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Chapter 1

Introduction

Basel II is the second of the Basel Accords, which are recommendations on
banking regulations issued by the Basel Committee on Banking Supervision.
The purpose of Basel II, which was initially published in 2004, is to create
an international standard that regulators can use, about how much capital
banks need to cover the potential losses derived from its financial activities.
We concentrate in credit risk, which is the most important risk a bank has
to deal with.

Basel II is structured in a three pillar framework. Pillar one sets out
details for adopting more risk sensitive minimal requirements, so called reg-
ulatory capital, for banking organizations. Pillar two lays out principle for
the supervisory review process of capital adequacy and Pillar three seeks to
establish market discipline by enhancing transparency in bank’s financial re-
porting.

The Pillar one capital charge for credit risk is based on the Asymptotic
Single-Risk Factor (ASRF) model, also called Vasicek model. The regula-
tory capital requirements are calculated evaluating the credit portfolio loss
distribution at the 99% confidence level. One of its important assumptions
is that a portfolio is well diversified, this is, there is no exposure (or name)
concentration among obligors in the credit portfolio. In the real world, how-
ever, this main assumption is violated and then the measured risk can be
underestimated.

Monte Carlo method is a standard method for measuring credit portfolio
risk in order to deal with exposure concentration. However, this method is
known to be very time consuming making the approximation impractical in
many situations, over all when the size of the portfolio increases. For this
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main reason, any analytical method is welcome.

This project focuses on the study and implementation of a semi-analytical
technique to measure the name concentration of a credit portfolio recently
published in the paper Name Concentration in the Risk Magazine journal by
Jasper Hommels and Viktor Tchistiakov. We refer to [8].

Chapter 1 is devoted to the presentation of the regulatory framework and
the different categories of financial risks.

In the second chapter we will give a brief introduction to credit risk mod-
eling and measurement and we will explain some of the best-known models.

In Chapter 3 we focus on concentration risk and we introduce the most
used measures and methods in order to quantify it. Moreover, we explain a
Monte Carlo simulation which we will use in order to validate our results.

In Chapter 4 we will explain and try to reproduce the correction to the
Vasicek model presented in the paper. Firstly, we will introduce the analytic
solution for a single large counterparty. A procedure for determining capital
reserves in the case of multiple large counterparties is given. Furthermore,
we will run Monte Carlo simulations, which will serve us as a benchmark.
After that, we will test the accuracy of the method by using a wide variety
of credit portfolios with exposure concentration.

Finally, computation times and the implications from name concentration
for economic capital and risk-adjusted return on capital are briefly discussed.
The advantages and drawbacks of the analytical solution are described.
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1.1 The regulatory framework

1.1.1 About the Basel Committee

The Basel Committee on Banking Supervision (BCBS) was founded by the
Central Bank Governors of the Group of Ten (G10) at the end of 1974.

It provides a forum for regular cooperation on banking supervisory mat-
ters. Its objective is to enhance understanding of key supervisory issues and
improve the quality of banking supervision worldwide. It seeks to do so by
exchanging information on national supervisory issues, approaches and tech-
niques, with a view to promoting common understanding. At times, the
Committee uses this common understanding to develop guidelines and su-
pervisory standards in areas where they are considered desirable.

The Committee’s work is organised under four main sub-committees:

The Standards Implementation Group shares information and promotes
consistency in implementation of the Basel II Framework.

The Policy Development Group (PGD) supports the Committee by iden-
tifying and reviewing emerging supervisory issues and proposing and
developing policies that promote a sound banking system and high su-
pervisory standards.

The Accounting Task Force works to help ensure that international ac-
counting and auditing standards and practices promote sound risk man-
agement at banks, support market discipline through transparency, and
reinforce the safety and soundness of the banking system.

The Basel Consultative Group provides a forum for deepening the Com-
mittee’s engagement with supervisors around the world on banking
supervisory issues and facilitates broad supervisory dialogue with non-
member countries on new Committee initiatives.

1.1.2 Basel I

The First Basel Accord, known as Basel I, laid the basis for international
minimum capital standard and banks became subject to regulatory capital
requirements, coordinated by the BCBS.

The downfall of Herstatt-Bank underpinned the concern that the equity
of the most important internationally active banks decreased to a worrisome
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level. Equity is used to absorb losses and to assure liquidity. To decrease
insolvency risk of banks and to minimize potential costs in the case of a
bankruptcy, the target of Basel I was to assure a suitable amount of equity
and to create consistent international competitive conditions.

The rules of the BCBS do not have any legal force. The supervisory rules
are rather intended to provide guidelines for the supervisory authorities of
the individual nations such that they can implement them in a suitable way
for their banking system.

The main focus of Basel I was on credit risk, as the most important risk
in the banking industry. Within Basel I banks are supposed to keep at least
8% equity in relation to their assets. The assets are weighted according to
their degree of riskiness where the risk weights are determined for different
borrower categories. The required equity can be computed as,

Minimum Capital = Risk Weighted Assets · 8%.

Hence the portfolio credit risk is measured as the sum of notional expo-
sures weighted, risk weighted assets, by a coefficient reflecting the creditwor-
thiness of the counterparty, the risk weight.

Since this approach did not take care of market risk, in 1996 an amend-
ment to Basel I has been released which allows for both a standardized ap-
proach and a method based on internal VaR models for market risk in larger
banks. However, the main criticism of Basel I remained. It does not ac-
count for methods for decrease risk as, for example, by means of portfolio
diversification. Moreover, the approach measures risk in an insufficiently
differentiated way since minimal capital requirements are computed inde-
pendent of the borrower’s creditworthiness. These drawbacks lead to the
development of the Second Basel Accord. In June 2004 the BCBS released
a Revised Framework on International convergence of capital measurement
and capital standards, Basel II. These new rules officially came into force on
January 1st, 2008.

1.1.3 Basel II

For a full revision see [5], [6] and [7].
The main targets of Basel II are the same as in Basel I as well. However,

Basel II focuses not only on market and credit risk but also puts operational
risks on the agenda, and it main purposes are:
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• Ensuring that capital allocation is more risk sensitive.

• Separating operational risk from credit risk, and quantifying both.

• Attempting to align economic and regulatory capital more closely to
reduce the scope for regulatory arbitrage.

Basel II is structured in a three pillar framework. The first (Minimum
Capital) focuses on capital requirements to better reflect the true nature
of risks for banking organizations. Pillar 2 (Supervisory Review) lays out
principles for a more involved supervisory and regulatory system and Pillar
3 (Market Discipline) will potentially result in greater discipline imposed by
the market by enhancing transparency in bank’s financial reporting.

Figure 1.1: Structure of Basel II.

The former regulation lead banks to reject riskless positions, such as asset-
backed transactions, since risk weighted assets for these positions were the
same as for more risky and more profitable positions. The main goal of Pillar
1 is to take care of the specific risk of a bank when measuring minimal capital
requirements. Pillar 1 therefore accounts for all three types of risk: credit
risk, market risk and operational risk.

Concerning credit risk the new accord is more flexible and risk sensi-
tive than the former Basel I accord. Within Basel II banks may opt for
the standard approach, which is quite conservative with respect to capital
charge and the more advanced, so-called Internal Ratings Based (IRB) ap-
proach when calculating regulatory capital for credit risk. In the standard
approach, credit risk is measured by means of external ratings provided by
certain rating agencies such as Standard&Poor’s, Moody’s or Fitch ratings.
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In the IRB approach, the bank evaluates the risk itself. This approach, how-
ever, can only be applied when the supervisory authorities, which evaluate
and audit the compliance of regulations with respect to the methods and
transparency which are necessary for a bank to be allowed to use internal
ratings, accept it. The bank, therefore, has to prove that certain conditions
concerning the method and transparency are fulfilled.

The capital charge for market risk within Basel II is similar to the ap-
proach in Basel I. It is based mainly on Value at Risk approaches that statis-
tically measure the total amount a bank can maximally lose. An innovation
of Basel II is the creation of a new risk category, operational risk, which is
explicitly taken into account in the new framework.

The main target of Pillar 3 is to improve market discipline by means of
transparency of information concerning a bank’s external accounting. Trans-
parency can, for example, increase the probability of a decline in a bank’s
own stocks and therefore, motivate the bank to hold appropriate capital for
potential losses.

Organizing the Risk Management function: Three-Pillar frame-
work

1. Best-Practice Policies
Risk tolerance must be expressed in terms that are consistent with
the bank’s business strategy. The business strategy should express the
objectives of the financial institution in terms of risk/return targets.
This should lead to setting risk limits, or tolerances, for the organization
as a whole, and for its major activities.

Market Risk Policy. Business and risk managers should establish a
policy that explicitly states their risk policy in terms of a sta-
tistically defined potential or ’worst case’ loss: dealers and loan
officers require a policy that states how much money can be put
at risk. To this end, most major financial institutions are moving
toward a value at risk framework, which calculates risk in terms
of a probabilistic worst-case loss.

A best-practice market risk policy should state the statistically
defined worst case loss in a way that considers the probability of
both parallel and nonparallel shifts in the yield curve. The policy
should also define the worst case loss in terms of a sufficiently low
level of probability, say percent.
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Management should decide how to allocate capital and risk units
across activities and divisions in the institution in order to achieve
their goals, while controlling exposure to market risk. The greater
the market risk, the higher the expected rate of return that the
bank can expect.

Management should also set the authorities for assuming market
risks, and specify the nature of the market risks to which the in-
stitution should be exposed.

Credit Risk Policy. Every bank must determine a credit risk policy:
how much credit to supply, for what duration, for which type of
clients, and so on.

Profitability is only one consideration, the second being the risk
of the loan. Therefore, bank policy should specify the extent of
diversification , limits on size, and more. Banks need to tie their
tolerance for risk and associated economic capital into their de-
sired credit rating.

Some of the credit risks can be diversified away, and others should
be priced. Management should specify its tolerance to credit risk,
and limit the loan losses.

A reporting system to track exposures to credit risk is required,
coupled with a routine for updating information about creditors.

Operational Risk Policy. Operational risks are the risks stemming
from human errors, computer failures, employing large amounts
of data for estimation purposes, and implementing pricing and
valuation models. Management should decide which operational
risks it should insure, and which it should manage. Assigning
responsibilities is of utmost importance, but it cannot be effective
without control procedures.

It is particularly important to set policies that establish how to
review the introduction of all new products and evaluate all the
pricing models that are used to value positions.

2. Best-Practice Methodologies
The best-practice mathodologies refer to the application of appropiate
analytic models to measure market risk, credit risk, operational risk
and so on. The objective is not solely to measure risk, but also to
ensure that the pricing and valuation methodologies are appropiate.
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The G-30 recommends that dealers should value derivaties at market
prices. Further, it recommends that risk managers should quantify
market and credit risk using a value at risk (VaR) framework.

Finally, measurement tools should be developed to ensure that the
bank’s positions are on the efficient frontier of the trade-off between
risk and reward.

Risk Measurement Methodology. An approach that permits a con-
sistent measurement of market risk across all business units is
needed.

Senior management should adopt a credit risk measurement pol-
icy which calls for measuring credit risk for the loan book and
off-balance-sheet derivative products according to an analytic ap-
proach that is consistent with the approach implemented for mar-
ket risk.

Pricing and Valuation Methodologies. It is really important that
banks develop appropriate techniques to differentiate between trans-
actions where prices are transparent, and those where price dis-
covery is more limited.

Banks need to ask themselves whether their approach to estimat-
ing the expected credit loss is reasonable.

Accounting for Portfolio Effects. Pricing risk at the transaction
level, without considering portfolio effects tends to ’price in’ too
much risk because it does not take into account portfolio effects.
On the other hand, pricing risk at the portfolio level is compli-
cated.

If portfolio effects are taken into account, then one can calculate
the required economic capital for the entire organization.

A well designed portfolio risk measurement approach enables one
to ’slice and dice’ risk vertically and horizontally across an orga-
nization to facilitate the pricing of risk.

3. Best-Practice Infrastructure
The first and most important component of infrastructure in a financial
services company is people. Given the right environment and support,
it is people who make everything else happen. Best-practice risk mea-
surement cannot be derived solely from complex analytical approaches:
judgment will always be a significant input.
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Likewise, ensuring the integrity of data provides an important compet-
itive advantage, as date are translated into risk management informa-
tion for both transaction makers and policy makers.

Finally, a key goal, critical to the successful management of risk, is to
integrate risk managements operations and technology.

The implementation of an integrated risk management system should
enable a firm to maintain a competitive advantage by allowing the firm
to monitor and manage all of its risk on a global basis.

1.1.4 Basel III

The third of the Basel Accords was developed in a response to the deficiencies
in financial regulation revealed by the global financial crisis. Basel III is a
comprehensive set of reform measures, developed by the BCBS, to strengthen
the regulation, supervision and risk management of the banking sector. These
measures aim to:

• Improve the banking sector’s ability to absorb shocks arising from fi-
nancial and economic stress, whatever the source.

• Improve risk management and governance.

• Strengthen banks’ transparency and disclosures.

The performs target:

• Bank-level, or microprudential, regulation, which will help raise the
resilience of individual banking institutions to periods of stress.

• Macroprudential, system wide risks that can build up across the bank-
ing sector as well as the procyclical amplification of these risks over
time.

These two approaches to supervision are complementary as greater re-
silience at the individual bank level reduces the risk of system wide shocks.

Let provide an overview of the various measures taken by the Committee.

Capital

i) Pillar 1

Quality and level of capital. Greater focus on common equity. The
minimum will be raised to 4.5% of riskweighted assets.
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Gone concern contingent capital. Gone concern contingent capi-
tal increases the contribution of the private sector to resolving fu-
ture banking crises and thereby reduces moral hazard.

Capital conservation buffer. Comprising common equity of 2.5% of
risk-weighted assets, bringing the total common equity standard
to 7%. Constraint on a bank’s discretionary distributions will be
imposed when banks fall into the buffer range.

Countercyclical buffer. Imposed within a range of 0-2.5% comprising
common equity, when authorities judge credit growth is resulting
in an unacceptable build up of systematic risk.

Securitisations. Strengthens the capital treatment for certain complex
securitisations. Requires banks to conduct more rigorous credit
analyses of externally rated securitisation exposures.

Trading book. Significantly higher capital for trading and derivatives
activities, as well as complex securitisations held in the trading
book.

Counterparty credit risk. Substantial strengthening of the counter-
party credit risk framework. Includes: more stringent requirements
for measuring exposure; capital incentives for banks to use central
counterparties for derivatives; and higher capital for inter-financial
sector exposures.

Leverage ratio. A non-risk-based leverage ratio that includes off-balance
sheet exposures will serve as a backstop to the risk-based capital
requirement.

ii) Pillar 2

Supplemental Pillar 2 requirements. Address firm-wide governance
and risk management; capturing the risk of off-balance sheet expo-
sures and securitisation activities; managing risk concentrations;
providing incentives for banks to better manage risk and returns
over the long term; sound compensation practices; valuation prac-
tices; stress testing; accounting standards for financial instruments;
corporate governance; and supervisory colleges.

iii) Pillar 3

Revised Pillar 3 disclosures requirements. The requirements intro-
duced relate to securitisation exposures and sponsorship of offbal-
ance sheet vehicles. Enhanced disclosures on the detail of the
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components of regulatory capital and their reconciliation to the
reported accounts will be required, including a comprehensive ex-
planation of how a bank calculates its regulatory capital ratios.

In addition to meeting the Basel III requirements, global systemically
important financial institutions (SIFIs) must have higher loss absorbency ca-
pacity to reflect the greater risks that they pose to the financial system. The
Committee has developed a methodology that includes both quantitative in-
dicators and qualitative elements to identify global SIFIs. The additional loss
absorbency requirements are to be met with a progressive Common Equity
Tier 1 (CET1) capital requirement. A consultative document was submit-
ted to the Financial Stability Board (FSB), which is coordinating the overall
set of measures to reduce the moral hazard posed by global systemically
important financial institutions.

Liquidity

Liquidity coverage ratio. The liquidity coverage ratio (LCR) will require
banks to have sufficient high-quality liquid assets to withstand a 30-day
stressed funding scenario that is specified by supervisors.

Net stable funding ratio. The net stable funding ratio (NSFR) is a longer-
term structural ratio designed to address liquidity mismatches. It cov-
ers the entire balance sheet and provides incentives for banks to use
stable sources of funding.

Principles for Sound Liquidity Risk Management and Supervision.
The Committee’s 2008 guidance entitled Principles takes account of
lessons learned during the crisis and are based on a fundamental review
of sound practices for managing liquidity risk in banking organisations.

Supervisory monitoring. The liquidity framework includes a common set
of monitoring metrics to assist supervisors in identifying and analysing
liquidity risk trends at both the bank and system-wide level.
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1.2 Categories of Financial Risks

Risks are uncertainties resulting in adverse variations of profitability of in
losses. When dealing with banking issues there are a large number of risk,
most of them are well known. There has been a significant extension of fo-
cus, from the traditional qualitative risk assessment towards the quantitative
management of risk, due to both evolving risk practices and strong regula-
tory incentives.

Banking Risks are defined as adverse impacts on profitability of several
distinct sources of uncertainty. Risk measurement requires capturing the
source of the uncertainty and the magnitude of its potential adverse effect
on profitability 1.

Financial Risks are the risks related to the market movements or the
economic changes of the environment.

1.2.1 Credit Risk

Credit risk or credit worthiness is the risk of loss due to a counterparty
defaulting on a contract or, more generally, the risk of loss due to some
credit event. In the European Central Bank (ECB) glossary, it is deffined as
’the risk that a counterparty will not settle an obligation in full, either when
due or at any time thereafter’. Is the first of all risks in terms of importance.

Traditionally this is applied to bonds where debt holders were concerned
that the counterparty, to whom they’ve made a loan, might default on a
payment. For that reason, credit risk is sometimes also called default risk.

We will study Credit Risk and the most important methods in order to
measure it in a further section.

1.2.2 Market Risk

Market risk refers to the risk to an institution resulting from movements in
market prices, in particular, changes in interest rates, foreign exchange rates,
and equity and commodity prices. The associated market risks are:

Equity Risk: Refers to the risk that stock 2 prices or the implied volatility
will change.

1Profitability refers, in the following, to both accounting and mark-to-market measures.
2A stock is a part ownership interest in a company.
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Interest Rate Risk: Is the risk that interest rates or the implied volatility
will change. In general, as rates rise, the price of a fixed rate bond will
fall, and viceversa.

Currency Risk: Risk arising from the change in exchange rates. Investors
face an exchange rate risk when they have assets or operations across
national borders or if they have loans or borrowings in a foreign cur-
rency.

Commodity Risk: Is the risk that commodity prices (metals, gas, . . . ) will
change. A commodity enterprise needs to deal with price risk, quantity
risk, cost risk and political risk.

The market risk factors cited above are not exhaustive. Depending on
the instruments traded by an institution, exposure to other factors may also
arise. Moreover, market risk is often propagated by other forms of financial
risk such as credit and market-liquidity risks. The institutions consideration
of market risk should capture all risk factors that it is exposed to, and it
must manage these risks soundly.

1.2.3 Operational Risk

Operational risk can be defined as the risk of loss resulting from inadequate
or failed internal processes, people and systems, or from external events.

Basel II defined event types are internal fraud (misappropriation of as-
sets, tax evasion), external fraud (theft of information, hacking damage), em-
ployment practices and workplace safety (workers compensation, employee
health and safety), clients, products and business practice (market manipula-
tion, antitrust, improper trade, product defects), damage to physical assets
(natural disasters, terrorism, vandalism), business disruption and systems
failures (software failures, hardware failures) and execution, delivery and
process management (data entry errors, accounting errors, failed mandatory
reporting).

However, the Basel Committee recognizes that operational risk is a term
that has a variety of meanings and therefore, for internal purposes, banks are
permitted to adopt their own definitions of operational risk, provided that
the minimum elements in the Committee’s definition are included.

A bank should develop a framework for managing operational risk and
evaluate the adequacy of capital given this framework. The framework should
cover the bank’s appetite and tolerance for operational risk, as specified
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through the policies for managing this risk, including the extent and man-
ner in which operational risk is transferred outside the bank. It should also
include policies outlining the bank’s approach to identifying, assessing, mon-
itoring and controlling the risk.

The failure to properly manage operational risk can result in a misstate-
ment of an institution’s risk/return profile and expose the institution to sig-
nificant losses.

1.2.4 Liquidity Risk

Liquidity risk is financial risk due to uncertain liquidity. Is the risk that a
given security or asset cannot be traded quickly enough in the market to
prevent a loss.

Liquidity risk arises from situations in which a party interested in trading
an asset cannot do it because nobody in the market wants to trade that asset.
Liquidity risk becomes particularly important to parties who are about to
hold or currently hold an asset, since it affects their ability to trade.

An institution might lose liquidity if its credit rating falls, it experiences
sudden unexpected cash outflows, or some other event causes counterparties
to avoid trading with or lending to the institution. A firm is also exposed to
liquidity risk if markets on which it depends are subject to loss of liquidity.
Liquidity risk tends to compound other risks.

Liquidity is fundamental to the ongoing viability of any banking organi-
zation. Bank’s capital positions can have an effect on their ability to obtain
liquidity, especially in a crisis. Each bank must have adequate systems for
measuring, monitoring and controlling liquidity risk. Banks should evaluate
the adequacy of capital given their own liquidity profile and the liquidity of
the markets in which they operate.

The scope and frequency of a banks internal liquidity risk management
reports will vary according to the complexity of the institutions operations
and risk profile. Reportable items may include cash flow gaps, asset and
funding concentrations, critical assumptions used in cash flow projections,
key early warning or risk indicators, funding availability, status of contingent
funding sources and collateral usage.



Chapter 2

Credit Risk Measurement and
Modeling

There exists a wide range of literature on credit risk. We refer mainly to [1],
[2], [3] and [4].

2.1 Risk Parameters

2.1.1 Probability of Default (PD):

Is the likelihood that a loan will not be repaid and will fall into default. PD
is calculated for each client who has a loan or for a portfolio of clients with
similar attributes and it measures the uncertainty whether an obligor will
default or not.

For comparison reasons it is usually specified with respect to a given time
horizon, typically one year. Then the probability of default describes the
probability that the default event occurs before the specified time horizon.

The credit history of the counterparty or portfolio and nature of the
investment are also taken into account to calculate the PD.

Default probability cannot be measured directly. Many banks use exter-
nal ratings agencies such as Standard&Poors, Fitch or Moody’s. However,
banks are also encouraged to use their own Internal Rating Methods as well.

2.1.2 Exposure at Default (EAD):

The Exposure at Default of an obligor denotes the portion of the exposure
to the obligor which is lost in case of default.

If an asset suffers from a lower valuation or a loan defaults, the EAD
figure is how much the firm will lose as a result of the default. The loss is
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contingent upon the amount to which the bank was exposed to the borrower
at the time of default, commonly expressed as Exposure at Default.

EAD is a measure of potential exposure as calculated by a Basel Credit
Risk Model for the period of one year or until maturity whichever is soonest.

A bank must provide an estimate of the exposure amount for each trans-
action. All these loss estimates should seek to fully capture the risks of
an underlying exposure. These values are calculated taking account of the
underlying asset, forward valuation, facility type and commitment details.
However, they do not take account of guarantees, collateral or security.

In most cases EAD will equal the nominal amount of the facility, but for
certain facilities it will include an estimate of future lending prior to default.
Under the foundation methodology EAD is estimated through the use of
standard supervisory rules. In the advanced methodology, the bank itself
determines the appropriate EAD to be applied to each exposure.

2.1.3 Loss Given Default (LGD):

The Loss Given Default is the magnitude of a transaction describes the extent
of the loss incurred in the event of default. It is expressed as a percentage of
the exposure.

Loss Given Default is facility-specific because such losses are generally
understood to be influenced by key transaction characteristics such as the
presence of collateral and the degree of subordination.

LGD is usually modeled as a random variable describing the severity of
losses in the default event and it is determined in one of two ways.

On the one hand, under the foundation methodology, LGD is estimated
through the application of standard supervisory rules, which differentiate
the level of Loss Given Default based upon the characteristics of the under-
lying transaction . The supervisory rules and treatments were chosen to be
conservative. The starting point proposed by the BCBS is use a 50% LGD
value for most unsecured transactions, with a higher LGD (75%) applied to
subordinated exposures.

On the other hand, in the advanced methodology, the bank itself deter-
mines the appropriate LGD to be applied to each exposure, on the basis of
robust data and analysis which is capable of being validated both internally
and by supervisors. Thus, a bank using internal Loss Given Default estimates
for capital purposes might be able to differentiate LGD values on the basis of
a wider set of transaction characteristics as well as borrower characteristics.
A bank wishing to use its own estimates of LGD will need to demonstrate to
its supervisor that it can meet additional minimum requirements pertinent
to the integrity and reliability of these estimates.
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2.2 Risk Measures

In order to assess concentrations in credit risk, it is important to first measure
credit risk. Many measures have been used and developed to communicate
credit risk levels. In this section we follow mainly the work by [17].

2.2.1 Risk as the random variable

Risk is related to the variability of the future value of a position, due to
market changes or more generally to uncertain events.

The random variables on the set of states of nature at a future date can
be interpreted as possible future values of positions of portfolios currently
held.

A first crude, but crucial, measurement of the risk of a position will be
whether its future value belongs or does not belong to the subset of acceptable
risks, as decided by a supervisor such as:

i) A regulator who takes into account the unfavorable states when allowing
a risky position that may draw on the resources of the government, for
example as a guarantor of last resort.

ii) An exchanges clearing firm, which has to make good on the promises to
all parties of transactions being securely completed.

iii) An investment manager who knows that his firm has basically given to
its traders an exit option in which the strike price consists in being fired
in the event of big trading losses on ones position.

In each of these cases, there is a trade-off between the severity of the risk
measurement and the level of activities in the supervised domain.

Let consider one period of uncertainty (0, T ) between two dates 0 and T .
The various currencies are numbered by i, 1 ≤ i ≤ I, and for each of them
one reference instrument is given, which carries one unit of date 0 currency
i into ri units of date T currency i.

The period (0, T ) can be the period between hedging and rehedging, a
fixed interval, the period required to liquidate a position, or the length of
coverage provided by an insurance contract.

Date 0 exchange rates are supposed to be one, and ei denotes the random
number of units of currency 1 which one unit of currency i buys at date T .

An investors initial portfolio consists of positions Ai, 1 ≤ i ≤ I. The
position Ai provides Ai(T ) units of currency i at date T .
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Definition 1. We call risk the investor’s future net worth∑
1≤i≤I

ei · Ai(T ).

2.2.2 Axioms on acceptance sets

We suppose that the set of all possible states at the end of the period is
known, but the probabilities of the various states occurring may be unknown
or not subject to common agreement. This assumes that markets at date T
are liquid; if they are not, more complicated models are required in which
we can distinguish the risks of a position a the mapping from the former to
the latter may not be linear.

Notation

• Let Ω the set of states of nature, and assume it is finite. Considering Ω
as the set of outcomes of an experiment, we compute the final net worth
or a position for each element of Ω. It is a random variable denoted by
Y .

• Let G be the set of all risks, that is the set of all real-valued functions
on Ω. Since Ω is assumed to be finite, G can be identified with Rn,
where n = card(Ω). The cone of nonnegative elements in G shall be
denoted by L+, its negative by L−.

• We call Ai,j a set of final net worths, expressed in currency i, which are
accepted by regulator j.

• Let Ai =
⋂
j Ai,j and use the generic notation A.

Axioms for acceptance sets

Let A be the acceptance set.

1. A contains L+.

2. A
⋂
L− = {0}.

3. A is convex.

4. A is a positively homogeneous cone.
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2.2.3 Correspondence between Acceptance Sets and
Measures of Risk

Sets of acceptable future net worths are the primitive objects to be considered
in order to describe acceptance or rejection of a risk. Given some reference
instrument, there is a natural way to define a measure of risk by describing
how close or how far from acceptance a position is.

Definition 2. A measure of risk is a mapping from G into R.

Definition 3. Risk measure associated with an acceptance set.
Given the total rate of return r on a reference instrument, the risk measure
associated with the acceptance set A is defined by

ρA,r = inf{m|m · r + Y ∈ A}.

Definition 4. Acceptance set associated with a risk measure ρ,

Aρ = {Y ∈ G|ρ(Y ) ≤ 0}.

We will consider now several possible properties for a risk measure ρ de-
fined on G.

2.2.4 Properties of the risk measures

A risk measure that is used for specifying capital requirements can be thought
of as the amount of cash (or capital) that must be added to a position to
make its risk acceptable to regulators. A number of properties that such a
risk measure should have have been proposed. These are:

• Monotonicity: if a portfolio has lower returns than another portfolio
for every state of the world, its risk measure should be greater.

∀ Y1, Y2 ∈ G with Y1 ≤ Y2, we have ρ(Y2) ≤ ρ(Y1).

• Translation invariance: if we add an amount of cash α to a portfolio,
its risk measure should go down by α.

∀ Y ∈ G and all real numbers α, we have ρ(Y + α · r) = ρ(Y )− α.

• Positive homogeneity: changing the size of a portfolio by a factor
λ while keeping the relative amounts of different items in the portfolio
the same should result in the risk measure being multiplied by λ.

∀ λ ≥ 0 and ∀ Y ∈ G, ρ(λY ) = λρ(Y ).
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• Subadditivity: the risk measure for two portfolios after they have
been merged should be no greater than the sum of their risk measures
before they were merged.

∀ Y1, Y2 ∈ G, ρ(Y1 + Y2) ≤ ρ(Y1) + ρ(Y2).

The first three conditions are straightforward given that the risk measure
is the amount of cash needed to be added to the portfolio to make its risk ac-
ceptable. The fourth condition states that diversification helps reduce risks.
When two risks are aggregated, the total of the risk measures corresponding
to the risks should either decrease or stay the same.

Definition 5. Coherence.
A risk measure satisfying the four properties of translation invariance, sub-
additivity, positive homogeneity and monotonicity is called coherent.

On the one hand we shall speak of a model-dependent measure of risk
when an explicit probability on Ω is used to construct it. We will study in a
next section the most important models in order to measure credit risk.

On the other hand, we will have a model-free measure otherwise. Let
see some currently used model-free measures in order to quantify risk. Some
of them are coherent risk measures, attending to the four axioms that they
must satisfy, and others are not.
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2.2.5 Value at Risk (VaR)

Value at Risk is not a risk measure, since it does not verify the subadditivity
axiom. Neverthless, it is probably the most widely used measure in financial
institutions (see [3]). It is used to measure potential losses.

Figure 2.1: There are several types of potential losses.

It can be defined as the worst loss that might be expected from holding
a security of portfolio over a given period of time, given a specified level of
probability, the so-called confidence level,

V aRq(L) = inf{x ∈ R : P(L > x) ≤ 1− q} = inf{x ∈ R : FL(x) ≥ q},

where FL(x) is the distribution function of the loss variable. Thus, VaR is
simply a quantile of the loss distribution.

In general, in credit risk management high values of q are used: q = 99.9%
in the Second Basel Accord and q = 99.98% is the value used in practice for
many banks. A higher confidence level leads to a higher VaR. The reason
for these high values for q is that banks want to demonstrate external rating
agencies a solvency level that corresponds at least to the achieved rating class.

VaR has many benefits when compared to traditional measures of risk:

• It is a value which has a very simple meaning of unexpected losses
against which some hedge should be provided.

• VaR is fungible. All risks are expressed with the same units of unex-
pected losses at a given tolerance level.

• It is a synthetic measure of risk which includes multiple dimensions
(volatility, sensitivity to market movements and gaps) into a single
number.
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• VaR applies to all level of risk management and can capture diversifi-
cation effects.

• Its methodology is used to define economic capital, which applies di-
rectly to the issue of capital adequacy.

It can be used in many applications:

• It measures the risk at the levels of business units, customers and prod-
uct classes.

• It is also used in order to set limits, at those same levels of aggregation,
as a maximum allowed VaR which should constrain the VaR resulting
from a transaction.

• It used as the measure of risk-adjusted performance, using VaR as the
measure of risks.

Expected Loss (EL)

For a default model, the expected loss is the expectation of all book value
losses at the horizon.

The EL is frequently used for assessing credit risk. It represents a statis-
tical average over a portfolio of a large number of loans or transactions. The
law of large numbers says that losses will be sometimes high or low, but the
average is the expected loss. Statistical losses are more a portfolio concept
than an individual transaction concept.

Definition 6. The portfolio loss LN is defined as the random variable

LN =
N∑
n=1

EADn · LGDn ·Dn,

where Dn denotes the default indicator of obligor n and it can be represented
as a Bernoulli random variable taking the values

Dn =

{
1 if obligor n defaults

0 otherwise

with probabilities P(Dn = 1) = PDn and P(Dn = 0) = 1− PDn.
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Definition 7. The expected loss of a certain obligor n, ELn, represents a
kind of risk premium which a bank can charge for taking the risk that obligor
n might default. It is defined as 1

ELn = E[Ln] = EADn · ELGDn · PDn.

By additivity of the expectation operator, the EL for a given portfolio
can be defined as it follows:

Definition 8. The expected loss for a given portfolio containing N loans can
be written as

EL =
N∑
n=1

EADn · ELGDn · PDn.

Provisions should hedge EL. They differ from capital that provides a
protection against deviations from this average. Capital should provide pro-
tection against unexpected losses only, expected losses being netted out of
revenues.

Unexpected Loss (UL)

Whereas expected losses can be described as the usual or average losses that
an institution incurs in its natural course of business, unexpected losses are
deviations from the average that may put an institutions stability at risk.
Peak losses, although occurring quite seldom, can be very large when they
occur, therefore a bank should also reserve money for them.

The deviation of losses from the EL is measured by using the stantdard
deviation of the loss variable.

Definition 9. The unexpected loss of obligor n is defined as 2

ULn =
√

V[Ln] =
√

V[EADn · LGDn ·Dn].

1ELGDn: expectation of LGD variable of obligor n.
2V LGDn: volatility of LGD variable of obligor n.
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a) If Dn and LGDn are uncorrelated, the unexpected loss of obligor n, ULn,
is given by

ULn = EADn ·
√
V LGD2

n · PDn + ELGD2
n · PDn(1− PDn),

and the UL of the total portfolio

UL =
N∑
n=1

EADn ·
√
V LGD2

n · PDn + ELGD2
n · PDn(1− PDn).

b) In the correlated case, additivity is lost, and the UL of the total portfolio
is given by

UL =
√

V[L] =

√√√√ N∑
n=1

N∑
k=1

EADn · EADk · Cov[LGDn ·Dn;LGDn ·Dk].

Exceptional Loss

Exceptional events are not included in UL. To include them would drastically
increase the VaR measures. At the limit, the total assets of a bank could
be lost, although this theoretical possibility is extremely unlikely to occur,
owing to diversification effects. This raises the issue of drawing a border
between unexpected and truly exceptional losses. The border is defined by
the tolerance level, plus the practicality of measuring unexpected losses at
very low tolerance levels.

Truly exceptional losses cannot be evaluated with statistical laws. Stress
scenarios address this issue. They provide some idea of what the losses
could be under extreme conditions, but the probability of such scenarios is
judgmental rather than subject to statistical benchmarks.
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2.2.6 Expected Shortfall (ES)

In the literature on risk management, VaR has shown itself to be a very use-
ful risk indicator. However, it is also now widely accepted that VaR is not
the finest measure available. VaR is often criticized for its failure to reflect
the severity of losses in the worst scenarios in which the loss exceeds VaR.
In other words, VaR is not a measure of the heaviness of the tail of the dis-
tribution. A novel theoretical development in recent years is the Expected
Shortfall. We review work by [18].

Expected Shortfall (ES) is also a risk measure used in financial risk mea-
surement to evaluate the market risk or credit risk of a portfolio.This statistic
arises in a natural way from the estimation of the average of the 100·q% worst
losses in a sample of returns to a portfolio. Here q is some fixed confidence
level. It is closely related to VaR. Instead of using a fixed confidence level, as
in the concept of VaR, one averages VaR over all confidence levels q ∈ (0, 1)
for some q ∈ (0, 1). Thus, the tail behavior of the loss distribution is taken
into account. This measure is also sometimes referred to as conditional VAR,
or tail loss. Formally,

Definition 10. For a loss L with E(|L|) <∞ and distribution function FL,
the Expected Shortfall at a confidence level q ∈ (0, 1) is defined as

ESq =
1

1− q

∫ 1

q

V aRu(L) du.

If the loss variable is integrable with continuous distribution function, the
following Lemma holds:

Lemma 1. For integrable loss variable L with continuous distribution func-
tion FL and any q ∈ (0, 1) we have

ESq =
E(L;L ≥ V aRq(L))

1− q
= E(L|L ≥ V aRq(L)).

Hence, in this situation expected shortfall can be interpreted as the ex-
pected loss that is incurred in the event that VaR is exceeded. In the dis-
continuous case, a more complicated formula holds:
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ESq =
1

1− q
(E(L;L ≥ V aRq(L))) + V aRq(L) · (1− q − P(L ≥ V aRq(L))) .

Properties of ES

• ESq increases as q increases.

• For the 100% quantile, ES1.0 equals the expected value of the portfolio.

• For a given portfolio, ESq ≥ V aRq.

Example

Let Z1, Z2 be two random variables such that Z1 ∼ N(0, 1) and Z2 ∼ Γ(3, 1).

Figure 2.2 shows the pdf of Z1. The green vertical line shows the Value at
Risk while the blue one indicates the Expected Shortfall, both at level 95%.

V aRZ1,0.95 = 1.6 and ESZ1,0.95 = 2.1.

In particular, for heavy-tailed distributions, the difference between VaR
and ES is more pronounced than for normal distributions. Figure 2.3 shows
the probability density function of the variable Z2.

V aRZ2,0.95 = 6.3 and ESZ2,0.95 = 7.6.
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Figure 2.2: VaR and ES for standard normal distribution.

Figure 2.3: VaR and ES for Gamma distribution.
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Advantages of ES

Regulators make extensive use of VaR and its importance as a risk measure
is therefore unlikely to diminish. However, expected shortfall has a number
of advantages over VaR. This has led many financial institutions to use it as
a risk measure internally.

• ES is universal, it can be applied to any instrument and to any under-
lying source of risk.

• ES is complete, it produces a unique global assessment for portfolios
exposed to different sources of risk.

• ES is a simple concept since it is the answer to a natural and legitimate
question on the risks run by a portfolio.

• Any bank that has a VaR based risk management system could switch
to ES with virtually no additional computational effort.
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2.2.7 Economic Capital (EC)

EC is also a measure of potential losses for the entire portfolio of the bank.
It is the capital necessary to absorb unexpected losses. The EC at a given
tolerance level is identical to the value of potential loss at the same tolerance
level. Since EC is the capital required to cover the risk of potential losses, it
is also called risk-based capital or Capital At Risk (CAR)

Definition 11. The Economic Capital for a given confidence level q is defined
as the Value at Risk at level q of the portfolio loss L minus the expected loss
of the portfolio,

ECq(L) = V aRq(L)− EL.

For a confidence level q = 99.98% it can be interpreted as the appropri-
ate capital to cover unexpected losses in 9.998 out of 10 years, where a time
horizon of one year is assumed. Hence it represents the capital a bank should
reserve to limit the probability of default to a given confidence level. The
VaR is reduced by the EL due to the common decomposition of total risk
capital, that is VaR, into a part covering EL and a part reserved for UL.

Suppose a bank wants to include a new loan in its portfolio and, thus,
has to adopt its risk measurement. While the EL is independent from the
composition of the reference portfolio, the EC strongly depends on the com-
position of the portfolio in which the new loan will be included. The EC
charge for a new loan of an already well diversified portfolio, for example,
might be much lower than the EC charge of the same loan when included in
a portfolio where the new loan induces some concentration risk. For this rea-
son the EL charges are said to be portfolio independent, while the EC charges
are portfolio dependent which makes the calculation of the contributory EC
much more complicated, since the EC always has to be computed based on
the decomposition of the complete reference portfolio.

In the worst case, a bank could lose its entire credit portfolio in a given
year. Holding capital against such an unlikely event is economically ineffi-
cient. As banks want to spend most of their capital for profitable investments,
there is a strong incentive to minimize the capital a bank holds. Hence the
problem of risk management in a financial institution is to find the balance
between holding enough capital to be able to meet all debt obligations also
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in times of financial distress, on the one hand, and minimizing EC to make
profits, on the other hand.

2.2.8 Risk adjusted return on capital (RAROC)

The risk adjusted return on capital (RAROC) calculation is based on the
trade-off between risk and return. It is a risk-adjusted profitability mea-
surement and management framework for measuring and forecasting risk-
adjusted financial performance, for maintaining financial integrity and boost
confidence among stakeholders and for providing a consistent view of prof-
itability across businesses.

Definition 12. RAROC is defined as the ratio of risk-adjusted return to
economic capital.

RAROC =
Earnings− Expected losses

Economic Capital
.

A number of large banks have developed RAROC with the aim, in most
cases, of quantifying the amount of equity capital necessary to support all
their operating activities.

RAROC systems allocate capital for two basic reasons: risk management
and performance evaluation. For risk management purposes, the main goal
of allocating capital to individual business units is to determine the bank’s
optimal capital structure, that is economic capital allocation is closely cor-
related with individual business risk. As a performance evaluation tool, it
allows banks to assign capital to business units based on the economic value
added of each unit.
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2.3 Asset Value Models and Reduced Form

Models

2.3.1 Asset value models

These models trace back to the Merton model, which we will introduce in the
next section. The default of a firm is modeled in terms of the relationship
between its assets and the liabilities that it faces at the end of a given period
time. The value of the firm’s debt at maturity then equals the nominal value
of the liabilities minus the pay-off of a European put option on the firm’s
value. The asset value process is modeled as a geometric Brownian motion
and default occurs when the asset value at a maturity is lower than the
liabilities.

In models of this type default risk depends mainly on the stochastic evolu-
tion of the asset value and default occurs when the random variable describing
the asset value falls below a certain threshold which represent the liabilities.
Therefore these structural models are also known as latent variable models.

Definition 13. Latent variable model.
Let V = (V1, ..., VN) be a N-dimensional vector with continuous marginal
distributions functions Fn(v) = P(Vn ≤ v). Given a sequence of deterministic
thresholds

−∞ = bn0 < bn1 < . . . < bnR < bnR+1 =∞,

we say that the obligor n is in state Sn = r if and only if

Vn ∈ (bnr , b
n
r+1] for some r ∈ {0, 1, ..., R} and n ∈ {1, 2, ..., N}.

Then (Vn, (b
n
r )0≤r≤R+1)1≤n≤N defines a latent variable model for the state vec-

tor S = (S1, ..., SN). The individual default probability of firm n is given by
Fn(bn1 ) = P(Vn ≤ bn1 ).

Examples for this class of credit risk models are the theoretical Merton
model and, based on this, important industry models like KMV’s Portfolio
Manager or the CreditMetrics Model.
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2.3.2 Default rate models

In reduced form models one directly models the process of credit default
instead of constructing a stochastic process of the firm’s asset value which
indirectly leads to a model of the firm’s default.

In this class of models, defaults can happen at any discrete time interval
and only the probability of default is specified. The default probability of
a firm is usually modeled as a non-negative random variable, whose distri-
bution typically depends on economic covariables. This class of models is
sometimes called mixture models.

These models can be treated as two stage models. Conditional on the
realization of economic factors the individual default probabilities are as-
sumed to be independent whereas they can be unconditionally dependent.
The conditional default probabilities are modeled as random variables with
some mixing distribution which is specified in a second step. A prominent
example of such a model is the CreditRisk+ which we will introduce later.
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2.4 The Merton Model

The Merton model can be understood as a multi-factor model as will be
explained .

The Merton model is of Bernoulli type where the decision about default or
survival of a firm at the end of a time period is made by comparing the firm’s
asset value to certain threshold value. If the firm value is below this threshold,
the firm defaults and otherwise it survives. This model is frequently used in
the different approaches for measuring concentration which we will discuss
later.

2.4.1 The General Framework

The Merton model assumes the asset value of a firm to follow some stochastic
process (Vt)t≥0. There are only two cases of securities: equity and debt. It is
assumed that equity receives no dividends and that the firm cannot issue new
debt. The model assumes that the company’s debt is given by a zero coupon
bond with face value B that will become due at a future time T . The firm
defaults if the value of its assets is less than the promised debt repayment at
time T . In the Merton model default can occur only at the maturity T of
the bond. Denote the value at time t of equity and debt by St and Bt. In a
frictionless market (there are no taxes or transaction costs), the value of the
firm’s assets is given by the sum of debt and equity, i.e.,

Vt = St +Bt, 0 ≤ t ≤ T.

At maturity there are two possible scenarios:

1. VT > B: the value of the firm’s assets exceeds the debt. In this case
the debtholders receive BT = B, the shareholders receive the residual
value ST = VT −B, and there is not default.

2. VT ≤ B: the value of the firm’s assets is less than its debt. Thus the
firm cannot meet its financial obligations and defaults. In this case,
the debtholders take ownership of the firm, and the shareholders are
left with nothing, so we have BT = VT , ST = 0.

Hence, combining the above two results, the payment to the shareholders
at time T is given by

ST = max(VT −B, 0) = (VT −B)+,

and debtholders receive

BT = min(VT , B) = B − (B − VT )+.
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This shows that the value of the firm’s equity is the payoff of an European
call option on the assets of the firm with strike price equal to the promised
debt payment. The Merton model treats the asset value Vt as any underlying.
It assumes that under the real world probability measure P the asset value
process follows a geometric Brownian motion of the form

dVt = µV VTdt+ σVtdWt, 0 ≤ t ≤ T, (2.1)

for constants µV ∈ R, σV > 0 and a standard Brownian motion (Wt)t≥0.
Further, it makes all simplifying assumptions of the Black-Scholes option
pricing formula. The solution at time T of the stochastic differential equation
(2.1) with initial value V0 is given by

VT = V0 · exp

((
µV −

1

2
σ2
V

)
T + σVWT

)
,

which in particular implies that

ln(VT ) ∼ Φ

(
ln(V0) +

(
µV −

1

2
σ2
V

)
T, σ2

V T

)
.

Hence the market value of the firm’s equity at maturity T can be de-
termined as the price of a European call option on the asset value Vt with
exercise price B and maturity T . The risk neutral pricing theory then yields
that the market value of equity at time t < T can be computed as the
discounted expectation of the payoff function ST ,

St = E
[
e−r(T−t) · (VT −B)+|Ft

]
,

and it is given by

St = Vt · Φ(dt,1)−B · e−r(T−t) · Φ(dt,2),

where

dt,1 =
ln(Vt

B
) + (r + 1

2
σ2
V )(Tt)

σV ·
√
T − t

and dt,2 = dt,1 − σV ·
√
T − t.

Here r denotes the risk-free interest rate, assumed to be constant.

According to the equation for BT , we are able to value the firm’s debt at
time t ≤ T as

Bt = E
[
e−r(T−t)(B − (B − VT )+)|Ft

]
= B · e−r(T−t) −

(
B · e−r(T−t)Φ(−dt,2)− Vt · Φ(−dt,1)

)
.
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The default probability of the firm by time T is the probability that
the shareholders will not exercise their call option to buy the assets of the
company for B at time T , and it can be computed as

P(VT ≤ B) = P(ln(VT ) ≤ ln(B)) = Φ

(
ln(B/V0)− (µV − 1

2
σ2
V ) · T

σV
√
T

)
. (2.2)

The last equation shows that the default probability is increasing in B,
decreasing in V0 and µV and, for V0 > B, increasing in σV , which is all
perfectly in line with economic intuition. Under the risk-neutral measure Q
we have

Q(VT ≤ B) = Q
(

ln(B/V0)− (r − 1
2
σ2
V ) · T

σV
√
T

≤ −d0,2

)
= 1− φ(d0,2).

Hence the risk-neutral default probability, given information up to time
t, is given by 1− φ(dt,2).

Remark 1.

The Merton model can also incorporate credit migrations and, thus, is not
limited to the default-only mode as presented above. Therefore, we consider
a firm which has been assigned to some rating category at time t0 = 0. The
time horizon is fixed T > 0. Assume that the transition probabilities p(r)
for a firm are available for all rating grades 0 ≤ r ≤ R. The transition
probability thus denotes the probability that the firm belongs to rating class
r at time horizon T . In particular, p(0) denotes the default probability of
the firm.

Suppose that the asset-value process Vt of the firm follows the model given
in 2.1. Let define thresholds

−∞ = b0 < b1 < . . . < bR < bR+1 =∞,

such that P(br < VT ≤ br+1) = p(r) for r ∈ {0, . . . , R}, this is, the prob-
ability that the firms belongs to rating r at the time horizon T equals the
probability that the firm’s value at time T is between br and br+1. Hence we
have translated the transition probabilities into a series of thresholds for an
assumed asset-value process. We recall that b1 denotes the default thresh-
old, i.e. the value of the firm’s liabilities B. The higher thresholds are the
asset-value levels marking the boundaries of higher rating categories.
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Although the Merton model provides a useful context for modeling credit
risk, and practical implementations of the model are used by many financial
institutions, it also has some drawbacks.

It assumes the firm’s debt financing consists of a one-year coupon bond.
For most firms, however, this is an oversimplification. Moreover, the simplify-
ing assumptions of the Black-Scholes model are questionable in the context of
corporate debt. In particular, the assumption of normally distributed losses
can lead to an underestimation of the potential risk in a loan portfolio.

Finally, and this might be the most important shortcoming of the Merton
model, the firm’s value is not observable which makes assigning values to it
and its volatility problematic.

2.4.2 The Multi-Factor Merton Model

We consider a portfolio of N borrowers. Each of the obligors has one loan
with exposure EADn. We express the loan as a share of total portfolio
exposure, i.e., the exposure share of obligor n is given by

sn =
EADn∑N
n=1 EADn

.

Fix a time horizon T > 0. We define V
(n)
t to be the asset value of

counterparty n at time t < T .
For every counterparty there exists a threshold Cn such that counterparty

n defaults in [0, T ] if V
(n)
t < Cn. Hence, V

(n)
T can be seen as a latent variable

driving the event of default. Thus, we define

Dn = 1{V (n)
T <Cn}

∼ Bern(1;P(V n
T ) < Cn). (2.3)

Let rn be borrower n’s asset-value log-retunrs, log(V
(n)
T /V

(n)
0 ). The main

assumption in the factor model is the following one:

Assumption 1. The asset returns rn depend linearly on K standard normally
distributed risk factors X = (X1, ..., XK) affecting borrower’s defaults in a
systematic way as well as on a standard normally distributed idiosyncratic
term εn. Moreover, εn is independent of the systematic factors Xk, ∀k ∈
{1, ..., K} and the εn are uncorrelated.

Then, borrower n’s asset value log-returns, after standardization, admit
a representation of the form

rn = βn · Yn +
√

1− β2
n · εn, (2.4)
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where Yn represents the firm’s composite factor, εn denotes the idiosyncratic
shock and βn captures the correlation between rn and Yn.
Yn can be decomposed into K independent factors X = (X1, ..., XK) by
Yn =

∑K
k=1 αn,k ·Xk with αn,k describing the dependence of obligor n on an

industrial or regional sector k represented by factor Xk.

The correlation of the asset returns depends only on the correlation of
the composite factors Yn since the risk factors and the idiosyncratic shocks
are assumed to be independent. Computing variances in (2.4) we get

V(rn) = β2
n · V(Yn) + (1− β2

n) · V(εn).

i) β2
n · V(Yn) quantifies the systematic risk of the counterparty n.

ii) (1−β2
n) ·V(εn) captures the idiosyncratic risk which cannot be explained

with the factors Xk.

In order to ensure that V(Yn) = 1, considering that rn, Xk and εn are
assumed to be standard normally distributed, the coefficients αn,k must verify∑K

k=1 α
2
n,k = 1. Thus, we can rewrite (2.3) as

Dn = 1{rn<cn} ∼ Bern(1;P(rn < cn),

where cn is the threshold corresponding to Cn after exchanging V
(n)
T by rn.

Assume T = 1. Let PDn the one year default probability of obligor n.
We have PDn = P(rn < cn) and, since rn ∼ N(0, 1),

cn = Φ−1(PDn).

Hence, the condition rn < cn in the factor representation, can be written
as

εn <
Φ−1(PDn)− βn · Yn√

1− β2
n

.

Thus, the one year default probability of obligor n, conditional on Yn, is
given by

PDn(Yn) = Φ

(
Φ−1(PDn)− βn · Yn√

1− β2
n

)
. (2.5)

The only remaining random part is the factor Yn.
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Representing Yn by the independent systematic factors X = (X1, ..., XK),
the default probability of obligor n, conditional on a specification x = (x1, ..., xK)
of X, can be written

PDn(x) = Φ

(
Φ−1(PDn)− βn ·

∑K
k=1 αn,k ·Xk√

1− β2
n

)
. (2.6)

The further step is to find an expression for the portfolio loss variable L.
If borrower n defaults, its rate of loss is determined by the variable loss

given default, LGDn, with mean ELGDn and variance V LGDn. LGD are
assumed to be independent for different borrowers as well from all the other
variables in the model. Then, the portfolio loss rate can be written as it
follows

L =
N∑
n=1

sn · LGDn · 1{rn<Φ−1(PDn)}.

Thus, the expected loss rate of borrower n is the probability of default
times the expected rate of loss in case of default. The expected portfolio
loss consists on the exposure weighted sum of all expected individual losses.
Taking into account that LGDn is independent from Dn and that the con-
ditional expectation of default indicator equals the probability that rn lies
below cn conditional on the risk factors, we obtain

E(L|(X1, ..., XK)) =
N∑
n=1

sn ·ELGDn ·Φ

(
Φ−1(PDn)− βn ·

∑K
k=1 αn,k ·Xk√

1− β2
n

)
.

(2.7)
The determination of the portfolio loss distribution requires a Monte

Carlo simulation of the systematic risk factors. In a next section we will
present an analytical approximation to compute the qth percentile of the loss
distribution in this multi-factor framework under the assumption that port-
folios are infinitely fine grained such that the idiosyncratic risk is completely
diversified away.
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2.5 Industry Models based on the Merton

Approach

2.5.1 The KMV Model

It was founded by KMV in 1989 and is now maintained by Moody’s KMV.

It uses the Merton approach in a slightly varied way to determined the
risk of a credit portfolio. The main contribution of KMV, however, is not
the theoretical model but its calibration to achieve that the default proba-
bilities correspond to a large extend to the empirically achieved ones. This
calibration is based on a huge proprietary database.

Within the KMV model one computes the so-called Expected Default Fre-
quency (EDF) based on the firm’s capital structure, the volatility of the asset
returns and the current asset value in three stages.

First, KMV uses an iterative procedure to estimate the asset value and
the volatility of asset returns. Their method is based on the Merton ap-
proach of modeling equity as a Call option on the underlying assets of the
firm with the firm’s liabilities as the strike price. Using this property of eq-
uity, one can derive the underlying asset value and asset volatility from the
implied market value, the volatility of equity and the book value of liabilities.

Recall that in the classical Merton model the default probability of a
given firm is determined by the probability that the asset value V1 in one
year lies below the threshold value B representing the firm’s debt. Hence,
the default probability, PDMerton, in the Merton model is a function of the
current asset value V0, the asset value’s annualized mean µV and volatility
σV , and the threshold B. With lognormally distributed asset values, this leads
to a default probability (assuming a one year time horizon) of the form

PDMerton = 1− Φ

(
ln(V0/B) + (µV − 1

2
σ2
V )

σV

)
. (2.8)

Since asset values are not necessary lognormal, the above relationship be-
tween asset value and default probability may not be an accurate description
of empirically observed default probabilities.

The EDF represents an estimated probability that a given firm will default
within one year. In the KMV model, the EDF is slightly different but has
a similar structure as the default probability of the Merton model. The
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function 1−φ in the previous formula is replaced by some decreasing function
which is estimated empirically in the KMV model. Moreover, the threshold
value B is replaced by a new default threshold B̂ representing the structure of
the firm’s liabilities more closely, and the argument of the normal distribution
function in the above equation is replaced by a simpler expression.

Therefore, KMV computes, in a second step, the distance to default (DD)
as

DD :=
V0 − B̂
σV V0

. (2.9)

It represents an approximation of the argument of 2.8, since µV and σ2
V

are typically small and since ln(V0)− ln(B̂) ≈ (V0 − B̂)/V0.

Finally, in the last step, the DD is mapped to historical default events
to estimate the EDF. In the KMV model, it is assumed that firms are ho-
mogeneous in default probabilities for equals DDs. The mapping between
DD and EDF is determined empirically based on a database of historical
default events. The estimated average EDF is then used as a proxy for the
probability of default.

2.5.2 The CreditMetrics Model

It was developed by JPMorgan and the RiskMetrics Group.
It also descends from the Merton model. It deviates from the KMV model

mainly through the determination of the default probability of a given firm by
means of rating classes. Changes in portfolio value are only related to credit
migrations of the single obligors, including both up and downgrades as well
as defaults. While in the KMV model, borrower specific default probabilities
are computed, CreditMetrics assumes default and migration probabilities to
be constant within the rating classes. Each firm is assigned to a certain
credit rating category at a given time period. The number of rating classes
is finite and rating classes are ordered by credit quality including also the
default class. One then determines the credit migration probabilities, that
is, the probability of moving from one rating class to another in a given time
(typically one year). These probabilities are usually presented in form of a
rating transition probability matrix. Having assigned every borrower to a
certain rating class and having determined the rating transition matrix as
well as the expectation and volatility of the recovery rate, the distribution
of the portfolio loss can be simulated. When embedding the CreditMetrics
model in an asset-value model of the Merton type, this can be achieved as
sketched in Remark 1.
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2.6 The Asymptotic Single Risk Factor Model

As already mentioned, Basell II risk weight formulas are intended to en-
sure that unexpected losses can be covered up to a certain confidence level
prescribed by the supervisors.

They are based on the Asymptotic Single Risk Factor model, also
known as the Vasicek model. It is constructed in a way that the capital
required for any risky loan should not depend on the particular portfolio
decomposition it is added to, this so-called portfolio invariance.

2.6.1 Assumptions of the model

Assumption 2. Let assume that

1. Portfolios are infinitely fine-grained, i.e. no exposure accounts for more
than an arbitrarily small share of total portfolio exposure.

2. Dependence across exposures is driven by a single systematic risk factor.

Let denote by N the number of risky loans and by X the systematic risk
factor. PDn represents the unconditional default probability and PDn(X)
the conditional default probability. EADn denotes the exposure at default
of obligor n, LGDn the obligor n’s percentage loss in default and Dn is the
default indicator variable of obligor n.

Assumption 3. Let

Un = LGDn ·Dn, n = 1 . . . N.

Assume that these variables are bounded in [-1,1] and mutually independent
conditional on the factor X. Therefore, denote the exposure share of obligor
n by

sn =
EADn∑N
n=1EADn

. (2.10)

Then the portfolio loss ratio is given by

L =
N∑
n=1

Dn · LGDn · sn.
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Assumption 4. The first condition in Assumption 1 is satisfied when the
sequence of EADn satisfies the following conditions:

1.
∑N

n=1 EADn →∞.

2. It exists ξ > 0 such that the largest sn ∈ O(N−( 1
2

+ξ)), i.e. it shrinks to
zero as N →∞.

Thus, by the Strong Law of Large Numbers,

Theorem 1. Under assumptions 2 and 3, the portfolio loss ratio conditional
on a realization x of the systematic risk factor X safisfies

LN − E(LN |X)→ 0 almost surely as N →∞.

Conclusion: The larger the portfolio is, the more idiosyncratic risk is
diversified away. In the limit the portfolio is only driven by a systemic risk.
This limiting portfolio is the so-called asymptotic portfolio or infinitely fine
grained.

We also need some assumptions to guarantee that the neighborhood of
the qth quantile of E(LN |X) is associated with the neighborhood of the qth

quantile of the systematic factor. Otherwise, the tail quantiles of the loss dis-
tribution would depend in a complex way on the behaviour of the conditional
expected loss for each borrower.

Assumption 5. There is an open interval B containing the qth percentile of
the systematic risk factor X and there is a real number N0 <∞ such that

1. E(Un|x) is continuous in x on B, n = {1, . . . , N}.

2. E(LN |x) is nondecreasing in x on B, ∀N > N0.

3. infx∈BE(LN |x) ≥ supx≤infBE(LN |x) and
supx∈BE(LN |x) ≤ infx≥infBE(LN |x), ∀N > N0.

Theorem 2. Suppose previous assumptions hold. Then for N > N0 we have

αq(E(LN |X)) = E(LN |αq(X)),

where αq(E(LN |X)) denotes the qth quantile of the random variable E(LN |X).
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2.6.2 The risk weight functions

The ASRF model can be described as a factor model such that the return
on the firm’s assets is of the form

rn =
√
ρn ·X +

√
1− ρn · εn, n = 1 . . . N,

where

X : Systematic risk factor, normally distributed.

εn : Idiosyncratic shocks.

rn : Log-asset return of obligor n.

ρn : Captures the correlation between rn and the single-factor X. It is
determined by the borrower’s asset class .

Conditional default probabilities

They are given by

PDn(X) = Φ

(
Φ−1(PDn)−√ρn ·X√

1− ρn

)
. (2.11)

Choosing a realization of the systematic risk to be equal to the qth quan-
tile, αq(x),

PDn(αq(x)) = Φ

(
Φ−1(PDn) +

√
ρn · Φ−1(q)

√
1− ρn

)
. (2.12)

Having assigned an unconditional default probability to each obligor,
PDn, and having computed the conditional default probabilities via (2.12),
PDn(X), we can return to the computation of the capital in the ASRF model.

Economic capital

As we have
ECα = αq(L)− EL,

once the unconditional default probability has been assigned to each obligor
and the conditional default probabilities have been also computed, we will
be able to compute the regulatory capital.
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The EL of loan n is given by

ELn = PDn · EADn · LGDn. (2.13)

The LGD must reflect financial distress. During these times or economic
downturn losses on defaulted loans are higher than under normal conditions.
Basel II uses a so-called downturn LGD. A method to estimate it is to con-
struct a mapping function similar to the derivation of the conditional default
probability, to transform average LGDs into downturn LGDs, but banks are
usually allowed to use their own methods to derive downturn LGDs.

The expected loss conditional on the qth quantile can be estimated by

E(Ln|αq(X)) = PDn(αq(X)) · LGDn · EADn.

2.6.3 The loss distribution of a granular portfolio

Our aim is to compute the loss distribution in an infinitely granular portfolio.
For a portfolio of N loans, the percentage portfolio loss, LN is given by

LN =
N∑
n=1

sn · LGDn ·Dn,

with

sn = EADn∑N
n=1 EADn

: Exposure share of obligor n.

Dn : Default indicator variable of obligor n. It is Bernoulli distributed.

X : Sytematic factor. Is N(0, 1) distributed.

PDn(X) : Conditional default probability of obligor n.

We assume an homogeneous portfolio, i.e. PDn = PD and LGDn =
100%, n = {1, . . . , N}. Then the conditional default probability becomes

PD(X) = Φ

(
Φ−1(p)−√ρ ·X

√
1− ρ

)
,

where ρ is the correlation coefficient between obligor n and the risk factor
X. They are constant (since PDs are constant).
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(a) By Theorem 1,

P
(

lim
N→∞

(LN − E(LN |X)) = 0
)

= 1.

(b) As the sum over the exposure shares equals to 1,

E(LN |X) =
N∑
n=1

sn · E(Dn|X) = PD(X).

Hence, in the limit as N → ∞, the percentage portfolio loss tends to the
conditional default probability

⇒ LN → PD(X) almost surely as N →∞.

We can conclude that in an infinitely granular portfolio, the conditional
PD describes the fraction of defaulted obligors.

Let L be the percentage number of defaults in the portfolio. Thus, ∀x ∈
[0, 1],

FL(x) = P (L ≤ x) = P (PD(X) ≤ x) = P

(
−X ≤

√
1− ρ · Φ−1(x)− Φ−1(PD)

√
ρ

)
.

Therefore we will have that the loss distribution function is given by

FL(x) = FV asicek(x) = Φ

(√
1− ρ · Φ−1(x)− Φ−1(PD)

√
ρ

)
. (2.14)

We can also obtain the probability density function by deriving the above
equation

fL(x) =

√
1− ρ
ρ

exp

(
−1

2ρ

(√
1− ρ · Φ−1(x)− Φ−1(PD)

)2
)
·exp

(
1

2

(
Φ−1(x)

)2
)
.

(2.15)
The asymptotic Vasicek approximations work well for portfolios consist-

ing of an infinite number of small obligors. These formulas are less suitable
for and tend to underestimate risks for portfolios with few obligors or port-
folios dominated by a few large exposures.
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Figure 2.4: Portfolio loss distribution for different values of ρ and PD.

Figure 2.5: Tail probability distribution for different values of ρ and PD.
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Figure 2.6: Densities of the distribution of the percentage number of defaults
for diferent values of ρ and PD.

Limiting cases

• If ρ = 0, FL is follows a binomial distribution.

• If ρ = 1, FL is Bernoulli distributed.

• If PD = 0, all obligors survive almost surely.

• If PD = 1, all obligors default almost surely.

We can now easily compute the economic capital ECq at level q for a
granular portfolio with respect to PD and ρ. By Theorem 2,

αq(E(LN |X))︸ ︷︷ ︸
αq(PD(X))

= E(LN |αq(X)).

To compute the correspondant qth quantile, we apply the formula

V aRq = Φ

(
Φ−1(PD) +

√
ρ · Φ−1(q)

√
1− ρ

)
.

Let see some examples for the calculation of regulatory capital.
The following figures show the 95% and 99% quantiles of the percentage

portfolio loss. In practice, the 99.9% or the 99.98% quantiles are used more
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frequently, however, these values would be hard to recognize in the figures
since they are far in the tail of the distributions.

(i) PD = 10%, ρ = 12%

q V aRq ECq

95% 0.22 0.124
99% 0.306 0.206

99.9% 0.41 0.311

(ii) PD = 5%, ρ = 13%

q V aRq ECq

95% 0.129 0.079
4 99% 0.193 0.144
99.9% 0.284 0.235

Figure 2.7: PD = 10%, ρ = 12%

Figure 2.8: PD = 5%, ρ = 13%
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2.7 The CreditRisk+ model

It is an actuarial model. It is now one of the financial industry’s benchmark
models in the area of Credit Risk management. For an extended overview
we refer to [16]. It is also widely used in the supervisory community since
it uses as basic input the same data as also required for the Basel II IRB
approach. Moreover, this model has nome nice properties:

• One can derive an analytic solution for the loss distribution of a given
credit portfolio instead of simulating it.

• It seems easier to calibrate data to the model.

• This model reveals one of the most essential Credit Risk drivers: Con-
centration.

2.7.1 General Model Setting

We consider a portfolio of N obligors. Obligor n constitutes a loss exposure
En and has a probability of default PDn over the time period [0, T ]. The
loss exposure is given by its exposure at default EADn times its expected
percentage loss given default, ELGDn, i.e., En = EADn · ELGDn.

As in the previous models, the state of obligor n at the time horizon T
can be represented as a Bernoulli random variable Dn, where

Di =

{
1 if obligor n defaults at time T

0 otherwise

Hence the default probability is P(Dn = 1) = PDn while the survival
probability is given by P(Dn = 0).

Definition 14. The probability generating function (PGF) of a non-negative
integer valued random variable X is defined as

GX(z) = E(zX) =
∞∑
i=0

zI · P(X = i).

From this definition it immediately follows that

P(X = i) =
1

i!
G

(i)
X (0), i ∈ N.
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Thus the distribution of a random variable can easily be computed as soon
as one knows the PGF. The CreditRisk+ model makes use of this property
as well. We will briefly state some properties of the PGF which will be also
used in the following.

Proposition 1. Let X,Y be two random variables.

1. Let X,Y be independent. Then

GX+Y (z) = GX(z) ·GY (z).

2. Let GX|Y (z) be the PGF of X conditional on the random variable Y
and denote the distribution function of Y by F. Then

GX(z) =

∫
GX|Y (z)F (dy).

In the following we will denote:

Ln = Dn · En : loss of obligor n.

L =
∑
Ln : total portfolio loss.

νn = EADn·ELGDn

E
= En

E
: normalized exposure of obligor n.

λn = Dn · νn : normalized loss of obligor n.

λ =
∑
λn : total normalized portfolio loss.

In order to compute the VaR of the portfolio we need to derive the proba-
bility distribution of the portfolio loss L. We can also derived the distribution
of λ.

2.7.2 The Poisson Approximation

When the default probabilities are random and default events are no longer
independent, an analytical solution for the loss distribution can be derived
by using an approximation for the distribution of the default events. Thus,
consider the individual default probabilities to be sufficiently small for the
compound Bernoulli distribution of the default events to be well approxi-
mated by a Poisson distribution. Under this assumption it is still possible to
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derive an analytical solution of the loss distribution function.

Since default events are assumed to follow a Bernoulli distribution, the
probability generating function of Dn can be computed to

GDn(z) =
∞∑
x=0

P(Dn = x) · zx = (1− PDn) + z · PDn (2.16)

= exp(ln(1 + PDn · (z − 1))). (2.17)

(2.18)

PDn small → PDn · (z − 1) small whenever|z| ≤ 1. And applying a
Taylor series expansion around ω = 0 we obtain,

ln(1 + ω) = ω − ω2

2
+
ω3

3
+ . . . .

Thus,

ln(1+PDn ·(z−1)) = PDn ·(z−1)− (PDn · (z − 1))2

2
+

(PDn · (z − 1))3

3
+. . .

⇒ ln(1 + PDn · (z − 1)) ' PDn · (z − 1).

And (2.18) becomes

GDn(z) ≈ exp(PDn · (z − 1)).

Using again a Taylor series expansion around z = 0, we can rewrite the
latest formula

GDn(z) ≈ exp(PDn · (z − 1)) = exp(−PDn) ·
∞∑
x=0

PDx
n

x!
· zx.

which is the PGF of the Poisson distribution with intensity PDn. Hence
for small values of PDn, the Bernoulli distribution of PDn can be approxi-
mated by a Poisson distribution with intensity PDn, that is,

P(Dn = x) = exp(−PDn) · PD
x
n

x!
.
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Furthermore, the PGF of λn is defined as it follows

Gλn(z) = E(Zλn) = E(zDnνn) =
∞∑
x=0

P(Dn = x) · zDnνn

=
∞∑
x=0

exp(−PDn) · PD
x
n

x!
· (zνn)x

= (1 + PDn · zνn) · exp(−PDn),

since Dn = 0, 1. Due to Taylor expansion we have

exp(PDn · zνn) ≈ 1 + PDn · zνn .

Thus,

Gλn(z) = exp(PDn · (zνn−1)). (2.19)

2.7.3 Model with Random Default Probabilities

To obtain an analytic solution for the loss distribution we have to impose
some assumptions on the model.

Assumption 6. Assume that the default probabilities are random and that
they are influenced by a common set of Gamma-distributed systematic risk
factors. Thus, the default events are assumed to be mutually independent
only conditional on the realizations of the risk factors.

In the CreditRisk+ model, correlation among default events is induced by
the dependence of the default probabilities on a common set of risk factors.
Assume that there exist K systematic risk factors X1, . . . , XK which describe
the variability of the default probabilities PDn. Each factor is associated with
a certain sector (industry, country, region, etc). All risk factors are taken to
be independent and Gamma distributed with shape parameter αk = 1

ξk
and

scale parameter βk = ξk. Recall that the Gamma distribution is defined by
the probability density

Γα,β(x) =
1

βγΓ(γ) · e−x/β · xα−1
.
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Definition 15. The moment generating function (MGF) of a random vari-
able Y with density fY is defined as the analytic function

MY (z) = E(ezY ) =

∫
ezt · fY (t) dt.

Thus, the MGF of Xk can be computed as

MXk
(z) = E(exp(Xk · z)) = (1− βk · z)−αk = (1− ξk · z)−1/ξk .

We denote the idiosyncratic risk by X0 = 1 and let X = (X0, X1, . . . , Xk).
The link between the default probabilities and the risk factors Xk is given
by the following factor model

PDn(X) = PDn

(
K∑
k=0

ωk,nXk

)
, n = 1 . . . N, (2.20)

where PDn is the average default probability of obligor n and the factor
loading ωk,n measures the sensitivity of obligor n to the risk factor Xk where

0 ≤ ωn,k ≤ 1, and, ∀ n = 1 . . . N , we have also that
∑K

k=1 ωk,n ≤ 1.

Define ωo,n = 1−
∑K

k=1 as the share of idiosyncratic risk of obligor n.

The PGF of the individual normalized loss, given by (2.19), can be rewrit-
ten by the above factor model specification as

Gλn(z) = exp

[
PDn ·

(
K∑
k=0

ωk,nXk

)
· (zνn − 1)

]

=
K∏
k=0

exp(PDn · ωk,n ·Xk · (zνn − 1)).

Let denote Gλ(z|X) the PGF of the total normalized loss, conditional
on X. Since individual losses are mutually independent conditional on X, we
have
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Gλ(z|X) =
N∏
n=1

Gλn(z|X)

=
N∏
n=1

K∏
k=0

exp(PDn · ωk,n ·Xk · (zνn − 1))

= exp

[
N∑
n=1

K∑
k=0

PDn · ωk,n ·Xk · (zνn − 1)

]
.

Let define

Pk(z) :=
N∑
n=1

PDn · ωk,n ·Xk · (zνn − 1). Then,

Gλ(z|X) = exp

[
K∑
k=0

Xk · Pk(z)

]
.

The unconditional PGF of the total normalized loss, denoted by Gλ(z) is
the expectation of Gλ(z|X) under X’s probability distribution, this is,

Gλ(z) = EX(Gλ(z|X)) = EX

[
exp

(
K∑
k=0

Xk · Pk(z)

)]
.

Which equals, by definition of the joint MGF MX , to:

Gλ(z) = EX(exp(P (z) ·X)) = MX(P (z)),

where P (z) = (P0(z), . . . , PK(z)) and X = (X0, . . . , XK). Due to the
independence of the variables, the above expression can be rewritten as

Gλ(z) = MX(P (z)) =
K∏
k=0

MXk
(Pk(z))

=
K∏
k=0

(1− ξk · Pk(z))−1/xik =
K∏
k=0

exp(ln((1− ξk · Pk(z))−1/xik)).

To sum up, we have that

Gλ,CR+(z) = exp

(
−

K∑
k=0

1

ξk
· ln(1− ξk · Pk(z))

)
(2.21)

is the PGF of the total normalized portfolio loss for the CreditRisk+ model.



Chapter 3

Concentration Risk in Credit
Portfolios

When measuring credit risk, we are particularly interested in dependencies
between certain extreme credit events. The Business Week stated in Septem-
ber 1998:

Extreme, synchronized rises and falls in financial markets occur infre-
quently but they occur. The problem with the models is that they did not
assign a high enough chance of occurence to the scenario in which many
things go wrong at the same time- the perfect ’storm’ scenario.

This perfect storm scenario is what we mean by concentration of risk. The
quote underlines the importance of a sufficient measurement of concentration
risk since losses due to concentration risk can be extreme. In this chapter we
follow [1], [11], [12] and [13].

3.1 Concentration Risk

Concentration Risk is the risk arising from an uneven distribution of counter-
parties in credit or any business relationships which are capable of generating
losses large enough to jeopardise an institution’s solvency.

Concentration risks, particularly concentrations in credit risk, have played
a key role in the financial instability of the banking sector last years. The
BCBS already recognized the high importance of credit risk concentrations
in the Basel framework: ’Risk concentrations are arguably the single most
important cause of major problems in banks’.

Concentration risk can be considered from either a macro (systemic) or
a micro (idiosyncratic) perspective.
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• Systematic risk represents the effect of unexpected changes in macroe-
conomic and financial market conditions on the performance of borrow-
ers. Borrowers may differ in their degree of sensitivity to systematic
risk, but few firms are completely indifferent to the wider economic con-
ditions in which they operate. Therefore, the systematic component of
portfolio risk is unavoidable and only partly diversificable.

• Idiosyncratic risk represents the effects of risks that are particular to
individual borrowers. As a portfolio becomes more fine-grained, in the
sense that the largest individual exposures account for a smaller share
of total portfolio exposure, idiosyncratic risk is diversified away at the
portfolio level.

From the point of view of financial stability (macro perspective), the
focus is on risks for groups of banks which, for example, emerge from a
joint concentration in certain business lines. By contrast, the primary focus
in internal risk management and from a supervisory point of view is on
concentration risk at the level of individual institutions (micro perspective).

From the perspective of credit risk, concentration risks in credit portfolios
(most significant source of risk to the solvency of banks) arise from:

• Unequal distribution of loans to single borrowers: Name Concentration.

On the one hand, the term single name concentration risk denotes the
firm specific (idiosyncratic) risk in a credit portfolio which arises from
the credit risk of large borrowers. Firm specific risk comprises the risks
resulting from the potential default of a single borrower or a legally
connected group of borrowers. The term single name concentration
risk is used if the exposures to large individual borrowers account for
the bulk of all loans in a portfolio.

On the other hand, systematic risk comprises all of the risks affect-
ing several legally independent borrowers or the entire portfolio, for
example, the state of the economy or industry sector dependent risks.

• Different industry or regional sectors: Sector Concentration.
Sectoral concentration in credit portfolios can be broken down into con-
centration in certain sectors of industry and concentration in individual
countries or regions. While commercial credit risk models widely used
in the financial sector usually measure both kinds of sectoral concen-
tration using a similar methodology, there are many differences from
a theoretical point of view. Credit concentration in industry sectors is
a typical risk driver of corporate loans, while public and private bor-
rowers can also play a key role in the case of country risk. Moreover,
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country risk is a generic term for different, partly interdependent risk
categories, for example political risk and transfer risk. By contrast,
concentration risk from exposures to industry sectors arises from credit
dependencies between enterprises, resulting from a common sector af-
filiation and the prevailing economic environment in that sector.

• Certain dependencies between business and different borrowers can in-
crease the credit risk in a portfolio. This effect is called Default Con-
tagion. The availability of suitable data on bilateral business relations
and the resultant interdependencies represent a key problem. Com-
pared with the measurement of granularity and sectoral concentration,
there is still a long way to go before generally accepted models for mi-
cro contagion risk are available.

This risk is not limited to credit portfolios and may stem from various
sources.

Figure 3.1: Overview of Concentration Risk.

In recent years there have been significant improvements in understand-
ing and measuring concentration risk in credit portfolios. The measurement
of these risks is important against the background of regulatory capital needs
as well as for computing the economic capital. Unfortunately, the existing
approaches are mostly not fully consistent with the new capital adequacy
framework (Basel II), sometimes within the derivation and sometimes within
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the implementation, so that the benefit of these approaches is restricted.

On this project, we focus on measuring name concentration, mainly by
using a single-factor Merton model. In order to measure sector concentration,
a multi-factor model would be required.

3.1.1 Basel II statements on Credit Concentration Risk

Understanding and analytically measuring concentration risk, such as undi-
versified idiosyncratic risk and industry or country risk, in credit portfolios is
one of the major challenges in recent research. The measurement is necessary
for the determination of regulatory capital under pillar 2 of Basel II as well
as for managing the portfolio and allocating economic capital.

Some of the recommendations made on the Basel framework to deal with
concentration risk are (for a whole description see [5]):

• Banks should have in place effective internal policies, systems and con-
trols to identify, measure, monitor, and control their credit risk con-
centrations. Banks should explicitly consider the extent of their credit
risk concentrations in their assessment of capital adequacy under Pil-
lar 2. These policies should cover the different forms of credit risk
concentrations to which a bank may be exposed.

• A framework for managing credit risk concentrations in banks should
be clearly documented and should include a definition of the credit risk
concentrations relevant to the bank and how these concentrations and
their corresponding limits are calculated. Limits should be defined in
relation to a banks capital, total assets or, where adequate measures
exist, its overall risk level.

• Management should conduct periodic stress tests of its major credit
risk concentrations and review the results of those tests to identify and
respond to potential changes in market conditions that could adversely
impact the banks performance.

• In the course of their activities, supervisors should assess the extent
of a bank’s credit risk concentrations, how they are managed, and the
extent to which the bank considers them in its internal assessment
of capital adequacy under Pillar 2. Such assessments should include
reviews of the results of a banks stress tests. Supervisors should take
appropriate actions where the risks arising from a bank’s credit risk
concentrations are not adequately addressed by the bank.
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3.2 Ad-Hoc measures of Concentration. Model-

free methods

Various indexing techniques have been examined in the credit risk literature.
All have a common approach: to identify the extent of the concentration in
a portfolio through a single measure. Thus, ratios provide a simple approxi-
mation for measuring exposure or borrower concentrations.

A concentration index for a portfolio of N loans should satisfy the follow-
ing properties:

1. Transfer principle: The reduction of a loan exposure and an equal
increase of a bigger loan must not decrease the concentration measure.

2. Uniform distribution principle: The measure of concentration attains
its minimum value, when all loans are equal of size.

3. Lorenz-criterion: If two portfolios, which are composed of the same
number of loans, satisfy that the aggregate size of the k biggest loans
of the first portfolio is greater or equal to the size of the k biggest loans
in the second portfolio for 1 ≤ k ≤ N , then the same inequality must
hold between the measures of concentration in the two portfolios.

4. Superadditivity : If two or more loans are merged, the measure of con-
centration must not decrease.

5. Independence of loan quantity : Consider a portfolio consisting of loans
of equal size. The measure of concentration must not increase with an
increase in the number of loans.

6. Irrelevance of small exposures : Grating an additional loan of a rela-
tively low amount does not increase the concentration measure. More
formally, if ŝ denotes a certain percentage of the total exposure and a
new loan with a relative share of sn ≤ ŝ of the total exposure is granted,
then the concentration measure does not increase.

All these properties are essential for an index to qualify as a measure of
concentration.
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3.2.1 Concentration Ratio

Consider a portfolio with exposure shares s1 ≥ s2 ≥ . . . ≥ sN , given by
(2.10), and such that

∑N
n=1 sn = 1.

Definition 16. The Concentration Ratio (CRk) of the portfolio is defined as
the ratio of the sum of the k biggest exposures to the total sum of exposures
in the portfolio, this is,

CRk =
k∑
i=1

si, 1 ≤ k ≤ N.

The concentration ratio satisfies all six properties as can easily be seen.

However, the concentration ratio has quite a number of drawbacks as a
measure of concentration:

• The number k is chosen by the investigator or the risk manager, so its
choice is arbitrary although it has a strong impact on the outcome.

• The ratio considers only the size distribution of the k largest loans
and does not take into account the full information about the loan
distribution.

• Shifts in the portfolio structure can stay unrecognized by this measure
depending on the choice of k.

Closely related to the concentration ratio is the Lorenz curve.

3.2.2 Lorenz Curve

The Lorenz curve is not exactly an index in the sense that it returns a single
number for each credit portfolio. It is a mapping that assigns to every per-
centage q of the total loan number the cumulative percentages L(q) of loan
sizes.

Definition 17. Given an ordered data set A1 ≤ A2 ≤ . . . AN , the (empirical)
Lorenz curve generated by the data set is defined for all q ∈ (0, 1) as the
piecewise linear interpolation with breakpoints L(0) = 0 and

L(n/N) =

∑n
i=1Ai∑N
j=1 Aj

, n = 1 . . . N.
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Consider a distribution function F with density function f such that F
increases on its support and that the mean of F exists. Then the qth quantile
of F is well defined and the (theoretical) Lorenz curve L(q) for q ∈ (0, 1) is
defined by

L(q) =

∫ q
0
F−1(t) dt∫∞

−∞ tf(t) dt
.

Reformulating, we obtain by substitution

L(F (x)) =

∫ F (x)

−∞ F−1(t) dt∫∞
−∞ tf(t) dt

=

∫ x
−∞ tf(t) dt∫∞
−∞ tf(t) dt

.

Hence the Lorenz curve is a graph showing for each level q the proportion
of the distribution assumed by the first q percentage of values.

Obviously, a Lorenz curve always starts at (0,0) and ends at (1,1) and is
by definition a continuous function. If the variable being measured cannot
take negative values, the Lorenz curve is an increasing and convex function.

The line of perfect equality in the Lorenz curve is L(F (x)) = F (x) and
represents a uniform distribution while perfect inequality in the Lorenz curve
is characterized by L(F (x)) = δ(x), the Dirac function with weight 1 at x = 1,
representing a Dirac distribution.

Figure 3.2: Lorenz curve.
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The main drawback of the Lorenz curve as a measure of concentration is
that it does not allow a unique ranking of two portfolios in terms of their
concentration. The latter is only possible when the curves of the two portfo-
lios do not intersect. In that case the portfolio with the lower Lorenz curve
is said to be higher concentrated.

In general, the Lorenz curve is not optimal as a measure for concentration
risk since it does not deliver a unique ranking of loans and rather measures
a deviation from the uniform distribution where the number of loans in the
portfolio is not taken into account. We want to point out here that inequal-
ity and concentration are, of course, not the same since concentration also
depends on the number of loans in the portfolio. A portfolio of two loans of
the same size will be considered as well diversified when applying the Lorenz
curve as a concentration measure. However, a portfolio consisting of one
hundred loans of different sizes might be considered as much more concen-
trated as its Lorenz curve will differ from the line of perfect equality. Thus,
it might be questionable to measure the degree of concentration on the basis
of deviation from equality.

3.2.3 Gini index (G)

Another ad-hoc measure which is closely linked to the Lorenz curve is the
Gini coefficient which measures the size of the area between the Lorenz curve
and the main diagonal and thus also represents a measure for the deviation
from equal distribution.

Definition 18. For a portfolio of N loans with exposure shares s1, . . . , sN ,
the (empirical) Gini coefficient is defined as

G =

∑N
n=1(2n− 1) · sn

N
− 1.

For a given distribution function the (theoretical) Gini coefficient is de-
fined as the ratio of the area between the Lorenz curve L(q) of the distribution
and the curve of the uniform distribution, to the area under the uniform dis-
tribution.

If the area between the line of perfect equality and the Lorenz curve is
denoted by single name, and the area under the Lorenz curve is denoted by
B, then the Gini coefficient is

G =
A

A+B
.
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Figure 3.3: Gini coefficient.

The above figure illustrates the relation between the Gini coefficient and
the Lorenz curve.

If the Lorenz curve is represented by the function L(q), the value of B
can be found with integration and

G = 1− 2

∫ 1

0

L(q) dq.

i) A coefficient close to zero signifies a homogeneous portfolio in which all
of the exposure amounts are distributed equally.

ii) A coefficient close to one means a highly concentrated portfolio.

One can easily see that properties (1) and (5) are satisfied by the Gini
coefficient. However, properties (4) and (6) are violated.

A potential disadvantage of using G is that the size of the portfolio is not
taken into account. For example, a portfolio with a few equal sized loans has
a lower coefficient than a better diversified, larger credit portfolio containing
loans of different amounts.

Furthermore, this index may rise if a relatively small loan to another
borrower is added to the portfolio despite the fact that this diminishes the
concentration.

Therefore, we consider the Gini coefficient suitable to only a limited ex-
tend for the measurement of concentration risks.
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3.2.4 Herfindahl-Hirschman index (HHI)

It is probably the most commonly used model-free measure, particularly in
the empirical literature.

Originally used in the context of quantifying diversification within an
industry to asses the level of competition in the marketplace, the HHI can
be also used to calculate portfolio concentration risk.

Definition 19. The Herfindahl-Hirschman index is defined as the sum of
the squares of the relative portfolio shares of all borrowers.

HHI =
N∑
n=1

s2
n,

where sn is the exposure share of borrower n and N is the number of
borrowers under observation.

The HHI ranges from 1
N

to 1, so the normalized HHI index can be written
as

HHI∗ =
H − 1

N

1− 1
N

.

i) Well diversified portfolios with a large number of small credits have an
HHI value close to zero.

ii) Heavily concentrated portfolios can have a considerably higher HHI
value.

iii) In the extreme case where we observe only one credit, HHI=1.

This statistical measure has some drawbacks to be used for measuring
concentration risk.

Firstly, it does not consider distribution of exposures across credit ratings,
portfolios with the same HHI values can have different sizes of concentration
risks.

Moreover, it does not allow concentration risk to be expressed directly as
economic capital, so we will need additional functions in order to compute
economic capital for concentration risk.
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3.3 Model-based methods

Neither the HHI not the Gini coefficient or any other model-free method for
measuring concentration risk can incorporate the effects of obligor specific
credit qualities, which are, for example, represented by obligor specific de-
fault probabilities. Regulators and other stakeholders are demanding more
accurate and precise answers which can only be obtained by using more so-
phisticated models and providing more detailed analysis. For these reasons
certain model based methods for measuring concentration risks have been
developed which can deal more explicitly with exposure distribution, credit
quality and default dependencies. Moreover, model-based methods allow the
single name concentration risk to be expressed directly as economic capital.
For an extended overview of methods that take into account concentration
risk in credit portfolios we refer to [1].

3.3.1 Granularity adjustment (GA) for the ASRF model

The GA for the ASRF model constitutes an approximation formula for calcu-
lating the appropriate economic capital needed to cover the risk arising from
the potential default of large borrowers. We follow the revised methodology
developed in [15].

It is an extension of the ASRF model which forms the theoretical basis
of the Internal Ratings-Based (IRB) approaches. Through this adjustment,
single name concentration is integrated into the ASRF model.

The ASRF model presumes that portfolios are fully diversified with re-
spect to individual borrowers, so that economic capital depends only on sys-
tematic risk. Hence, the IRB formula omits the contribution of the residual
idiosyncratic risk to the required EC.

We discuss an approach how to assess a potential add-on to capital for
the effect of lack of granularity in the ASRF model.

Example as Motivation for GA Methodology

Assume that the systematic risk factor X ∼ N(0, ν2), and the loss rate on
instrument n, conditional on the systematic risk factor Un|X ∼ N(X, σ2),
where ν, σ are known. Thus, LN is also normally distributed. We can com-
pute the qth quantile,

αq =

√
ν2 + σ2

N
· Φ−1(q).
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Moreover, when N →∞ the distribution of LN converges to the distribution
of X, (FLN

→ FX). Thus, the quantile of the asymptotic distribution is
ν ·Φ−1(q). This is the systemic component of VaR. Therefore, we can derive
the idiosyncratic component.

V aRq =

√
ν2 + σ2

N
· Φ−1(q) = ν · Φ−1(q) + idiosyncratic. (3.1)

By applying a Taylor’s expansion around ν2

N
= 0,

√
ν2 + σ2

N
' ν +

1

N
· ν

2

2ν
+O

(
1

N2

)
. (3.2)

Thus, replacing (3.2) into (3.1), the idiosyncratic component can be ex-
pressed as it follows:

Idiosyncratic component = (ν +
1

N
· ν

2

2ν
) · Φ−1(q) + Φ−1(q) +O

(
1

N2

)
=

1

N
· ν

2

2ν
· Φ−1(q) +O

(
1

N2

)
.

The Granularity Adjustment is an application of the same logic to a
proper credit risk model.

Let ν = 1. The following figure shows the systematic and idiosyncratic
components of VaR of the portfolio loss ratio LN as the number N of obligors
in the portfolio increases.

As the number of borrowers in the portfolio increases, the idiosyncratic
component vanishes. This is also the main intuition of the GA. For large,
portfolios, which are typically better diversified, the GA is lower that for
small concentrated portfolios, this is illustrated in the next figure.
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Figure 3.4: Systematic and idiosyncratic component of VaR of portfolio loss
LN .

The General Framework

Let X denote the systematic risk factor. Let assume that it is unidimensional,
that is, there is only a single systematic risk factor. For our portfolio of N
risky loans, let Un denote the loss rate on position n. Let LN be the loss rate
on the portfolio.

When economic capital is measured as VaR at the qth percentile our aim
is to estimate αq(LN). The IRB formula, however, delivers the qth percentile
of the expected loss conditional on the systematic factor αq(E(LN |X)).

The exact adjustment for the effect of undiversified idiosyncratic risk in
the portfolio is the difference

αq(LN)− αq(E(LN |X)).

As this adjustment cannot be derived in an analytical form, we will con-
struct a Taylor series approximation in orders of 1

N
.

Let µ(X) = E(LN |X) be the conditional mean of the portfolio loss and
σ2(X) = V(LN |X) the conditional variance of the portfolio loss.
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If ε = 1, the portfolio loss is given by:

LN = E(LN |X) + ε(LN − E(LN |X)).

Thus, applying a second order Taylor expansion in powers of ε around
the conditional mean and evaluating the resulting formula at ε = 0,

αq(LN) = αq (E(LN |X) + ε(LN − E(LN |X)))

= αqE(LN |X) + εαq(LN − E(LN |X))

= αqE(LN |X) +
∂

∂ε
αq(E(LN |X) + ε(LN − E(LN |X)))|ε=0

+
1

2

∂2

∂ε2
αq(E(LN |X) + ε(LN − E(LN |X)))|ε=0 +O(ε3).

Hence the granularity adjustment of the portfolio is given by:

GAN =
∂

∂ε
αq(ν(X) + ε(LN − ν(X)))|ε=0 (3.3)

+
1

2

∂2

∂ε2
αq(ν(X) + ε(LN − ν(X)))|ε=0. (3.4)

(3.5)

The first derivative in the Taylor expansion of the quantile vanishes, so
the GA (3.5) can be expressed as

GAN =
−1

2f(αq(X))
· d
dx

(
σ2(x)f(x)

ν ′(x)

)
|x=αq(X), (3.6)

where f is the density function of the systematic risk factor X.

This general framework can be accomodate any definition of ’loss’.

Let ULN denote the true UL for the portfolio and let ULasympN be the
asymptotic approximation of the portfolio.

When we split regulatory capital in its UL and EL components, we have

αq(E(LN |X)) = ULasympN + ELasympN︸ ︷︷ ︸
E(E(LN |X))

.

Therefore, we obtain

GAN = αq(LN)−αq(E(LN |X)) = (ULN +ELN)−(ULasymptN +E(E(LN |X))),
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GAN = ULN − ULasymptN .

Expected loss vanishes out of the GA.

The granularity adjustment method can also be used in a more general
context where a small perturbation is made to a distribution.

3.3.2 Normal Approximation

Theorem 3. Central Limit Theorem (CLT).
Let {X1, X2, . . . , Xn} be independent and identically distributed random vari-
ables with expected values µ and variances σ2. Suppose we are interested in
the behavior of the sample average of these random variables Sn = 1

n
(X1 +

X2 + . . . + Xn). The CLT asserts that for large n, the distribution of Sn is
approximately normal with mean µ and variance 1

n
σ2.

The normal approximation (NA) is a direct application of this theorem
and can be found in [9]. We then need to take into account the variability
of portfolio loss L conditional on the common factor Y . This can easily be
approximated due to the CLT. Conditional on the common factor Y, the
portfolio loss L follows a normal distribution, Y ∼ N(µ, σ2), such that

µ(Y ) =
n∑
i=1

ωiPi(Y ),

σ2(Y ) =
n∑
i=1

ωiPi(Y )(1− Pi(Y )),

where ωi = EADi · LGDi and Pi = P (Di = 1|Y ).

It follows that the conditional tail probability reads

P (L > x|Y ) = Φ

(
µ(Y )− x
σ(Y )

)
.

The unconditional tail probability can then be obtained by integrating
over Y, i.e.,

P (L > x) = E
[
Φ

(
µ(Y )− x
σ(Y )

)]
=

∫
R

Φ

(
µ(Y )− x
σ(Y )

)
φ(y) dy.
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3.3.3 Saddlepoint Approximation

In credit risk management one is particularly interested in the portfolio loss
distribution. As the portfolio loss is usually modeled as the sum of random
variables, the main task is to evaluate the probability density function (pdf)
of such a sum of random variables. When these random variables are inde-
pendent, the pdf is just the convolution of the pdfs of the individual obligor
loss distributions. The evaluation of this convolution, however, is compu-
tationally intensive, on the one hand, and, on the other hand, analytically
in most cases quite complicated since the loss distribution usually does not
posses a closed form solution. However, in some cases, moments can be com-
puted which allows to approximate the loss distribution based on the moment
generating function. In such situations a technique, which is frequently used,
is the Edgeworth expansion method which works quite well in the center of
a distribution. In the tails, however, this technique performs poorly. The
saddlepoint expansion can be regarded as an improvement of the Edgeworth
expansion. It is a technique for approximating integrals used in physical sci-
ences, engineering and statistics. [10] were the first to apply the saddlepoint
approximation method to credit risk and in particular to the computation of
credit VaR. They derived a formula for calculating the marginal impact of
a new exposure in a given portfolio. Therefore, the method can be used to
quantify the concentration risk of a portfolio.

Since the saddlepoint approximation (SA) provides accurate estimates to
very small tail probabilities it is a very suitable technique in the context of
portfolio credit loss.

The saddlepoint approximation to a random variable of finite sum X =∑n
i=1 Xi relies on the existence of the moment generating function (MGF)

MX(t) = E(etX). For Xi, with known analytic MGF’s, MXi
, the MGF of the

sum X is given by

MX(t) =
n∏
i=1

MXi
(t).

The inverse MGF of X, known as the Bromwich integral or inverse Laplace
transform, can be written as

fX(x) =
1

2πj

∫ +j∞

−j∞
exp(KX(t)− tx) dt,

with j =
√
−1 and KX(t) = logMX(t) the Cumulant Generating Func-

tion of X.
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Let t = t0 a point such that K ′X(t0) = x. Then, KX(t0)− t0 · x is station-
ary, i.e., t0 is a saddlepoint.

The density fX(x) and the tail probability P (X > x) can be approx-
imated by KX(t) and its derivatives at t0. There are several variants of
saddlepoint approximations available, but the most used one for density is
the Daniels formula:

fX(x) ≈ φ(zl)√
K ′′(t0)

[
1 +

(
− 5K ′′′(t0)2

24K ′′′(t0)3
+
K(4)(t0)

8K ′′(t0)2

)]
, (3.7)

and the correspondent most used one for probability when applying sad-
dlepoint approximation is the Lugannani-Rice formula

FX(x) ≈ 1− Φ(zl) + φ(zl)

(
1

zω
− 1

zl

)
, (3.8)

with

zω = t0
√
K ′′(t0) and zl = sgn(t0) ·

√
2(xt0 −K(t0)).

The saddlepoint approximation is usually highly accurate in the tail of a
distribution.
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3.4 Monte Carlo Simulations

The value at risk and economic capital including name concentration can be
calculated using a full Monte Carlo simulation.

Monte Carlo simulations are employed to approximate the loss distribu-
tion and estimate various risk measures.

Asset value simulations use a single-factor model of asset values, with
a random specific error term, uniform correlation between assets, uniform
sizes of exposures, under default mode only. The asset values are a linear
function of a common factor, representing the state of the economy, and of
an error term, independent of the state of the economy, representing spe-
cific risk. Monte Carlo simulations generate random sets of future values
of the economic factor and of the specific risk, from which the asset values
derive directly. This is a much more restrictive framework than actual port-
folio models. However, it illustrates the essential mechanisms of the process.
Moreover, the same technique allows us to vary the default probabilities and
the sizes of exposures across exposures.

A large number of trials generate a portfolio value distribution, later con-
verted into a portfolio distribution. Since asset values trigger default, all we
need is to generate correlated asset values for all obligors. When running a
default model, the target portfolio variable modelled is the portfolio loss.

To proceed, the sequential steps are:

• Generate a standardized random normal distribution of the common
factor Z.

• Generate as many standardized random distributions of the specific
residuals εi as there are obligors.

• Calculate the resulting standardized random variable Zi, which is the
asset value of each obligor.

• Transform this asset value, for each obligor, into a default 0-1 variable.

• Calculate the loss for each obligor, given the value of the default vari-
able and the exposure.

• Sum all losses to get one value for portfolio loss in each simulation.

• Repeat the simulation as many times as desired.
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Figure 3.5: Monte Carlo simulation of asset values to generate correlated loss
distribution.

Monte Carlo provides a number of advantages over deterministic analysis:

• Probabilistic results: Results show not only what could happen but
how likely each outcome is.

• Graphical results: It is easy to create graphs of different outcomes.

• Sensitivity analysis: With just a few cases, deterministic analysis makes
it difficult to see which variables impact the outcome the most. In
Monte Carlo simulation, its easy to see which inputs had the biggest
effect on bottom-line results.

• Scenario Analysis: In deterministic models, it is very difficult to model
different combinations of values for different inputs to see the effects
of truly different scenarios. Using Monte Carlo simulation, analysts
can see exactly which inputs had which values together when certain
outcomes occurred.

The employed code is included in Appendix A.
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3.4.1 A first example

Let consider a stylized portfolio of 10000 counterparties with EAD = 1,
LGD = 100%, ρ = 20% and PD = 1%. This is the so-called portfolio A. Let
number of trials equals to 1000000. We performed a Monte Carlo simulation
of this granular portfolio and plot the obtained cumulative distribution func-
tion.

Define portfolio B as portfolio A with 10 large counterparties added, all
of them with EAD = 20. The total portfolio is not granular anymore. Name
concentration appears. If we perform a MC simulation we can compute the
EC taking into account name concentration. We can notice the difference
between the computed EC for both portfolios. As we have seen, we will
be able to quantify this ’probability’ correction by applying the analytical
solution. This will be done in the next chapter.

Figure 3.6: Correction probability when Name Concentration appears.



Chapter 4

Semi-Analytical
Implementation

No real-world credit portfolio is perfectly diversified. In calculating Value at
Risk for a credit portfolio, a correction has therefore to be made in order to
account for the remaining unsystematic risk.

In the next two pictures we see the situation for increasing amounts of
unsystematic risk. Now there is some uncertainty in portfolio loss even when
we know the state of the world.

In the top picture we have the distribution of the infinitely fine-grained
portfolio. In the lower picture we have replotted the infinitely granular dis-
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tribution and also shown the distribution of a real portfolio that does have
unsystematic risk. The tail of the distribution is fattened, there is a greater
chance of big losses.

4.1 Single large name in the portfolio

Let consider a perfectly granular portfolio with one large exposure added.
We consider portfolio A defined as a Vasicek portfolio containing N loans,
and portfolio B is like portfolio A with a large counterparty b added to it.
The total portfolio is not perfectly granular anymore.

Our goal is to calculate the Value at Risk at a confidence level q of port-
folio B analytically .

We will show that the loss distribution function of the portfolio B contain-
ing the large exposure can be calculated by subtracting a certain probability
∆P , from the loss distribution function of the original portfolio.

Theorem 4.
FB(l) = FA(l)−∆P (l),

where

FB(l) : Cumulative loss distribution function of portfolio B.

FA(l) : Cumulative loss distribution function of portfolio A.
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Proof:

We proof the formula by deriving an analytical expression for ∆P (l). We
need to calculate FB(l).

We conditionate this probability on two disjoint states, depending on the
default, or not, of the large added counterparty b,

FB(l) = FB(l|b is not in default) + FB(l|b is in default).

(a) Counterparty b is not in default.
We assume that:

• There is a mark-to-market loss1 that is a deterministic function,
lb(y), of the market factor y.

• The loss is independent of y, and it is given by LGDb, EADb.

FB(l|b not in default) = P (LB(y) < l|b not in default)

= P (LA(y) + lb(y) < l|b not in default)

= P (LA(y) < l − lb(y)|b not in default).

Since LA(y), lb(y) are strictly decreasing with y, the equation

LA(y) = l − lb(y)

has a solution and it is unique. Let y1(l) be this solution. Thus, we have
that

FB(l|b not in default) = P (LA(y) < y1(l)|b not in default). (4.1)

(b) Counterparty b is in default.

FB(l|b in default) = P (LB(y) < l) = P (LA(y) + lb(y) < l)

= P (LA(y) + LGDb · EADb < l)

= P (LA(y) < l − LGDb · EADb).

1A mark-to-market loss is a loss generated through an accounting entry rather than
the actual sale of a security. Mark-to-market losses can occur when financial instruments
held are valued at the current market value. If a security was purchased at a certain price
and the market price later fell, the holder would have an unrealized loss, and marking the
security down to the new market price results in the mark-to-market loss.
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Let y2(l) be the solution of the equation

LA(y) = l − LGDb · EADb.

In this case, we find that

FB(l|b in default) = P (LA(y) < y2(l)). (4.2)

Notes:

(i) As we assumed that the market-to-market loss is always smaller than
the default loss, y2(l) > y1(l), ∀l.

(ii) According to the Vasicek model, the conditional default probability
is given by

PDb(Y = y) = Φ

(
Φ−1(PDb)−

√
ρb · y√

1− ρb

)
.

Thus, and taking into account (4.1) and (4.2), we compute the uncondi-
tional loss by integrating with respect to the variable y.

FB(l) = FB(l|b not in default) + FB(l|b in default)

=

∫ ∞
y1(l)

[
1− Φ

(
Φ−1(PDb)−

√
ρb · y√

1− ρb

)]
φ(y) dy

+

∫ ∞
y2(l)

Φ

(
Φ−1(PDb)−

√
ρb · y√

1− ρb

)
φ(y) dy

=

∫ ∞
y1(l)

φ(y) dy −
∫ y2(l)

y1(l)

Φ

(
Φ−1(PDb)−

√
ρb · y√

1− ρb

)
φ(y) dy,

where φ(y) denotes the probability density function of a standard normal
variable.

Then,

FB(l) = FA(l)−
∫ y2(l)

y1(l)

Φ

(
Φ−1(PDb)−

√
ρb · y√

1− ρb

)
φ(y) dy︸ ︷︷ ︸

∆P (l)

.
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In conclusion, we have found that the probability correction is given by
the analytical expression

∆P (l) =

∫ y2(l)

y1(l)

Φ

(
Φ−1(PDb)−

√
ρb · y√

1− ρb

)
· e

−y2

2

√
2π

dy. (4.3)

Determination of border values y1 and y2

Let FB(l) be the cumulative loss distribution function of the portfolio B.
Given a value of l, there are three possible options:

1. The loss of portfolio A is larger than l. Then, the loss in the portfolio
B will be also larger than l.

lB = lA + lb,

lb > 0, lA > l⇒ lB = lA + lb > l.

2. The loss of portfolio A is lower than l minus the potential loss of coun-
terparty b. Then, a default of counterparty b will not make lB larger
than l.

lA = lB − lb < l − LGDb · EADb ⇒ lB < l.

3. The intermediate situation.

l − LGDb · EADb < lA < l.

• If counterparty b defaults. The loss is independent of y and is
given by LGDb, EADb.

l − LGDb · EADb < lA = lB − lb = lB − LGDb · EADb,

⇒ lB > l.
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• If counterparty b does not default

lB < l.

As the loss in portfolio A is driven by the global factor y, one can deter-
minate the limits between the different situations.

According to the Vasicek model, the loss is given by the realisation of the
global factor. Thus,

l =
∑
n

N(
Φ−1(PDn)−√ρn · y1√

1− ρn
)LGDn · EADn and

l − LGDbEADb =
∑
n

N(
Φ−1(PDn)−√ρn · y2√

1− ρn
)LGDn · EADn.

• Let A be homogeneous 2,

In our particular case, we have that

PDn = PD, n = 1 . . . N + 1

ρn = ρ, n = 1 . . . N + 1

LGDn = LGD, n = 1 . . . N + 1

EADn =

{
EADA, n = 1 . . . N

EADb, large added counterpary

Thus,

l = Φ

(
Φ−1(PD)−√ρ · y1√

1− ρ

)
LGD(N · EADA + EADb),

Φ−1

(
l

LGD(N · EADA + EADb)

)
=

Φ−1(PD)−√ρ · y1√
1− ρ

,

⇒ y1 = −

√
1− ρ · Φ−1

(
l

LGD(N ·EADA+EADb)

)
− Φ−1(PD)

√
ρ

.

2In the homogeneous portfolio the risk variables are independent and identically dis-
tributed. We assume an homogeneous portfolio in the sense that all obligors have the
same default probability, PDn = PD and LGDn = 100%, ∀n ∈ [1, N ].
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l − LGD · EADb = Φ

(
Φ−1(PD)−√ρ · y2√

1− ρ

)
LGD(N · EADA + EADb),

Φ−1

(
l − LGD · EADb

LGD(N · EADA + EADb)

)
=

Φ−1(PD)−√ρ · y2√
1− ρ

,√
1− ρ · Φ−1(

l − LGD · EADb

LGD(N · EADA + EADb)
)− Φ−1(PD) = −√ρy2,

⇒ y2 = −

√
1− ρ · Φ−1

(
l−LGD·EADb

LGD(N ·EADA+EADb)

)
− Φ−1(PD)

√
ρ

.

• If A is not homogeneous, we could find the values of y1 and y2 by a
root-finding algorithm.

Moreover, LGD = 1. Thus, we have obtained that the border values are
given by

y1(l) = −
√

1− ρ · Φ−1( l
N ·EADA+EADb

)− Φ−1(PD)
√
ρ

. (4.4)

y2(l) = −
√

1− ρ · Φ−1( l−LGD·EADb

N ·EADA+EADb
)− Φ−1(PD)

√
ρ

. (4.5)

Summary

Finding the Value at Risk of portfolio B at a confidence level of q becomes a
matter of finding the correct loss l that satisfies

FV asicek

(
l

EADB

)
−∆P (l) = q, (4.6)

where

FV asicek refers to the loss distribution function of the portfolio under the
ASRF framework, and it is given, as we already saw by (2.14).

EADB is the exposure of the total portfolio, i.e.,

EADB = N · EADA + EADb.
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Thus, we must find l that verifies

Φ

√1− ρ · Φ−1
(

l
EADB

)
− Φ−1(PD)

√
ρ

−∫ y2(l)

y1(l)

Φ

(
Φ−1(PD)−√ρ · y

√
1− ρ

)
e

−y2

2

√
2π

dy = q.

We will denote l = V aRT,q,Analytic the Value at Risk of the total portfolio
at a confidence level q computed with the analytical method.
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4.2 Multiple large counterparties in the port-

folio

In general, the portfolio of a bank includes several large counterparties, not
only one. The analytic solution derived for the single large counterparty can
be used to estimate the VaR of a portfolio containing multiple large counter-
parties.

Let A be a Vasicek portfolio containing N counterparties and portfolio B
is defined as portfolio A with a large counterparty b added to it. Moreover,
define C as portfolio A with a large counterparty c. The total portfolio
contains portfolio A and both large counterparties b and c.

If B is considered to be infinitely granular and counterparty c to be the
large counterparty, we can calculate the VaR of the total portfolio at a some
confidence level q by using the analytic solution, denoted V aRT,q,Analytic as
we have already mentioned, and we will have,

V aRT,q,Analytic = V aRB,q,V asicek + ∆V aRc,q,

with

V aRB,q,V asicek : Value at Risk of portfolio C at a confidence level q computed
under the ASRF framework.
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∆V aRc,q : Change in VaR at a confidence level q when the large counter-
party c is added to portfolio B.

Substracting the VaR of the portfolio B, results in:

∆V aRc,q = V aRT,q,Analytic − V aRB,q,V asicek.

This is, of course, an approximation because portfolio B contains a large
counterparty b, then it is not perfectly granular. However, this effect can be
considered a second-order effect, especially when counterparty c is not too
large.

The same can be done considering counterparty b to be the large coun-
terparty in the total portfolio, and C defined as a Vasicek portfolio.

V aRT,q,Analytic = V aRC,q,V asicek + ∆V aRb,q,

where

V aRC,q,V asicek : Value at Risk of portfolio B at a confidence level q computed
under the ASRF framework.

∆V aRb,q : Change in VaR at a confidence level q when the large counterparty
b is added to portfolio C.

Substracting the VaR of the portfolio C,

∆V aRb,q = V aRT,q,Analytic − V aRC,q,V asicek.

The Value at Risk of the total portfolio, V aRTotal,q can be calculated
according to the approximation formula

V aRTotal,q = V aRA,q,V asicek + ∆V aRb,q + ∆V aRc,q, (4.7)

this is,

V aRTotal,q = V aRA,q,V asicek + V aRT,q,Analytic − V aRC,q,V asicek

+V aRT,q,Analytic − V aRB,q,V asicek.
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Generalising (4.7) for M large counterparties, we will have

V aRTotal,q = V aRA,q,V asicek +
M∑
i=1

∆V aRi,q. (4.8)

If all large added counterparties are yield by the same risk factors we
will be able to simplify the last equation since the contribution of each large
added counterparty will be the same. If M large counterparties are added,
we will consider M times the contribution of a large counterparty, which will
be computed using the proposed analytical solution. Thus,

V aRTotal,q = V aRA,q,V asicek +M ·∆V aRi,q.

Let C defined again as portfolio A with a large added counterparty b.
The above equation becomes,

V aRTotal,q = V aRA,q,V asicek +M · (V aRT,q,Analytic − V aRC,q,V asicek) (4.9)

= V aRA,q,V asicek︸ ︷︷ ︸
(i)

−M · V aRC,q,V asicek︸ ︷︷ ︸
(ii)

+M · V aRT,q,Analytic︸ ︷︷ ︸
(iii)

. (4.10)

(i) Value at Risk of portfolio A
As the granular portfolio A contains N loans the Value at Risk accord-
ing to the Vasicek model will be computed according to the formula:

V aRA,q,V asicek =
N∑
n=1

EADn · LGDn · Φ
(

Φ−1(PDn) +
√
ρn · Φ−1(q)

√
1− ρn

)
.

Since portfolio A is homogeneous (PDn = PD and LGDn = LGD, n =
1 . . . N) and we will assume LGD = 1, EADn = EADA, and ρn =
ρ, n = 1 . . . N , we can simplify the above equation, it becomes

V aRA,q,V asicek = N · EADA · Φ
(

Φ−1(PD) +
√
ρ · Φ−1(q)

√
1− ρ

)
.
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(ii) Value at Risk of portfolio C
We remind that portfolio C is portfolio A with one large counterparty,
b, added. Thus, it contains N+1 counterparties. All of them have the
same risk drivers except the exposure at default, which in case of coun-
terparty b, EADb, is larger.

V aRC,q,V asicek =
N+1∑
n=1

EADn · LGDn · Φ
(

Φ−1(PDn) +
√
ρn · Φ−1(q)

√
1− ρn

)
= (N · EADA + EADb) · Φ

(
Φ−1(PD) +

√
ρ · Φ−1(q)

√
1− ρ

)
.

(iii) Value at Risk of the total portfolio

With the analytic solution we will compute V aRT,q,Analytic.

• We define

G(y) = Φ

(
Φ−1(PD)−√ρ · y

√
1− ρ

)
· e

−y2

2

√
2π
.

• We evaluate numerically G between the border values y1 and y2,

y1 = −

√
1− ρ · Φ−1

(
l

N ·EADA+EADb

)
− Φ−1(PD)

√
ρ

,

y2 = −

√
1− ρ · Φ−1

(
l−LGD·EADb

N ·EADA+EADb

)
− Φ−1(PD)

√
ρ

.

Let

I(l) =

∫ y2(l)

y1(l)

G(y) dy.

The above integral is numerically approximated within an error of
10−6 using recursive Simpson quadrature.
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• We look for l such that

FV asicek

(
l

N · EADA + EADb

)
− I(l) = q.

Let

H(l) = FV asicek

(
l

N · EADA + EADb

)
− I(l)− q

= Φ

√1− ρ · Φ−1
(

l
N ·EADA+EADb

)
− Φ−1(PD)

√
ρ

− I(l)− q.

H is defined as a handle function.

Finding l is equivalent to search a zero of the function H. Thus,
we compute numerically a root of this function.

In order to do that, we will employ the Matlab function,

l=fzero(H,VaR_{C,q,Vasicek})

which tries to find a zero of H near V aRC,q,V asicek.

It uses a combination of bisection, secant, and inverse quadratic
interpolation (IQI) methods.

The idea behind this algorithm is to combine the reliability of bi-
section with the convergence speed of secant and inverse quadratic
interpolation methods. Here is the outline:

– Start with a and b so that f(a) and f(b) have opposite signs.

– Use a secant step to give c between a and b.

– Repeat the following steps until

|b− a| < ε|b| or f(b) = 0.

– Arrange a, b and c so that

∗ f(a) and f(b) have opposite signs.

∗ |f(b)| ≤ |f(a)|.
∗ c is the previous value of b.

– If c 6= a, consider an IQI step.

– If c = a, consider a secant step.
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– If the IQI or secant step is in the interval [a, b], take it.

– If the step is not in the interval, use bisection.

This algorithm is foolproof. It never loses track of the zero trapped
in a shrinking interval. It uses rapidly convergent methods when
they are reliable. It uses a slow, but sure, method when it is nec-
essary.

As we have already explained, this is equivalent to compute the
Value at Risk of the total portfolio at a given confidence level q,
so we will have l = V aRT,q,Analytic.

Now we are able to compute all the elements in (4.10) in order to obtain
the Value at Risk of the total portfolio at a confidence level q,

V aRTotal,q = V aRA,q,V asicek +M · (V aRT,q,Analytic − V aRC,q,V asicek).

We will consider this framework in most of the examples. Nevertheless,
we will also take into account the case of adding large counterparties with
different exposures at default. Moreover, we will also perform an example
considering not an infinitely granular portfolio. Those cases will let us see
how the analytical solution behaves in other scenarios.
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4.3 Numerical Examples

Here, we investigate the accuracy of the analytical method relative to some
representative bank portfolios. First, the Vasicek model has been applied,
resulting in VaR ASRF. Then, a full Monte Carlo has been performed, obtain-
ing VaR MC. We will compare these results with the obtained approximation
by applying the analytical solution, VaR analytic.

From now on, let consider the following notation:

N : Number of loans in the granular portfolio.

EAD: Exposure at default of each counterparty in the test portfolio.

M : Number of large added counterparties.

EADb: Exposure of each large added counterparty.

q: Confidence level.

HHI: Herfindahl-Hirschman index of the total portfolio.

G: Gini index of the total portfolio.

re: Ratio exposure of large counterparties to total portfolio.

re =
M · EADb

EADTotal

=
M · EADb

N · EAD +M · EADb

.

η: Relative error between the analytic approximation and Monte Carlo,

η =
VaR analytic − VaR MC

VaR MC
.

The correspondant codes are included in Appendix A.
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1. The portfolio remains homogeneous

First, let consider the effect on Value at Risk of adding counterparties such
that the portfolio is still homogeneous. This is the simplest case to consider.
We will add counterparties with the same exposure as counterparties in the
granular portfolio.

Test portfolio used for simulations

N EAD PD LGD ρ
10000 1 1.00 % 100 % 20 %

With very small EADb · LGD, the limiting value y1 will be very close
to y2. This causes the correction probability term to tend to zero in the
limit. The loss distribution of portfolio B becomes almost the same as the
loss distribution of portfolio A.

In this case applying the analytical solution makes no sense since it
reaches the same result as the ASRF method.

A) EADb=1, M=20

q VaR ASRF VaR analytic VaR MC η

99% 754.01 754.02 756 -0.262%
99.9% 1418.16 1458.17 1467 -0.602%

B) EADb=1, M=1000

q VaR ASRF VaR analytic VaR MC η

99% 827.76 827.87 830 -0.257%
99.9% 1600.78 1600.94 1584 1.069%
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2. Effect on Value at Risk of increasing EAD of two
large counterparties

Test portfolio used for simulations

N 10000
EAD 1
PD 1.00 %

LGD 100 %
ρ 20%

EADb re HHI G

50 0.990 % 1.4704 · 10−4 0.0097
100 1.961% 2.8835 · 10−4 0.0194
200 3.846% 8.3210 · 10−4 0.0383
500 9.091% 0.0042 0.0907

As we will consider counterparties which have the same risk drivers we
can simplify (4.7). Thus,

V aRTotal,q = V aRA,q,V asicek + 2 ·∆V aRb,q

= V aRA,q,V asicek + 2 · (V aRT,q,Analytic − V aRC,q,V asicek)

= V aRA,q,V asicek − 2 · V aRC,q,V asicek + 2 · V aRT,q,Analytic.

A) q=99%

EADb VaR ASRF VaR analytic VaR MC η

50 760.03 760.59 762 -0.19%
100 767.56 769.90 770 -0.01%
200 782.61 792.91 795 -0.26%
500 827.76 913.34 902 1.26%

B) q=99.9%

EADb VaR ASRF VaR analytic VaR MC η

50 1469.81 1470.64 1470 0.05%
100 1484.36 1487.79 1489 -0.08%
200 1513.46 1527.94 1528 - 0.004%
500 1600.78 1705.89 1705 0.05%
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Figure 4.1: Effect on VaR of increasing EAD of two large counterparties.

Analytic and MC VaR figures show good agreement when the EAD of
the large counterparties do not exceed about 4% if the total portfolio EAD.

For small values of the EAD of the large added counterparties the ap-
proximation is within the error margins of the MC result.

With large values of the EAD of the large counterparties, the analytic
solution overestimates the VaR, and consequently, the EC.
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3. Effect on Value at Risk of increasing EAD of ten
large counterparties

Test portfolio used for simulations

N 10000
EAD 1
PD 1.00 %

LGD 100 %
ρ 20%

EADb re HHI G

20 1.961% 1.3456 · 10−4 0.0186
40 3.846% 2.4038 · 10−4 0.0375
100 9.091% 9.0909 · 10−4 0.0899
200 16.667% 0.0028 0.1657
400 28.571% 0.0082 0.2847

Taking into account that we are considering counterparties which have
the same risk drivers we will obtain by simplyfing (4.7)

V aRTotal,q = V aRA,q,V asicek + 10 ·∆V aRb,q

= V aRA,q,V asicek + 10 · (V aRT,q,Analytic − V aRC,q,V asicek)

= V aRA,q,V asicek − 10 · V aRC,q,V asicek + 10 · V aRT,q,Analytic.

A) q=99%

EADb VaR ASRF VaR analytic VaR MC η

20 767.56 767.99 770 -0.26%
40 782.61 784.38 785 -0.08%
100 827.76 839.47 841 -0.18%
200 903.01 954.49 948 0.67%
400 1053.51 1302.94 1204 8.2%

B) q=99.9%

EADb VaR ASRF VaR analytic VaR MC η

20 1484.36 1485.01 1494 -0.6%
40 1513.46 1516.11 1518 -0.13%
100 1600.78 1617.89 1617 0.055%
200 1746.30 1818.69 1818 0.038%
400 2037.35 2538.61 2254 12.63%
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Figure 4.2: Effect on VaR of increasing EAD of 10 large counterparties.

There is a good agreement between both approaches when the total ratio
exposure of large counterparties to the total portfolio does not exceed about
9%.

The more diversified the portfolio becomes, the worse results our analyti-
cal approximation provides. To have an idea about portfolio’s concentration
we can have a look at the concentration indices. As the exposure of the
added counterparties grows up, these indices become higher, which means
that the portfolio is more concentrated.
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4. Effect on Value at Risk of increasing EAD of 15 large
counterparties

Test portfolio used for simulations

N 10000
EAD 1
PD 1.00 %

LGD 100 %
ρ 20%

EADb re HHI G

20 2.913% 1.5081 · 10−4 0.0276
40 5.669% 3.0259 · 10−4 0.0551
100 13.043% 0.0012098 0.1289
200 23.080% 0.0036095 0.2293
400 37.500% 0.0094 0.3735

Taking into account that we are considering counterparties which have
the same risk drivers we will obtain by simplyfing (4.7)

V aRTotal,q = V aRA,q,V asicek + 15 ·∆V aRb,q

= V aRA,q,V asicek + 15 · (V aRT,q,Analytic − V aRC,q,V asicek)

= V aRA,q,V asicek − 15 · V aRC,q,V asicek + 15 · V aRT,q,Analytic.

A) q=99%

EADb VaR ASRF VaR analytic VaR MC η

20 775.08 775.74 777 -0.16%
40 797.66 800.32 800 0.04%
100 865.38 882.95 880 0.34%
200 978.26 1055.48 1040 1.49%
400 1204.01 1578.16 1392 13.37%

B) q=99.9%

EADb VaR ASRF VaR analytic VaR MC η

20 1498.91 1499.89 1488 0.79%
40 1542.57 1546.53 1537 0.62 %
100 1673.54 1699.20 1674 1.51%
200 1891.83 2000.40 1937 3.3%
400 2328.40 2810.28 2560 9.8%
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Figure 4.3: Effect on VaR of increasing EAD of 15 large counterparties.

The analytic solution matches MC results even for a ratio exposure of
large counterparties about 13%.

The analytic solution performs better with a larger number of large coun-
terparties in the portfolio.

This is due to a portfolio with many large counterparties is closer to a
perfectly granular portfolio than the portfolio with one large counterparty.
For example when considering M = 2, EADb = 100 ⇒ EADtotal = 10200
and M = 10, EADb = 20 ⇒ EADtotal = 10200 we have two portfolios built
up from the test base portfolio and with the same exposure, but the first
one is more concentrated (HHI=0.00029, G=0.0194) than the second one
(HHI=0.00013, G=0.0186).

With the last three examples we can appreciate that as M increases the
EC of the analytic solution increases. For this representative portfolio the
analytic solution is sufficiently accurate.
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5. Test portfolio with N ’small’

Portfolio 2 used for simulations

N 100
EAD 1
PD 1.00 %

LGD 100 %
ρ 20%

M EADb re HHI G

2 5 9.091% 0.0124 0.07130
2 7 12.281% 0.0152 0.10320
2 10 16.667% 0.0208 0.14706
2 12 19.335% 0.0252 0.17394

10 5 33.333% 0.0156 0.24242
10 7 41.176% 0.0204 0.32086
10 10 50% 0.0275 0.40910

A) q=99%

M EADb VaR ASRF VaR analytic VaR MC η

2 5 8.28 9.13 9 1.44%
2 7 8.58 10.56 10 5.30%
2 10 9.03 13.85 12 15.42%
2 12 9.33 16.66 14 19%

10 5 11.29 15.57 14 11.21%
10 7 12.79 22.72 17 33.65%
10 10 15.05 39.13 22 77.86%

In general we do not get accurate results by applying the analytical so-
lution when adding large counterparties to a test portfolio composed by a
small number of loans.

The method is specially suitable for a portfolio with a relatively large
number of obligors.
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Figure 4.4: Effect of adding 2 and 10 large counterparties to portfolio 2.
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6. Test portfolio with not ’small’ exposures

Portfolio 3 used for simulations

N 1000
EAD 10
PD 1.00 %

LGD 100 %
ρ 20%

M EADb re HHI G

2 20 0.398% 0.00099 0.00199
2 50 0.990% 0.00103 0.00791
2 100 1.961% 0.00115 0.01761
2 150 2.913% 0.00137 0.02713

10 20 1.961% 0.00099 0.00971
10 50 4.762% 0.00113 0.03772
10 100 9.091% 0.00165 0.08101
10 150 13.043% 0.00246 0.12053

A) q=99%

M EADb VaR ASRF VaR analytic VaR MC η

2 20 755.52 755.60 758 -0.317%
2 50 760.03 760.59 762 -0.185%
2 100 767.56 769.90 770 -0.013%
2 150 775.08 780.61 778 0.335%

10 20 767.56 767.99 770 -0.261%
10 50 790.13 792.93 792 0.117%
10 100 827.76 839.47 841 -0.182%
10 150 865.38 893.00 885 0.901%

We get a quite accurate result except when the ratio exposure of large
counterparties to total portfolio is approximately bigger than 9%, the analytic
solution starts to overestimate the VaR.
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Figure 4.5: Effect of adding 2 and 10 large counterparties to portfolio 3.
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7. Effect of adding large counterparties with different
exposures

Portfolio 4 used for simulations

In this case we will add many large counterparties with different expo-
sures.

Exposure 1 10 50 100 500
# of obligors 10000 1000 200 100 20

It is a portfolio of so-called lower granularity since the largest obligor has
an exposure 500 times larger than the smallest obligor.

To apply the analytical solution, we will quantify M1 times the contri-
bution of a large counterparty with EAD1, M2 times the contribution of a
large counterparty with EAD2, etc.

Let the portfolio Ci, i ∈ {1, ..., k} be the granular portfolio with a large
added counterparty with exposure EADi.
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V aRTotal,q = V aRA,q,V asicek +M1 ·∆V aR1,q + . . .Mk ·∆V aRk,q

= V aRA,q,V asicek +M1 · (V aRT,q,Analytic − V aRC1,q,V asicek)

+ . . .+Mk · (V aRT,q,Analytic − V aRCk,q,V asicek).

q VaR ASRF VaR analytic VaR MC η

99% 3762.54 4802.19 3900 23.13%
99.9% 7276.26 8597.86 7500 14.64%

In this example the ratio exposure of large counterparties to total portfolio
equals to 80%.

A first guess tells us that the approximation will not be very accurate
since the analytical solution is expected to be an accurate approximation as
long as the large counterparties are not too large compared with the total
portfolio. In fact, computing it, we can check out that the analytical method
is not a good choice to perform the VaR computation in this case.

The Vasicek model provides a much better approximation, even if it is
not a really good one, than applying the probability correction.
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8. The main portfolio is not a Vasicek one

One of the main assumptions when we applying the analytical method is
that the base portfolio is a granular one.

Nevertheless, let consider a portfolio which is not infinitely granular. We
will add some large counterparties to it and we will apply the analytical
method.

N 10000
EAD i/N ∀i
PD 1.00 %

LGD 100 %
ρ 20%

M EADb re HHI G

− − − 0.00013 0.33330

10 50 4.762% 0.00094 0.33330
10 100 9.091% 0.00287 0.44313
10 150 13.043% 0.00540 0.48589
10 200 16.667% 0.00823 0.52254

Firstly, if we compute the VaR of this portfolio by applying the ASRF
method and a Monte Carlo simulation we obtain:

q VaR ASRF VaR MC

99% 376.29 382
99.9% 727.70 733

Even if the test portfolio is not a granular one,we are not considering a highly
concentrated portfolio and it is a case in which the Vasicek model provides
a quite acceptable approach. It is logical to wonder about the performance
of the analytical method in this scenario. Let add some large counterparties
as in previous examples.

For small values of the EAD the analytical solution is a good approach
to MC results.

When the total ratio of the large added counterparties is bigger approx-
imately than a 4% the analytical method does not give us an accurate ap-
proximation.

While the EAD gets bigger, the Vasicek method always matches much
lower results than MC whereas the analytical solution overestimates the VaR.
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Effect of increasing EAD of ten large counterparties (M=10)

A) q=99%

EADb VaR ASRF VaR analytic VaR MC η

50 413.92 419.77 421 -0.292 %
100 451.54 477.28 468 1.983 %
150 489.17 552.90 539 2.579%
200 526.79 651.49 602 8.221%

B) q=99.9%

EADb VaR ASRF VaR analytic VaR MC η

50 808.46 809.01 811 -0.245 %
100 873.22 909.41 900 1.046 %
150 945.99 1031.90 1014 1.765%
200 1018.75 1179.36 1120 5.300%
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Computation times

Here we show the employed time by the three methods to obtain the VaR
that we have performed in each example: the Asymptotic Single Risk Factor
model, the analytical solution and Monte Carlo.

Each computation time is the average of all the trials with different num-
ber of counterparties and different EAD added to the test portfolio in each
section.

We remind that while Monte Carlo simulations have been coded in C,
both the ASRF and the analytical method have been run in Matlab.

Computation times are shown in seconds.

Example ASRF Analytic MC time1 MC time2

2 0.00049 0.01488 471 4752
3 0.00035 0.01539 474 4773
4 0.00036 0.01572 477 4747
5 0.00034 0.02789 1 51
6 0.00037 0.01410 47 473
7 0.00049 0.08167 533 5722
8 0.08841 0.11506 463 4749

where

1. MC time1 is the time consuming while performing 100000 Monte Carlo
simulations.

2. MC time1 is the time consuming while performing 1000000 Monte Carlo
simulations.

While Monte Carlo simulation allows for detailed modeling at the indi-
vidual exposure level, it comes with a substantial computational cost. This
is particularly true as we are often interested in the far tail of the loss dis-
tribution, as well as sensitivity to portfolio parameters such as individual
exposure size.

When computing VaR, for portfolios of the order of 10000 loans, we have
used a Monte Carlo with 1000000 simulations to get an accurate result. In
cases when we had N ∼ 100 and N ∼ 10000 we ran 100000 simulations to
obtain the result. Anyway, we show all the computation times in all cases,
and it becomes clear that depending on the number of simulations, time
grows substantially.
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Note: Computer Hardware Specifications

Mac OS X, Version 10.6.4

• Processor: 2.4 GHz Intel Core 2 Duo

• Memory: 4 GB 1067 MHz DDR3

• Startup Disk: Macintosh HD

4.4 Implications for the EC and RAROC

EC with and without name concentration

Here we present the effect of name concentration on the contribution of a
counterparty to the portfolio EC.

The stylized portfolio from the previous section is again used. Its risk
characteristics are summarized in the following table:

N EAD PD LGD ρ
10000 1 1.00 % 100 % 20 %

Definition 20. VaR Contribution (VaRC).
Marginal VaR contribution of the EAD of a counterparty which measures
how much each obligor contributes to the total VaR or EC of a portfolio.

Ordinary Monte Carlo estimation is impractical for this problem because
the conditional expectations defining the marginal risk contributions are con-
ditioned on rare events. We will compute VaRC under the ASRF framework,
and we will also be able to used the analytical method to measure it.

Asymptotic Vasicek (ASRF) approximation

One can calculate VaRC at the q-percentile due to an added counterparty b
for an inifnitely large portfolio without concentration as follows

V aRCb,q = EADb · LGDb · Φ
(

Φ−1(PDb) +
√
ρb · Φ−1(q)

√
1− ρb

)
.
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Analytic approximation

The VaRC can be approximated by the incremental VaR given by

∆V aRb = V aRTotal,b − V aRC,V asicek,

for portfolios without large name concentrations since VaRC is the linear
approximation. Thus,

V aRCb ≈ ∆V aRb.

This means that the analytic solution can be used to calculate the VaRC
of large counterparties.

From now on, let consider q=99%.

Firstly, VaRC and EC are calculated using both Vasicek and the analyt-
ical framework for different values of a large added counterparty.

EAD large c. VaRC ASRF VaRC analytic EC ASRF EC analytic

20 1.51 1.55 1.31 1.35
40 3.01 3.19 2.61 2.79
60 4.52 4.92 3.92 4.32
80 6.02 6.76 5.22 5.96
100 7.53 8.70 6.53 7.69
150 11.29 14.05 9.79 12.55
200 15.05 20.19 13.05 18.19

The EC calculated using the Vasicek framework grows linearly with EAD.
EC with name concentration taken into account has accelerating growth with
respect to EAD.

∆EAD large c. ∆EC ASRF ∆EC analytic

20 1.31 1.44
20 1.31 1.53
20 1.31 1.64
20 1.31 1.73
50 3.26 4.86
50 3.26 5.64
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Figure 4.6: Effect of name concentration on EC of a large counterparty in
the stylized portfolio.

RAROC with and without name concentration

RAROC =
Earnings− Expected losses

EC
.

Earnings. The hurdle rate

The earnings can be defined at various levels. Earnings can be limited to the
net interest margin, excluding fees, or they can be defined as the net interest
margin plus fees. They can be calculated both before and after operating
costs. The minimum value of the required ratio obviously depends upon the
perimeter of the earnings calculation.

Definition 21. The hurdle rate is the minimum required return.

The bechmark is the price of risk in the capital market. The hurdle rate
should be set equal to the return required by shareholders, given the risk of
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the stock. For example, if in the previous example the RAROC hurdle is set
to 20%, this 20% benchmark applies to earnings net of all operating costs.

r(%) = Earnings/VaR ≥ 20% or Earnings ≥ 20% · VaR.

Expected losses

We quantify the EL due to a large counterparty according to

EL = EAD · LGD · PD.

Economic Capital

We will use the EC computed previously, both with name concentration
(analytic) and without name concentration (Vasicek).

We apply it to the previous example. The RAROC is calculated for a
large counterparty without name concentration taken into account, with the
Vasicek framework, and with name concentration taken into account. This
has been done for different values of EAD. The hurdle rate has been set to
20%.

EAD large c. RAROC ASRF RAROC analytic

20 22.9119 22.8179
40 22.9119 22.7267
60 22.9119 22.6381
80 22.9119 22.5521
100 22.9119 22.4688
150 22.9119 22.2710
200 22.9119 22.0881

The fact that VaRC with name concentration taken into account grows
faster than the growth of the Vasicek approach means that RAROC decreases
with EAD when name concentration is taken into account. This is illustrated
in the next figure, which shows the effect of name concentration on RAROC
of a large counterparty in the stylized portfolio.
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Conclusions

• The analytic solution allows the calculation of the VaR and EC contri-
bution of large counterparties using deterministic formulas rather than
a Monte Carlo approximation. The MC simulation contains a certain
amount of stochastic noise, leading to an error interval around the cal-
culated VaR. For certain applications, for example risk-based pricing,
a stochastic VaR contribution is not desirable.

• We can obtain the name concentration formulas intuitively.

• The analytical approach is less technically and computationally in-
volved than a full Monte Carlo approximation. Using a MC simulation
involves separate evaluation of each individual counterparty, it is very
computationally intensive, even with advanced Monte Carlo techniques.
An interpreted programming language will get fast the analytical re-
sult.

• A potential disadvantage of the analytical solution is that it is only
suitable under certain assumptions. It especially works better when
we have an infinitely granular portfolio with relatively large number
of obligors and relatively small exposures. However, when we are in
this scenario the analytic solution matches the Monte Carlo results
because the analytic solution delivers an exact number for a single
large counterparty added to an infinitely granular portfolio.

• The brute force Monte Carlo simulation is mathematically less compli-
cated than the analytical method.
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Appendix A

Codes

A.1 Monte Carlo Simulations in C

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#define IM1 2147483563

#define IM2 2147483399

#define AM (1.0/IM1)

#define IMM1 (IM1-1)

#define IA1 40014

#define IA2 40692

#define IQ1 53668

#define IQ2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMM1/NTAB)

#define EPS 1.2e-10

#define RNMX (1.0-EPS)

#define A1 (-3.969683028665376e+01)

#define A2 2.209460984245205e+02

#define A3 (-2.759285104469687e+02)

#define A4 1.383577518672690e+02

#define A5 (-3.066479806614716e+01)

#define A6 2.506628277459239e+00
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#define B1 (-5.447609879822406e+01)

#define B2 1.615858368580409e+02

#define B3 (-1.556989798598866e+02)

#define B4 6.680131188771972e+01

#define B5 (-1.328068155288572e+01)

#define C1 (-7.784894002430293e-03)

#define C2 (-3.223964580411365e-01)

#define C3 (-2.400758277161838e+00)

#define C4 (-2.549732539343734e+00)

#define C5 4.374664141464968e+00

#define C6 2.938163982698783e+00

#define D1 7.784695709041462e-03

#define D2 3.224671290700398e-01

#define D3 2.445134137142996e+00

#define D4 3.754408661907416e+00

#define P_LOW 0.02425 /* P_high = 1 - p_low*/

#define P_HIGH 0.97575

#define SIM 1000000 /* Number of simulations */

#define N 10010 /* Number of loans in the portfolio */

#define m 1000 /* Number of intervals at the frequency graph */

/* Inverse cumulative normal distribution */

long double icdf(p)

long double p;

{

long double x;

long double q, r, u, e;

if ((0 < p ) && (p < P_LOW)){

q = sqrt(-2*log(p));

x = (((((C1*q+C2)*q+C3)*q+C4)*q+C5)*q+C6)/

((((D1*q+D2)*q+D3)*q+D4)*q+1);

}

else{

if ((P_LOW <= p) && (p <= P_HIGH)){

q = p - 0.5;

r = q*q;

x = (((((A1*r+A2)*r+A3)*r+A4)*r+A5)*r+A6)*q /

(((((B1*r+B2)*r+B3)*r+B4)*r+B5)*r+1);

}

else{

if ((P_HIGH < p)&&(p < 1)){
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q = sqrt(-2*log(1-p));

x = -(((((C1*q+C2)*q+C3)*q+C4)*q+C5)*q+C6)/

((((D1*q+D2)*q+D3)*q+D4)*q+1);

}

}

}

return x;

}

/* L’Ecuyer’s uniform random number generator with Bays-Durham shuffle */

double lecuyer(long *idum)

{ int j;

long k;

static long idum2 = 123456789;

static long iy = 0;

static long iv[NTAB];

double temp;

if (*idum <= 0){

if (-(*idum) < 1) *idum = 1;

else *idum = -(*idum);

idum2 = *idum;

for (j=NTAB+7;j>=0;j--){

k = *idum/IQ1;

*idum = IA1*(*idum-k*IQ1)-k*IR1;

if (*idum < 0) *idum +=IM1;

if (j < NTAB) iv[j] = *idum;

}

iy = iv[0];

}

k = *idum/IQ1;

*idum = IA1*(*idum-k*IQ1)-k*IR1;

if (*idum < 0) *idum +=IM1;

k = idum2/IQ2;

idum2 = IA2*(idum2-k*IQ2)-k*IR2;

if (idum2 < 0) idum2 += IM2;

j = iy/NDIV;

iy = iv[j]-idum2;

iv[j] = *idum;

if (iy < 1) iy += IMM1;
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if ((temp=AM*iy) > RNMX) return RNMX;

else return temp;

}

double normdev(long *idum)

{ static int iset = 0;

static double gset;

double fac,rsq,v1,v2;

if (iset == 0){

do {

v1 = 2.0*lecuyer(idum)-1.0;

v2 = 2.0*lecuyer(idum)-1.0;

rsq = v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0);

fac = sqrt(-2.0*log(rsq)/rsq);

gset = v1*fac;

iset = 1;

return v2*fac;

}

else {

iset = 0;

return gset;

}

}

/*MAIN ROUTINE*/

main()

{

double rho,y,ep[N],T[N],r[N],loss;

int i,j,D[N];

long seed=0,seed2=1;

double E[N],PD[N],Li[N];

FILE *salida;

clock_t timeMC_ini,timeMC_fin;

double F[m][2];

timeMC_ini=clock();

for(i=0;i<N-10;i++) /* Elements in the granular portfolio */
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{

E[i]=1./10500;

PD[i]=0.01;

T[i]=icdf(PD[i]);

}

for(i=N-10;i<N;i++)

{

E[i]=50./10500;

PD[i]=0.01;

T[i]=icdf(PD[i]);

}

rho=0.2; /* Correlation coefficient */

for(i=0;i<m;i++) F[i][0]=0;

for(j=0;j<SIM;j++)

{

loss=0;

y=normdev(&seed);

for(i=0;i<N;i++)

{

ep[i]=normdev(&seed2);

r[i]=sqrt(rho)*y+sqrt(1-rho)*ep[i];

if(r[i]<T[i]) D[i]=1;

else D[i]=0;

Li[i]=E[i]*D[i];

loss=loss+Li[i];

}

if(loss==0) F[0][0]+=1;

else if(loss==1) F[m-1][0]+=1;

else

{

for(i=0;i<m;i++)

if(loss>=(1./m)*i && loss<(1./m)*(i+1)) F[i][0]+=1;

}

}

for(i=0;i<m;i++) F[i][0]=F[i][0]/SIM;

F[0][1]=F[0][0];
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for(i=1;i<m;i++)

F[i][1]=F[i][0]+F[i-1][1];

timeMC_fin=clock();

salida = fopen("portfolioA_M10_EAD50.dat","w");

for(i=0;i<m;i++)

fprintf(salida,"%lf;%lf;%lf;%.15lf\n",

(1./m)*i,(1./m)*(i+1),F[i][0],F[i][1]);

fprintf(salida,"That took %d seconds .\n",

(timeMC_fin-timeMC_ini)/CLOCKS_PER_SEC);

fclose(salida);

}

Notes

• Depending on the number of simulations, the Monte Carlo approach
involves large computations. As we will run many simulations, instead
of using Matlab, since it is an interpreted language it can be unaccept-
ably slow in cases like this, we code a routine in C in order to improve
computational efficiency.

• We have predicted the loss distribution function of the portfolio, and
also the cumulative distribution function.

• The results are normalized. Thus, to obtain the Value at Risk at a
confidence level q, we will have to consider the correspondant value of
loss, i.e. the value of the loss distribution which corresponds with a
value of q of the CDF, times the exposure of the total portfolio.
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A.2 Analytic solution. Matlab code

function [VaR_Total,t,VaRC_analytic,RAROC_analytic,HHI,GI]

=Analytic_Solution(rho,EAD_A,EAD_b,LGD,PD,q,N,M)

%INPUT

%rho: Correlation coefficient

%EAD_A: Exposure of the counterparties in the base portfolio

%EAD_b: Exposure of the added counterparties

%LGD: Loss Given Default

%PD: Probability at Default

%q: Confidence level

%N: Number of loans in the granular portfolio

%M: Number of added counterparties

%OUTPUT

%VaR_Total: VaR of the total portfolio applying the analytical method

%t: Time to compute the total VaR

%VaRC_analytic: VaR contribution of a large counterparty

%RAROC_analytic: RAROC considering name concentration

%HHI: Herfindahl-Hirschman index

%GI: Gini index

tic

VaR_A=N*EAD_A*normcdf((norminv(PD)+sqrt(rho)*norminv(q))/sqrt(1-rho));

VaR_C=(N*EAD_A+EAD_b)*normcdf((norminv(PD)+sqrt(rho)*norminv(q))/sqrt(1-rho));

G=@(y)normcdf((norminv(0.01)-sqrt(rho).*y)/sqrt(1-rho)).*\exp(-(y.^2)/2)/sqrt(2*pi);

H=@(l)normcdf((sqrt(1-rho)*norminv(l/(N*EAD_A+EAD_b))-norminv(PD))/sqrt(rho))

-quad(G,-(sqrt(1-rho)*norminv(l/(N*EAD_A+EAD_b))

-norminv(PD))/sqrt(rho),-(sqrt(1-rho)*norminv((l-LGD*EAD_b)/(N*EAD_A+EAD_b))

-norminv(PD))/sqrt(rho))-q;

l=fzero(H,VaR_C);

VaR_analytic=l;

VaR_Total=VaR_A+ M*(VaR_analytic-VaR_C);

t=toc;
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VaRC_analytic=l-VaR_C;

EC=VaRC_analytic-EAD_b*PD*LGD;

RAROC_analytic=(20*VaRC_analytic-EAD_b*PD*LGD)/EC;

EAD_t=N*EAD_A+M*EAD_b;

HHI=(N*EAD_A^2+M*EAD_b^2)/(EAD_t^2);

for i=1:N

Gini(i)=(2*i-1)*EAD_A/EAD_t;

end

if M>0

for j=N+1:N+M

Gini(j)=(2*j-1)*EAD_b/EAD_t;

end

end

GI=sum(Gini)/(N+M)-1;

Notes

• The user has to introduce the risk parameters and also the number of
large added counterparties and their exposure. The function computes
the Value at Risk at a some confidence level q according to the ana-
lytical approach explained previously. VaR Contribution and RAROC
are also computed, we will compare them with the results obtained in
case of not considering name concentration. In order to have an initial
guess about how concentrated the portfolio is, HHI and Gini indices
are computed as well.

• We have used specifically inbuilt Matlab functions which allow us to
perform numerical calculations without the need for complicated and
time consuming programming.

• To test the accuracy of this solution, obtained results will be compared
with a full Monte Carlo simulation. The Vasicek model 1 will be applied
too since it is currently one of the most widely used tools to measure
VaR and EC.

1A Matlab code, which will be shown later, is used.
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A.3 ASRF model in Matlab

function [VaR,t,VaRC_vasicek,RAROC_vasicek,HHI,GI]

=ASRF_Solution(rho,EAD_A,EAD_b,LGD,PD,q,N,M)

%INPUT

%rho: Correlation coefficient

%EAD_A: Exposure of the counterparties in the base portfolio

%EAD_b: Exposure of the added counterparties

%LGD: Loss Given Default

%PD: Probability at Default

%q: Confidence level

%N: Number of loans in the granular portfolio

%M: Number of added counterparties

%OUTPUT

%VaR: VaR of the total portfolio applying the analytical method

%t: Time to compute the total VaR

%VaRC_vasicek: VaR contribution of a large counterparty

%RAROC_vasicek: RAROC without considering name concentration

%HHI: Herfindahl-Hirschman index

%GI: Gini index

tic

VaR=(N*EAD_A+M*EAD_b)*normcdf((norminv(PD)+sqrt(rho)*norminv(q))/sqrt(1-rho));

t=toc;

%VaRc and RAROC of a large counterparty without name concentration

VaRC_vasicek=EAD_b*normcdf((norminv(PD)+sqrt(rho)*norminv(q))/sqrt(1-rho));

EC=VaRC_vasicek-EAD_b*PD*LGD;

RAROC_vasicek=(20*VaRC_vasicek-EAD_b*PD*LGD)/EC;

EAD_t=N*EAD_A+M*EAD_b;

HHI=(N*EAD_A^2+M*EAD_b^2)/(EAD_t^2);

for i=1:N

Gini(i)=(2*i-1)*EAD_A/EAD_t;

end

if M>0

for j=N+1:N+M

Gini(j)=(2*j-1)*EAD_b/EAD_t;

end

end

GI=sum(Gini)/(N+M)-1;



128 Codes



Bibliography

[1] Eva Lütkebohmert.Concentration Risk in Credit Portfolios. Springer-
Verlag, Berlin (Germany), 2009.
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