods and techniques which

will give better solutions for our application.

In Section 4, are described the tools needed for the implementation and the details of the

application developed. Finally, the results of our GUI application are shown in Section 5.

Pg. 14 Report

2. State of the Art

The structure of this state of the Art follows the scheme shown below.

Fig. 2.1 Image processing chain used in our project

The starting point is an image obtained by camera; we apply pre-processing,

segmentation, shape classification and object recognition techniques as image processing

chain for recognizing markers. We obtain an image containing the markers we want to

extract.

The methods and techniques of each step are exposed as follows and the selection of the

better solution in our case is discussed in further Sections.

2.1. Image pre-processing

The use of pre-processing techniques preceding image processing chain can greatly

enhance recognition accuracy.

The best processing is no processing at all. If image acquisition has high quality this step

is not necessary except if what is searched is to suppress information of no relevant areas

in order to make easier the image processing or analysis. If image acquisition has low or

middle quality this step becomes useful in order to suppress undesired distortions.

There are different pre-processing techniques that can be applied to an image to improve it

before processing. In this memory are explained only explained those applied in our project

which are pixel brightness transformation and local pre-processing.

Pixel brightness transformation: Gray-scale transformation

The aim of brightness transformation is to modify pixel brightness depending on the

characteristics of each pixel.

Markers recognition in a camera-based calibration system for immersive applications Pg. 15

The process of gray-scale transformation consists in taking the image brightness and,

through a look-up-table (LUT), change it into a new image brightness in real time for

displaying. The result of the transformation is a gray-scale digital image in which the value

of each pixel is a single sample carrying all the information of brightness. The gray-scale

images intended for visual display (screen and printed) are commonly stored with 8 bits

per sampled pixel, which allows 256 different intensities to be recorded, going from black

to white and having different gray intensities (shades of gray).

Local pre-processing

The aim of the local pre-processing is filtering for enhancement details (the high spatial

frequency components), so this technique will provide a more detailed image than the

original, obtaining an improved image to our purpose. The trick with “local” contrast

enhancement is that it increases local contrast in smaller regions, while at the same time

preventing an increase in “global” contrast, thereby protecting large-scale shadow/highlight

detail.

As a spatial filtering it works with the direct manipulation of the pixels using a small

neighbourhood of the pixel in the gray-scale image to produce a new brightness value in

the output image. This contrast enhancement can be achieved by a sharpening operator,

based on derivatives of the image function.

First order operators (using first derivative measurements) are particularly good at finding

edges in images as for example Sobel and Roberts edge enhancement operators.

Laplacian is a second derivative method of enhancement. It is particularly good at finding

detail in images.

The strength of the response of a derivative operator is proportional to the degree of

discontinuity of the image at the point at which the operator is applied. Thus, image

differentiation enhances edges and other discontinuities (such as noise) and

deemphasizes areas with slowly varying gray-level values.

Sharpening operator has the objective of making edges steeper. We can obtain sharpened

output image (,)sh i j as:

 (,) (,) (,)sh i j f i j k L i j

where (,)f i j corresponds to original image and the constant k gives the strength of

sharpening where (,)L i j is a measure of the image function sheerness, calculated using

Laplacian.

Pg. 16 Report

Another way of writing the sharpening expression should be in terms of matrix:

Sharpened image =

where α is a value between 0 and 1 and controls the shape of the Laplacian.

A graphical sharpening example is shown in Fig. 2.2.

Fig. 2.2 Up: original image, sharpening filter and result. Down: application to the filter to an

image where details are enhanced and the rest smoothed. (slides by Bernt Schiele from

TU-Darmstadt)

Differences are accentuated and constant areas are left unchanged. Also noise is

accentuated.

2.2. Segmentation

Segmentation is the process of dividing a digital image into different regions. Each region

is formed by a set of pixels with similar characteristics such colour, intensity or pattern.

The whole image is covered by regions and adjacent regions have different features.

The goal of segmentation is to simplify the information or change the representation into

something meaningful and easier to analyze.

0 0 0 1 1
1 1

0 1 0 1 4 1 1 5 1
1 1

0 0 0 1 1

Markers recognition in a camera-based calibration system for immersive applications Pg. 17

In image processing there are many algorithms and techniques developed for image

segmentation: clustering, histogram based, edge detection, region growing, level set,

graph partitioning, model based, multi-scale and watershed transformation.

The simplest method of image segmentation is Thresholding. Sezgin and Sankur in [6]

classified thresholding methods into groups depending on the information the algorithm

manipulates:

 Histogram shape based methods: it analyzes peaks, valleys and curvatures of a

smoothed histogram

 Clustering based methods: gray-level samples are clustered in two parts to

separate background from foreground (object of interest). In other cases they are

modelled as a mixture of two Gaussians

 Entropy based methods: uses entropy of foreground and background regions, the

cross-entropy between the original and binarized image...

 Object attribute based methods: searches similarity between the gray-level image

and the binarized one (shape similarity, edge coincidence…)

 Spatial methods: uses probability distribution or correlation between pixels

 Local methods: adapt the threshold value on each pixel to local image

characteristics.

The goal of all these techniques is to determine a value called threshold and comparing

each pixel on the image with this value. If the value of the pixel is greater than the

threshold, its value becomes 1 (white), otherwise it becomes 0 (black). That method

assumes that the objects are brighter than the background. For that reason white or bright

pixels are supposed to be an object and black or dark ones background.

The aim of this thresholding is to change the pre-filtered greyscale image into a binary

image, so the process is used as binarization as explained in [7] and shown in Fig. 2.3.

Pg. 18 Report

Fig. 2.3 In the first row a greyscale image and its different colour levels (white, gray, black)

are shown. In the second raw there is the binarized image of first row. Given a threshold

level, all the pixels above become white and all below black.

In a greyscale image, brightness graduation can be differentiated and it is divided into 256

different levels. When the transformation to binary image is made, the brightness

graduation can not be differentiated and we can only find two levels 0 or 1 determined by

threshold value.

The obtained threshold can be applied to the image using global techniques which set a

global threshold for the entire image or local techniques that apply different threshold

values in each part of the image. In this second technique the value depends on the

neighbour pixel values.

2.3. Shape Classification

In the previous sub-sections we were searching techniques and methods to improve

images for a better display.

At this point of the image processing chain the objective is to analyze the content of the

image. So the first step is to select the segmentation algorithm to divide the image into

regions of interest. Then each region will be analyzed to determine if a region is accepted

or discarded. In this memory are only explained those techniques which allow determining

rectangularity.

Region identification: Labelling

A region is a set of pixels where all the pixels are adjacent or touching. The formal

definition of connectedness is as follows [3]: Between any two pixels in a connected set,

there exists a connected path wholly within the set, where a connected path is a path that

always moves between neighbouring pixels. Thus, in a connected set, you can trace a

connected path between any two pixels without ever leaving the set.

Markers recognition in a camera-based calibration system for immersive applications Pg. 19

There are 2 kind of connectivity, 4 and 8 connectivity, depending on how many neighbours

are used to calculate it. They can be seen in Fig. 2.4 where actual pixel corresponds to

blue one.

(i-1,j-1) (i-1,j) (i-1,j+1)

(i,j-1) (i,j) (i,j+1)

(i+1,j-1) (i+1,j) (i+1,j+1)

Fig. 2.4 4-connectivity corresponds to yellow pixels; 8-connectivity to yellow and orange

pixels

In computing, as we run the image normally from the left-up corner (first pixel) to the right-

down (last one), we consider connectivity in terms shown in Fig. 2.5 because the rest of

pixels are not read when we are computing actual pixel (in blue).

Fig. 2.5 Left: In computing 4-connectivity;Right: in computing 8-connectivity

Region based- shape representation and description

The use of descriptors becomes very useful in shape description. In general, descriptors

are some set of numbers which describe a given shape. The shape may not be entirely

reconstructable from the descriptors but the descriptors for different shapes could be

different enough so the shapes can be discriminated.

A good descriptor is that with the greater the difference in significantly different shapes and

the lesser the difference for similar shapes. Descriptors work in a qualitative way so they

attempt to quantify shape so the human intuition does not perceive the difference between

real and descript.

Simple scalar region descriptors

Pg. 20 Report

A large group of shape description techniques are represented by heuristic approaches

which yield acceptable results in description of simple shapes. Some heuristic region

descriptors are: area, perimeter, (non)compactness, (non)circularity, eccentricity,

elongatedness, rectangularity, orientation (direction)...

These descriptors cannot be used for region reconstruction and do not work for more

complex shapes.

Moments

Moments describe numeric quantities at some distance from a reference point or axis.

They are commonly used in statistics to characterize the distribution of random variables.

The use of moments for image analysis is straightforward if we consider a binary image as

a two dimensional density distribution function. In this way, moments may be used to

characterize an image segment and extract properties that have analogies in statistics.

Considering image size MxN and i and j image coordinates, different order moments and

parameters related with them can be defined.

 First order moments:

 Centroids:

10

00

c
m

x
m

01

00

c
m

y
m

 Central moments: translation invariance

Markers recognition in a camera-based calibration system for immersive applications Pg. 21

Reeves and Rostampour [14][15] used standard moments for global generic shape

analysis. They selected four “ideal” symmetric generic shapes: rectangle, ellipse, diamond

and concave object. They evaluated a parameter called Kurtosis parameter to determine

those shapes. It can be calculated as:

Kurtosis parameter is a measure of the peakedness of the probability distribution of a real-

valued random variable. Higher kurtosis means more of the invariance is due to infrequent

extreme deviations, as opposed to frequent modestly-sized deviations.

The “minus 3” of the equation is a correction to make the Kurtosis of the normal

distribution equal to zero.

2.4. Object Recognition

One of the primary functions of the human visual system is object recognition, an ability

that allows us to relate the visual stimuli falling on our retinas to our knowledge of the

world.

Humans recognize a multitude of objects in images with little effort, despite the fact that

appearance of an object can have a large range of variation due to photometric effects,

scene clutter, changes in shape (non-rigid objects) and viewpoint.

The requirements of an object recognition system are:

 Invariant viewpoint: translation, rotation, scale

 Robust: to noise, to local errors in early processing modules, to illumination
(shadows), to partial occlusion and to intrinsic shape distortions.

From a given input image an appropriate set of features are extracted. The aim of this

process is to take a large amount for image data and retain only that information

necessary to identify or distinguish the object. The knowledge from the shape of the object

may be used to govern the extraction of features.

Pg. 22 Report

A matching algorithm (SIFT) will compare the ideal object with the object in the image and

with the help of the extracted features it will determine if the object of the image

corresponds to one of the searched objects or not.

Invariance: Local features

Invariants are properties which remain unchanged under an appropriate class of

transforms [20]. To accomplish the requirement of invariance of our object recognition

system we have to study all the invariant transformations that we can apply to our image to

obtain an invariant viewpoint. That means that the object can be identified either it is

smaller/bigger than the model, or it is rotated, or translated…

Following 5 effects of different transformations applied to a rectangle using Geometric

transformation invariants can be seen:

1. Translation

Fig. 2.6 Rectangle is moved to another position (translated) remaining invariant: length,

angle, length ratio and parallel lines.

If we have the original image coordinates (x,y) the general equations to a translation in 2D

coordinates are:

x‟=x + tx =1·x + 0·y + tx ·1

Markers recognition in a camera-based calibration system for immersive applications Pg. 23

y‟=y + ty =0·x + 1·y + ty ·1

Equations can be easily determined if we take a look to Fig. 2.6. The homogeneous

coordinates can be expressed in matricial notation: X=X’+t

The invariants are length, angle, length ratio and parallel lines.

2. Rotation

Fig. 2.7 Rectangle is rotated respect a point remaining invariant: length, angle, length ratio

and parallel lines

The equations which describe the rotation feature in 2D that can be seen in Fig. 2.7.

x‟=cos (α)·x+ sin (α)·y+tx

y‟=-sin (α)·x+ cos (α)·y+ty

These equations can be expressed in homogeneous coordinates as:

' 1 0

' 0 1

1 0 0 1 1

x

y

x t x

y t x y

' cos() sin()

' sin() cos()

1 0 0 1 1

x

y

x t x

y t x y

Pg. 24 Report

The invariants here are length, angle, length ratio and parallel lines.

3. Similarity

Fig. 2.8 Rectangle is smaller or bigger but relation between sides remain invariable

The equations to describe this movement are:

x‟=s·x + 0·y + tx ·1

y‟=0·x + s·y + ty ·1

In matrix notation x‟=S·x+t

4. Affine

The movement of the rectangle is shown in Fig. 2.9

' 0

' 0

1 0 0 1 1

x

y

x s t x

y s t x y

Markers recognition in a camera-based calibration system for immersive applications Pg. 25

Fig. 2.9 Red rectangles are invariant to length, angle, length ratio and parallelism. Our

interest rectangle (green one) is only invariant to parallelism

The equations to express this movement are:

x‟=cos (α1)·sx·x+ sin (α1)·sy·y+tx

y‟=-sin(α1)·sx·x+ cos (α1)·sy·y+tx

In matricial x‟=S·R(α1)·x

When we apply the movement described in Fig. 2.9 to green rectangle no length, no angle

and no length ratio are invariant, only parallelism.

Fig. 2.10 helps us to define relationships between original rectangle and the one moved.

Fig. 2.10 Expression of variables involved in this movement

2 2 1 1

2 1

2 2 1 1

cos() sin() 0 cos() sin()
()· · () · ·

sin() cos() 0 sin() cos()

sx
R S R

sy

The general expression in matrix notation:

x‟= R2·S·R1·x + t

Pg. 26 Report

2 1

'
()· · ()

' ·
0 0

1 1 1

x

y

x t x
R S R

y t y

5. Projective

Fig. 2.11 Rectangle is not invariant to length, angle, length ratio and parallelism

With the transformation of Fig. 2.11 length, angle, length ratio and parallelism are not

invariant.

That can be expressed in homogeneous coordinates as:

and in image coordinates:

All these features described above can be local or global features. We are looking for local

features because global fail in image transformations (scale change), in occlusions and

background clutter (segmentation-hard), in colour (light changes) and in geometric

(contour based fail if no shape).

The key properties of a good local feature are:

11 12 13

21 22 23

31 32

'

' ·

' 1 1

x h h h x

y h h h y

z h h

'' '
1

'' · '
'

1 '

x x

y y
z

z

Markers recognition in a camera-based calibration system for immersive applications Pg. 27

 Must be highly distinctive, a good feature should allow for correct object

identification with low probability of mismatch

 Should be easy to extract

 Invariance, a good local feature should be tolerant to: image noise, changes in

illumination, uniform scaling, rotation and minor changes in viewing direction.

 Should be easy to match against a database of local features.

Detector + Descriptor: SIFT

The local features become the interesting points on the object (marker) and they can be

extracted to provide a feature description of the object. These interesting points can be

used to identify the object when there is an image containing the object we are looking for

and many other objects. That is the reason why it is important that the set of features

extracted is robust to changes in image scale, noise, illumination and local geometric

distortion, for performing reliable recognition.

The ideal interest points/regions are those which are numerous repeatable, representative

in orientation/scale and fast to extract and match (as shown in Fig. 2.12).

Fig. 2.12 Interest points in the image on the left are matched with the same points on the

right although they are not in the same image position (M. Brown and D. G. Lowe.

Recognising Panoramas. In Proceedings of the International Conference on Computer

Vision (ICCV2003)

There is a patented algorithm developed by Lowe [16] [18] that can robustly identify objects

even among clutter and under partial occlusion called SIFT. The name comes from Scale

Invariance Feature Transform and is a good approach for detecting and extracting local

feature descriptors that are reasonably invariant to changes in illumination, image noise,

rotation, scaling and small changes in viewpoint.

Pg. 28 Report

There are other newer feature detectors as SURF (Speeded Up Robust Features)[23]. As

shown in the study [24] SURF descriptor is better than SIFT at matching computing time

but worse at match ratio and total number of correct matches as well as the quality and

total number of the created keypoints.

There are also works in which the behaviour of SURF to affine transformations is not as

good as SIFT [26].

Fig. 2.13 Four Stages of SIFT algorithm divided in two blocks, detector and descriptor

SIFT can be divided into 2 blocks: Detection and Description. Altogether has 4 stages

shown in Fig. 2.13

1st Step: Find Scale-Space Extrema: it searches over all scales and image locations. It is

implemented by using a difference-of Gaussian function to identify potential interest points

that are invariant to scale and orientation.

2nd Step: Keypoint Localization and Filtering: at each candidate location a detailed model is

fit it determine location and scale. Keypoints are selected based on measures of their

stability and this way improve keypoints and throw out bad ones.

3rd Step: Orientation assignment: removing effects of rotation and scale: On each point 1

or more orientation based on local image gradient directions are assigned.

4th Step: Create keypoint descriptor: (using histograms of orientation) The local image

gradients are measured at the selected scale in the region around each keypoint. These

are transformed into a representation that allows for significant levels of local shape

distortion and change in illumination.

As follows each step for the understanding of SIFT algorithm is widely explained.

1st Step: Detection of scale-space Extrema

Koenderink (1984) and Lindeberg (1994) show that under a variety of reasonable

assumptions the only scale-space kernel is the Gaussian function.

Markers recognition in a camera-based calibration system for immersive applications Pg. 29

The scale-space is described as a continuous function of scale σ: L(x, y, σ), the result of

the convolution between a variable-scale Gaussian G(x, y, σ) and the input image

(resulting image from segmentation) where:

Experimentally, Maxima and minima of Laplacian-of-Gaussian gives best notion of scale

([21]) producing the most stable image features compared to another image functions

such as the gradient, Hessian or Harris corner function. Thus using Laplacian-of-Gaussian

(LoG) operator:

LoG is expensive to calculate so with the help of heat diffusion equation, the definition of

Difference-of-Gaussians (DoG) and parameterized in terms of σ rather than the more

usual t=σ2:

 can be computed from the finite difference approximation to using the

difference of nearby scales at kσ and σ:

The efficiency of DoG is based in a simple operation, subtraction of two images.

Therefore, isolating difference of Gaussian:

That shows that when difference of Gaussians (DoG) function has scales differing by a

constant factor it already incorporates the σ2 scale normalization required for the scale-

invariant Laplacian. The factor (k-1) in the equation is a constant over all scales and

Pg. 30 Report

therefore does not influence in extrema location. The approximation of the error will go to 0

as k goes to 1, but in practice Lowe study has almost no impact on the stability of extrema

detection of localization for even significant differences in scale such as k= 2 .

So in conclusion what is done is to construct a scale-space like shown in Fig. 2.14

Fig. 2.14 Scale Space of DoG

For each octave of scale space the initial image is repeatedly convolved with Gaussians to

produce the set of scale space images separated by a constant k. Each octave is then

divided into intervals s so k=21/s. We must procedure s+3 images in the stack of blurred

images for each octave so that final extrema detection covers a complete octave.

Adjacent Gaussians images are subtracted to produce the difference of Gaussian images.

Fig. 2.15 shows the computing of DoG.

After each octave the Gaussian image is down sampled by a factor of 2 and the process is

repeated.

Markers recognition in a camera-based calibration system for immersive applications Pg. 31

Fig. 2.15 Difference of Gaussians are computed. For each octave there are s intervals so

k=21/s, s+3 Gaussian must be processed. σ doubles for the next octave.

All extrema (maxima and minima of the DoG) within 3x3 neighbourhood are chosen so that

the pixel marked with X is compared to its 26 neighbours at the current and adjacent

scales (see Fig. 2.16)

It is selected as maxima only if it is larger than all of the neighbours or minima if it is

smaller than all of them.

The cost of this check is reasonably low due to the fact that most sample points will be

eliminated following the first few checks.

Pg. 32 Report

Fig. 2.16 Maxima and minima of DoG images are detected by comparing the pixel marked

as X to its 26 neighbours in 3x3 regions at the current and adjacent scales (marked with

circles)

2nd Step: Keypoint Localization & Filtering

In this section for each candidate keypoint is needed:

 Interpolation of nearby data is use to accurately determine its position

 Keypoints with low contrast are remove

 Responses along edges are eliminated

 The keypoint is assigned an orientation

After scale space extrema (keypoint candidates) are detected by comparing a pixel to its

neighbour, the next step is to perform a detail fit to the nearby data for location, scale and

ratio of principal curvatures. This information allows that points, with low contrast (and

therefore sensitive to noise) and poorly localized along the edge, are rejected.

The initial approach of Lowe [16] searched to locate each keypoint at he location and scale

of the central sample point. With the new approach [19] the interpolated location of the

maximum is calculated. This fact improves matching and stability.

The interpolation is done using Taylor expansion series (up to the quadratic terms) of the

Difference-of-Gaussian scale space function D(x,y,σ). It is shifted so that the origin is at

the sample point:

Markers recognition in a camera-based calibration system for immersive applications Pg. 33

D and derivatives are evaluated at the sample point and the offset from this point

x=(x,y,σ)T.

The location of extrema, xM, is determined by taking the derivative of this function with

respect to x and setting it to zero, giving:

If the offset xM is larger than 0,5 in any dimension , indicates that the extrema lies closer to

another candidate keypoint. In this case, the candidate keypoint is changed and the

interpolation performed instead about that point. Otherwise the offset is added to its

candidate keypoint to get the interpolated estimate for the location of the extrema.

To reject unstable extrema with low contrast the value of the second order Taylor

expansion is computed at the offset xM.

If this value is less than 0.03 (assuming image pixel values in the range [0, 1]), the

candidate keypoint is discarded. Otherwise is kept, with final location y+ xM and scale σ,

where y is the original location of the keypoint at the scale σ.

For stability is not sufficient to reject keypoints with low contrast. The DoG function will

have strong response along edges, even if the candidate keypoint is poorly determined and

therefore unstable to small amounts of noise. A poorly defined peak in DoG will have a

large principal curvature across the edge but a small one in the perpendicular direction,

that means that we want to reject points with strong edge response in one direction only.

The principal curvatures can be computed from 2x2 Hessian matrix at the location and

scale of the keypoint:

The eigenvalues of H are proportional to the principal curvatures of D. Borrowing from the

approach used by Harris and Stephens (1988)[25] we can avoid explicitly computing the

eigenvalues, as we are only concerned with their ratios. It turns out that the ratio r=α/β of

Dxx Dxy
H

Dxy Dyy

Pg. 34 Report

the two eigenvalues, where α is the larger one and β the smaller one is sufficient for SIFT

purposes.

In the unlikely event that the determinant is negative the curvatures have different signs so

the point is discarded as not being an extrema.

Then,

which depends only on the ratio of the eigenvalues rather than the individual values. R is

minimum when the eigenvalues are equal to each other. Therefore the higher the absolute

difference between the two eigenvalues, which is equivalent to a higher absolute difference

between the two principal curvatures of D, the higher the value of R.

For some threshold eigenvalues ratio rth, if R for a candidate keypoint is larger than

 that keypoint is poorly localized and hence rejected. In Lowe 2004 this value

rth=10 and it is efficient to compute with less than 20 floating point operations to test each

keypoint.

3rd Step: Orientation assignment: removing effects of rotation and scale

The last step done by detector is to determine the keypoint orientation based on local

image gradient directions and this way achieving invariance to rotation. A gradient

orientation histogram is computed in the neighbourhood of the keypoint, using Gaussian

smoothed image at the closest scale to the keypoint‟s scale, L(x, y, σ), so all

computations are performed in a scale-invariant manner. Gradient magnitude and

orientation are pre-computed using pixel finite differences:

Markers recognition in a camera-based calibration system for immersive applications Pg. 35

The magnitude and direction calculations for the gradient are done fore every pixel in a

neighbouring region around the keypoint in the Gaussian smoothed image L. An orientation

histogram is formed with 36 bins covering each of them 10 degrees. Each sample in the

neighbouring window added to the histogram bin is weighted by its gradient magnitude an

by a Gaussian-weighted circular window with a σ that is 1,5 times the scale of the

keypoint, that shows Fig. 2.17.

Fig. 2.17 Creation of gradient histogram (36 bins). Weighted by magnitude and Gaussian

window (overlaid circle) with σ 1,5 times the scale of the keypoint

Peaks in the histogram correspond to dominant directions of local gradients. The highest

peak in the histogram is detected, and then any other local peak is within 80% of the

highest peak is used to also create a keypoint with that orientation. Therefore, for locations

with multiple peaks of similar magnitude, there will be multiple keypoints created at the

same location and scale but different orientations.

Only about 15% of points are assigned multiple orientations, but these contribute

significantly to the stability of matching. Finally, a parabola is fit the 3 histogram values

closest to each peak to interpolate the peak position for better accuracy.

As all the properties of the keypoints are measured relative to the keypoint orientation, we

ensure it provides invariance to rotation.

4th Step: Descriptor

Previous steps found keypoint locations at particular scales and assigned orientations to

them. This ensured invariance to image location, scale and rotation. Now we want to

Pg. 36 Report

compute descriptor vectors for these keypoints such that the descriptors are highly

distinctive and partially invariant to the remaining variations, like illumination, 3D viewpoint,

etc. This step is pretty similar to the 3rd Step: Orientation Assignment.

Fig. 2.18 Histogram of 4x4 samples per window in 8 directions with Gaussian weighted

around centre. So we have a dimensional feature vector of 128 for each point (4x4x8)

The keypoint descriptor is created by fist computing the gradient magnitude and orientation

at each image sample point in a region around the keypoint location using the scale of the

keypoint to select the level of Gaussian blur for the image. In order to achieve orientation

invariance, the coordinates of the descriptor and the gradient orientations are rotated

relative to the keypoint orientation. Gradients are illustrated with small arrows at each

sample location. The region is formed by a 16x16 set of samples. These are weighted by a

Gaussian window (with σ equal to 0,5 times the width of the descriptor window) indicated

by the overlaid circle. The purpose of this Gaussian window is to avoid sudden changes in

the descriptor with small changes in the position of the window, and to give less emphasis

to gradients that are far from the centre of the descriptor, as these are most affected by

misregistration errors. These samples are then accumulated into orientation histograms

summarizing the contents over 4x4 sub-regions with the length of each arrow

corresponding to the sum of the gradient magnitudes near that direction within the region.

So histograms contain 8 bins each, and each descriptor contains a 4x4 array of 16

histograms around the keypoint. This leads to a SIFT feature vector with 4 x 4 x 8 = 128

elements.

It is also important to avoid all boundary effects in which the descriptor abruptly changes

as a sample shifts smoothly from being within one histogram to another of one orientation

to another. Therefore, trilinear interpolation is used to distribute the value of each gradient

sample into adjacent histogram bins, that means that each entry into a bin is multiplied by

a weight of d-1 for each dimension, where d is the sample from the central value of the bin

as measured in units of the histogram bin spacing.

Markers recognition in a camera-based calibration system for immersive applications Pg. 37

Finally the feature vector is modified to reduce effects of illumination changes. First, the

vector is normalized to unit length. A change in image contrast in which each pixel value is

multiplied by a constant will multiply gradients by the same constant, so this contrast

change will be cancelled by vector normalization. A brightness change in with a constant is

added to each image pixel will not affect the gain of the gradient values. Therefore the

descriptor is invariant to affine changes in illumination.

Although the dimension of the descriptor (128) seems high, descriptors with lower

dimension than this do not perform as well across the range of matching tasks, [18].

The performance of SIFT descriptor is the best descriptor (together with GLOH, an

extension of the SIFT descriptor designed to increase its robustness and distinctiveness))

as it explains the extensive survey of Mikolajczyk & Schmid [21].

The typical usage of SIFT for a set of database images is firstly to compute SIFT features

and then save descriptors to database; for a query image firstly compute SIFT features,

then for each descriptor find the closest descriptors (Euclidean distance) in database and

finally verify matches (geometry and Hough transform).

Given SIFT's ability to find distinctive keypoints that are invariant to location, scale and

rotation, and robust to affine transformations (changes in scale, rotation, shear, and

position) and changes in illumination, they are usable for object recognition

Pg. 38 Report

3. Our contribution

Our goal is to recognize objects (where objects are our markers) in image. To identify

them there are necessary some previous steps to prepare digital image to apply shape

and object recognition techniques and, this way, distinguish desired areas from not desired

ones (described in Sections 2.3 and 2.4) and extract those of our interest.

During all this section we explain which of the terms and methods described in Section 2

will be applied in our project in order to reach the objective raised of extracting markers

from image. All the techniques described are thought to be implemented in a C++

application which will be explained more widely in Section 4.

First of all, what we are looking for is a photo (image) in which we can differentiate bright

from dark regions to distinguish our markers from the parts of the cylindrical structure.

Colour in image is not as important as the distinctiveness of the markers (internal and

external part) from the rest of picture taken, and, as we want to work with images along the

whole image processing chain, size of image (in terms of bytes) is also very important.

The biggest the image is, the more complicated the operations are.

At this point it is also remarkable the fact that we have a video camera but we are going to

use it as a photocamera as explained in Proposal of solution (Section 1) where the

question of calibration in real time is discussed.

So altogether, a good solution in our case is to take a gray-scale image. That is the result

of a gray-scale transformation in which pixel brightness of each pixel is changed without

regarding to its position in the image. It is described in Section 2.1 as pre-processing step

and it is done by the software provided by the camera provider (uEye Setup Version 3.1,

www.ids-imaging.com) which allows us choosing the pixel colour depth that we desire in

our capture from camera recording in real time.

This high quality gray-scale image taken by the camera as described in Appendix C is our

testimage (testimage.bmp), the starting point of our study and analysis. It is shown in Fig.

3.1., its original size is 2048x 1536 and the format is bmp (bitmap).

http://www.ids-imaging.com/

Markers recognition in a camera-based calibration system for immersive applications Pg. 39

Fig. 3.1 Testimage taken by camera of the image projected by projector

In testimage we can see parts from the cylindrical structure where 4 round markers

(external markers) are located and an image corresponding to image projected by

projector onto the cylindrical surface where internal markers (squares) are shown.

From now on to easily identify and name the markers in the image we are going to

consider the following notation. The notation will be a capital letter followed by a number.

The capital letter will be I or E depending on which marker we are referring to, Internal or

External; and the number corresponds to the position on the image considering the first

one that up-left marker (1) and the last one down-right (visually perception if we read image

horizontally).

Image pre-processing

Our markers present an abrupt variation of the brightness between the internal and

external part. The internal markers are black squares with a white square hole in the

middle, and the external markers are orange circles with a black circle hole in the middle

as shown in Fig. 3.2

Pg. 40 Report

Fig. 3.2 These are the markers used in our project: internal and external, left and right

respectively

There is not only an abrupt variation between internal and external part of markers but also

appear a considerable variation between markers and the areas next to them (cylindrical

structure, shadows...), so they are easily distinguishable when light conditions are

appropriate (see Fig. 3.3)

Fig. 3.3 The picture shows both markers (internal and external)

At this point we have consider that due to projection on the cylindrical structure markers do

not look like ideal markers shown in Fig. 3.2 because they are affected mostly by affine and

projective features described in Section 2.4 especially in the corners where the effects are

more noticeable (see Fig. 3.4).

Fig. 3.4 Internal marker I1: left-up. The shape of square is affected by affine and projective

features

Markers recognition in a camera-based calibration system for immersive applications Pg. 41

Moreover, it is important to completely identify the internal part of a marker (holes as a

distinctiveness feature of our markers) in order to, in further steps of the image processing

chain, determine correctly if a region is or not a desired marker.

The aim of the local pre-processing is filtering for improving images. In our case with the

sharpening filter, described in Section 2.1, fine details of image are enhanced, giving an

improved image to our purpose and with a simpler implementation than first-derivative as

described in [1].

This step was added before the image processing chain after seeing some results

described in Section 5 (Results) in which the inside regions of our internal markers almost

disappear. So without this step the results obtained at detecting markers are not good

enough.

With this filter differences are accentuated and constant areas are left unchanged. Also

noise is accentuated but as our image has high quality, the effect is barely noticeable. This

effect of the filter to the image can be seen in Fig. 5.13 and Fig. 5.14 from Results.

Until now what we have is a sharpened image from original one and what we want is to

label different regions in image and apply some criteria to discard not desired regions.

Segmentation

Region identification (labelling) expects a binary image to determine the different regions

so the pre-filtered gray-scale image has to be converted to a binary image (binarization).

Our case of study has a strong dependency of light conditions. This point makes important

to find a robust threshold technique in order to avoid problems if the structure is moved to

a brighter or darker place or the light in the salon varies. According to that we can come

across a situation in which a part of an image is more illuminated than other one and in the

darker one is the object we are looking for. So when there are changes in illumination

across the image, an inconstant illumination, it is better to use local instead of global

threshold. This way the threshold can vary smoothly across the image. Different

thresholds can be chosen depending on the part of the image to distinguish desirable from

undesirable objects in the image.

Now we need to find a method for dividing the image into different parts so that each part

can have a different threshold, local threshold, and thus we can solve the problem of

different lightning conditions.

Pg. 42 Report

How these parts should look is taken from Wall‟s algorithm [8]. The strategy is to divide

geometrically the image, not depending on pixel characteristics or values.

The image can be divided into blocks of different sizes m_m and n_n decided by

programmer/user, width and height of blocks can have equal or different sizes. Once

decided the height (m_m) and width (n_n) the blocks remain constant (m_m*n_n pixels) in

the whole image for that calibration except the ones in the boundaries (down or/and right),

which are as small/big as image size allows.

Our image has a height of 1536, if each Wall‟s block has 256 of height size we will have 6

blocks of size Xx256, but if each block has a height size of 200, we will have 7 blocks of

size Xx200 and the last row (the one down) of size Xx136 (1536-(7x200)). For a visually

understanding see Fig. 5.7.

Once we know how to divide image to minor effects of changes in illumination, now the

decision is how to choose the threshold value. As the regions can vary depending on

user‟s desire the threshold should be such as it varies depending on the pixels of the

block. That‟s why an adaptive threshold is needed [7]. This way and according to Wall‟s

algorithm we will find so many thresholds as blocks in image.

The threshold value can be selected by user (random, mean, median...) or also computer

can generate one automatically (automatic thresholding) and there are many different

methods (Otsu, K-means… [6]). All this information is explained in Section 2.2.

Our decision is a clustering based method that works with an iterative technique robust

against image noise and described in [9](Ridley and Calvard) .

The algorithm described by Ridley and Calvard‟s and implemented in our project consists

in six steps. In Appendix A, Ridley and Calvard‟s deduction and mathematics involved are

explained for the understanding of the algorithm used. The steps are:

1. To calculate histogram of the region of the image and set the mean intensity of the

image, set T=mean (I)

2. To divide the histogram into two parts separated by T

3. To calculate an above mean Tabv and a below mean Tbel, one for each part of the

histogram

4. To calculate the average between Tabv and Tbel resulting a new value of mean

T‟=(Tabv +Tbel)/2

5. To repeat calculation of Tabv and Tbel but now with the new mean T‟

Markers recognition in a camera-based calibration system for immersive applications Pg. 43

6. To repeat the process until threshold does not change any more

Thanks to this algorithm we are able to find a suitable threshold for each part and they are

also well adapted to changes in light conditions because it takes into account the pixel and

the characteristics of their neighbours.

The different results obtained if we apply a global or local threshold to image and different

threshold algorithm results are shown in Section 5.

As we have introduced before we were thresholding the image in order to apply labelling.

After that we will decide which properties of the objects are the best to distinguish markers.

Region identification: Labelling

From binarized image we find the different regions present in image. A region, as

described in Section 2.3, is a set of pixels where all the pixels are adjacent or touching. In

our case we have chosen an 8-connectivity, see Fig. 2.4 and Fig. 2.5. The region

identification method consists on labelling each region with a unique number where the

largest number gives the total number of regions in the image.

The algorithm for approaching the labelling assumes that zero pixels represent

background and non-zero pixels are objects. In a first iteration our algorithm searches pixel

per pixel through the entire image (row by row) a non-zero pixel. The criterion are (see Fig.

2.5):

 If all the neighbours of the actual pixel (i,j) have zero value (background pixels) a

new, and as yet unused, label is given to the pixel.

 If there is just one neighbouring pixel with a value different from zero, it assumes

that (i,j) has the same value as this pixel.

 If there is more than one pixel with different value, the algorithm considers a label

collision and it stores the pair of pixels in another data structure as equivalent.

In a second iteration the whole image is scanned again and the algorithm decides if the

label collisions become one or another value analyzing the neighbouring pixels and the

label they have adopted.

After this second iteration all pixels in image different from zero (possible markers) are

labelled by a number which identifies them as part of a specific region.

Pg. 44 Report

Region based-shape representation

Now that all regions are identified we are going to analyze the content of the image. The

objective is to find some features of our markers (size, shape) in order to univocal identify

them from the rest of the objects in the image as for example parts of the cylindrical

structure. That means that we have to analyse for each region if those features, also called

region descriptors, are accomplished or not and depending the results discard or maintain

region as a candidate for marker.

In this project we focus our attention in three region descriptors: area (size), rectangularity

based on bounding box and rectangularity based on moments (the definition of terms has

been made in Section 2.3).

With the help of the first region descriptor mentioned we will discard regions in both cases,

internal and external markers. The other two region descriptors will be valid only in the

case of internal markers because the strategy adopted to identify external markers is

based in contours developed by Steffen Terörde in his Mater Thesis for IGD and TU-

Darmstadt. Steffen is a student who developed an algorithm for detecting ellipses in

image. We have integrated some of his programming codes into our GUI. In Section 3.1

IGD Contribution a short resume of the procedure is explained.

We have applied the following descriptor for both markers extraction:

1. Area (Size): corresponds to the number of pixels conforming the shape. It can be

calculated with zero order moment m00.

It is obvious that our markers are small and there are other regions in image really big if we

compare them. So the first criterion to discard regions will be area (size). Differences

between big and small objects are so great that it is not so important determining a frontier

upper number once we know the size of internal markers (around 300 pixels) and external

markers (around 900). In Section 5 (Results) will be shown the necessity of having a below

value for the range in order to minor the effect of noisy regions. Attending to that we have

considered for each case a range equal to ± (mean size of markers /2).

Internal markers Є (150, 350)

External markers Є (450, 1350)

Markers recognition in a camera-based calibration system for immersive applications Pg. 45

It is in those known ranges where mostly problems are found and where another criterion

is needed to discard markers from other small objects. As can be seen in Results (Section

5)

From now on we are only interested in determining features for internal markers. To

ensure rectangularity of the regions we have chosen two descriptors:

2. Rectangularity based on Bounding Box: ratio which determines how rectangular a

shape is. Attending to the conclusions of [11] and [12] and the complexity in terms of

programming of other methods (like Rotating Callipers described in [12] and [13]), one

method chosen to determine rectangularity in our project is based on minimum bounding

box.

A box is a rectangular region whose edges are parallel to the coordinate axes. Its limits can

be found as the minimum and maximum of each coordinate axes (x and y) determining 4

extreme points satisfying the inequalities:

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

So a minimal bounding box of a finite geometric object is the box with minimal area that

contains the object. An illustrative example is shown in Fig. 3.5.

Fig. 3.5 Minimal Bounding Box determined by xmin, xmax, ymin,ymax

This method is computationally the simplest of all linear bounding containers, and the one

most frequently used in many applications. At runtime, the inequalities do not involve any

Pg. 46 Report

arithmetic and it only compares raw coordinates with pre-computed min and max

constants.

Rectangularity ratio (R) is the result of the proportion between the area of the object or

region (OA) and the area of the bounding box (BB) or region‟s area against the area of the

minimum bounding rectangle:

OA
R

BB

When both rectangles, containing and contained, have the same features this ratio is

ideally 1. In our case this ratio is not ideally 1 because our markers have a hole in the

middle and they are affected by projective and affine features. The hole of the internal

marker has a size of approximately 1/9 of rectangle‟s region. (see Fig. 3.6):

Fig. 3.6 Internal Marker divided into 9 equal parts to calculate the percentage of area

occupied by marker and not by the hole inside the Bounding Box

Attending to projective and affine properties we have considered that all the objects

(regions) with a ratio of at least a 75% are suspected to be desired markers.

3. Rectangularity based on Moments (Kurtosis parameter): Another way to describe

shape uses statistical properties called moments.

Our interest is focused in:

 zero order moment m00 =Area (for calculating first descriptor described above)

 first order moment m10. Thanks to it we can calculate the centroid in the x-

axis: cx (Central moments corresponding to translation invariance) necessary to

determine second order moments.

 second order moments: µ20 and µ40. With them we are able to determine Kurtosis

parameter.

We use the results of the study developed by Reeves and Rostampour [14][15] to

determine, using standard moments, if the shape of our interest region is a rectangle or

not .

Markers recognition in a camera-based calibration system for immersive applications Pg. 47

The rectangle should have a Kurtosis parameter =-1.2 using:

At this point we have also considered a little margin around -1.2 (from -1.05 to -1.35) for

not being so strict because most of markers are affected by affine and projective features.

This criterion appeared to be in Section 5 a good solution at identifying markers.

We have tested different possibilities of ratios and its combination. As can be seen in

Section 5 the best solution is to combine both rectangularity descriptors and decide that a

region is rectangular when accomplish the equation:

ratio>0.75 and ((kx<-1.05)and(kx>-1.35))

To ensure that objects extracted after feature description correspond to our internal

markers and to give robustness to the markers extraction chain we apply SIFT detector

and descriptor explained in Section 2.4

Object recognition: SIFT

From image an appropriate set of features are extracted. The aim of object recognition is

to take a large amount for image data and retain only that information necessary to identify

or distinguish the object. The knowledge we have from the shape of the object we are

looking for may be used to govern the extraction of features.

A matching algorithm will compare the ideal marker with the marker in the image and with

the help of the extracted features it will determine if the object of the image corresponds to

one of our searched markers or not.

As our application has not to run at real time (the process is done once a week, month…

what user decides) and has to attend to affine property what we are looking for is accuracy

at determining keypoints and correct matches in the whole process and is not so important

how long it takes in calculate them.

We have various possible algorithms to make this matching, the most known are SIFT and

SURF. Attending that our markers are subjected to affine features and according to [26] we

have decided that the better performance will be done by SIFT as described in Section 2.4.

The results are shown in Section 5.

Pg. 48 Report

In our case the SIFT implementation used is that described in [10] which is compatible to

Lowe‟s version. For applying the algorithm we need the image of study (marker) and a

template (See Fig. 3.2). The algorithm will do the matching between both images to

determine if they correspond to the same object or not.

The sift function returns a 4xK matrix frames containing the SIFT frames and a 128xK

matrix descriptors containing their descriptors. Each frame is characterized by four

numbers which are:

 (x1; x2): for the centre of the frame

 σ: The scale σ is the smoothing level at which the frame has been detected

 ϴ: frame‟s orientation

The coordinates (x1; x2) are relative to the upper-left corner of the image, which is

assigned coordinates (0; 0), and may be fractional numbers (sub-pixel precision).

Fig. 3.7 Difference of Gaussian scale space of template image

Markers recognition in a camera-based calibration system for immersive applications Pg. 49

Fig. 3.8 Difference of Gaussian scale space of marker of study

In this implementation, a SIFT frame is also denoted by a circle, representing its support,

and one of its radii, representing its orientation. The support is a disk with radius equal to

six times the scale σ of the frame. If the standard parameters are used for the detector,

this corresponds to four times the standard deviation of the Gaussian window that has

been used to estimate the orientation, which is in fact equal to 1.5 times the scale σ. This

number can also be interpreted as size of the frame, which is usually visualized as a disk

of radius 6σ.

Pg. 50 Report

Fig. 3.9 On the left the marker of our study, in this case I6. On the right the template

marker

Once frames and descriptors of two images have been computed, the algorithm can be

used to estimate the pairs of matching features. This function uses Lowe's method to

discard ambiguous matches [16].

At the end what we obtain is an image in which we can see the representations of both

images and lines connecting the frames or keypoints. The lines show the correspondence

between markers and template and allow us to confirm that the marker extracted is a real

marker. If no lines are represented that means that the algorithm was not able to ensure

the matching.

Fig. 3.10 Matching done by SIFT between marker I6 and template

In Appendix I can be seen an example of the report provided by the algorithm during the

execution where all parameters calculated are shown

3.1. Usage of existing code property of IGD

As mentioned in previous section we want to univocal identify internal and external

markers. In this second case, in IGD Fraunhofer, they already had an application

Markers recognition in a camera-based calibration system for immersive applications Pg. 51

developed by Steffen Terörde, a student who had developed his Master Thesis in IGD for

his university, TU-Darmstadt, before I arrived. We are interested in the part of the strategy

referring to identify ellipses in image basing in contours.

The procedure used in our project is described as follows. After labelling the image and

discarding big regions we go through image pixels determining if a pixel belongs or not to

the contour we are looking for and we save this maximum and minimum coordinates in a

contour points array.

The directions used to determine contour points are visually described in Fig. 3.11. Our

interest pixel is coloured in black, and all its neighbours have a number. Some of these

pixels (0, 1, 2 and 3) are also coloured to easily identify directions described between

interest pixel and them. At the end, considering all neighbour pixels, we have covered all

possible directions and this way we are able to determine a contour.

Fig. 3.11 Left: all neighbour pixels are labelled with a number and some are coloured.

Right: show direction (colour) taken by each numbered pixel

The maximum and minimum points (same concept as Minimum Bounding Box) determine

the edges of the contour. We erase the pixels between them and we draw the line

corresponding to the contour.

With the new contour we determine where theoretically the centre of the ellipse should be

and with a tolerance determined by programming we draw a point in the middle of the

ellipse. If a point appears at the end of the execution means that the application has found

an object in the image with shape of ellipse. If not, region is not considered a ellipse and for

that reason it is discarded as external marker.

Pg. 52 Report

4. Tools and Implementation

4.1. Requirements

The requirement of the project was to program a Win 32 console application implemented

in C++ programming language. This way, the application will be compatible with some

other applications and functions already developed by IGD and the different parts and

modules can be reusable for different projects in the future.

The application should recognize markers at image, internal and external (squares and

circles) as described in previous sections.

Our application should have an interactive interface where user can select and see which

markers wants to detect. So a requirement of our GUI is having a screen where user

visually could identify the markers presents in image and also verify if the results obtained

by the code are effective at recognizing internal and external markers.

4.2. Tools

As a first approximation we have implemented our code in Matlab to see if results were

successful to our purpose. Once we have tested or rejected the different

techniques/methods for each step in the image processing chain, the final solution has

been implemented in C++ thanks to IPP and Ttmath libraries. An open source library called

OpenCV has been also tested.

The programming languages and environments shortly introduced above are explained as

follows:

MATLAB: The name stands for MATrix LABoratory. MATLAB is a high-performance

language for technical computing. It integrates computation, visualization, and

programming in an easy-to-use environment where problems and solutions are expressed

in familiar mathematical notation where the basic data element is an array that does not

require dimensioning. Some Typical uses of the application include: Math and computation,

algorithm development, modelling, simulation, prototyping, data analysis, exploration and

visualization.

Visual C++: is one of the most widespread and important languages available today for

developing applications for the Windows operating system C++, an object oriented

Markers recognition in a camera-based calibration system for immersive applications Pg. 53

programming language. It implements data abstraction using a concept called classes,

along with other features to allow object-oriented programming. Parts of the C++ program

are easily reusable and extensible; existing code is easily modifiable without actually

having to change the code. C++ maintains aspects of the C programming language and

some of its features allow low-level access to memory but also contain high level features.

OpenCV: is a computer vision library originally developed by Intel. It is free for commercial

and research use under a BSD license (open source software). The library is cross-

platform, and runs on Windows, Mac OS X, Linux, VCRT (Real-Time OS on Smart

camera) and other embedded operating systems. In fact it is 4 libraries in one: computer

vision algorithms (CV), experimental/beta (cvaux), linear algebra (cxcore) and

media/window handling (highgui). It focuses mainly on real-time image processing, as

such, if it finds Intel‟s Integrated Performance Primitives (IPP) on the system, it will use

these commercial optimized routines to accelerate itself.

IPP: Intel® Integrated Performance Primitives (Intel® IPP) is an extensive library of

multicore-ready, highly optimized software functions for digital media and data-processing

applications. Intel IPP offers thousands of optimized functions covering frequently-used

fundamental algorithms. The library supports only Intel (AMD not supported) processors

and is available for Windows, Linux and Mac OS X operating systems. Intel IPP is divided

into three major processing groups: Signal (with linear array or vector data), Image (with

2D arrays for typical colour spaces) and Matrix (with nxm arrays for matrix operations).

TTMath: is a small library which allows one to perform arithmetic operations with big

unsigned integer, big signed integer and big floating point numbers. It provides standard

mathematical operations like adding, subtracting, multiplying, dividing etc. TTMath is

developed under the BSD license which means that it is free for both personal and

commercial use. The main goal of the library is to allow one to use big values in the same

way as the standard types like int, float, etc.

4.3. OpenCV

As a first option we have tried to find a open source application already programmed which

could help to recognize our markers.

In the OpenCV library there are many examples in image processing area and one of the

demos included is called squares.cpp. Its functionality is to find squares in the image. To

do that, the code tries different threshold levels using Canny instead of zero threshold level

o helping to catch squares with gradient shading. Then applies threshold and find contours

and 4 points (vertices). Once contours are determined it looks for minimum angle between

Pg. 54 Report

joint edges and if all angles are near to 90 degrees it concludes that this contour belongs to

a square. Then it draws lines to show to user where are the squares found.

We have tested it with our reference image but it does not work properly despite adjusting

the different parameters as shown in Section 5 (Results). Our markers are not detected.

So the strategy of finding an open source application already developed is discarded and

we have to develop our own application.

4.4. Implementation

Before implementing the GUI, we have implemented a first approximation program with

MATLAB to ensure that the concepts were right and reachable before programming a GUI

with Visual Studio in C++ language.

The strategy is to work with the original image, scene of real world captured by the

camera, as a matrix, where the elements of each raw and column are pixels of the image.

Through the knowledge of image processing theory and the different instances and

functions of MATLAB we have implemented each step of the image processing chain that

represents the better solution at extracting our searched markers.

As the results in MATLAB are successful (See Section 5), the image results are

respectable with markers features and location and operations are computationally not

complicated so the time of execution is not too much (although we are not searching a real

time application) the solution implemented in C++ is a “copy” from MATLAB. It uses

algorithms and functions implemented and tested in MATLAB and potentiated by tools as

Intel Primitives.

C++ project structure

The goal of this project is to implement a GUI with Visual Studio in C++ compatible with

other projects already developed by Fraunhofer IGD and knowing the possibilities that C++

language brings. Then using the capabilities of the C++ language combined with IPP and

TTMath Mathematical Library we have searched the optimal methods to uniquely identify

our markers.

We have implemented a console Win32 Application in a Microsoft Visual C++ 8.00

programming environment. The result is a GUI that makes easy the use of the code to the

final user.

Markers recognition in a camera-based calibration system for immersive applications Pg. 55

The title of the GUI is Markers Detection and the design consists in 3 parts. The different

boxes corresponding to different blocks in the image processing chain are shown on the

left and inside them we can find different options (buttons) that can be chose by user; a big

screen for showing pictures is on the right side and a small information visor at the bottom.

All these details can be seen in the Fig. 4.1 below.

Fig. 4.1 Main window of our GUI Application where options, buttons and pictures are.

The structure of the programming code developed is as follows:

Pg. 56 Report

Fig. 4.2 Shows the structure of the project Markers and its different header and source

files. Initial image (testimage) is included in our resource files.

The project has a main function Markers_Detection.cpp in which Form1 is runned

(Form1.h).

Application::Run(gcnew Form1());

Design of GUI and functionality of Options

In this section the design of the GUI and the structure of the code are explained. After an

overview, each group of options and buttons implemented are described giving detailed

information about C++, IPP and TTMath functions needed and implemented in each case.

All includes and defines necessary to run the application properly are at the beginning of

the code followed by the initialization of global variables.

The design chose for GUI is shown in Fig. 4.3 below:

Markers recognition in a camera-based calibration system for immersive applications Pg. 57

Fig. 4.3 Main window of our GUI Application where options, buttons and pictures are. The

red rectangles enhance some details explained in the memory (Main window, GroupBox

and Information Box)

In this screenshot of our application (Fig. 4.3) we can see 3 big boxes enhanced in red

colour.

1: main window of the programme where are included all the sections, buttons, screens

and information displays.

private: System::Windows::Forms::PictureBox^ pictureBoxBigView;

2: Each step of the image processing chain needs to have its own GroupBox where all the

buttons are grouped. For example the code for Step 0 is:

private: System::Windows::Forms::GroupBox^ groupBoxOpenImage;

3: Corresponds to information box where all the comments about the process in course

are shown:

private: System::Windows::Forms::TextBox^ textBoxOutput;

Pg. 58 Report

In this particular case of GroupBox (Open Image) we also need to create a File Dialog (Fig.

4.4) so we are able to open the desired image searching it in folders of our computer. In

our case testimage.bmp:

private: System::Windows::Forms::OpenFileDialog^ openFileDialog;

Fig. 4.4 File Dialog to open the desired image(testimage.bmp) searching it in folders of our

computer

For each GroupBox there also 2 more items which have to be programmed. For example

in case of Open Image they are shown in Fig. 4.5 below.

Fig. 4.5 GroupBox Open Image and its button

Markers recognition in a camera-based calibration system for immersive applications Pg. 59

4: The label where the name of each GroupBox will be shown. It is not necessary that this

name of the label (in this step of programming) agrees with the name shown in the

console application. That is something editable after.

private: System::Windows::Forms::Label^ labelBoxStep0_OpenImage;

5: For each Button inside the GroupBox we have to implement the instruction (the only

difference is the name in each case):

 private: System::Windows::Forms::Button^ buttonStep0_OpenImage;

All this windows, boxes and options need to be created and initialized. The programming of

the examples shown above is:

this->pictureBoxBigView= (gcnew System::Windows::Forms::PictureBox());

this->groupBoxOpenImage = (gcnew System::Windows::Forms::GroupBox());

this->buttonStep0_OpenImage= (gcnew System::Windows::Forms::Button());

this->labelBoxStep0_OpenImage=(gcnew System::Windows::Forms::Label());

this->openFileDialog=(gcnew System::Windows::Forms::OpenFileDialog());

this->textBoxOutput = (gcnew System::Windows::Forms::TextBox());

Once we have all boxes created we have to indicate the components of the PictureBox

and for that reason we have to run the beginning action:

cli::safe_cast<System::ComponentModel::ISupportInitialize^

>(this->pictureBoxBigView))->BeginInit();

For each element forming part of our application we have to describe the features they will

have. These features are exposed in Table 4.1.

 Features

PictureBo

x

BackColor, BorderStyle, Location (Point), Name, Size, SizeMode,

TabIndex and TabStop

GroupBox Controls, Location (Point), Name, Size, TabIndex, TabStop and

Pg. 60 Report

Text

Button

Enabled, Location (Point), Name, Size, TabIndex, Text,

UseVisualStyleBackColor

Label Location (Point), Name, Size and TabIndex

FileDialog FileName

Table 4.1 Features of each statement in our Win32 Console application

In the case of Buttons we have programmed Events that will have effect when the mouse

is clicked:

this->buttonStep0_OpenImage->Click += gcnew System::EventHandler(this,

&Form1::buttonStep0_OpenImage_Click);

We configure the controls of each GroupBox and we give a name to the main window.

This way the configuration of Console Win32 is ended (EndInit).

this->Controls->Add(this->pictureBoxBigView);

this->Controls->Add(this->groupBoxOpenImage);

this->Controls->Add(this->textBoxOutput);

this->Text = L"Markers Detection";

(cli::safe_cast<System::ComponentModel::ISupportInitialize^ >(this-

>pictureBoxBigView))->EndInit();

We declare our own variables (self-defined) and we start with the programming of each

function that a click of the mouse activates.

At the end of each execution the following buttons are enabled and actual are disabled

except in GroupBox called General Options that can be selected at any time during the

execution of the programme.

Button Open in Open Image Box

Markers recognition in a camera-based calibration system for immersive applications Pg. 61

When we first run the application the only options available are Open Image and Exit. That

can be seen because they are the only buttons enabled; the others can not be selected

(see Fig. 4.6).

In the viewer on the right the image selected will be shown.

Fig. 4.6 Initial appearance of our GUI. Only Button Open from Open Image and Exit can

be selected

The selection of this button opens a FileDialogBox in which we can chose the image within

we want to work. See Fig. 4.7 below.

Pg. 62 Report

Fig. 4.7 File Dialog to open the desired image(testimage.bmp) searching it in folders of our

computer

The result is the visualization of the image on the right side screen (see Fig. 4.8).

Markers recognition in a camera-based calibration system for immersive applications Pg. 63

Fig. 4.8 Resulting appearance of GUI alter opening our testimage

Once we have opened the image, the button becomes disabled and next options available

correspond to next step of the image processing chain.

From now on, we can find two possibilities of analysis. We can search for internal markers

otherwise external markers.

Option 1: Button Internal in Marker Decision Box

In this point the goal is to obtain Internal Markers and that will be done following the steps

described in Section 3 (Our contribution). First of all we will apply a pre-processing filter,

following by a local threshold, a labelling of the resulting image and finally discarding big

regions and not rectangular objects in image.

In our GUI when Internal Button is selected it is in a flat style and External Button appears

disable, it can not be selected.

The image opened in step before can be seen on the right side. After applying all functions

in this step the result will be shown instead and it will be a good approximation image to

our final goal. All the process and results can be seen in Section 5.

Before explaining the functions involved in this step it is important to explain some

conversions made to image formats in order to execute some functions faster or easier by

using IPP.

Pg. 64 Report

All the images, original images and showing ones have bitmap format and during the

process they are converted into IPP image format and reconverted again into bitmap for

representation

The functions used to do that are:

pin_ptr<Ipp8u> binSrc = (Ipp8u*) binData->Scan0.ToPointer();

Ipp<datatype>* ippiMalloc_<mod>(int widthPixels, int heightPixels,

int* pStepBytes); (mod 8u_C1)This function allocates a memory

block aligned to a 32-byte boundary for elements of different data types. Every line of the
image is aligned by padding with zeros in accordance with the pStepBytes parameter,
which is calculated by the function ippiMalloc and returned for further use.

IppStatus ippiCopy_<mod>(const Ipp<datatype>* pSrc, int srcStep,

Ipp<datatype>* pDst, int dstStep, IppiSize roiSize); (mod 8u_C4C1R and

8u_C1C4R) copies pixel values between two images.

ippiSet_8u_C4CR

IppStatus ippiSet_<mod>(Ipp<datatype> value, Ipp<datatype>* pDst,

int dstStep, IppiSize roiSize); (mod 8u_C4CR) Sets an array of pixels to a

value. Setting channel of multi-channel data to a value

void ippiFree(void* ptr);Frees memory allocated by the function ippiMalloc.

Once we know all formats of image we can start with the functions programmed in this

step.

First of all we apply a pre-processing filter, this way, noise coming from camera and the

fact of taking the photo is reduced and the contrast between objects and background is

incremented so they are easier detectable.

The function used for filtering is:

IppStatus ippiFilterSharpen_<mod>(const Ipp<datatype>* pSrc, int srcStep,

Ipp<datatype>* pDst, int dstStep, IppiSize dstRoiSize);(mod 8u_C1R)

Filters an image using a sharpening filter.

The appearance of filter image is similar to original image but the matrix of values show

they are different although to human sight there are not noticeable changes. This fact will

be discuss and shown in Section 5.

Then the process of preparing image for local thresholding starts. The size desired for the

blocks in Wall‟s algorithm m_m and n_n is introduced by programming. (m_m and n_n

can be different). As the image is going to be separated in parts depending on height and

width of Wall‟s blocks, we have to ensure that all regions in the image are considered. That

Markers recognition in a camera-based calibration system for immersive applications Pg. 65

is the reason why we construct some blocks with a different size at the end-right and end-

button with one or both sides of size tmp1 and tmp2.

for(int i=0;i<height;i=i+m_m)

{

 for(int j=0;j<width;j=j+n_n)

{

 if(width-j<n_n)

 {

 tmp1=width-j;

 }

 else

 {

 tmp1=n_n;

 }

 if(height-i<m_m)

 {

 tmp2=height-i;

 }

 else

 {

 tmp2=m_m;

 }

We calculate histogram from Wall‟s block as an array that accumulates all the pixel values

(colour) contained in region m_m x n_n, m_m x tmp1 or tmp2 x n_n, depending on the

region. (regionArray)

Pg. 66 Report

Then the threshold of each region is calculated with Ridley and Calvard‟s algorithm as

explained in Section 2.2 and the result is applied to each region. So at the end what we

have is our pre-processed image in so many parts and within so many thresholds as

blocks with Wall‟s method were calculated. It is time to reconstruct the size of pre-

processed image from small blocks. All this programming is made with vectors:

 regionArray[temps] where temps is the size of the Wall‟s block, is the array where

pixel colour property is saved

 histoArray[SIZE_HIST] that is the array where the histogram of block is calculated

 mean [k]: array where all values calculated are saved. The iteration in searching the

mean ends while(mean[k-1]!=mean[k]);

and the reconstruction is done by:

unsigned int f=0;

unsigned int g=0;

for(unsigned int q=0;q<temps;q++)

{

 if(g==tmp1)

 {

 f=f+1;

 g=0;

 }

 if(regionArray[q]<Threshold)

 {

 resbinImageInt->SetPixel(g+j,f+i,System::Drawing::Color::Black);

 }

 else

 {

Markers recognition in a camera-based calibration system for immersive applications Pg. 67

 resbinImageInt->SetPixel(g+j,f+i,System::Drawing::Color::White);

 }

g=g+1;

}

After that process we obtain binary image (See Results) and after that we apply a closing

for cleaning all those small black regions and isolated pixels (noise) resulting from

binarization.

The closing is made with a structuring element of 3x3 called Mask by IPP.

The IPP functions used:

Ipp8u pMask[3*3]= {1,1,1,

 1,1,1,

 1,1,1};

IppiSize maskSize={3,3};

ippiMorphAdvInitAlloc_8u_C1R()

IppStatus ippiMorphCloseBorder_<mod>(const Ipp<datatype>* pSrc, int

srcStep, Ipp<datatype>* pDst, int dstStep, IppiSize roiSize,

IppiBorderType borderType, IppiMorphAdvState* pState);(mod

8u_C1R)performs closing of an image

ippiMorphAdvFree(pState);

Then the negative image is calculated. The black pixels become white and the white ones

become black. This contrast transformation in image is a pre-step for labelling and it is

really important. As we see in the image the desired markers are black. Labelling function

considers that a non-zero value forms part of a concrete region. That means that in our

situation, if we do not change the pixel values on the image our markers will be consider as

part of the background and that is exactly the opposite we are searching. So with this

contrast transformation the image (negative image) is prepared to apply labelling process

described in Section 2.3.

The connectivity used to calculate labelling is 8-connectivity (computing) (See Fig. 2.5) and

the functions used are mentioned below:

ippiLabelMarkersGetBufferSize_8u_C1R()

Pg. 68 Report

ippiLabelMarkers_8u_C1IR()

IppStatus ippiLabelMarkers_8u_C1IR(Ipp8u* pMarker, int markerStep,

IppiSize roiSize, int minLabel, int maxLabel, IppiNorm norm, int*

pNumber, Ipp8u* pBuffer); Labels markers in image with different values.

The resulting labelled image is shown in Section 5. (Results)

Once we have applied labelling the next step in our image chain is region based-shape

classification. In this step we will solve the problem of having not only desired regions by

analyzing the features of the objects in the picture.

Attending to descriptors described in Section 3 and with the criteria also there described

for internal markers we discard by size those regions out of range and those not

rectangular:

ratio>0.75 and ((kx<-1.05)and(kx>-1.35))

The numbers involved in the calculation of the Kurtosis parameter are really big and C++

was not able to calculate them without errors so at this point we have to introduce an

external mathematical library called ttmath which has helped us to solve this big

operations.

The definitions of a big number using ttmath library are:

 typedef ttmath::Big<1,2> MyBig;

and some variables declarations and initializations used:

 MyBig Xc;

 MyBig u20=0;

 MyBig u40=0;

where Xc is the coordinate x of centroid (centre of gravity) and µ20 and µ40 are central

moments (translation invariance) all of them described in Sections 2.3 and 3.

At the end of the execution of this button we obtain an image containing small rectangular

regions as similar as possible to our ideal marker. We also obtain some other regions that

are not desired and which will be rejected after cleaning image from isolated pixels and

after applying matching algorithm SIFT.

Button Optimization in Optimization

Markers recognition in a camera-based calibration system for immersive applications Pg. 69

This button is only available in case of Internal Marker and the aim is to clear image from

noise, deleting isolated pixels. It can be reached thanks to IPP function

IppStatus ippiDilate_<mod>(const Ipp<datatype>* pSrc, int srcStep,

Ipp<datatype>* pDst, int dstStep, IppiSize roiSize,

const char* pMask, IppiSize maskSize, IppiPoint anchor);(mod 8u_C1R, not

in place operation) Performs dilation of an image using a specified mask

(structuring element of 3x3)

Button SIFT in Marker Decision

This button was thought to start running the C++ SIFT code as described in Section 2.4.

But we were not able to insert the code in our current project so SIFT algorithm was

applied via Matlab to the image obtained by GUI. Results are shown in Section 5.

Option 2: Button External in Marker Decision Box

The procedure of this option is the first step described in Option 1. To the digital image

taken by the camera we apply pre-processing filtering to clean image and then we prepare

image for thresholding. In Fig. 4.9 we can see binarization obtained with a m_m and n_n

block size different from the one used before (in internal markers).

Pg. 70 Report

Fig. 4.9 Binary image with 128x128 Wall’s blocks

In this case the appearance of external marker is an orange circle with a smaller black

circled hole. Due to projective and affine features the original circles appear not as perfect

circles but more as ellipses.

As far as we obtain the binarized image the process of binarization is the same as

described in Option 1. Before applying labelling appear the first differences in the process

between internal and external markers information extraction. Labelling function

determines that a non-zero pixel value is part of a region. Our interest external pixels have

contrary features as in Option 1, that means that now our interest pixels are those in white

(orange in fact converted to lowest level intensity in binarization) so the cleaning of the

binarized image for optimal labelling must be done directly to binary image without any

previous contrast transformation. This way our markers are directly considered as desired

regions. For that reason, now cleaning the image from noise before labelling means

applying the mathematical operator opening with a 3x3 structuring element.

Ipp8u pMask[3*3]={1,1,1,

 1,1,1,

Markers recognition in a camera-based calibration system for immersive applications Pg. 71

 1,1,1};//structuring element

IppiSize maskSize={3,3};

IppiPoint anchor={1,1};

IppiMorphAdvState* pState;

IppiBorderType borderType=ippBorderRepl;

ippiMorphAdvInitAlloc_8u_C1R()

IppStatus ippiMorphOpenBorder_<mod>(const Ipp<datatype>* pSrc, int

srcStep, Ipp<datatype>* pDst, int dstStep, IppiSize roiSize,

IppiBorderType borderType, IppiMorphAdvState* pState); (mod

8u_C1R)performs opening of an image

ippiMorphAdvFree(pState);

Once we have all regions in image identified here we go a step after. As we know that

external markers are not considered big regions and they are bigger than internal ones we

can also apply the criterion of discarding regions by size but now not also applying a higher

threshold but also a lower one. The range chose is that going from 800 to 1300 pixels. The

results are shown in Section 5.

Then to extract useful information from image it is necessary to apply next step with next

button.

Button Ellipse Detection

After labelling the image and discarding big regions, dilation is applied to clean image from

isolated black undesirable pixels.

After that all the process described in Contribution of Section 3.1 is applied. This way we

determine if a region is or not an external marker. The results of this extraction are shown

in Section 5.

Other buttons

During the entire process of the application there are some buttons or options that can be

selected in Image Options they are Save and Done and in General Options we can find

Restart and Exit.

Save option is the function of saving an image in the current path of the project; Done

indicates that the action is finished and activates the next step of the application; Restart

Pg. 72 Report

gives us the opportunity of giving up all that was made and re-start over; and finally Exit, it

stops the current action and ends the running of the application.

Markers recognition in a camera-based calibration system for immersive applications Pg. 73

5. Results

As a starting point of our image processing chain we have the photo taken by camera

placed above the projector. This photo is our testimage (testimage.bmp) shown in Fig.

3.1. In this section we will see the results of how, from this testimage, the markers we are

looking for are extracted and recognized by applying methods and techniques described in

Section 3.

The section has been divided into two experiments. In the first one, an open source code

provided by Open CV with the aim of detecting squares is evaluated. After discarding it, the

second experiment explained corresponds to the results obtained by our designed and

implemented GUI. The results given in this second case are a combination of Matlab and

C++ experiments.

As we have only one testimage a rotated image from original has been also used to test

the application. The results are shown in Second Experiment.

First Experiment

We have included in a C++ project the code given in squares.cpp. The demo is provided

by OpenCV and we have included all libraries (cvaux) in the right path in our project in

order to run the demo.

The results of the demo with the one of the images given by default are shown in green in

Fig. 5.1. We can see different shape objects and how the demo determines which of them

are squares (overlaid green rectangle) and which ones are not (without selecting them).

Fig. 5.1 Result of squares detection with a default image provided by OpenCV

Pg. 74 Report

We are going to see the behaviour of the program with our testimage. When we prove how

works the demo with our image (testimage) configured with the default parameters the

results are as follows (See Fig. 5.2)

Fig. 5.2 Squares detected by squares.cpp with default values

As we can see it detects only big squares (obtained by joining contours with 4 vertices with

angle similar to 90 degrees as described in Section 4.3) but it also has a lot of wrong

detections. It determines many combinations that are no squares. In fact to our purpose all

of them are wrong detections because any marker is detected.

To improve results we adjust parameters this way we could see if the demo is able to

identify our internal markers or at least reduce the number of wrong squares detection.

The results obtained after the evaluation of different parameters of the application were

unsuccessful to our purpose although the application seems to consider affine features of

squares (See Fig. 5.3)

Markers recognition in a camera-based calibration system for immersive applications Pg. 75

Fig. 5.3 Result of applying squares.cpp to a square under affine features

So altogether, the code is not good to our purpose because it does not univocal

determines internal markers and adds a lot of wrong detections making results instable.

Second Experiment

The first step is to convert testimage (in greyscale) to binary image (see Section 2.2).

Segmentation

Several thresholding methods have been tested and results are shown in Fig. 5.4, Fig. 5.5

and Fig. 5.6 below:

Pg. 76 Report

Fig. 5.4 Directly applying threshold to testimage with a level threshold of 0,5

Markers recognition in a camera-based calibration system for immersive applications Pg. 77

Fig. 5.5 Binary image calculated by Otsu’s algorithm which determines the threshold level

of image in 0.6157

Pg. 78 Report

Fig. 5.6 Binary image calculated by Ridley and Calvard’s algorithm which determines the

threshold level of image in 0.6142

From images obtained we can see that applying a level threshold to the whole image does

not detect external markers.

In case of internal markers, if we apply a level of 0.5 some of them are lost (I5, I6, I7, I8 and

I9) so it is necessary the running of an algorithm to adjust this threshold value in order to

adapt it to the features of our image.

The results of the threshold level calculated by Otsu‟s and Ridley and Calvard‟s algorithms

are really nearby 0.6157 and 0.6142 respectively. It is remarkable that the marker in the

middle, I5, appear in both binarizations as a non connected region. This fact is due to

different illumination in scene where central marker receives more directly the light coming

from the lightning source making it appear brighter than the rest of the markers.

Also pixels in the upper row I1, I2 and I3 lose their inside hole, so their shape do not remain

unchanged.

Markers recognition in a camera-based calibration system for immersive applications Pg. 79

As the light arriving at each point of the image is not the same, it is not uniformly

illuminated, the whole image can not be analyse with the same threshold because the

behaviour in each region will respond different ways. That makes necessary, as described

in Section 2.2, dividing image in smaller blocks and applying a threshold according to the

neighbours, so the image has so many local thresholds as regions in which it is divided.

Fig. 5.7 Binary Image with 256x200 Wall’s block size.

If we compare Fig. 5.7 and Fig. 5.11 we see that the size of the blocks in Wall‟s algorithm

is really important because depending on the size of blocks we obtain different results of

binarized image. This fact is determinant for next steps in image processing steps as

describe further in this report and especially in external markers extraction.

In Fig. 5.8, Fig. 5.9, Fig. 5.10 and Fig. 5.11 below can be seen the resulting images of

applying Wall‟s algorithm with both threshold methods.

Pg. 80 Report

Fig. 5.8 Binarized image using Otsu’s method with Wall blocks of 128x128

Fig. 5.9 Binarized image using Ridley and Calvard’s method with Wall blocks of 128x128

Markers recognition in a camera-based calibration system for immersive applications Pg. 81

Fig. 5.10 Binarized image using Otsu’s method with Wall blocks of 256x256

Fig. 5.11 Binarized image using Ridley and Calvard’s method with Wall blocks of 256x256

Pg. 82 Report

As can be seen from figures above applying a local-thresholding method, indepently of the

thresholding algorithm used, changes notably the appearance of the resulting binarized

image. In image are noticeable the starting and ending of Wall‟s blocks.

If we analyse the results we see that marker E2 is not identified when blocks are of

256x256 although it appear clearly with a 128x128 region. That demonstrate that it is very

important the adjustment of this blocks in order to have more definition in markers we are

interested in. In our application the default blocks used are 256x256 for internal markers

and 128x128 for external. If this block does not binarize objects desired properly it will be

impossible to detect them in next steps.

Another point of study is the decision of which thresholding algorithm to use. The decision

taken is Ridey and Calvard‟s algorithm as described in Section 3 and Appendix A. In the

images above can be seen that this algorithm respects better (very little difference) white

pixels because the threshold is a little slower. It is important for us when we are

determining internal part of the markers, especially I1, I2 and I3, where light conditions are

worst. All that combined with the easier development of the programming code are the

definitive reason of the final decision.

Fig. 5.12 Zoom of image Fig. 5.11 where a view of I1 is enlarged

As we have seen (see Fig. 5.12), the internal part of internal markers do not disappear at

all with the algorithm chosen, but there are only few pixels forming it and it would be

interesting to improve image so the internal part can be easily noticeable to allow the next

steps determining the region as markers and avoiding that those internal parts are

consider by next steps as isolated pixels or not desired regions. For this reason we have

decided to add the first step of the image processing chain, pre-processing. This way we

improve our digital image by enhancing details.

Markers recognition in a camera-based calibration system for immersive applications Pg. 83

Pre-processing

As can be seen in pictures contained in Fig. 5.13 and Fig. 5.14 (I1), visually the difference

between the two images (original and sharpened) is not noticeable but if we look the

brightness values of the pixels we see that sharpen filter modifies these values although

human eye is barely able to recognize changes.

Notice the differences shown in matrix values between Fig. 5.13 and Fig. 5.14.

Fig. 5.13 Internal marker original image. Matrix of image value.

Pg. 84 Report

Fig. 5.14 Internal marker sharpened image. Matrix of image values

Comparing matrix values between original and sharpened image, we can see two kind of

behaviour. (This behaviour is also valid in case of external markers. We have decided to

show internal markers results because the size of markers is smaller.)

On one hand, some pixels have more or less the same value in sharpened image (for

example, from 119 to 121 or from 116 to 116 that remain constant), that means that the

values have been smoothed (low changes in image) to leave out noise, transforming them

into a similar value or remaining the same. On the other hand, (for example, from 158 to

191 or from 93 to 76) pixel values become darker or brighter, respectively. In those cases

sharpening filter detects abruptly changes in image. If in our two examples we consider

158 a bright pixel and 93 a dark one (that is what they are respect their transformed value

although in the range from 0 to 255 of our image they will be considered the opposite) after

sharpening we have changes from bright to darker or from dark to brighter, that means that

our sharpen filter considers them as details and it enhanced them.

Fig. 5.15 Left: E1 of original image; Right: E1 of sharpened image

Markers recognition in a camera-based calibration system for immersive applications Pg. 85

In Fig. 5.15, the sharpen filter effect is visually more noticeable than in I1 case shown in

Fig. 5.13 and Fig. 5.14. The external circle appears in sharpened image on the right

clearer, the limits, where contrast is higher, appear better defined as in original image.

So as we can see including this step before the thresholding, noise will be reduced and

details will be enhanced making more remarkable the differences between transitions and

favouring the distinction of internal parts of our markers as for example the case shown in

Fig. 5.12 above.

What we have until now is a binarization of a sharpened image. If we look back to Fig. 5.9

and Fig. 5.11 we see there are a lot of isolated pixels that do not belong to structure or

markers but have appeared after binarizing as a kind of noise in the image. So before

labelling the existent regions in the images it is necessary to clean images so the

identification of desired regions is easier.

At this point we have to differentiate between internal and external case.

In the case of internal markers, the morphological operator applied into image to clean it is

closing as described in Appendix B.

Results are shown in Fig. 5.16.

Fig. 5.16 Closing morphological operator applied to binarized image of internal markers

Pg. 86 Report

In the case of external markers, the morphological operator applied into image to clean it is

opening as described in Appendix B.

Results are shown in Fig. 5.17.

Fig. 5.17 Opening morphological operator applied to binarized image of external markers

If we compare Fig. 5.9 and Fig. 5.17 we see that black regions are accentuated, opposite

to white ones. It is very useful in our purpose because we ensure that the internal part of

the external marker do not disappear. This way, our markers maintain their appearance.

Otherwise, comparing Fig. 5.11 and Fig. 5.16 we see the opposite phenomenon and are

white ones which we want to improve for not losing the internal part of internal markers.

Our images are prepared for labelling, well, a previous step is needed in case of internal

markers (contrast transformation) as described in Section 3.1.

Labelling

As follows labelling described in Section 2.3 is done (see Fig. 5.18 and Fig. 5.19).

Markers recognition in a camera-based calibration system for immersive applications Pg. 87

Fig. 5.18 Labelling after contrast transformation, case of internal markers

Fig. 5.19 Labelling image in case of external markers

Here, we show a coloured version of labelling to easily see the different regions, although

the application internally differentiates them by a label number. The regions detected by our

Pg. 88 Report

development are those coloured, the ones in gray are considered as background and for

that reason they are discarded from now on, undesirable regions.

With these colours it is fast to see how all our markers are consider regions of interest and

thanks to the criteria described in Section 2.3 we will be able to reject some of those

undesirable labelled regions.

At this point we have to work separately internal and external markers. Some criteria as

size of regions is common to both markers but there are some other ones only usable for

internal markers. We are going to show the results separately depending on which kind of

marker we are extracting.

Shape classification and Object Recognition: Internal markers

In the case of internal markers the strategy was to implement SIFT in our C++ project but

we were not able to make it. So the results shown in this report correspond to the SIFT

algorithm in Matlab [10] but applied to image obtained by C++ performance.

We have considered different situations and according to the results we have get to the

final solution described in Section 3, where the range for size and the ratios of

rectangularity are described.

Markers recognition in a camera-based calibration system for immersive applications Pg. 89

Fig. 5.20 Resulting image with upper size range

As a starting point, we have considered only the upper value for range in size (not lower)

and we see in Fig. 5.20 as all markers are shown but there are also some other noisy

regions we do not want. We have also runned the application in case of only having applied

one or more of the ratios (results are explained widely below in different cases) and all

resulting images where very similar to that one shown above, noisy. What we are going to

show as follows is how affect the different criterion selected, and its combination, and how

the results change at recognizing markers when we apply SIFT algorithm.

Case 1: We have applied an upper threshold value for size and Kurtosis ratio. The image

we obtain is very close to Fig. 5.20. We see that SIFT does not detect neither the marker I1

nor I3 (see Fig. 5.21). But it is also relevant the fact that in the zone nearly I3 one of the

noisy regions is detected as marker (See Fig. 5.22). The rest of markers are properly

detected by SIFT.

Pg. 90 Report

Fig. 5.21 Marker I3. SIFT does not detect marker or noise

Fig. 5.22 Noise near I3 which is detected as a marker by SIFT

As noisy regions are smaller than our markers we thought that a good solution, although

losing relevant information from our markers, was to apply dilation (morphological operator

described in Appendix B) with an appropriate structurant element so it will erase in part or

completely the noisy regions. The tests made were with a 2x2 and 3x3 structurant

element. The problems still remained. So it is demonstrated that applying an upper range

and only kurtosis parameter for rectangularity does not grant a good detection of all our

markers.

Case 2: We have applied an upper threshold value for size and rectangularity ratio. We

see that in I7 and I9, SIFT algorithm is able to distinguish noise from marker (See Fig. 5.23

and Fig. 5.24). It analyses both regions and finally extracts only I9.

Markers recognition in a camera-based calibration system for immersive applications Pg. 91

Fig. 5.23 SIFT frame of marker I9. On the left the study marker where noise and marker

are analyse. On the right, the template marker

Fig. 5.24 SIFT detects marker as marker and reject noise (I9)

At extracting I1 we find the same situation as described in Fig. 5.22 where noise is detect

as marker and the marker is rejected as region of interest.

We apply also dilation (3x3) in this case and we see the results obtained for I9 in Fig. 5.25.

Fig. 5.25 SIFT detects marker and noise as marker I9

Now the marker is detected but also noise, two different keypoint in the image of study are

considered by SIFT as one keypoint in the template. As a result rectangularity applied with

Pg. 92 Report

an upper size range value, with or without dilation, does not ensure that a region in image

is detected as a correct internal marker.

Case 3: We have applied an upper threshold value for size and both, rectangularity and

Kurtosis, ratio.

Fig. 5.26 SIFT detects noise as marker and discards marker I1

We see there is a wrong detection. I1 remains unrecognized and in its place noise is

detected. We see also that I1 is greatly affected by affine features and that its hole in the

middle is really small. We apply dilation 2x2 (See Fig. 5.27) and dilation 3x3 (Fig. 5.28) and

we see what happens.

Fig. 5.27 Detector SIFT after applying dilation with a 2x2 structurant element. Noise and

marker are detected.

Fig. 5.28 Detector SIFT after applying dilation with a 3x3 structurant element. Marker is

detected and noise is rejected

We see that applying an appropriate structurant element the results change. With this

morphological operator we win some white pixels in the middle of the marker and this way,

SIFT is able to match the keypoints of the study marker and the template. Dilation has a

Markers recognition in a camera-based calibration system for immersive applications Pg. 93

double function, as well as it transforms the inside of the marker to something more similar

to the template it also reduces noise, making the undesirable area smaller and also more

different. So keypoints from marker of study are another ones which not correspond to the

ones in template.

From the results of 3 cases, we see that our conflictive regions are those small, which can

become wrong detections. A good solution seems to select a range with an upper and

lower size values and see if those undesirable noisy areas are reduced. If they are not

erased we can use the combining of lower and upper size range and dilation.

Case 4: We have applied an upper and lower threshold value for size without ratios. As

we have seen in all our cases, the more conflictive pixels are I1, I2 and I3. The reason is

not only noise but also their projection on the cylindrical surface (big affine effect). If we

apply both thresholding values we see that the problem of noise almost disappears and

now the detection of the markers have more keypoints in common. See Fig. 5.29 where I7

is shown.

Fig. 5.29 SIFT detection of marker I7

However, the problem of no detection of I1, I2 and I3 still remains. So dilation will be the

better solution.

As a summary, what we have decided is to use the combination of size and both

rectangularity criteria. It has been proved that small regions are the most annoying and that

the presence of a lower value of size range reduces highly these undesirable

appearances. In our GUI there is an option called Optimization (described in Section 4.4),

that can be applied after discarding regions with the methods described and which applies

dilation to improve the inside part of the marker and this way make the SIFT algorithm

extraction more robust.

Before ending this part, it is important to say that can appear problems with dilation if we

are not careful. We can not chose any structurant element and not all sizes, because

dilation is applied to whole image and we want to improve the internal part of conflictive

Pg. 94 Report

markers but not modifying so much those rightly detected. If we do not take care of that we

will alter the properties of our markers and then leading to wrong detections. See figures

below to value the effect.

Fig. 5.30 From left to right: resulting marker, dilation 2x2 and dilation 3x3 of marker I3

Fig. 5.31 From left to right: resulting marker, dilation 2x2 and dilation 3x3 of marker I5

If the structurant element is big enough the inside part of the marker can arrive to be part of

the background, and the marker lose its features.

Shape classification and Object Recognition: External markers

In the case of external markers we are not interested in rectangularity ratios and the only

problem we have is to choose an appropriate size range and contours will extract circular

markers.

As follows we can see the results of applying an upper threshold of the image.

Markers recognition in a camera-based calibration system for immersive applications Pg. 95

Fig. 5.32 Resulting image (before applying contours) with only upper size value

We can identify our markers and some other noisy regions. Internal markers do not appear

because the labelling used in external markers considers internal markers as undesirable

and they are rejected in the labelling step.

Pg. 96 Report

Fig. 5.33 Resulting image (after applying contours) with only upper size value where centre

of ellipses are detected in red

Although those regions are not detected as circles (see Fig. 5.33 where only external

markers are detected as ellipses, in red) for avoiding the possibility of wrong detections we

are going to select a lower and upper size range as in the case of internal markers. Mostly

noisy regions disappear. Detecting circles is not really the problem in this case as can be

seen in Fig. 5.34 and Fig. 5.35 where the only noisy region remaining is not a circle. For

that reason, it is not detected (in red).

Markers recognition in a camera-based calibration system for immersive applications Pg. 97

Fig. 5.34 Resulting image (before applying contours) with upper and lower size value

Fig. 5.35 Resulting image (after applying contours) with upper and lower size value where

centres of ellipses are detected in red

Pg. 98 Report

With external markers the critical moment appears before this step, at thresholding. We

find that some of the parts of the cylindrical structure are very similar to our external

markers, in terms of brightness, and also very close. That makes that, if wrong

parameters in Wall‟s algorithm block are chose, some undesirable regions and our

markers become connected and we lose the properties of our external markers which will

not be extracted. The effect can be seen in Fig. 5.37.

Fig. 5.36 Adequate size of Wall’s algorithm for detecting external markers.

Markers recognition in a camera-based calibration system for immersive applications Pg. 99

Fig. 5.37 Inadequate size of Wall’s algorithm for detecting external markers (256x256)

If we take a look to Fig. 5.37 we see that E2 is not noticeable and E3 appears connected to

the structure. After labelling both will disappear and the result will be a wrong detection as

can be seen in Fig. 5.38.

Pg. 100 Report

Fig. 5.38 Wrong detection of External Markers. E2 and E3 are not detected

It is relevant at this point to remember that the whole process have to be controlled by a

person in order to obtain good results.

Rotation

As we have only one testimage we have done another test with the same image but

rotated (testimage_rotate.bmp).

Markers recognition in a camera-based calibration system for immersive applications Pg. 101

Fig. 5.39 testimage_rotate.bmp, a rotation 90 degrees to the left of testimage

For our application the image after rotating 90 degrees to the left becomes completely

different. Some changes in the image are mentioned as follows:

 Image size: the new size of image is 1536x 2048, width and height change respect

original testimage (2048x 1536)

 Light distribution: now the effect of light will affect to other markers, so the

conflictive ones (those in the upper row) will change

 Size of Wall‟s algorithms: the same sizes of blocks will give different binary images

and the regions determined will not be the same.

Pg. 102 Report

The features that will remain the same are those relative to our markers, rectangularity and

ellipticity.

In the case of internal markers, if we maintain the size of Wall‟s blocks (256x256), the

resulting binary image is Fig. 5.40 which can be compared with Fig. 5.11.

Fig. 5.40 Binarization of testimage_rotate.bmp with Wall’s blocks size of 256x256

Mainly differences can be seen in noisy isolated pixels in the area enclosured by new I1, I2,

I4 and I5, and in the upper-central part and down-left parts of the structure. Binarization

respects internal markers and its internal hole so detection will follow properly.

In the case of external markers, the results of the binarization are shown in Fig. 5.41

Markers recognition in a camera-based calibration system for immersive applications Pg. 103

Fig. 5.41 Binarization of testimage_rotate.bmp with Wall’s blocks size of 125x125

In this case we see that maintaining Wall‟s block size (125x125), our external markers E2,

E3 and E4 are part of a big region which will be erased when we discard big regions as

shown in Fig. 5.44 (left). Seeing the results of the binarization it has no sense to continue

with detection of external markers and is at this point when the fact we have exposed

many times in this report is relevant, it is the importance of the visual interaction between

application and user to improve application for an optimal extraction of markers.

So user has to choose an adequate size of Wall‟s algorithm in order to extract all markers.

In our case we have chose 110x340 to show how a good result should be (and also show

that Wall‟s blocks do not have to be squares). (See Fig. 5.42)

Pg. 104 Report

Fig. 5.42 Binarization of testimage_rotate.bmp with Wall’s blocks size of 110x340

In the detection of internal markers we see that the results are as expected and the same

as case of testimage.bmp, but we have observed that little changes in kurtosis parameter

((kx<-1.07)&&(kx>-1.32)) will lead to wrong detections (See Fig. 5.43).

Markers recognition in a camera-based calibration system for immersive applications Pg. 105

Fig. 5.43 Detection of internal markers. Left: all markers are detected; Right: I2, I3, I5 and

I8 are not detected

Seeing this results it is obvious that the range chose for kurtosis parameter could be a

problem. If we had more testimages we could surely determine if the range chose for

kurtosis is available in all cases or perhaps a readjustment should be done in order to

detect correctly all internal markers of different side projections.

In Fig. 5.44 wrong and the right detection of external markers are shown.

Pg. 106 Report

Fig. 5.44 Detection of external markers. Left: E2, E3 and E4 are not detected because in

binarization they are connected to a big region; Right: right detection.

So altogether what we see from the results of running our application to testimage and

rotate image is that the values and ratios selected are good at extracting markers in both

cases internal and external. The first step of pre-processing is really important to ensure a

better performance of next steps in the image processing chain. The use of different sizes

for Wall‟s blocks is possible in local-thresholding but it is important the supervising of the

binarized image obtained in order not to loose relevant information of desired objects which

will cause non detections after labelling if a wrong size is chosen.

In case of internal markers the combination of 3 descriptors described performs a good

extraction and SIFT algorithm gives robustness to the object recognition. In the case of

external markers, the method based on contours obtains right detections of external

markers.

We have seen that some little changes in ratios/parameters affect to the results obtained

so the problem we find is the small amount of images of test that we have. More images

should be taken in order to conform a larger database and this way ensure that the

adjustment of the parameters and ratios respond properly to all cases.

Markers recognition in a camera-based calibration system for immersive applications Pg. 107

6. Conclusions

Immersive environments were born to provide the user a panorama of 360 degrees with

which he/she can interact. Immersion consists in giving the user the impression of being in

a real world at any place at any time although he/she is in a virtual reality recreated by

computer with the aim of giving this reality sensation. The immersive media techniques are

a very ambitious line of study in nowadays image and video processing and it can be

applied into many applications as live broadcasting of sport events, theatre, museums and

music events and also immersive video gaming. In these scenarios it is very important the

continuity of panorama recreation because human sight is very sensible to changes in

illumination and transitions and, if continuity between images is not provide, user will not

feel the total immersion. To obtain this continuity, different calibration systems are used.

In our case the scenario built in IGD Fraunhofer Institute, in the context of hArtes project, is

a system based in an array of projectors and cameras where calibration is needed to

provide immersion. So the objective is to correct those misalignments and overlappings in

the junctions between projections so the changes are not noticeable for the person who is

inside. The calibration has different steps and my contribution is the first step, which

consists in the univocal recognition of internal (squares) and external (circles) markers

from a projected image through image processing techniques. After this step a correction

between real and ideal markers followed by a correction in the misalignments in junctions

will be done.

My contribution to hArtes Project in IGD is the development and implementation of a GUI

application in C++ programming language. The application searches, through image

processing chain, the univocal recognizement of markers in a given image (desired

markers left untouched and non desired ones are rejected) by developing a graphical

interface between user and image obtained from projection onto cylindrical surface. The

Win 32 console application developed has different buttons to select different options and a

visor to see image results. As a starting point we have included a pre-processing step in

which a greyscale transformation and a sharpen filter have been applied. After that, the

processing chain has consisted in many steps. The first one is thresholding. A previous

segmentation of image was needed (Wall‟s blocks algorithm) in order to avoid the effect of

irregular illumination onto the projected image, after that a threshold value based in Ridley

and Calvard‟s algorithm has been chosen and after all we have obtained a binary image.

As a second step, we have labelled the regions in image and we have analyzed each

region for determining if shape corresponds to our markers or not (through moments,

rectangularity ratios and contours). As a final step the object recognition has been ensured

thanks to application of SIFT as matching algorithm between our marker and the ideal one.

Pg. 108 Report

The results obtained show the importance of choosing a local threshold technique and an

adequate size of Wall‟s algorithm in order to perform a binarization which preserves our

markers. It is at this point where it is also important the fact of the interaction between user

and application, where thanks to the visor of the application user can determine if the

parameters selected are valid in each case. After running the application we see that

parameters and ratios chosen are adequate at recognizing markers in testimage given,

although our images of testing are not enough (in amount) to ensure that the application

will respond correctly to all of them, because we have also seen that little changes in

parameters lead to wrong recognition. So as a further approach it will be interesting to build

a larger data base in order to adjust parameters (if required) to ensure this extraction in all

cases.

Finally, this project has been left at the disposal of IGD- Fraunhofer for hArtes project

and/or further projects in which my contribution could be useful.

Markers recognition in a camera-based calibration system for immersive applications Pg. 109

7. References

[1] RAFAEL C. GONZALEZ, RICHARD E. WOODS Digital Image Processing, Prentice

Hall Second edition 2002

[2] MILAN SONKA, VACLAV HLAVAC, ROGER BOYLE Image Processing Analysis and

Machine Vision, Pacific Grove, CA : PWS Pub. 1999

[3] KENNETH R. CASTLEMAN Digital image processing, Englewood Cliffs, N.J.

Prentice-Hall, c1979

[4] DMITRIJ CSTVERIKOV Basic Algorithms for Digital Image Analysis Eötvös Loránd

University Budapest http://visual.ipan.sztaki.hu/ELTEfoliak/

[5] BERNT SCHIELE Slides in Computer Vision Subject TU Darmstadt 2007

[6] MEHMET SEZGIN, BULENT SANKUR Survey over image thresholding techniques

and quantitative performance evaluation, Journal of Electronic Imaging 13(1), 146–

165 2004

[7] SHAPIRO, LINDA G. & STOCKMAN, GEORGE C. Computer Vision, Prentice Hall

2002

[8] PIERRE D. WELLNER Adaptive Thresholding for the Digital Desk Technical Report

EPC-1993-110

[9] T. W. RIDLER, S. CALVARD, Picture thresholding using an iterative selection

method, IEE Trans. System, Man and Cybernetics, SMC-8 (1978) 630-632

[10] ANDREA VEDALDI An implementation of SIFT detector and descriptor University of

California at Los Angeles 2006)

[11] PAUL L. ROSIN Measuring rectangularity August 1999

[12] PAUL L. ROSIN Measuring Shape: Ellipticity, Rectangularity and Triangularity IEEE

2000 and Revision of July 2002

[13] TOUSSAINT 1983, PIRZADEH 1999 Solving geometric problems with rotating

Callipers

[14] A.P. REEVES The General Theory of Moments fro Shape Analysis and the Parallel

Implementation of Moment Operations TR-EE October 1981

http://visual.ipan.sztaki.hu/ELTEfoliak/

Pg. 110 Report

[15] A. P. REEVES AND A. ROSTAMPOUR Shape Analysis of Segmented Objects

Using Moments IEEE August 1981

[16] D. G. LOWE Object recognition from Local Scale invariant features International

Conference on Computer Vision, Corfu, Greece (September 1999)

[17] D. G. LOWE, Local feature view clustering for 3D object recognition IEEE

Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii (December

2001)

[18] D. G. LOWE Distinctive Image Features from scale-Invariant Keypoints International

Journal of Computer Vision, 60, 2 (2004)

[19] M. BROWN, D. G. LOWE Invariant features from interest point groups British

Machine Vision Conference, BMVC 2002, Cardiff, Wales (September 2002)

[20] MUNDY, ZISSERMAN Geometric Invariance in Computer Vision Cambridge, MA,

The MIT Press. (1992)and REISS 1993.

[21] MIKOLAJCZYK, SCHMID A performance evaluation of Local Descriptors 2005

[22] J. BEIS , D. G. LOWE Shape indexing using approximate nearest-neighbour search

in high dimensional spaces Proceeding of IEEE Computer Society Conference on

Computer Vision and Pattern recognition 1997

[23] HERBERT BAY, TINNE TUYTELAARS AND LUC VAN GOOL SURF: Speeded Up

Robust Features, 9th European Conference on Computer Vision, 7-13 May 2006

[24] JOHANNES BANER, NIKO SÜNDERHAUF, PETER PROTZEL Comparing several

implementations of two recently published feature detectors 2007

[25] HARRIS, STEPHENS A combined corner and edge detector, Proc. 4th Alvey Vision

Conf., Manchester, 1988.

[26] M.KUDZINAVA, R. GARCIA, J.MARTI Feature based matching of underwater images

Markers recognition in a camera-based calibration system for immersive applications Pg. 111

A. Ridley and Calvard’s method

Using thresholding there is normally an error performing segmentation:

Fig. A.1 The queues of two different Gaussian distributions can lead to erroneous

detections at thresholding (from Digital Image Analysis Lars Audal July 24
th

 2006)

We assume that the histogram is the sum of two distributions b(z) and f(z) where b and f

are the normalized background and foreground distributions respectively and z is the gray

level.

If B and F are prior probabilities for the background and foreground, altogether have to be 1

(B+F=1) and the histogram can be written as:

Given a threshold t the probabilities of erroneously classifying a pixel is given by:

() ()

t

BE t f z dz

() ()F

t

E t b z dz

Pg. 112 Report

So the total error will be:

() () ()

t

t

E t F f z dz B b z dz

Using Leibniz‟s rule for derivation of integrals and setting the derivative equal to zero the

optimal value for t is found:

()
0 () ()

E t
Ff T Bb T

dt

Assuming b(z) and f(z) are Gaussians distributions it is possible to solve the above

equation explicitly. The equation becomes:

Some algebraic manipulations will transform this equation into a second order equation in

T:

If the standard deviations of the two distributions are equal (σB=σF=σ) then the expression

can be simplified:

That can be solved explicitly for T:

Markers recognition in a camera-based calibration system for immersive applications Pg. 113

If the two distributions B and F are roughly equiprobable then

 and:

()

2

B F
T

This equation is the foundation of Ridley and Calvard‟s method. As μB and μF are unknown

we must estimate them based on suggested thresholds.

Pg. 114 Report

B. Morphological operators

 Structuring element: consists of a pattern specified as the coordinates of a

number of discrete points relative to some origin. Normally cartesian coordinates

are used and so a convenient way of representing the element is as a small image

on a rectangular grid. The origin does not have to be in the centre of the structuring

element, but often it is.

 Dilation: For each background pixel we superimpose the structuring element on

first pixel of image so that the origin of the structuring element coincides with the

image pixel position. If at least one pixel in the structuring element coincides with a

foreground pixel in the image underneath, then the input pixel is set to the

foreground value. If all the corresponding pixels in the image are background,

however, the pixel is left at the background value. We repeat the process through

whole image.

 Erosion: The basic effect of the operator on a binary image is to erode away the

boundaries of regions of foreground pixels (i.e. white pixels, typically). Thus areas

of foreground pixels shrink in size, and holes within those areas become larger.

 Opening: The effect of the operator is to preserve foreground regions that have a

similar shape to this structuring element, or that can completely contain the

structuring element, while eliminating all other regions of foreground pixels.

 Closing: The effect of the operator is to preserve background regions that have a

similar shape to this structuring element, or that can completely contain the

structuring element, while eliminating all other regions of background pixels.

Markers recognition in a camera-based calibration system for immersive applications Pg. 115

C. How are images formed?

In this appendix we include a short explanation about how objects of real world become

digital images so we can work with them in the computer.

An image is a visual representation of a person, an object or an environment. It contains

descriptive information about what it represents.

An image can be defined as a two-dimensional continuous function (,)f x y where x and

y are spatial (plane) coordinates and the amplitude of f at any pair of coordinates (,)x y

is called intensity or gray-level of the image at that point.

When we project the real world onto a two-dimensional image plane, we uncover the two

key questions of image formation:

 What determines where the image of one point will appear?

 What determines how bright the image of some surface will be?

To answer these questions it is necessary to consider two processes to convert the

continuous sensed data (image) into digital form: sampling and quantization.

 Sampling (Spatial resolution): Is the process of digitalizing the image in spatial

domain. The sampling process may be viewed as partitioning the x y plane into a

grid, with the centre of each grid being a pixel. The digitizing of the x and y

coordinate values is based on geometry of image formation which determines

where in the image plane the projection of a point in the scene will be placed (see

Appendix D for more information). Sampling determines spatial resolution, which is

the smallest discernable detail in image. The more pixels in a fixed range, the

higher resolution.

 Quantization (Gray-scale resolution): is the process of digitizing amplitude f

values into discrete gray values. Physics of light determine the brightness of a

point in the image plane as a function of illumination and surface properties.

Radiometry theory demonstrates existent linear relationship between them. (See

Appendix E). Quantization determines the gray-scale resolution which refers to

smallest discernible change in gray-scale level. The more bits the higher the

resolution.

Pg. 116 Report

Fig. C.1 Upper left: continuous image; Upper right: A scan line from A to B in the

continuous image; Down left: sampling and quantization; Down right: digital scan line (by

Chapter 2 of [1])

Once we know where each pair of coordinates are projected and with which intensity, it is

time to convert optical image into an electrical image thanks to camera electronics. This

process is called sensing and it is widely explained in Appendix F. (The explanation of the

process is only valid for cameras based on CMOS sensor as used in our project to

capture the images. Some other cameras as based on CCD Sensor do not work the

same way and they are not described in this report).

After sensing the objective of generating digital image from sensed data is completed.

 (,)f x y &Sampling Quantization (,)f i j

 0 (,)f x y MxN

Markers recognition in a camera-based calibration system for immersive applications Pg. 117

Fig. C.2 Left: This image illustrates a continuous image projected onto a sensor array.

Right: result of image sampling and quantization (by Chapter 2 of [1])

The result of sampling and quantization is a matrix of real numbers. Fig. C.3 shows the

coordinate conversion used throughout this book.

Fig. C.3 Coordinate system for the representation of digital images (by Chapter 2 of [1])

We obtain the digital image of the scene we want to analyse so we are prepared to start

working on our project of detecting internal and external markers.

Pg. 118 Report

Fig. C.4 On the left we see the scenario of our project. On the right we see the image

captured by the camera previously projected by projector onto region in red of the

cylindrical surface

During image capture, transmission, or processing noise can occur and it may be

dependent or independent of the image content. In all cases the image noise is a random

and unwanted variation in brightness or colour information in an image. In Appendix G

different kind of noises that can affect in our case are shown.

Markers recognition in a camera-based calibration system for immersive applications Pg. 119

D. Geometry of image formation

The mathematical relationship between the coordinates of a 3D point and its projection

onto the image plane can be modelled, as a first approximation, by a pinhole camera.

The ideal pinhole camera is described as a black box with a small hole. When rays coming

from illuminated objects penetrate through the small hole you will see them inside the black

box, over one of the walls, reduced in size and inverted due to the intersection of the rays

of light that pass through.

The wall where the object projection is shown is known as the image plane and the small

hole as the camera aperture.

Fig. D. 1 Pinhole model (from slides TU-Darmstadt Bernt Schiele- Computer Vision

SS2007)

In the ideal case (the simplest) no lenses are used to focus light, so it does not consider

the effects of optical systems on an image.

We can introduce thin lenses in the pinhole system. The mission of lenses placed in the

aperture is to focus the bundle of rays from each scene point onto the corresponding point

in the image plane. This way we obtain the same projection as the pinhole but it also

gathers a finite amount of light. The larger the lens the larger the solid angle it subtends

when seen from the object.

It can also appear degradation which can be due to effects of diffraction because of the

wave nature of light or due to lens aberration, imperfectly designed and manufactured

optical systems.

If we use a wide pinhole, light from the source spreads across the image (i.e., not properly

focussed) making it blurry.

Pg. 120 Report

If we narrow the pinhole, only a small amount of light is let in. That means that the image

sharpness is limited by diffraction, when light passes through does not travel in a straight

line and light is scattered in many directions (quantum effect).

In general the aim of using lens is to enlarge aperture size while keeping the image

focussed.

Although it is not a perfect model it is a reasonable good description for computer vision

and computer graphics and some of the effects can be compensated with an adequate

coordinate transformation of the 3D projection on the image coordinates.

Coordinate transformation: homogeneous coordinates

For mapping three dimensional points to a two dimensional plane we consider two kind of

3D projection:

Orthographic projection

These projections are a set of transformations often used to show profile, detail or precise

measurements of a real object. The camera direction (normal component of the viewing

plane) is always parallel to one of the 3D axes. If we have a 3D point (ax, ay, az) and we

want to project it to a 2D point (bx, by) using projection parallel to the y axis (Profile view).

We can use the equations

x x x xb s a c

y z z zb s a c

where s is an arbitrary scale factor and c an arbitrary offset. Constants are optional and

can be used to a better alignment of the viewpoint.

In this kind of projection, lengths of all points of the projected image have the same scale

independent of whether they are near or far away to the viewer. As a result, lengths near to

the viewer appear foreshortened. In order to solve this problem we can use Perspective

Projection.

Perspective projection

It is more complex than orthographic. For the understanding of how this projection works

we have to think about the 2D projection as a viewfinder, where the camera‟s position,

orientation and field of view control the behaviour of the projection transformation.

Markers recognition in a camera-based calibration system for immersive applications Pg. 121

We consider:

, ,x y za – object coordinates (particular concrete point of the object)

c x, y, z – location of the camera

φ x, y, z – rotation of the camera

e x, y, z – viewer position in camera coordinates

b x, y- 2D projection of , ,x y za

Note: if c x, y, z =<0,0,0> and φ x, y, z=<0,0,0>, the 3D vector <1,2,0> becomes <1,2> in the

projected 2D vector.

We define a new point , ,x y zd which is a translation of the point , ,x y za into the coordinate

system defined by c (camera coordinates). This can be achieved by subtracting c from a

and then applying a vector rotation matrix using – φ to the result. Assuming left-hand

system of axes:

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0

0 sin cos sin 0 cos 0 0 1

x y y z z x x

y x x z z y y

z x x y y z z

d a c

d a c

d a c

If we used the projection plane as x/y, this transformed point , ,x y zd can be projected onto

the 2D plane using:

or using homogeneous coordinates to unify the representation for points and lines by

adding in one dimensionality:

1 0 0

0 1 0

0 0 1 0

1
10 0 0

x
x x

y
y y

z z

w

z

e
f d

e
f d

f d

f
e

=()
z

x x x

z

e
b e d

d
=()

z
y y y

z

e
b e d

d

Pg. 122 Report

with =
x

x

w

f
b

f
 and =

y
y

w

f
b

f

Homogeneous coordinates make possible the calculations in projective spaces just as

Cartesian coordinates do in Euclidean space.

Image formation (geometrical)

We have to be able to transform object coordinates, 3D information, onto pixel

coordinates, 2D information, so we can work with information contained in the photo

captured.

Considering a camera with a thin lens (pinhole camera), it performs a perspective

projection and we can find a matrix which describes the mapping between 3D points of the

world to 2D points on the image plane.

Object Coordinates (3D)

World Coordinates (3D)

Camera Coordinates (3D)

Pixel Coordinates (2D)

Image Plane Coordinates (2D)

Extrinsic camera parameters

Intrinsic camera parameters

Markers recognition in a camera-based calibration system for immersive applications Pg. 123

Fig. D.2 Geometry of a linear perspective camera

We can see at the bottom of Fig. D.2, the image plane π where real world projects with a

vertical perpendicular line called optical axis. Perpendicularly to this line the lens is

positioned at the focal point C (optical centre) with a focal length f.

The projection is performed by an optical ray reflected from a scene point X (point of the

object or surface). This ray passes through the optical centre C and hits the image plane π

at the point U.

We need to define four coordinate systems in order to understand the mathematics.

Pg. 124 Report

Coordinate

system

Notation Origin Points expressed in

coordinate system

World

Euclidean

W Ow X, U

Camera

Euclidean

C Oc=C Z

Image

Euclidean

I Oi X, Y

Image affine A Oi Coordinates u,v,w

Coordinates w and v have the same orientation as Zi and Yi but this is not the case with u

and Xi. The reason why is that pixels need not to be perpendicular and axes can be scaled

differently. The affine coordinate system is induced by the arrangement of the retina.

U0 is the intersection of the optical axis with the image plane π and this point Uo in affine

coordinate system is expressed as U0a=[u0,v0,0]T.

A representation of a point in the world coordinate system, for example X, is a vector 3x1.

To express this point in the camera Euclidean coordinate system (Xc) we have to align the

coordinate systems by translating and rotating the world point.

Rotation (R) consists in three elementary rotations pan, tilt and roll, axes x, y and z

respectively. Translation (t) vector gives three elements of the translation. So there are six

degrees of freedom called extrinsic parameters.

This point is projected onto the image plane π (through the thin lens we suppose ideal), we

call it Uc.

The projected point Uc can be derived from the similar triangles of the image:

()

c

c c w

c

x

X y R X t

z

Markers recognition in a camera-based calibration system for immersive applications Pg. 125

Fig. D.3 Similar triangles

and we obtain

c

c

x

c

y

c

f

z

f
Uc

z

f

It remains to derive where the projected point is positioned in the image affine coordinates

system, i.e., to determine the coordinates which the real camera actually delivers.

The origin of the image in image affine coordinate system is at the top left corner and

represents a shear and rescaling of the image Euclidean coordinate system.

Uc can be represented in the 2D image plane π by homogeneous coordinates as ũ

=[U,V,W]T and in 2D Euclidean as u =[u,v]T=[U/W,V/W]T.

Homogeneous coordinates allow us to express affine transformation as a multiplication by

a 3x3 matrix with a, b and c unknown, which describe the shear together with scaling along

the axes:

 ũ

0 0

0 00 0

0 0 1 0 0 1
1 1

c c

c c

x

c c

y

c c

f x

z zU a b u fa fb u
f y

V c v fc v
z z

W

Pg. 126 Report

We can multiply both sides of the equation by per zc and this way we can remove it and

rewrite the expression depending on K, the camera calibration matrix:

 zc ũ =

0

00 () ()

0 0 1

w w

fa fb u

fc v R X t KR X t

As we can see the matrix is upper-triangular and these coefficients are called intrinsic

parameters of the camera and describe the specific camera independent on its position

and orientation in space.

If we express the scene point X in homogeneous coordinates X‟w =[Xw,1]T, we can write

the perspective projection using a single 3x4 matrix. The leftmost 3x3 submatrix describes

rotation and the rightmost column a translation.

ũ | '
1 1

w w

w

U
X X

V KR KRt M MX

W

where X‟ is the 3D scene point in homogeneous coordinates and M is called the Projective

Matrix or camera matrix.

Thanks to the introduction of projective space and homogeneous coordinates we obtain a

linear equation to express the transformation from the 3D world to 2D.

Markers recognition in a camera-based calibration system for immersive applications Pg. 127

E. Physics of light: Radiometry

The physics of light determines the brightness of a point in the image plane as a function of

illumination and surface properties.

Fig. E.1 How rays of light project onto surface element and they onto camera sensor

 The scene is illuminated by a single source

 The scene reflects radiation towards the camera

 The camera senses it via chemicals on film (sensing).

With the knowledge of radiometrics concepts (Appendix H) we can differentiate between

two concepts of brightness:

Scene Radiance: it is related to the energy flux emitted from a surface. This emission

depends on how the objects are illuminated and how they reflect light. Scene Radiance

can be measured by the Radiance (L).

Image Irradiance: it which is related to energy flux incident on the image plane and can be

measured by the Irradiance (E). This term depends on how much light arrives to the

surface of the object coming from the scene point X.

The measurement of the brightness in the image also depends on the spectral sensitivity

of the sensor.

Pg. 128 Report

Fig. E.2 Scheme from scene radiance to image irradiance

What is really important of all this concepts is that we are working with a linear mapping

because there is a lineal dependency between Radiance and Irradiance.

Fig. E.3 Relationship between angles and areas of the surface and the image plane

From the image we can see that solid angles (orange and blue) are the same i sdw dw

and we can find a relationship between areas
s

i

dA

dA
. So the solid angle subtended by the

lens is:

The flux received by lens from dAs is the same as the flux projected onto the image dA i :

(cos) Ls iL dA dw E dA

Markers recognition in a camera-based calibration system for immersive applications Pg. 129

If we combine both equations we obtain:

which demonstrates the relationship between Image Irradiance and Scene Radiance.

The constant of proportionality depends on the optical system and with a small field of view

the effects of the 4th power cosine are small.

We must have an aperture of finite size (different from zero) because we need to gather a

finite amount of light in the image plane but with small pinhole. That is because of the wave

nature of light which has higher diffraction at the edge of the pinhole and the light is spread

over the image. As we make the pinhole smaller the larger fraction of incoming light is

deflected far from the direction of the incoming ray.

Pg. 130 Report

F. Sensing

The objective we pursue is to convert the optical image into an electrical image (from

optical signal through photoreceptors and photodetectors to electrical signal):

Fig. F.1 Scheme from image irradiance to pixel values

A non-linear mapping is made by the camera electronics to reach the objective. These

electronics can consist of different photodetectors (sensors) as photodiodes (PIN,

APD,…), photoresistances and phototransistors. In our case we have used a camera

consisting in a CMOS Sensor known as active pixel sensor (APS).

Fig. F.2 CMOS sensor: APS (from Albert Theuwissen- Chief Technology Officer DALSA

Corp)

Markers recognition in a camera-based calibration system for immersive applications Pg. 131

An APS is an image sensor consisting in an integrated circuit containing an array of pixel

sensors where each pixel gets its individual amplifier. This small amplifier boosts the

photodiode signal fed to the column line and solves the noise problem of the large column

lines. All amplifiers are analogue in nature, i.e., no two amplifiers are perfectly matched as

far as gain and off-set are concerned. Therefore the introduction of an amplifier within

every pixel increases the non-uniformity between the various pixels of the array. This effect

shows up as fixed-pattern noise. This is a disadvantage of CMOS image sensor relative to

other ones like CCD used in higher quality photographic works.

Every pixel consists of a photodetector, a transfer gate (TX), a reset gate (RST), a

selection gate (RS: row selection), source-follower readout transistor (MSF) and a selection

transistor (MSEL).

Fig.F.3 Pixel sensor and its transistors (from Albert Theuwissen- Chief Technology Officer

DALSA Corp)

The photodetector is usually a photodiode. In this case the photodiode does not have any

electrical connection to force the collected charge out of the photodiode. To initiate the

charge transport from the photodiode towards the floating diffusion (n+) the transfer gate

(TX) is pulsed.

Pg. 132 Report

 When light comes it causes an accumulation or integration of charge on the „parasitic ‟

capacitance of the photodiode, creating a voltage change related to the incident light.

 Transistor Mrst acts as a switch to reset the device. When this transistor is turned

on the photodiode is effectively connected to the power supply VRST. This way it

clears all integrated charge. As the reset transistor is n+ type the pixel operates in

soft reset.

 Transistor Msf acts as a buffer. It is an amplifier which allows the pixel voltage to be

observed without removing the accumulated charge. Its power supply VDD is

typically tied to the power supply of the reset transistor.

 Transistor Msel is a switch that allows that read-out electronics read a single row of

the pixel array.

An advantage of using electronics is that allows us to read directly the signal of each pixel

and this way we can avoid the effect of blooming. Blooming makes that light intensity

received by a pixel affects the adjacent pixels. The disadvantage is that in light receptors

(photodiodes) there is a lot of electronics (elements placed on the sensor surface) which

are not sensitive to light, and that means that thee is a factor, fill factor, which determines

the percentage of the pixel area that is exposed to light during exposure and although

ideally this would be 100%, in practice this value may be reduced to approx. 30-50%

depending on the sensor technology. A solution is the use of micro lenses which increase

the fill factor up to 70% and collect the light that falls onto the photocell increasing the

useable sensor area.

Digital image sensors can only detect light intensity but not colour information. To produce

colour sensors a colour filter is applied on each photocell (pixel). The colour filter

distribution corresponds to the colour sensitivity of the human eye and is called Bayer filter

pattern and consists of two out of every four pixels have a green filter, one pixel has a red

filter and one has a blue filter.

Markers recognition in a camera-based calibration system for immersive applications Pg. 133

Fig. F.4 Bayer filter and resulting pattern

The camera used, uEye camera, transmit the image data in Bayer format. This format can

be converted to Y8, RGB or YUV format on the PC at runtime.

Pg. 134 Report

G. Noise

Shot noise:

 Photon shot noise: due to statistical quantum fluctuations because of the

variation in the number of photons sensed at a given exposure level. Shot noise

follows a Poisson distribution (similar to Gaussian) and has a root mean square

value proportional to the square root of the image intensity and the noises at

different pixels are independent from each other.

 Dark-current shot noise: noise coming from the dark leakage current in the

image sensor. The higher the temperature of a pixel in the image sensor is, the

higher is the dark current. If the exposure is long enough so the hot pixel charge

exceeds the linear charge capacity it will appear impulsive noise.

Impulsive noise or salt-and-pepper noise: the image appears to be corrupted by

isolated noisy pixels whose brightness differs significantly from that of the neighbourhood

(dark pixels in bright regions and bright pixels in dark regions).

Amplifier noise: it can be described as an additive and Gaussian noise which is

independent at each pixel and independent of the signal intensity, caused by thermal noise

and including that noise coming from the reset noise of capacitors (kTC noise). In colour

cameras, as blue channel is more amplified, there is more noise in blue channel.

Quantization noise: occurs when the levels of quantization are insufficient. It has an

approximately uniform distribution and can be signal dependent, though it will be signal

independent if other noise sources are big enough to cause dithering. Dithering is a

technique to create illusion of colour depth in images with a limited colour palette (colour

quantization). When there are not enough colours available in the palette a diffusion

between coloured pixels of the palette is made. The human eye perceives this diffusion as

a mixture of the colours within it.

Markers recognition in a camera-based calibration system for immersive applications Pg. 135

H. Radiometrics concepts

Solid Angle: is the angle in three-dimensional space that an object subtends at a point

Fig. H.1 Solid angle

d : solid angle subtended by dA

dA ‟: foreshortened area

dA : surface area

 (steradian)

Radiant Intensity of Source: flux per unit of solid angle from a point source into a

particular direction.

 (W/steradian)

d : light flux (power) emitted

Surface irradiance (Image Irradiance): the rate at which the radiant flux is delivered to a

surface (amount of light incident at the image of the surface point). It does not depend on

where the light is coming from.

 (W/m2)

2 2

' cos idA dA
d

R R

d
J

d

d
E

dA

Pg. 136 Report

Surface radiance (Scene radiance): is the flux per projected unit area and per unit solid

angle radiated, transmitted or reflected by a surface (amount of light incident at the image

of the surface point).

 (W/m
2
/steradian)

 Depends on direction r : angle between the normal surface and the specified

direction

 Surface can radiate into whole hemisphere

 L depends on reflectance properties of surface

2

(cos)

d
L

dA r d

Markers recognition in a camera-based calibration system for immersive applications Pg. 137

I. Report of SIFT algorithm in Matlab

Computing frames and descriptors.

SIFT: computing scale space...(10.584 s gss; 0.682 s dogss) done

SIFT scale space parameters [PropertyName in brackets]

 sigman [SigmaN] : 0.500000

 sigma0 [Sigma0] : 2.015874

 O [NumOctaves] : 6

 S [NumLevels] : 3

 omin [FirstOctave] : -1

 smin : -1

 smax : 3

SIFT detector parameters

 thersh [Threshold] : 6.666667e-003

 r [EdgeThreshold] : 10.000

SIFT descriptor parameters

 magnif [Magnif] : 3.000

 NBP [NumSpatialBins]: 4

 NBO [NumOrientBins] : 8

SIFT: processing octave -1

SIFT: 3 initial points (0.359 s)

SIFT: 3 away from boundary

SIFT: 2 refined (0.027 s)

Pg. 138 Report

SIFT: computing descriptors...done (1.714 s)

SIFT: processing octave 0

SIFT: 4 initial points (0.120 s)

SIFT: 4 away from boundary

SIFT: 4 refined (0.000 s)

SIFT: computing descriptors...done (0.539 s)

SIFT: processing octave 1

SIFT: 1 initial points (0.019 s)

SIFT: 1 away from boundary

SIFT: 1 refined (0.000 s)

SIFT: computing descriptors...done (0.126 s)

SIFT: processing octave 2

SIFT: 0 initial points (0.005 s)

SIFT: 0 away from boundary

SIFT: 0 refined (0.000 s)

SIFT: computing descriptors...done (0.047 s)

SIFT: processing octave 3

SIFT: 0 initial points (0.002 s)

SIFT: 0 away from boundary

SIFT: 0 refined (0.000 s)

SIFT: computing descriptors...done (0.007 s)

SIFT: processing octave 4

SIFT: 0 initial points (0.001 s)

Markers recognition in a camera-based calibration system for immersive applications Pg. 139

SIFT: 0 away from boundary

SIFT: 0 refined (0.000 s)

SIFT: computing descriptors...done (0.002 s)

SIFT: computing scale space...(12.359 s gss; 0.646 s dogss) done

SIFT scale space parameters [PropertyName in brackets]

 sigman [SigmaN] : 0.500000

 sigma0 [Sigma0] : 2.015874

 O [NumOctaves] : 6

 S [NumLevels] : 3

 omin [FirstOctave] : -1

 smin : -1

 smax : 3

SIFT detector parameters

 thersh [Threshold] : 6.666667e-003

 r [EdgeThreshold] : 10.000

SIFT descriptor parameters

 magnif [Magnif] : 3.000

 NBP [NumSpatialBins]: 4

 NBO [NumOrientBins] : 8

SIFT: processing octave -1

SIFT: 0 initial points (0.343 s)

SIFT: 0 away from boundary

SIFT: 0 refined (0.000 s)

Pg. 140 Report

SIFT: computing descriptors...done (1.759 s)

SIFT: processing octave 0

SIFT: 7 initial points (0.076 s)

SIFT: 7 away from boundary

SIFT: 5 refined (0.000 s)

SIFT: computing descriptors...done (0.673 s)

SIFT: processing octave 1

SIFT: 0 initial points (0.032 s)

SIFT: 0 away from boundary

SIFT: 0 refined (0.000 s)

SIFT: computing descriptors...done (0.151 s)

SIFT: processing octave 2

SIFT: 1 initial points (0.003 s)

SIFT: 1 away from boundary

SIFT: 1 refined (0.000 s)

SIFT: computing descriptors...done (0.032 s)

SIFT: processing octave 3

SIFT: 0 initial points (0.001 s)

SIFT: 0 away from boundary

SIFT: 0 refined (0.000 s)

SIFT: computing descriptors...done (0.005 s)

SIFT: processing octave 4

SIFT: 0 initial points (0.001 s)

Markers recognition in a camera-based calibration system for immersive applications Pg. 141

SIFT: 0 away from boundary

SIFT: 0 refined (0.000 s)

SIFT: computing descriptors...done (0.002 s)

Computing matches.

Matched in 0.034 s

