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Abstract
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Ephemerides describe the position and velocity of a celestial object as a function of

time. The ephemerides data are obtained by solving the fundamental equations of motion

of the body, which is obtained by applying the fundamental laws of motion postulated

by Keppler and Newton. The objective of this project is to build a software package

that manages JPL ephemerides. With this software, we will can select planets or natural

satellites contained in the ephemerides file and we will can work with them on different

ways. Also, we are going to do several programs to make changes of coordinates and

some vector fields. Finally, we are going to explain an application of this software, such

as the parallel shooting, and we are going to show different simulations.
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Chapter 1

Introduction

1. Coordinate Systems

In astronomy, it is necessary and convenient to represent the position of an object,

such as a star or a planet, in several different coordinate systems, according to the context

in which the position is to be used. Each coordinate system corresponds to a particular

way of expressing the position of a point with respect to a coordinate frame. Often,

coordinate frames with respect to which observations are made, differ from the coordinate

frame that is most convenient for the comparison of observational data with theory. In

general, each position is represented by a set of three coordinates that specify the position

of the object with respect to a particular coordinate frame. In many cases the distance of

the object is inknown; so two coordinates are sufficient to represent the direction to the

object, although three direction cosines may be used.

In general, an object is moving with respect to the coordinate frame, and the

coordinate frame is moving and rotating in ”space”. Moreover, positions may be of

several kinds, according to whether or not allowances have been made for aberration,

diurnal rotation, refraction and other factors that affect the direction in which an object

is observed. Ephemerides (or ephemeris), that represent high-precision positions and

properties of astronomical objects at given times, must always be accompanied by a

precise statement that specifies all of these various factors.

To design the coordinates, different coordinate systems can be used to specify the

positions of celestial objects. Each system depends on the choice of coordinate frame and

on the way of specifying coordinates with respect to the frame. The designations used to

indicate the principal origins of celestial coordinate frames are as follows:

7
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FIG. 1. Geocentric (λ′, φ′, ρ) and geodetic (λ, φ) coordinates.

(1) Topocentric: viewed or measured from the surface of the Earth.

(2) Geocentric: viewed or measured from the center of the Earth.

(3) Selenocentric: viewed or measured from the center of the Moon.

(4) Planetocentric: viewed or measured from the center of the planet (with corresponding

designations for individual planets).

(5) Heliocentric: viewed or measured from the center of the Sun.

(6) Barycentric: viewed or measured from the center of mass of the solar system (or of

the Sun and a specified subset of planets).

The principal celestial reference planes through the appropriate origins are as

follows:

(1) Horizon: the plane that is normal to the local vertical (or apparent direction of

gravity) and passes through the observer.

(2) Local meridian: the plane that contains the local vertical and the direction of the axis

of rotation of the Earth.

(3) Celestial equator: the plane that is normal to the axis of the rotation of Earth and

passes through the Earth’s center.
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FIG. 2. Relation between geographic latitude and the altitude of the celestial pole.

(4) Ecliptic: the mean plane (i.e., ignoring periodic perturbations) of the orbit of the

Earth around the Sun.

(5) Planet’s meridian: a plane that contains the axis of rotation of the planet and passes

through the observer.

(6) Planet’s equator: the plane that is normal to the axis of rotation of the planet and

passes through the planet’s center.

(7) Orbital plane: the plane of the orbit of a body around another (e.g., of a planet around

the Sun or barycenter).

(8) Invariable plane or Laplacian plane: the plane that is normal to the axis of angular

momentum of a system and passes through its center.

(9) Galactic equator: the plane through the central line of the local Galaxy (Milky Way).

2. Timescales

One can differentiate between: Atomic Timescales, Dynamical Time, Rotational

Timescales and Coordinated Universal Time.

First, we are going to talk about Atomic Timescales. For scientific, practical

and legal purposes, the standard unit for the measurement of intervals of time is the

System International (SI) second, which is defined by the adoption of a fixed value for the

frequency of a particular transition of cesium atoms. Time can be measured in this unit by

the use of time standards based on physic processes. Such a timescale provides a measure
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of time for identifying the instants at which events occur, the interval of time between

two events can be calculated as the differences between the times of the events. The

results of the intercomparison of about 200 frequency standards located around the world

are combined to create a standard timescale that can be used for identifying uniquely the

instants of time at which events occur on the Earth. This standard timescale is known as

International Atomic Time (TAI) and it is the basis for all timescales in general use. It

is distributed by many different means, including radio time signals, navigation systems,

communication satellites, and precise time standards.

It must also take in mind relativistic effects. In high-precision timekeeping, and for

some purposes in solar-system dynamics, it is necessary to take in mind the effects of

special and general relativity and to recognize, for example, the rate of an atomic clock

depends on the gravitational potential in which it is placed and that the rate will appear

to depend on its motion relative to another clock with which it is compared. In particular,

one should recognize that the independent variable, or timescale, of the equations of mo-

tion of the bodies of the solar system depends upon the coordinate system to which the

equations refer.

Now, we are going to talk about Dynamical Time. First, it is noteworthy that

equations of motion of the bodies of the solar system involve time as an independent

variable. Until 1960, was used mean solar time, but when it was discovered that the

rotation of the Earth was irregular, a new timescale was introduced that corresponded to

the independent variable. This was called Ephemerides Time (ET) and was based on the

motion of the Sun. Later, when it was necessary to distinguish between relativistic effects

(which cause differences between timescales for the center of the Earth and the center of

the solar system) the dynamical time arguments were introduced (Terrestrial Dynamical

Time, TDT, and Barycentric Dynamical Time, TDB). TDT was defined in a way that

keeps continuity with ET. Since ET was not specified as either TDT or TDB, either can

be considered to be the extension of ET. Since TDT is defined in terms of TAI, which can

be determined only back to 1956, the determination of dynamical time prior to 1956 must

be based in comparison of observations and theories of the motions of the Sun, Moon and

planets.

On the other hand, TDT is used as the timescale for the geocentric ephemerides

(giving apparent positions with respect to the center of the Earth) and TDB is used as
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the timescale for the ephemerides that refer to the center of the solar system. TDT dif-

fers from TAI by a constant offset, which was chosen arbitrarily to give continuity with

ephemerides time. TDB and TDT differ by small periodic terms that depend on the form

of the relativistic theory is being used.

Also, we are going to explain a little about Rotational Timescales. As the Earth

rotates about its axis, it also moves in its orbit around the Sun. Thus, while the Earth

rotates once with respect to a fixed star, the Earth moves in its orbit so that additional

rotation is necessary with respect to the Sun. The rotation of the Earth with respect to

the equinox is called sidereal time (ST). The Earth’s rotation with respect to the Sun is

the basis of Universal Time, also called solar time. Since the rotation of the Earth is at-

tached to irregular forces, sidereal time and Universal Time are irregular with respect to

atomic time. Sidereal time is the hour angle of the catalog equinox and is attached to

the motion of the equinox itself due to precession and nutation. Otherwise, it is a direct

measure of the diurnal rotation of the Earth. Sidereal time reflects the actual rotation of

the Earth and can be determined by observations of stars, artificial satellites and extra-

galactic radio sources. On the other hand, the apparent diurnal motion of the Sun involves

both the non-uniform diurnal rotation of the Earth and the motion of the Earth in the orbit

around the Sun. In practice, Universal Time is directly related to sidereal time by means

of a numerical formula. For each local meridian there is a corresponding local sidereal

time. The measure of the rotation of the Earth with respect to the true equinox is called

apparent sidereal time. The measure with respect to the mean equinox of date is referred

to as mean sidereal time. Apparent sidereal time minus mean sidereal time is called the

equation of the equinoxes.

Finally, we can explain the Coordinated Universal Time (UTC). Although TAI

provides a continuous, uniform and precise timescale for scientific reference purposes, it

is not convenient for general use. In everyday life it is more convenient to use a system

of timescales that correspond to the alternation of day and night, and can be easily related

to each other and to TAI. In this timescales, the numerical expression or measure, of the

time of an event, is given in the conventional form of years, months, days, hours, minutes,

seconds and decimals of seconds. The standard time on the prime meridian is known as

UTC. UTC is an atomic timescale that is kept in close agreement with Universal Time
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(UT), which is a measure of the rotation of the Earth on its axis. The rate of rotation of

the Earth is not uniform (with respect to atomic time), and the difference between TAI and

UT is increasing irregularly by about one second every eighteen months. The difference

between UTC and TAI is always an integral number of seconds. UTC is maintained in

close agreement with UT introducing extra seconds (which is better than one second).

This extra seconds, know as leap seconds, are added to UTC, usually at the end of the last

day of June or December.

3. The Enumeration of Dates

There are three ways to enumerate days that could be taken: Civil Calendar, Julian

Date, and Besselian and Julian Years (these last two are the most interesting for astro-

nomical purposes).

Civil calendar is the calendar that everyone knows, so we just say that was derived

from the Julian calendar.

For many astronomical purposes is more convenient to use the Julian Date (JD),

because this represents a continuous count of days that is known as the Julian day number,

and the day number is extended by the addition of the time of day, expressed as a decimal

fraction of day. It is important to note that the integral values of the Julian date refer to

the instants of Greenwich mean noon; correspondingly, the Julian date for 0h UT always

ends in ".5". This, and the fact that current Julian dates require seven digits to express

the integral parts, make the Julian date system unsuitable for some purposes. The value

of JD minus 2400000.5 is sometimes used for current dates; it is known as the modified

Julian date (MJD) (but as there are some more kinds of MJD, different values are sub-

stracted to calculate different MJD). The Julian date system may be used with TAI, TDT

or UTC, so when the difference is significant, the particular timescale should be indicated.

If we want to specify the epoch of celestial coordinate system, it is more appropriate

to use Besselian and Julian Years, because it is convenient to measure time in years

and to identify an instant of time by giving the year and the decimal fraction of the

year to a few places. This system was introduced by Bessel, and is still in use, but
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it has two disadvantages. First, the length of the year varies slowly, and second, the

instants at the beginning of the years (.0) do not correspond to Julian dates, which are

convenient for use in dynamical astronomy. The Besselian system has been replaced by a

new system in which 100 years is exactly 36525 days (or 1 Julian century) and in which

1900.0 corresponds exactly to the epoch 1900 January 0.5, from which time interval was

reckoned in the principal theories of the motions of the Sun, Moon and planets. The old

and new systems are distinguished when it is necessary by the use of the prefix letters "B"

and "J".

4. Ephemerides

Ephemerides describe the position and velocity of a celestial object as a function of

time. The ephemerides data are obtained by solving the fundamental equation of motion

of the body, which is obtained by applying the fundamental laws of motion postulated

by Keppler and Newton. There are two basic ways to solve the fundamental equation of

motion to obtain ephemerides: an analytical and a numerical way.

- Analytical ephemerides are based on closed-form algebraic expressions that give

the object’s position and velocity components for a given instance of time. These

expressions must be derived from an algebraic solution to the equation of motion

for the object. The primary benefit of analytical ephemerides is that they

express the position and velocity components as explicit functions of time. When

mutual gravitational perturbations and relativistic effects are taken in mind, the

expressions necessarily become quite complicated and analytical solutions may

become unfeasible. In general, for applications requiring a certain degree of

precision, analytical ephemerides are no longer used.

- Numerical ephemerides are based on a numerical solution of the equation of motion.

The output of such a computation is a table of numbers giving the position and

velocities at a desired instances of time. A potential drawback of this method is

the sheer size of the tables when the object’s position and velocity components are

required for a large number of times. In practice, the numerically generated position

tables (and velocities) may be compressed by ”fitting” them with a mathematical

function, which can replicate the original table values to within a very small tolerance

for any desired instance of time. This is the approach taken e.g. in the production of

the Jet Propulsion Laboratory (JPL) planetary ephemerides. Notice that the ”fitting”
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function, which allows - a part of the - ephemerides to be calculated in an algebraic

way is not the same as the algebraic solution to the fundamental equation of motion.

We will use these last ephemerides, concretely JPL ephemerides. JPL ephemerides

are generally created to support spacecraft missions to the planets. Selected ephemerides

are recommended for more general use, in particular DE405 which is the basis for the

Astronomical Almanac. Other ephemerides generated for specific mission requirements

may be available for use but usually without documentation available to outside users.

The JPL ephemerides are saved as files of Chebyshev polynomials fit to the

Cartesian positions and velocities of the planets, Sun, and Moon, typically in 32-day

intervals. The positions are integrated in astronomical units (AU), but with polynomials

stored in units of kilometers. The integration time units are days of barycentric coordinate

time (TDB). The value of the astronomical unit is estimated based from measurements of

planetary orbits using the Gaussian gravitational constant k as adopted by the International

Astronomical Union. The mass parameter (GM) of the Sun is related to the estimated AU

by the relation GMsun = k·k/AU, where k is the Gaussian gravitational constant. Thus

a change in the value of the AU corresponds to a change in the GM of the Sun in SI

units. Since the ephemerides fits are sensitive to the GM of the Sun, each ephemerides

generally has a different estimate of the AU. The mass parameters (GM) of the planets are

best determined by tracking of spacecraft in orbit about or encountering the planets. Each

ephemerides uses the best estimates of the planetary GM values available at the time.

Most JPL ephemerides files include Chebyshev polynomials fit to the lunar libration

angles, which are integrated along with the planetary positions. Many ephemerides files

also have a fit to the 1980 IAU nutation series. While the 1980 IAU nutation series is not

current, it is maintained in the files for backward compatibility.

To access the JPL ephemerides there are several ways. For users who need positions

of planets at a few specific time, JPL’s interactive website and telnet service, "Horizons",

provides a wide variety of astronomical information including planetary positions from

the planetary ephemerides DE405, at web site

http://ssd.jpl.nasa.gov/?horizons.

http://ssd.jpl.nasa.gov/?horizons
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For users who need the capability of looking up the positions of planets or satellites

at many times or as needed for other computations, the recommended means of reading

the ephemerides is through use of the SPICE software toolkit,

http://naif.jpl.nasa.gov/naif/index.html.

The SPICE software is supported in several programming languages (including C,

Fortran and Matlab) on multiple platforms and compilers. The SPICE software reads JPL

ephemerides in a machine-independent binary format (kernels) which are available from

the SPICE web site and by anonymous FTP from

ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/.

The JPL planetary ephemerides are also available in an ASCII format which can

be converted by the user to machine-dependent binary files for reading. The ASCII files

are created in blocks of 20 or more years. Later ephemerides tend to be stored in longer

blocks. When ephemerides in ASCII format are converted, the files can be merged to span

a longer time if desired. The ASCII files are available by anonymous ftp from

ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/.

The ASCII file format is briefly described in the file

ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/ascii_format.txt.

The machine-dependent binary files differ mainly in the binary representation of

numbers. The ’little-endian’ representation is used by Intel x86, IA64 or Alpha based

processors (and their clones). Some binary ephemerides files are available in this format

from

ftp://ssd.jpl.nasa.gov/pub/eph/planets/Linux.

The ’big endian’ representation is used by PowerPC and SPARC processors. Some

binary files in this format are available from

ftp://ssd.jpl.nasa.gov/pub/eph/planets/SunOS.

Fortran programs for converting the ASCII files and for merging and reading the

binary files are available by anonymous ftp from

ftp://ssd.jpl.nasa.gov/pub/eph/planets/fortran.

These Fortran programs generally require some adaptation by the user. Instructions

for using these programs are available for downloading from

http://naif.jpl.nasa.gov/naif/index.html
ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/
ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/ascii_format.txt
ftp://ssd.jpl.nasa.gov/pub/eph/planets/Linux
ftp://ssd.jpl.nasa.gov/pub/eph/planets/SunOS
ftp://ssd.jpl.nasa.gov/pub/eph/planets/fortran
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ftp://ssd.jpl.nasa.gov/pub/eph/planets/fortran/userguide.txt.

Other programs for reading these formats have been developed independently by

outside programmers, and not suported directly by JPL, are listed at

ftp://ssd.jpl.nasa.gov/pub/eph/planets/other_readers.txt.

In this project, we are going to use the JPL ephemerides DE406. These ephemerides

are constructed with the same integration as DE405, with the accuracy of the interpolating

polynomials has been lessened to reduce file size for the longer time span covered by

the file. These ephemerides include neither nutations nor librations. Coordinates of

the Sun, Moon and the nine major planets can be calculated for dates between JED

(Julian Ephemerides Date) 0624976.50 (-3001 Feb 4) and JED 2816912.50 (+3000 May

5) referring to the International Celestial Reference Frame (ICRF).

Also, we have used different ∗.bsp files regarding to some natural satellites of the

planets. These files contains information about natural satellites of the planets. As the

ephemerides DE405, DE406 and ∗.bsp files for the natural satellites are similar, and

contains similar information, we will explain the format of the DE405 because there is

more documentation about these ones.

5. Ephemerides DE405

We are going to talk about the fundamental planetary and lunar ephemerides DE405

from Jet Propulsion Laboratory (JPL). DE405 result from a least-squares adjustment of

a previously existing ephemerides to a variety of observational data (measurements),

followed by a numerical integration of the dynamical equations of motion which describe

the gravitational physics of the solar system.

For the final phase of integration of the ephemerides creation process, it is necessary

each one of this phases:

• The equations of motion describing the gravitational physics which govern the

dynamical motions of the bodies.

• A method for integrating the equations of motion.

• The starting positions and velocities of the bodies at some initial epoch along with

the values for various constants which affect the motion (e.g., planetary masses).

ftp://ssd.jpl.nasa.gov/pub/eph/planets/fortran/userguide.txt
ftp://ssd.jpl.nasa.gov/pub/eph/planets/other_readers.txt
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It is mainly the accuracy of the third component, the initial conditions and

dynamical constants, which determines the accuracy of modern-day ephemerides, since

the other two components (the physics and the integration method) are both believed

to be sufficiently complete and accurate. The values of the initial conditions and

constants are determined by the least squares adjustment of them to the observational

data (measurements), and the accuracy of this adjustment, and thus of the ephemerides

themselves, depends primarily upon the distribution, variety, and accuracy of the

observational data.

It is assumed that the equations of motion accurately describe the basic physics

which govern the motion of the major bodies of the solar system - at least to the presently

observable accuracy. For the motion of the Moon, the fitting of the lunar ephemerides to

the lunar laser-ranging observations is used to estimate the constants involved and to help

distinguish various models of the lunar interior, Earth-raised tides, etc.

Numerical integration of the equations of motion is the only known method capable

of computing fundamental ephemerides at an accuracy which is comparable to that of

the modern-day observations; analytical theories have not been able to attain such high

accuracy. The computer program which was used to integrate the equations of motion for

DE405 has been demonstrated to be suficiently accurate ([8]). And the reference frame

for the ephemerides is the International Celestial Reference Frame (ICRF [7]).

The independent variable of the equations of motion, and, thus, of the fundamental

ephemerides themselves, may be termed, “Teph”. It is a fully rigorous relativistic

coordinate time, implicitly defined by the equations of motion themselves. Teph may

be considered similar to previously-defined ”ET” or to ”TDB”, since their average rates

are the same, even though there are basic differences in the definitions. The time recently

defined by the IAU, ”TCB”, is mathematically equivalent to Teph; TCB and Teph differ by

only a constant rate.

6. Constructing ephemerides DE405

To construct the ephemerides file first we will explain equations of motion. These

equations describe the forces upon the planets, Sun and Moon which affect their

motions and the torques upon the Moon which affect its orientation. It believes that

given the accuracy of the observations, there is nothing to suggest that other forces
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or different forces are present in the Solar System. The uncertainties existing in the

planet’s and Moon’s motions are certainly explainable, considering the uncertainties in

the observations and in the fitted initial conditions and dynamical constants.

The equations of motion used for the creation of DE405 included contributions

from: (a) point-mass interactions among the Moon, planets, and Sun; (b) general rela-

tivity (isotropic, parametrized post-Newtonian); (c) Newtonian perturbations of selected

asteroids; (d) action upon the figure of the Earth from the Moon and Sun; (e) action upon

the figure of the Moon from the Earth and Sun; (f) physical libration of the Moon, modeled

as a solid body with tidal and rotational distortion, including both elastic and dissipational

effects; (g) the effect upon the Moon’s motion caused by tides raised upon the Earth by

the Moon and Sun, and (h) the perturbations of 300 asteroids upon the motions of Mars,

the Earth, and the Moon.

For the point-mass interactions one can say that, the principal gravitational force on

the nine planets, the Sun, and the Moon is modeled by considering these bodies to be point

masses in the isotropic, parametrized post-Newtonian (PPN) n-body metric ([11]). The n-

body equations were derived by Estabrook ([2]) from the variation of a time-independent

Lagrangian action integral formulated in a non-rotating solar system barycentric Cartesian

coordinate frame. Also are included Newtonian gravitational perturbations from 300

asteroids, chosen because they have the most pronounced effect on the Earth-Mars range

over the time span covered by the accurate spacecraft ranging observations.

For each body i, the point-mass acceleration is given by

r̈ipointmass
=
∑

j 6=i

µj(rj − ri)

r3ij
{1− 2(β + γ)

c2

∑

k 6=i

µk

rik
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k 6=j
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rjk
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(vi
c

)2
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(vj
c
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− 2(1 + γ)
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ṙi · ṙj −

3
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[
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+
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+
1
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∑
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where ri,ṙi, and r̈i are the solar system barycentric position, velocity and acceleration

vectors of body i; µj = Gmj , where G is the gravitational constant and mj is the mass of

body j; rij = |rj−ri|; β is the PPN parameter measuring the nonlinearity in superposition

of gravity; γ is the PPN parameter measuring space curvature produced by unit rest mass

(in this integration, as in general relativity, β = γ = 1); vi = |ṙi|; and c is the velocity of

light.

The quantity r̈j appearing in two terms on the right-hand side of 1 denotes the

barycentric acceleration of each body j due to Newtonian effects of the remaining bodies

and the asteroids. Thus, the right hand side of the equation is dependent upon the left hand

side, and so, rigorously, the computation should be iterated. However, use of Newtonian

accelerations for these terms is sufficiently accurate.

In the next to last term on the right-hand side of 1, quantities employing the index

m refer to the ”Big3” asteroids, Ceres, Pallas, and Vesta. The last term represents forces

upon the Earth, Moon, and Mars, only, from 297 other asteroids, grouped according to

three taxonomic classes (C, S, M).

If we talk about solar system barycenter, it must take in mind that, in the n-body

metric, all dynamical quantities are expressed with respect to a center of mass whose

definition is modified from the usual Newtonian formulation. The solar-system barycenter

is given by Estabrook ([3]) as

(2)
∑

i

µ∗
i ri = 0

where

(3) µ∗
i = µi

{

1 +
1

2c2
v2i −

1

2c2

∑

j 6=i

µj

rij

}

and where µi is the gravitational constant times the mass of the ith body; vi is the

barycentric velocity of the ith body, and

(4) rij = |rj − ri| .

During the process of numerical integration, the equations of motion for only the

Moon and planets were actually evaluated and integrated. The barycentric position and

velocity of the Sun were obtained from the equations of the barycenter. It should be noted

that each of the two barycenter equations depends upon the other, requiring an iteration
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during the evaluation of the solar position and velocity.

For the figure effects, long-term accuracy of the integrated lunar orbit requires the

inclusion of the figures of the Earth, Moon, and Sun in the mathematical model. In DE405

the gravitational effects due to figures include:

1) The force of attraction between the zonal harmonics (through fourth degree) of the

Earth and the point-mass Moon, Sun, Venus and Jupiter.

2) The force of attraction between the zonal harmonics (through fourth degree) and the

second-through fourth-degree tesseral harmonics of the Moon and the point-mass

Earth, Sun, Venus, and Jupiter.

3) The dynamical form-factor of the Sun (J2).

The contribution to the inertial acceleration of an extended body arising from the

interaction of its own figure with an external point mass is expressed in the ξηζ coordinate

system, where the ξ-axis is directed outward from the extended body to the point mass;

the ξζ-plane contains the figure (rotational) pole of the extended body, and the η-axis

completes the right handed system.

7. The Numerical Integration

The calculation and arrangement of accelerations at each integration step is as

follows:

1) The integrator subroutine provides new states (positions and velocities) for the nine

planets and the Moon.

2) The asteroid states are evaluated from fixed polynomials.

3) Equations for the relativistic masses are evaluated for the planets, Moon, asteroids,

and Sun, using current states for all bodies except the Sun. (The barycentric state of

the Sun calculated at the end of the previous step is retained for this evaluation.)

4) The present approximate state of the Sun is obtained from the constraint (Equation

2).

5) Equations 3 are evaluated again, using this new estimate of the solar state.

6) Equation 2 is evaluated a second time to provide the current state of the Sun.

7) Equation 1 is evaluated to obtain the accelerations of the nine planets and the Moon.
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8) It has been proved numerically more suitable to integrate the lunar ephemerides

relative to the Earth rather than to the solar system barycenter. The solar system

barycentric Earth and Moon states are replaced by the quantities rem and rB given

by

(5) rem = rm − re

and

(6) rB =
µere + µmrm
µe + µm

where the subscripts e and m denote the Earth and Moon, respectively. Note

that rem is the difference of solar system barycentric vectors and is distinguished

from a geocentric vector by the relativistic transformation from the barycenter to

geocenter. (The vector rB can be interpreted as a representation the coordinates of

the Newtonian Earth-Moon barycenter relative to the solar system barycenter. It has

no physical meaning and does not appear in force calculations; it is only a way for

improving the numerical behavior of the differential equations.)

Respect to the estimated integration error, the method of error control used in the

integration puts a limit on the absolute value of the estimated error in velocity of each

equation at the end of every integration step. Step size and integration orders were

adjusted on the basis of estimated error. The limits selected for DE405 were 2 · 10−17

au/day in each component of the equations of motion for the planets and Moon, and

2 · 10−15 rad d−1 for each component of the libration equations.

Integrations before to DE405 were performed on a Univac mainframe computer

in double precision, with a 60-bit mantissa; DE405 was integrated on a VAX Alpha in

quadruple precision. In all cases, the integration error has been significantly less than the

estimated error resulting from the uncertainties in the adjustment of the initial conditions

and constants to the observational data.

8. DE406, the new ”JPL long ephemerides”

The full precision numerical integration covered the interval 3000 BC to 3000

AD. However, only the interval, 1600 AD to 2200 AD, has been fit with full precision

Chebychev polynomials; this set of polynomials is referred to as DE405. DE406, on

the other hand, covers the full interval of the integration, but in order to conserve disk
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space, lower order Chebychev polynomials are used and both the nutations and the lunar

librations have been excluded from the file. For DE406, however, the interpolation on the

64 day mesh points remains exact, and for other times, the interpolating accuracy is no

worse than 25 meters for all planets and no worse than 1 meter for the Moon (adequate

for nearly any application except for the processing of the most accurate observations).

The nutations may be computed from the formula of the 1980 IAU Nutation Theory, and

the librations have been saved on a separate file.

The binary version of DE406 occupies only 3.3 megabytes per century as opposed

to the 9.2 required by DE405. For the full expansion, 3000 BC to 3000 AD, DE406

occupies only 200 megabytes.
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SPICE library

To read the file of ephemerides DE406 and the files of satellites, we need to use the

library, in JPL web, ”SPICE” because this files are storage in a special binary (extension

*.bsp).

SPICE stores data in files that are often referred to as ”kernels”. A kernel may store

data in either text (ASCII) or binary format. In order to access data within a kernel an

application program must ”load” the kernel using a SPICE API (”furnsh”).

The set of binary kernels consists of:

• SP-kernels (SPK). (We are using this one).

• Binary-style (just a few) PC-kernels (PCK).

• C-kernels (CK).

• Some spacecraft Events kernels (EK/ESP).

Binary kernels typically contain numeric and textual information. Hardware

architecture (the CPU chip) determines the format of numeric binary data; the two

formats used by computers supported by NAIF are called ”big endian” and ”little

endian”. Because kernels are frequently transferred between computers which may use

incompatible binary architecture, SPICE software has been designed to read non-native

binary kernels. (But not to write to a non-native binary kernel).

There are three classes of kernels, but we are only using one, ”generic kernels”.

Generic kernels are those that are not tied specifically to one mission; they are usually

applicable to many missions, or could be useful independent of any mission. Examples

of generic kernels are:

23
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• The planetary, satellite, comet and asteroid ephemerides files produced by JPL

(SPKs).

• The leapseconds kernel (LSK).

• The ”generic” version of the planetary constants kernel (text PCK).

• The high-precision lunar orientation kernel (binary PCK).

• Earth station topocentric locations (SPK) and reference frames (FK).

• Various kinds of mission-independent reference frame specifications (FK).

1. SPICE ephemerides subsystem: SPK files

The SPK system is the component of SPICE concerned with ephemerides data.

Since SPK files are binary files, we can’t just open them with a text editor to determine

which ephemerides objects are represented in the file. Instead we need to use one of

the SPICE utility programs that allow to summarize the ephemerides contents of an SPK

file. Also, SPICE kernels may contain metadata that describes the contents, intended

use, accuracy, etc. of the kernel. This metadata is called the ”comments” portion of the

kernel. Many SPK files contain comments that can help to decide upon the suitability of

the kernel for the application.

An SPK file contains ephemerides (trajectory) data for ”ephemerides objects”

(position and velocity of objects as a function of time). Spacecraft, planets, satellites,

comets and asteroids are the obvious kinds of ”ephemerides objects”, but many other

possibilities exist, such as: a rover on the surface of a body, a camera on top of a mast

on a lander, a transmitter cone on a spacecraft, a deep space communications antenna on

the Earth, the center of mass of a planet/satellite system (planet barycenter), the center of

mass of our solar system (solar system barycenter). To work with SPK files, we need to

take in mind the following terminology:

• Reference Frame: A reference frame is a Cartesian coordinate system with three axes:

x, y and z. The axes are mutually orthogonal. The center of the frame is the origin

of the Cartesian reference system. For the reference frames in SPICE, the positions

of the axes are typically defined by some observable object. For example, in the

J2000 reference frame, the x-axis is defined to lie in the intersection of two planes:

the plane of the Earth’s equator and the plane of the Earth’s orbit about the Sun. The

z-axis is perpendicular to the Earth’s equator. The y-axis completes a right-handed
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FIG. 1. Example of Ephemerides Objects [12].

system. The center of the frame is typically taken to be the solar system barycenter.

(Note we are not attempting to rigorously define the J2000 frame here. We are only

illustrating how reference frames are defined. Many more details are required for a

rigorous definition of the J2000 frame [9]).

• State: A state is an array of six double precision numbers. The first three numbers

give the x, y, and z coordinates respectively for the position of some object relative

to another object in some Cartesian reference frame. The next three numbers give the

velocity ( dx/dt, dy/dt and dz/dt respectively) of the object with respect to the

same reference frame.

• Inertial Frame: An inertial frame, is one in which Newton’s laws of motion apply.

• Non-Inertial Frame: A non-inertial frame is a frame that rotates with respect to the

celestial background. For example a frame whose axes are fixed with respect to the

features on the surface of the Earth is a non-inertial frame.

• Ephemerides Time (ET): Ephemerides time, ET, is the independent variable in the

equations of motion that describes the positions and velocities of objects in the solar

system. In SPICELIB ET is used as a synonym for Barycentric Dynamical Time.
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• Seconds Past 2000: In the SPK system times are specified as a count of seconds

past a particular epoch (the epoch of the J2000 reference frame). This reference

epoch is within a second or two of the UTC epoch: 12:01:02.184 Jan 1, 2000 UTC.

Epochs prior to this epoch are represented as negative numbers. The ”units” of ET are

designated in several different ways: seconds past 2000, seconds past J2000, seconds

past the Julian year 2000, seconds past the epoch of the J2000 frame. All of these

phrases mean the same thing.

• SPK segment: The trajectories of bodies in SPK files are represented in pieces

called segments. A segment represents some arc of the full trajectory of an object.

Each segment contains information that specifies the trajectory of a particular object

relative to a particular center of motion in a fixed reference frame over some particular

interval of time. From the point of view of the SPK system segments are the atomic

portions of a trajectory.

On the other hand, SPICE system kernel files and subroutines refer to ephemerides

objects, reference frames, and instruments by integer codes. In theory, a unique integer

can be assigned to each body in the solar system, including interplanetary spacecraft.

SPICE uses integer codes instead of names to refer to ephemerides bodies for three

reasons:

• Space: Integer codes are smaller than alphanumeric names.

• Uniqueness: The names of some satellites conflict with the names of some asteroids

and comets. Also, some satellites are commonly referred to by names other than

those approved by the IAU.

• Context: The type of a body (barycenter, planet, satellite, comet, asteroid, or

spacecraft) and the system to which it belongs (Earth, Mars, Jupiter, Saturn, Uranus,

Neptune, or Pluto) can be recovered algorithmically from the integer code assigned

to a body. This is not generally true for names.

The smallest positive codes are reserved for the Sun and planetary barycenters,

1,...,10 (As Mercury and Venus have no satellites, their barycenters (1 and 2) occupy

the same locations as their mass centers (199 and 299)). Planets have ID codes of the

form P99, where P is 1, ..., 9 (the planetary ID); a planet is always considered to

be the 99th satellite of its own barycenter, e.g. Jupiter is body number 599. Natural

satellites have ID codes of the form PNN where P is 1,...,9 and NN is 01,...,98,

e.g. Europa, the 2th satellite of Jupiter, is body number 502.
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Moreover, the system reference of the Sun and planetary barycenters is refered to

the Solar System Barycenter (ID 0). And the system reference of the planets and their

satellites are refered at their planetary barycenters. As this diagram shows:

FIG. 2. Diagram of references [1].

1.1. SPK file structure. An SPK file is made up of one or more data ”segments” and a

”comment” area. These components are described below.

• Segments: An SPK file contains one or more ”segments”. Each segment contains

enough ephemerides data to compute the geometric state (position and velocity)

of one solar system body (the ”target”) with respect to another (the ”center”) at

any epoch throughout some finite interval of time. The data in each segment

are stored as an array of double precision numbers. The summary for the array,

called a ”descriptor”, has two double precision components: 1) The initial epoch

of the interval for which ephemerides data are contained in the segment, given in
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ephemerides seconds past Julian year 2000; 2) The final epoch of the interval for

which ephemerides data are contained in the segment, given in ephemerides seconds

past Julian year 2000. The descriptor has six integer components: the NAIF integer

code for the target; the NAIF integer code for the center, the NAIF integer code

for the reference frame, the integer code for the representation (type of ephemerides

data), the initial address of the array and the final address of the array. In addition

to a descriptor, each array also has a name. The name of each array may contain up

to 40 characters. This space may be used to store a brief description of the segment.

For example, the name may contain pedigree information concerning the segment or

may contain the name of the object whose position is recorded in the segment.

• Segment Order and Priority: Segment order implies priority. For a given target body,

segment priority increases with distance from the start of the file: segments closer to

the end of the file have higher priority than segments for the same target body that

occur earlier in the file.

• The Comment Area: Preceding the ”segments”, the Comment Area provides space

in the SPK file for storing textual information besides what is written in the array

names. Ideally, each SPK file would contain internal documentation that describes

the origin, recommended use, and any other pertinent information about the data in

that file. For example, the beginning and ending epochs for the file, the names and

NAIF integer codes of the bodies included, an accuracy estimate, the date the file

was produced, and the names of the source files used in making the SPK file could

be included in the Comment Area.

• SPK Data Types: The fourth integer component of the descriptor (the code for the

representation, or ”data type”) is the key to the SPK format. There are several data

types currently supported by SPICELIB software, but we are going to talk about

two: Chebyshev polynomials (position only) and Chebyshev polynomials (position

and velocity).

– Chebyshev polynomials (position only): This SPK data type contains Chebyshev

polynomial coefficients for the position of the body as a function of time.

Usually, this data type is used for planet barycenters, and for satellites

whose ephemerides are integrated. (The velocity of the body is obtained by

differentiating the position). Each segment contains an arbitrary number of

logical records. Each record contains a set of Chebyshev coefficients valid

throughout an interval of fixed length.
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– Chebyshev polynomials (position and velocity): This SPK data type contains

Chebyshev polynomial coefficients for the position and velocity of the body

as a function of time. Usually, this data type is used for satellites for which

the ephemerides are computed from analytical theories. The structure of the

segment is nearly identical to that of the SPK data of Chebyshev polynomials for

position only. The only difference is that each logical record contains six sets of

coefficients instead of three.





Chapter 3

Software package description

The main objetive of this software is to create a package to handle files of

ephemerides and to manage the list of the bodies that we have selected, and, using this

package, to build several programs to calculate change of coordinates, vector fields, etc.

This software package, programmed on Fortran 77 language, once the ephemerides

file is read, allows to perform necessary calculations and integrations to do different

works. To perform these calculations, library ”spicelib” is used to access to the

ephemerides corresponding files to planets and satellites (which are stored on BSP files),

and with this information, calculate position, speed, acceleration and over-acceleration

for a body with an ET (time) given previously.

With this information, and taking some constants (that have been saved previously

in corresponding files), the software performs necessary calculations and integrations to

obtain orbits for the given body, and carry out system reference changes.

1. Database implementation of the software

We have created this software to allow manage database of ephemerides as we want.

The data of ephemerides have been extracted from the JPL ephemerides files. These files

have the extension ∗.bsp and we have had to use the library spicelib to can extract

all values that we need. In these files, the bodies for which we want all information, are

identified uniquely by a number . This number takes the convention, as we have explained,

the planetary barycenters and the Sun are identified by a number between 1 and 10. The

Moon is identified by the ID 301, and the planets by the form P99 where P is the ID of

the barycenter appropriate. Finally, the natural satellites of the planets have the form PNN

where P is 1,...,9 and N is 01,...,98, ie.:

31



32 3. SOFTWARE PACKAGE DESCRIPTION

ID NAME ID NAME

0 ’SSB’ 199 ’MERCURY’

0 ’SOLAR SYSTEM BARYCENTER’ 299 ’VENUS’

1 ’MERCURY BARYCENTER’ 399 ’EARTH’

2 ’VENUS BARYCENTER’ 499 ’MARS’

3 ’EMB’ 401 ’PHOBOS’

3 ’EARTH-MOON BARYCENTER’1 599 ’JUPITER’

3 ’EARTH BARYCENTER’ 501 ’IO’

4 ’MARS BARYCENTER’ 502 ’EUROPA’

5 ’JUPITER BARYCENTER’ 699 ’SATURN’

6 ’SATURN BARYCENTER’ 606 ’TITAN’

7 ’URANUS BARYCENTER’ 799 ’URANUS’

8 ’NEPTUNE BARYCENTER’ 701 ’ARIEL’

9 ’PLUTO BARYCENTER’ 899 ’NEPTUNE’

10 ’SUN’ 804 ’THALASSA’

301 ’MOON’ 999 ’PLUTO’

When we want to select different bodies to allow work with them, we need to open the

file modeleph.dat. In this file is written the ID of the body, a number to indicate if we

want work with this body (setting a ”1” value in the file) or not (setting a ”0” value), the

name of the file that contains the body and the name of the body appropriate to the ID.

For example, if we want to work with a model to contain Jupiter, Saturn, Earth, Moon,

Sun and Io, the file modeleph.dat must be as follows:

1 3 1 DE406s !Earth barycenter

2 5 1 DE406s !Jupiter barycenter

3 6 1 DE406s !Saturn barycenter

4 301 1 DE406s !Moon

5 10 1 DE406s !Sun

6 501 1 JUP230L !Io

Must be taken in mind, that if we want work with a planet, his barycentre must be

selected with a ”1”, and, if we want to work with a satellite, his planet and his barycentre

must be selected. If this requirement is not satisfied, the program displays an error and

1To distinguish to Earth Barycenter, we have created the ID 12 for ’Earth-Moon Barycentre’.
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stops. This is because the state of a planet or a satellite is referred to his barycentre, such

that indicate the figure 2. But, if we really don’t work with the barycentre when we do

integrations, for example, we can use some subroutines to indicate this. It is what we will

call like ”activate or deactivate” some body.

Once we have selected all the bodies that we want, this information will be stored in

a matrix that we will call LIST. This variable, as another, will be global to all software.

The reason because we have global variables is that we will work with them always, and,

due to memory and performance reasons, is better than local variables. When we finally

have decided with what bodies we want work and if they must be activate or deactivate,

all this information will be stored in LIST.

Now, we will explain, with more detail, the package files for the database and their

construction. We will show brief fragments of code to illustrate what we are doing.

1.1. Common model. Fortran 77 has no global variables, i.e. variables that are shared

among several program units (subroutines). The way to pass information between

subroutines is to use the subroutine parameter list. Sometimes this is inconvenient, for

example when many subroutines share a large set of parameters. In such cases one can

use a common block. This is a way to specify that certain variables should be shared

among certain subroutines.

We build a common block in the file ”commonmodel.inc”. This file shows

the structures common to all the files. These variables are basic elements to work

with the rest of subroutines. Next,we are going to explain the variables contained in

”commonmodel.inc”:

• IMAX: It is a parameter to indicate the maximum size for an array. In this case, it is

set at IMAX=53 because is the number of bodies we are working with.

• ICO: It contains the number of the body with the role of small primary, if

it want to see orbits in a ‘RTBP’ system using the routines which change

coordinates (transs.f,transsplrtbp.f,...). For example, if it want a

Sun-Barycenter Jupiter system, ICO=5, or Io-Jupiter system, ICO=501 (501 id of

Io).

• IBC: IBC shows the central body for the origin of coordinates. If IBC=0, is the usual

JPL-ephemerides origin; if IBC6=0 it takes body IBC as origin of the coordinate

frame.
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• XMUE(IMAX): It is a vector of IMAX columns. It indicates gravitational constants

of all the bodies of the solar system in km3/day2. It has been computed from the

values taken from the ephemerides files.

• SEMIAX(IMAX): Vector of IMAX columns. They are the semiaxes of the orbits

of the bodies of the solar system in km. It has been taken from the Explanatory

Supplement ([9]) since they are not in the ephemerides files. It should be noted that

the semiaxes of the Earth and the one of the Earth-Moon barycentre are both the same

one.

• XMU: It is the mass parameter of the ‘RTBP’ considered (only if ICO6=0).

• ENEM: It shows mean motion in km/day of a selected system. It has been computed

using Kepler’s thrid law: XMUE(p)+XMUE(s)=(ENEM2)*(SEMIAX(ICO)
3)

• LIST(3,IMAX): It is a array of three files and IMAX columns, it contains information

about the model considered. The first row of LIST contains the identifier of the

bodies that we are considering. The second row shows if we are considering position

of the body (takes the value one); position and velocity (value two); position,

velocity and acceleration (value three); or, position, velocity, acceleration and over-

acceleration (value four). And the third row indicates if is a barycentre (value zero),

a planet (value one) or a satellite (value two).

• IHANDLE(IMAX): It is a vector of IMAX columns, it is a handle to access the

ephemerides files.

• ARXMO(IMAX): It is a vector to save the path of ephemerides files.

1.2. ”modeleph.dat”. In this file there are three columns. The first column is the

identifier of all bodies with which we are working. The second is a zero if we are not

considering the body or one if we are considering it. The third column is the file name

where the body is. The last one is just a comment with the body name corresponding with

the identifier.

The identifiers of the bodies will be saved in LIST in the order in which appear in

this file.

1 1 1 DE406s !Mercury barycenter DE406s

2 2 1 DE406s !Venus barycenter

3 3 1 DE406s !Earth barycenter

4 4 1 DE406s !Mars barycenter

5 5 1 DE406s !Jupiter barycenter

6 6 1 DE406s !Saturn barycenter
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7 7 1 DE406s !Uranus barycenter

8 8 1 DE406s !Neptune barycenter

9 9 1 DE406s !Pluto barycenter

10 301 1 DE406s !Moon

11 10 1 DE406s !Sun

12 3 1 DE406s !Earth+Moon barycenter

13 199 0 DE406s !Mercury

14 299 0 DE406s !Venus

15 399 1 DE406s !Earth

16 401 0 MAR085 !Phobos MAR085

17 402 0 MAR085 !Deimos

18 499 0 MAR085 !Mars

19 501 1 JUP230L !Io JUP230L

20 502 1 JUP230L !Europa

1.3. Subroutine nmodjpl. This file is the central module created to coordinate calls

to other subroutines and read necessary input data of the file ”model.dat”. Such as

initialization of all the basic constants such as the mass ratios of the planets, semiaxes

and the JPL-model of the solar system adopted.

This routine open the file ”model.dat” to read it. First, it reads which origin we

want, in this software we have implemented the origin in J2000 that we have explained

before. After this, it reads IBC to indicate where the origin of the coordinate frame is

located (IBC=0 usual JPL-ephemerides origin, IBC6=0 takes body IBC as origin of the

coordinate frame). Below, it reads ICO to know if we are going to work with orbits in a

’RTBP’ reference system or not (ICO=0). And finally, we read the number of the equi-

librium point Li, we usually use the Lagrange points L1 (between the primaries) and L2

(behind the small primary), if any.

After of this, we call several subroutines that we introduce here briefly. The

subroutine ”read _modeleph” reads the file ”modeleph.dat” and takes the bodies

that we are interested on. This subroutine creates a new file with only the bodies that we

are considering. In nmodjpl, we read this new file and, from this, we call the handles of

the files (*.bsp) of the bodies.

Then, there are subroutines that we can comment or uncomment depending on we

are looking for. There are two subroutines, ”barorcom” and ”dessat” to activate or

desactivate a body in the list. They does similar action as if the user had selected a
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value ”1” to choose the body or a value ”0” to not choose the body in modeleph.dat

file. Subroutine barorcom receives two values as parameters. One of them is the

identifier of the body and second one is the mode that should be applied (”0” deactivate

all (satellite,planet and barycenter), ”1” barycentre activated, ”2” planet and satellite

activated). Subroutine dessat only receives one value as parameter, that corresponds with

identifier of the satellite that we want to include or exclude from the model.

Also, we write this list in a file (list.dat) with the routine ”writelist”, to can

see the bodies selected.

Below, we have four routines to build constants that we will need. And various

routines to work with the list (ordering the list and inserting or removing an element of

it).

Finally, we have built main programs to propagate orbits from initial conditions and

to change coordinate systems.

1 SUBROUTINE NMODJPL

2 ..............

3 C Write LIST in file "list.dat"

4 OPEN(IUNIT,FILE=’list.dat’)

5 CALL WRITELIST(IUNIT,’list.dat’)

6 CLOSE(IUNIT)

7 c Fill the GM values of bodies

8 CALL FILLXMUE(XMUETOT)

9 c Fill semiaxes of bodies

10 CALL FILLSEMIAXES(SEMIAXTOT)

11 C Take the values of GM and semiaxes corresponding to the selected

bodies

12 DO I=1,LFIN

13 XMUE(J)=XMUETOT(IPOS(I))

14 SEMIAX(J)=SEMIAXTOT(IPOS(I))

15 J=J+1

16 END DO

17 c If no RTBP is chosen, the task of this routine is completed

18 IF (ICO.EQ.0) GOTO 15

19 c Computing XMU and ENEM

20 CALL XMU_ENEM(XMUETOT,SEMIAXTOT)

21 c Computing the scaling factor gamma

22 CALL FACTGAMMA

23 c Check if the LIST is ordered. If it isn’t ordered, it orders

24 CALL ORDER

25 ..............
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FIG. 1. Workflow diagram of nmodjpl.

1.4. Subroutine read_modeleph. We extract data of the file ”modeleph.dat”. The

file has a matrix data structure of 53 rows and 3 columns. For each row (that identifies

an object as a planet barycentre, a planet or a satellite), we have 3 columns that contains

identifier of the body (first column), flag to indicate if the body is selected or not (second

column), and the file in which the body’s data is stored (third column).

Must be checked the value of the body ICO, and, if it is not zero, if the

corresponding body with this value was considered. Following this, it calls to the

subroutine ”change_file_dat.f” to create a new file with only the bodies taken.

It checks if the final list is congruent with ”cong.f”, i.e., if we take a planet,

the barycenter appropriate must be taked, and if we take a satellite, the planet and the

barycenter correspondent should be taked also.

Finally, we fill the common variable LIST. In the first row of this array, we

introduce the identifiers of the selected bodies. In the second row, for now, we just

indicate that we want positions of bodies putting ”1”. And, in the third row, we mark

if it is a barycenter, a planet or a satellite.

1 SUBROUTINE READ_MODELEPH(IPOS)

2 ...............

3 C Open data file

4 CALL GETLUN(IUNIT)
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5 ARXJ=’modeleph.dat’

6 OPEN(IUNIT,FILE=ARXJ,STATUS=’OLD’)

7 C Read data from data file

8 I=1

9 DO WHILE (.TRUE.)

10 READ(IUNIT,*, END=999) IDENTIF(I),DISP(I), ARCH_CARG(I)

11 I=I+1

12 END DO

13 999 CONTINUE

14 ........

15 C Create a new .DAT with the new values

16 CALL CHANGE_FILE_DAT(ARCH_CARG2)

17 CLOSE(IUNIT)

18 C See if the list is congruent

19 CALL CONG(NUM_LISTA)

20 ...............

FIG. 2. Workflow diagram of leer_modeleph.

1.5. Subroutine plajplnsat. It obtains states of a body (position, velocity, acceleration

and over-acceleration), using functions of the spicelib library. Given an epoch and a

body, we extract the data from the appropriate ephemerides file to calculate the state of

the body. Should be noted that the time in subroutine plajplnsat comes in Modified

Julian Dates, and in order to obtaint the states we will be using time in seconds.
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With the time and the chosen body, it does the extraction of data with the function

”spkg”, that we explain below. Finally, the states that we obtain are corverted to km/day,

km/day2 and km/day3.

In subroutine ”spkg” to calculate states of the body, we use functions of the spicelib

library. Function ”spksfs” is called, this function searches through loaded files to find

the first segment applicable to the body and epoch specified. Buffer searched segments

in the process, to attempt to avoid re-reading files. This routine finds the highest-priority

segment, in any loaded SPK file, such that the segment provides data for the specified body

and epoch. Also, subroutines ”spkr02” and ”spkr03” are called. Routine ”spkr02”

reads a single SPK data record from a segment of type 2 (Chebyshev, position only), and

routine ”spkr03” reads a single SPK data record from a segment of type 3 (Chebyshev

coefficients, position and velocity).

Finally, if we need acceleration and over-acceleration, we have built subroutine

”spke0203ipv”.

1 SUBROUTINE PLAJPLNSAT(ET,IPVAS,PVAS)

2 ..................

3 c Time in seconds

4 SECS=(ET-0.5D0)*DAYSEC

5 c Calculating position, velocity, acceleration and overacceleration

6 ICONT=1

7 DO I=1,LFIN

8 IF (LIST(2,I).NE.0) THEN

9 DO K=1,12

10 TSTATE(K)=0

11 END DO

12 IAUX_HNDL=IHANDLE(ICONT)

13 J=LIST(1,I)

14 IF (IPVAS.EQ.0) THEN

15 IPV=LIST(2,I)

16 ELSE

17 IPV=IPVAS

18 END IF

19 CALL SPKG(IPV, J, SECS, IAUX_HNDL, TSTATE)

20 ...................
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FIG. 3. Workflow diagram of plajplnsat.

2. Vector fields and changes of coordinates

In this section we will explain the vector fields and the changes of coordinates that

we have used to implement our software. First, we will show the vector field that we

have implemented for the rectricted problems with the change of coordinates appropriate.

After this, the vector fields for sideral and synodic coordinates, with their changes of

coordinates.

Finally, we will explain, in general, how we have built the program for this, and

then, more specifically, we will show the subroutines that we have done for this purpose.

2.1. Solar System model. Most restricted problems take as starting point the Restricted

Three Body Problem (RTBP). We recall that it models the motion of a particle under the

gravitational attraction of two primaries which are assumed to be point masses revolving

in circular orbits around their center of mass. The Hamilton function of this system is, in

a coordinate system that revolves with the primaries (such a system is called synodic),

H(x, y, z, px, py, pz) =
1

2
(p2x + p2y + p2z) + ypx − xpy −

1− µ

[(x− µ)2 + y2 + z2]1/2

− µ

[(x− µ+ 1)2 + y2 + z2]1/2
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being µ = m2/(m1 +m2), where m1 > m2 are the masses of the primaries.

We will consider, instead of taking as starting equations those of the RTBP,

Newton’s equation for the motion of an infinitesimal body in the force field created by

the bodies of the Solar System

(7) R′′ = G
∑

i

mi
(Ri −R

‖R−Ri‖3
,

where G is the gravitational constant, R is the position of the infinitesimal body, Ri is the

position of the Solar System body i in some suitable inertial system and mi its mass.

Below, we introduce suitable reference systems and units such that, after selecting

two bodies of the Solar System as primaries, the above equations are set as a perturbation

of the RTBP. We will denote the set of bodies of the Solar System by S=P1,...,P11

where P1,...,P11 are the nine planets, the Moon and the Sun, respectively. The mass

of P ∈ Swill be denoted by mp. It should be noted that, althought in this text we will talk

only about P1,...,P11, in our software, this model is extended to the natural satellites

of the planets.

In an inertial reference system, the Lagrangian related to Newton’s equations of

motion 7 of an infinitesimal body Q under the gravitational action of the bodies in S, is

L(R,R′, t∗) =
1

2
〈R′, R′〉+

∑

i∈S

Gmi

k‖R−Ri‖
,

where R=(X,Y,Z)T is the position of Q, the prime denotes the derivative with respect to

time, t∗, 〈R′, R′〉 is the dot product between R’ and R’, G is the gravitational constant,

Ri is the position of the body i ∈ S, and ‖ · ‖ denotes the Euclidean norm. In practice,

it is convenient that the reference frame and units, both in space and time, are consistent

with the ephemerides data files used for the determination of Ri.

Since we are interested in writing the equations of motion for Q as a perturbation

of the RTBP equations, we must select two bodies I,J ∈ S with mI > mJ , which

will play the role of primaries. In this way, the mass parameter, µ, is defined as

µ = mJ/(mI + mJ), and so 1 − µ = mI/(mI + mJ). Next, we must introduce the



42 3. SOFTWARE PACKAGE DESCRIPTION

FIG. 4. Position of bodies.

synodic reference frame. Recall that the origin of this system is set at the barycenter of

I, J and that the positions of the primaries are fixed at (µ, 0, 0) and (µ− 1, 0, 0).

The transformation from synodical coordinates, r=(x,y,z)T , to sideral ones, R,

is defined by

(8) R = B + kCr,

where

- The translation, B, is given by

B = mIRI+mJRJ

mI+mJ
,

that clearly puts the barycenter of the primaries at the origin.

- The orthogonal matrix C=(e1,e2,e3), sets the primaries on the x-axis and turns the

instantaneous plane of motion of the primaries into the xy plane (by requiring that

the relative velocity of one primary with respect to the other has its third component

equal to zero). The columns of C are:

e1 =
RJI

‖RJI‖
, e3 =

RJI×R′

JI

‖RJI×R′

JI
‖
, e2 = e3 × e1

being RJI=RJ-RI .

- k=‖RJI‖ is a scaling factor which makes the distance between the primaries to be

constant and equal to 1.

It is important to remark that this change of variables is non-autonomous, since B,k

and C depend on time through the components of RI and RJ .
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The change of coordinates given by equation 8 is checked to preserve the

Lagrangian form of the equations. Then, as R’=B’+k’s+ks’,

〈R′, R′〉 = 〈B′, B′〉+ 2k′〈B′, s〉+ 2k〈B′, s′〉+ k′2〈r, r〉+ 2kk′〈s, s′〉+ k2〈s′, s′〉,

and for a body i, Ri=B+kCri, and C is orthogonal, then

‖R−Ri‖ = ‖kCr − kCri‖ = k‖r − ri‖.

The new Lagrangian becomes

L(r, r′, t∗) =
1

2
〈B′, B′〉+ k′〈B′, s〉+ k〈B′, s′〉+ 1

2
k′2〈r, r〉+ kk′〈s, s′〉+ 1

2
k2〈s′, s′〉

+
GmI

k[(x− µ)2 + y2 + z2]1/2
+

GmJ

k[(x− µ+ 1)2 + y2 + z2]1/2
+
∑

i∈S∗

Gmi

k‖r − ri‖
,

where s=Cr, ri is the position of the body i in dimensionless coordinates and S∗

represents the set of Solar System bodies without the two primaries I,J. To get above

expression of L, we use that C defines an orthogonal transformation and, hence, it

preserves the scalar product and the Euclidean norm.

Finally, we want to use the same time units as those usual for the RTBP, where 2π

time units correspond to one revolution of the primaries. If t∗ is some dynamical time and

n is the mean motion of J with respect to I, then we perform the change of independent

variable throught

t = n(t∗ − t∗0),

where t∗
0 is a fixed epoch, t will be called dimensionlees time. We should remark that, in

our program, when we take Earth+Moon it means the Earth-Moon barycenter and, for this

system, the Earth and the Moon are substituted in S by a fictitious body of mass mE+mM

behaving as their barycenter. Using Kepler’s third law, G(mI +mJ) = n2a3, we can also

define the mean semi-major axis of the orbit of one primary around the other.

If we denote with a dot the derivative with respect to t, then the new Lagrangian

can be written as

L(r, ṙ, t) = n2

(

1

2
〈Ḃ, Ḃ〉+ k̇〈Ḃ, s〉+ k〈Ḃ, ṡ〉+ 1

2
k̇2〈r, r〉+ kk̇〈s, ṡ〉+ 1

2
k2〈ṡ, ṡ〉

)

+
GmI

k[(x− µ)2 + y2 + z2]1/2
+

GmJ

k[(x− µ+ 1)2 + y2 + z2]1/2
+
∑

i∈S∗

Gmi

k‖r − ri‖
.
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From this Lagrangian we can remove the term 〈Ḃ, Ḃ〉, since it is independent of r

and ṙ, and multiply by the scaling factor a/(G(mI +mJ)) = 1/(n2a2) without affecting

the equations of motion. In this way we get

L(r, ṙ, t) =
1

a2

(

k̇〈Ḃ, s〉+ k〈Ḃ, ṡ〉+ 1

2
k̇2〈r, r〉+ kk̇〈s, ṡ〉+ 1

2
k2〈ṡ, ṡ〉

)

+
a

k

(

1− µ

[(x− µ)2 + y2 + z2]1/2
+

µ

[(x− µ+ 1)2 + y2 + z2]1/2
+
∑

i∈S∗

µ

k‖r − ri‖

)

.

where µi = mi/(mI +mJ).

Since e1,e2,e3 form an orthogonal basis, we have that 〈ei, ej〉 = δij, 〈ėi, ej〉 =

−〈ei, ėj〉 and 〈ėi, ei〉 = 0 for i,j=1,2,3. It can be further shown that 〈ė1, ė2〉 =

0, 〈ė2, ė3〉 = 0 and 〈ė1, e3〉 = 0.

2.2. Model in sideral and synodic coordinates. Here, when we refer to the real Earth-

Moon system, we mean the gravitational model of the nine planets, the Moon and the Sun.

But, in practice, we will extend the model for all bodies (planets and natural satellites) of

the Solar System.

Their positions are given by the JPL-ephemerides. Denote the set of these bodies

as S=(µ1, ..., µ11). where µ1, ..., µ9 indicate the reduced masses of the nine planets and

µ10, µ11 indicate the reduced masses of the Moon and the Sun (µi = mi/(m3 + m10),

where mi (i = 1,...,11) are the masses of the nine planets, the Moon and the Sun).

The mass unit is the sum of the masses of the Earth and the Moon. In an Earth-centered

sideral coordinate, the small body is defined as follows

(9) ~̈R = −µ3

~R

R3
−
∑

i∈S,i 6=3

µi

(

~∆i

∆3
i

+
~Ri

R3
i

)

where ~R is the position vector of the small body, ~Ri is the position vector of the major

body µi, and ~∆i is the position vector of the small body from the major body µi.

Denoting the corresponding variables in the Earth-centered synodic coordinate as

~r, ~ri, ~δi, the following relations hold (similar relations hold for ~ri, ~δi).

Now, the transformation from synodic coordinates, r, to sideral ones, R, will be:

(10) R = Cr, Ṙ = Cṙ + Ċr, R̈ = C̈r + 2Ċṙ + Cr̈
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where C is the rotation matrix, determined by the motion of the Moon with respect to the

Earth

C = (e1, e2, e3); e1 =
R10

k
, e3 =

R10 × Ṙ10

‖R10 × Ṙ10‖
, e2 = e3 × e1

where k=|R10|. In our program, we extend this to all bodies. Keep in mind that

the transformation from synodical to sideral coordinates is different from that given

previously. There, the coordinate r is scaled by the instantaneous distance k between

the Earth and the Moon. Here we keep the length unit fixed. Substituting equation 10 into

9 we obtain

~̈r = −2CT Ċ~̇r − C T̈~r − µ3
~r

r3
−
∑

i∈S,i 6=3

µi

(

~δi
δ3i

+
~ri
r3i

)

.

2.3. Vector fields and changes of coordinates implementation. Another objetive of

this software is to do integrations around a body. For this purpose, we have built the

more common vector fields for the Restricted Three Body Problem (RTBP) and for

some reference systems, such that inertial and synodic systems. Also, to have different

possibilities, we have built several changes of coordinates, to work in coordinates RTBP,

JPL, inertial or synodic.

To construct vector fields, we use the bodies that we have selected before,

through the variable LIST. With these bodies, we choose the initial coordinates and

as many states as we want (ie. if we only want position, position+velocity, posi-

tion+velocity+acceleration or position+velocity+acceleration+overacceleration), and, for

a given epoch, we calculate the vector field chosen. Also, for some vector field, we have

implemented the variational equations. For example, if we want to do integrations around

the Earth, using the vector field of the RTBP, we can select the Sun (for example) and

we can configure the program to use variational equations. Should be taken in mind that,

when we work in RTBP system, Earth and Sun (or other bodies) will be in the X axis.

Also, when, for example, we have calculated a vector field in determinate

coordinates and we want to see this vector field in another coordinates, or simply, when

we have the state of a body (position, position+velocity,...) in a coordinate system and we

want to change to another, this software allows to perform this change of coordinates. For

example, we can do change of coordinates between RTBP and JPL coordinates, in both

directions, only indicating with a parameter of the routine selected, what is the direction
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FIG. 5. Change of coordinates.

(ie., in the right variable we will set to ”1” if we want the change from JPL to RTBP, and

to ”-1” if we want the inverse change).

With all these routines, it be able to do refinements in the integrations, to calculate

orbits with more precision, such that we will show in the application of the software with

the parallel shooting.

Below, we will explain, with more detail, the package files and their construction.

We will show brief fragments of code to illustrate what we are doing.
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2.4. Subroutines of vector fields. The subroutines ”derivcs”,”dervin”,”dervsin” have

been built to propagate integrations of ephemerides data. Using a main program for

example, it is necessary to introduce initial conditions and from this, we call subroutine

”rk78” for propagation. This last routine is an implementation of a Runge-Kutta-Fehlberg

method of orders 7 and 8. Using a total of thirteen steps (and evaluations of the vector

field) it computes two different estimations of the next point. The difference between

both estimations (with local errors of order 8 and 9) is computed and the L1 norm is

obtained. This norm is divided by the number of equations. The value obtained in this

way is required to be less than a given tolerance E1 times (1 + 0.01 ∗ DD) where DD is

the L1 norm of the point computed to order 8. If this requirement is satisfied, the order

8 estimation is taken as the next point. If not, a suitable value of the step H is obtained

and the computation is started again. In any case, when the next point is computed, a

prediction of the step H, to be used in the next call of the routine, is done.

Routine ”rk78” calls the subroutine ”derivcs”, ”dervin” or ”dervsin” that we

will explain below. These subroutines compute the vector field defining the equations of

motion and the variational equations with respect to time and coordinates (if wanted) for

a particle in the solar system according to a given model centered in some place of the

solar system (by default, in the solar system barycenter). The result is an array consisting

of components of the vector field in JPL-Equatorial coordinates with origin according to

IBC. In the next section we will explain how we have made these vector fields.

It must observe that, in the list of bodies that we will want use, it is necessary include

always the Sun.

1 SUBROUTINE DERIVCS(A,B,N,F)

2 ...........

3 CALL PLAJPLNSAT(A,4,PVAS) !IPV=2

4 ...........

5 DO 2 I=1,LFIN

6 IF (LIST(3,I).EQ.0) GOTO 2 !Barycentres are not taken

7 DO 18 L=1,3

8 X(L)=B(L)-PVAS(L,I)

9 IF (N.GT.6) V(L)=PVAS(L+3,I)

10 18 CONTINUE

11 R2=X(1)*X(1)+X(2)*X(2)+X(3)*X(3)

12 R3=R2*DSQRT(R2)

13 XMAS=XMUE(I)*DAYSEC

14 XMAS=XMAS*DAYSEC

15 CO=XMAS/R3
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16 DO 4 L=1,3

17 F(L+3)=F(L+3)-CO*X(L)

18 4 CONTINUE

19 IF (N.EQ.6) GOTO 2

20 AUX=0.D0

21 DO 6 L=1,3

22 6 AUX=AUX+X(L)*V(L)

23 DO 7 L=1,3

24 G(L)=G(L)+CO*(V(L)-3*X(L)*AUX/R2)

25 DO 7 K=1,3

26 IF(K.EQ.L) H(L,K)=H(L,K)-CO

27 7 H(L,K)=H(L,K)+CO*(3*X(L)*X(K)/R2)

28 2 CONTINUE

29 IF (N.EQ.6) RETURN

30 DO 9 J=1,6

31 DO 9 I=1,3

32 ............

33 DO 8 K=1,3

34 F(I+6*J+9)=F(I+6*J+9)+H(I,K)*B(K+6*J+6)

35 F(I+6*J+27)=F(I+6*J+27)+H(I,K)*B(K+6*J+24)

36 8 CONTINUE

1 SUBROUTINE DERVIN(A,B,N,F)

2 DO 118 I=1,3

3 RT(I)=PVAS(I,IPOS_ICO)

4 118 CONTINUE

5

6 DO 120 K=1,LFIN

7 IF ((K.NE.IPOS_ICO).AND.(LIST(3,K).NE.0)) THEN

8 DO 119 L=1,3

9 RS(L)=PVAS(L,K)

10 RI(L)=RS(L)-RT(L)

11 DELTAG(L)=B(L)-RI(L)

12 119 CONTINUE

13 SUMDELG=DSQRT(DELTAG(1)**2+DELTAG(2)**2+DELTAG(3)**2)

14 SUMRIG=DSQRT(RI(1)**2+RI(2)**2+RI(3)**2)

15 XMAS=XMUE(K)

16 c XMUE in km**3/day**2

17 XMAS=XMAS*DAYSEC

18 XMAS=XMAS*DAYSEC

19 DO I=1,3

20 DELG(I)=DELTAG(I)/(SUMDELG**3)

21 RIVECT(I)=RI(I)/(SUMRIG**3)

22 SUMAG(I)=SUMAG(I)+XMAS*(DELG(I)+RIVECT(I))

23 END DO

24 END IF
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25 120 CONTINUE

26

27 SUME=DSQRT(B(1)**2+B(2)**2+B(3)**2)

28 IF (SUME.EQ.0) SUME=1

29 XMAS=XMUE(IPOS_ICO)

30 c XMUE in km**3/day**2

31 XMAS=XMAS*DAYSEC

32 XMAS=XMAS*DAYSEC

33 DO I=1,3

34 F(I)=B(I+3)

35 F(I+3)=-XMAS*(B(I)/(SUME**3))-SUMAG(I)

36 END DO

37 .............

2.5. Subroutines of change of coordinates. These routines have been built to perform

changes of coordinates between different reference systems. For this, and according to the

change we want, we will call the subroutines ”transs”, ”transsjplpl”, ”transsplrtbp” or

”transsinsin”.

Routine ”transs” does the transformation from adimensional ’RTBP’ coordinates

to JPL coordinates ( J2000 equatorial) or viceversa, according to the formula:

(EQ)=K*(C)*(AD)+B

where (EQ) is a vector with equatorial JPL coordinates, (AD) is another vector with

adimensional RTBP coordinates, K is the scaling factor, (C) is a orthogonal matrix and B

is the traslation (the construction of their columns depend on which reference system we

have selected, we will explain this in more detail in the section ”Vector fields”).

In the ’RTBP’ system, the big primary is located at (µ, 0, 0) with mass 1 − µ and

the small one at (µ− 1, 0, 0) with mass µ.

Routine ”transsk1” is as ”transs”, but the scaling factor K is set to k = 1. (And

the same rule applies with all subroutines ending the name with ”K1”.)

Routine ”transsplrtbp” uses the same formula than ”transs”, but this routine

does the transformation from adimensional ’RTBP’ coordinates to JPL coordinates cen-

tered in a planet barycenter (IBC), or viceversa.
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Routine ”transsjplpl” makes the transformation from ’JPL’ coordinates centered

in SSB (Solar System Barycentre) to ’JPL’ coordinates centered in the barycenter

of a planet (IBC) or viceversa. This routine uses the subroutines ”transs” and

”transsplrtbp” to do the change.

Routine ”transsinsin” transforms from inertial (EQ) to sinodical (AD) coordinates

or viceversa, according to the formula:

(EQ)=(C)*(AD)

where (C) is orthogonal matrix.

These routines use the routine ”plajplnsat” to calculate the states of the bodies.

Routine ”transli” requires special mention. This routine transforms from

adimensional barycentric coordinates in a ’RTBP’ frame to addimensional-normalized (+

or - according to Richardson) coordinates with origin at an equilibrium point or viceversa.

The reference frames at LI are the following:

• L1, L2 and L3:

– X axis positive direction pointing oposite to the big primary (this is, for L3 is the

same sense as ’RTBP’ and for L1 and L2 is oposite sense).

– Y axis rotated 90 deg counterclockwise from X axis.

– Z axis perpendicular to the plane pointing north.

• L4 and L5: the reference frame is the translation of the ’RTBP’ one to the equilibrium

point. The positive directions of the axis are not changed.

Let X,Y,Z coordinates of the ’RTBP’ and x,y,z adimensional LI , the explicit

change of coordinates are (in all the cases the z-equation is z=γ· Z and for L4 and L5

γ = 1):

• X = −γ ∗ x+ µ− 1 + γ

Y = −γ ∗ y for L1,

• X = −γ ∗ x+ µ− 1− γ

Y = −γ ∗ y for L2,
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• X = γ ∗ x+ µ+ γ

Y = γ ∗ y for L3,

• X = x− µ+ 0.5

Y = y +
√
3/2 for L4,

• X = x− µ+ 0.5

Y = y −
√
3/2 for L5,

where γ is the adimensional position of the equilibrium point LI , distance in ’RTBP’ units

from the point LI to the nearest primary.

1 SUBROUTINE TRANSS(DAY,EQ,AD,IPVA,IS)

2 .................

3 C First, we check if is a barycenter, the Moon, Sun, a planet or a satellite

4 36 IF (((IBC.NE.K).AND.(IBC.NE.ICO)).AND.(LIST(3,IPOS_ICO).EQ.0))

5 . THEN !Barycenter(primario menor)-Sun(p. mayor)

6 DO 5 I=1,3

7 E(I)=PVAS(I,IPOS_ICO)-PVAS(I,IPOS_K)

8 XT(I)=PVAS(I,IPOS_K)+E(I)*XMU

9 EP(I)=PVAS(I+3,IPOS_ICO)-PVAS(I+3,IPOS_K)

10 IF (IPVA.EQ.1) GOTO 5

11 XT(I+3)=PVAS(I+3,IPOS_K)+EP(I)*XMU

12 EPP(I)=PVAS(I+6,IPOS_ICO)-PVAS(I+6,IPOS_K)

13 IF (IPVA.EQ.2) GOTO 5

14 XT(I+6)=PVAS(I+6,IPOS_K)+EPP(I)*XMU

15 EPPP(I)=PVAS(I+9,IPOS_ICO)-PVAS(I+9,IPOS_K)

16 5 CONTINUE

17 ELSE

18 IF ((IBC.EQ.K)) THEN !Earth-Moon

19 WRITE(*,*) ’PUES NO’

20 DO 6 I=1,3

21 E(I)=PVAS(I,IPOS_ICO)

22 XT(I)=E(I)*XMU

23 EP(I)=PVAS(I+3,IPOS_ICO)

24 IF (IPVA.EQ.1) GOTO 6

25 XT(I+3)=EP(I)*XMU

26 EPP(I)=PVAS(I+6,IPOS_ICO)

27 IF (IPVA.EQ.2) GOTO 6

28 XT(I+6)=EPP(I)*XMU

29 EPPP(I)=PVAS(I+9,IPOS_ICO)

30 6 CONTINUE

31 ELSE IF (LIST(3,IPOS_ICO).EQ.2) THEN !Satellite-Planet. ICO is a

satellite

32 DO 7 I=1,3

33 E(I)=PVAS(I,IPOS_ICO)-PVAS(I,IPOS_IPLN)

34 XT(I)=PVAS(I,IPOS_IPLN)+PVAS(I,IPOS_BARY)+E(I)*(XMU)
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35 EP(I)=PVAS(I+3,IPOS_ICO)-PVAS(I+3,IPOS_IPLN)

36 .................

37 C Computation of the scaling factor K and the matrix C=(C1,C2,C3)

38 XKB=E(1)*E(1)+E(2)*E(2)+E(3)*E(3)

39 XK=DSQRT(XKB)

40 CALL VEC(E,EP,EA)

41 XKD=EA(1)*EA(1)+EA(2)*EA(2)+EA(3)*EA(3)

42 XKA=DSQRT(XKD)

43 ...............

44 C Computation of the first derivative of K and C

45 XKP=(E(1)*EP(1)+E(2)*EP(2)+E(3)*EP(3))/XK

46 CALL VEC(E,EPP,EB)

47 DO 22 I=1,3

48 22 C1P(I)=(-XK*EP(I)+XKP*E(I))/XKB

49 RL=(C3(1)*EB(1)+C3(2)*EB(2)+C3(3)*EB(3))/XKA

50 ...............

51 C Computation of the second derivative of K and C

52 XKPP=EP(1)*EP(1)+EP(2)*EP(2)+EP(3)*EP(3)

53 XKPP=XKPP+E(1)*EPP(1)+E(2)*EPP(2)+E(3)*EPP(3)

54 XKPP=(XKPP-XKP*XKP)/XK

55 XKE=(XKPP*XK-2.D0*XKP*XKP)/(XKB*XK)

56 DO 50 I=1,3

57 50 C1PP(I)=-EPP(I)/XK+2.D0*EP(I)*XKP/XKB+E(I)*XKE

58 ................

59 C End of the computations

60

61 100 IF (IS.EQ.1) GOTO 200

62

63 C Transformation from adimensional to equatorial coordinates

64 DO 19 I=1,3

65 19 EQ(I)=XK*(C1(I)*AD(1)+C2(I)*AD(2)+C3(I)*AD(3))+XT(I)

66 IF (IPVA.EQ.1) RETURN

67 DO 21 I=1,3

68 R=C1(I)*AD(1)+C2(I)*AD(2)+C3(I)*AD(3)

69 S=C1P(I)*AD(1)+C2P(I)*AD(2)+C3P(I)*AD(3)

70 T=(C1(I)*AD(4)+C2(I)*AD(5)+C3(I)*AD(6))*ENEM

71 EQ(I+3)=XT(I+3)+XKP*R+XK*(S+T)

72 IF (IPVA.EQ.2) GOTO 21

73 U=C1PP(I)*AD(1)+C2PP(I)*AD(2)+C3PP(I)*AD(3)

74 UU=(C1P(I)*AD(4)+C2P(I)*AD(5)+C3P(I)*AD(6))*ENEM

75 UUU=(C1(I)*AD(7)+C2(I)*AD(8)+C3(I)*AD(9))*ENEM*ENEM

76 EQ(I+6)=XT(I+6)+XKPP*R+XK*(UUU+U)+2.D0*(XKP*(S+T)+XK*UU)

77 21 CONTINUE

78 RETURN

79

80 C Transformation from equatorial to adimensional coordinates

81 200 DO 121 I=1,3
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82 E(I)=EQ(I)-XT(I)

83 IF (IPVA.EQ.1) GOTO 121

84 EP(I)=EQ(I+3)-XT(I+3)

85 IF (IPVA.EQ.2) GOTO 121

86 EPP(I)=EQ(I+6)-XT(I+6)

87 121 CONTINUE

88 AD(1)=(C1(1)*E(1)+C1(2)*E(2)+C1(3)*E(3))/XK

89 AD(2)=(C2(1)*E(1)+C2(2)*E(2)+C2(3)*E(3))/XK

90 AD(3)=(C3(1)*E(1)+C3(2)*E(2)+C3(3)*E(3))/XK

91 IF (IPVA.EQ.1) RETURN

92 DO 122 I=1,3

93 122 AD(I+3)=-XKP*AD(I)

94 DO 123 I=1,3

95 AD(4)=AD(4)+C1(I)*EP(I)+C1P(I)*E(I)

96 ................

2.6. Subroutine dtranbl. Here, we are going to explain subroutine ”dtranbl” and

similars.

In ”dtranbl” we are going to transform from JPL-equatorial to addimensional co-

ordinates (position and velocity) and computation of the differential of this transforma-

tion or viceversa. In this subroutine, we need a day and coordinates, for example JPL-

equatorial coordinates (in km and km/day) with origin according to IBC (see common

model), and it returns adimensional coordinates and the differential of this change. The

same computations can be done for the inverse change.

Subroutine ”dtranbljplpl” does the same computations but the transformation is

from JPL-equatorial to JPL coordinates centered in the barycenter of a planet (IBC) (po-

sition and velocity) and computation of the differential of this transformation or viceversa.

Something similar happens in subroutine ”dtranblplrtbp”. In this subroutine, we

transform from JPL-equatorial coordinates centered in the barycenter of a planet (IBC)

to addimensional coordinates (position and velocity) and computation of the differential

of this transformation or viceversa.

1 SUBROUTINE DTRANBL(DAY,EQC,ADL,ICA,DTR,IS)

2 ................

3 C
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4 100 IF (IS.EQ.1) GOTO 200

5

6 C

7 C Transformation from adimensional to equatorial coordinates

8 C

9 IF (ICA.EQ.1) THEN

10 CALL TRANSLI(ADB,ADL,2,-1)

11 ELSE

12 DO 24 I=1,6

13 ADB(I)=ADL(I)

14 24 CONTINUE

15 ENDIF

16 DO 19 I=1,3

17 EQC(I)=XK*(C1(I)*ADB(1)+C2(I)*ADB(2)+C3(I)*ADB(3))+XT(I)

18 19 CONTINUE

19 DO 21 I=1,3

20 R=C1(I)*ADB(1)+C2(I)*ADB(2)+C3(I)*ADB(3)

21 S=C1P(I)*ADB(1)+C2P(I)*ADB(2)+C3P(I)*ADB(3)

22 T=(C1(I)*ADB(4)+C2(I)*ADB(5)+C3(I)*ADB(6))*ENEM

23 EQC(I+3)=XT(I+3)+XKP*R+XK*(S+T)

24 21 CONTINUE

25 DTR(1,1)=1.D0/ENEM

26 DO 25 J=2,7

27 DTR(1,J)=0.D0

28 25 CONTINUE

29 DO 27 I=1,3

30 DTR(I+1,2)=XK*C1(I)

31 DTR(I+1,3)=XK*C2(I)

32 DTR(I+1,4)=XK*C3(I)

33 ...............

34 C

35 C Transformation from equatorial to adimensional coordinates

36 C

37 200 DO 121 I=1,3

38 E(I)=EQC(I)-XT(I)

39 EP(I)=EQC(I+3)-XT(I+3)

40 EPP(I)=EQC(I+6)-XT(I+6)

41 121 CONTINUE

42 ADB(1)=(C1(1)*E(1)+C1(2)*E(2)+C1(3)*E(3))/XK

43 ADB(2)=(C2(1)*E(1)+C2(2)*E(2)+C2(3)*E(3))/XK

44 ADB(3)=(C3(1)*E(1)+C3(2)*E(2)+C3(3)*E(3))/XK

45 DO 122 I=1,3

46 ADB(I+3)=-XKP*ADB(I)

47 122 CONTINUE

48 DO 123 I=1,3

49 ADB(4)=ADB(4)+C1(I)*EP(I)+C1P(I)*E(I)

50 ADB(5)=ADB(5)+C2(I)*EP(I)+C2P(I)*E(I)
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51 ADB(6)=ADB(6)+C3(I)*EP(I)+C3P(I)*E(I)

52 123 CONTINUE

53 ...................

54 DTR(5,I+4)=DTR(2,I+1)/ENEM

55 DTR(6,I+4)=DTR(3,I+1)/ENEM

56 DTR(7,I+4)=DTR(4,I+1)/ENEM

57 DTR(5,I+1)=(C1P(I)-XKP*C1(I)/XK)/XK

58 DTR(6,I+1)=(C2P(I)-XKP*C2(I)/XK)/XK

59 DTR(7,I+1)=(C3P(I)-XKP*C3(I)/XK)/XK

60 132 CONTINUE

61 DO 134 I=1,3

62 DTR(I+1,1)=DTR(I+4,2)*E(1)+DTR(I+4,3)*E(2)+DTR(I+4,4)*E(3)-

63 & DTR(I+1,2)*XT(4)-DTR(I+1,3)*XT(5)-DTR(I+1,4)*XT(6)

64 DTR(I+4,2)=DTR(I+4,2)/ENEM

65 DTR(I+4,3)=DTR(I+4,3)/ENEM

66 DTR(I+4,4)=DTR(I+4,4)/ENEM

67 AM(1,I)=(C1PP(I)-2.D0*XKP*C1P(I)/XK)/XK

68 AM(2,I)=(C2PP(I)-2.D0*XKP*C2P(I)/XK)/XK

69 AM(3,I)=(C3PP(I)-2.D0*XKP*C3P(I)/XK)/XK

70 134 CONTINUE

71 U=(2.D0*XKP*XKP-XK*XKPP)/(XK*XK)

72 DO 136 I=1,3

73 EG(1)=U*DTR(I+4,5)+AM(I,1)/ENEM

74 EG(2)=U*DTR(I+4,6)+AM(I,2)/ENEM

75 EG(3)=U*DTR(I+4,7)+AM(I,3)/ENEM

76 ..................

3. Short file descriptions

Let’s do a brief summary of the subroutines that we have in the package. To do this,

we grouped the subroutines in blocks to indicate which of them do similar work:

• Read ephemerides: We use these programs to read ephemerides files ( *.bsp) or to

choose the bodies we want to select.

– model.dat: This is a text file where we provide the model (epoch, origin of

coordinates, reference system and equilibrium point) that we are going to use.

– modeleph.dat: Another text file, here we have all the bodies and we can select

which we want to include (with a ”1”).

– nmodjpl:This routine is used for the initialization of all the basic constants such

as the mass ratios of the bodies, semiaxes, and the JPL-model of the solar system

adopted.
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– read_modeleph: It reads the bodies that we select in modeleph.dat and we

will write these in new_files.dat.

– change_file_dat: It creates a new file, new_files.dat with the selected

bodies.

– commonmodel.inc: This file contains common variables that are shared between

several subroutines.

• Manipulate list: In this block we are going to describe the subroutines that use the

list of some way.

– barorcom: It changes the mode (activate or desactivate) of a selected body in the

list.

– cong: It looks if the list is consistent with the planets and satellites selected.

– dessat: To activate or deactivate a satellite.

– order: It checks if the elements of list are ordered. If they aren’t, it orders the

list by binary insertion.

– putlist: It puts elements ordered in list by binary insertion.

– rmvlist: To remove an element of the list.

– writelist: It writes the bodies selected in file ”list.dat”.

• Computations: Block to do differents calculations that we are going to use.

– cdjta: It changes Julian Dates into adimensional RTBP time or viceversa.

– factgamma: It calculates the scaling factor gamma.

– fillsemiaxes: This subroutine fills the semiaxes of the orbits of the bodies of the

solar system in km. Values taken from Explanatory Supplement ([9]).

– fillxmue: It fills a variable with the values GM of all bodies. In km3/s2.

– plajplnsat: Routine for the computation of the position, velocity, acceleration

and overacceleration of the bodies of the solar system using the JPL ephemerides.

– xmu_enem: This routine calculate the mass parameter of the RTBP considered

and the mean motion of the system.

– spkg: Auxiliary routine used in plajplnsat to calculate state of a body.

– spke0203ipv: Auxiliary routine used in spkg to calculate acceleration and

overacceleration.

– vec: Auxiliary routine to compute the cross product of 3 by 3 vectors.

• Vector fields: These routines implement some vector fields that we will explain later.

– derivcs: It computes the vector field defining the equations of motion and the

variational equations with respect to time and coordinates (if wanted) for a
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particle in the the solar system according to a given model centered in some

place of the solar system.

– dervin: Another subroutine to compute another vector field in inertial coordi-

nates.

– dervsin: Another subroutine to compute another vector field in synodic

coordinates.

– rk78: This routine is an implementation of a Runge-Kutta-Fehlberg method of

orders 7 and 8.

• Change of coordinates: This block contains subroutines to accomplish different

changes of coordinates.

– transs / transsk1: Transformation from adimensional RTBP coordinates to JPL

coordinates or viceversa. In transsk1 the scaling distance factor is k = 1.

– transsinsin: Transformation from inertial to sinodical coordinates or viceversa.

– transsjplpl / transsjplplk1: Transformation from JPL coordinates centered in

Solar System Barycentre to JPL coordinates centered in the barycenter of a planet

or viceversa.

– transsplrtbp / transsplrtbpk1: Transformation from adimensional RTBP

coordinates to JPL coordinates centered in the barycenter of a planet or viceversa.

– dtranbl: Transformation from JPL-equatorial to addimensional coordinates

(position and velocity) and computation of the differential of this transformation

or viceversa.

– dtranbljplpl: Transformation from JPL-equatorial to JPL coordinates centered

in the barycenter of a planet (position and velocity) and computation of the

differential of this transformation or viceversa.

– dtranblplrtbp: Transformation from JPL-equatorial coordinates centered in the

barycenter of a planet to addimensional coordinates (position and velocity) and

computation of the differential of this transformation or viceversa.

– transli: Transformation from adimensional barycentric coordinates in a RTBP

frame to addimensional-normalized coordinates with origin at an equilibrium

point or viceversa.

– trcabj: This is an auxiliary routine to change from any type of coordinates to

another.
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FIG. 6. Workflow diagram of blocks.



Chapter 4

Use of the software. Simulations and Results

The objetive of this chapter is to show how to use this software and to test the

software package, doing several simulations of the differents programs. First, we are

going to check if routines of change of coodinates and of vector fields are correct. After

this, we will do some integrations of orbits to see the figures that appear. Finally, we will

show one of the applications of the program, the parallel shooting.

1. How to use this software package

We need to select a determinate model as predetermined. This model is stored at

the file list.dat. If we would want change this model, first we should have to open

modeleph.dat with a simple text editor, and here, put in the second column a ”1”

value on the bodies that we want choose and change into a ”0” value the bodies that we

don’t want to choose for the model. Also, we have to open the file model.dat and

select the conditions of the model with the parameters that we have explained for this file

before.

With this, we can run the main program, executing next command on the prompt:

$ ./main.exe

This command will run the main routine selected, that will call always to the

subroutine nmodjpl. We should remember, as we have explained, that in this subroutine

there are several calls to routines commented. If we would want use some of these

routines, we only have to uncomment them in nmodjpl, and compile again the program

with the command:

$ ./make.csh

59
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Finally, we have built different ”main programs” to use all the subroutines of vector

fields and change of coordinates that we have. But, if we would want to use subroutines

otherwise we would only have to follow the examples of these main programs (all of them

are named like ”main_ ∗ .f”.

2. Tests

The tests that we are going to do check the change of coordinates in different

systems in order to see whether they are correct.

2.1. Changing coordinates from RTBP to JPL. Our first test consists in checking

the subroutine transs. We should remember that this subroutine makes a change of

coordinates from RTBP to JPL coordinates or viceversa. Then, this test will consist in take

coordinates in a JPL system and do the change to RTBP, and after, this RTBP coordinates

change them again to JPL coordinates, and check that they were the same than at first.

We take initial conditions:

X = −0.2656698311 · 108, Y = 0.1340162335 · 109, Z = 0.5828199141 · 108
Ẋ = −0.2583199517 · 107, Ẏ = −0.4156446631 · 106, Ż = −0.1802176846 · 106
Ẍ = −0.2656698311 · 105, Ÿ = 0.1340162335 · 106, Z̈ = 0.5828199141 · 105

Basically, the main Fortran code is below:

1 INCLUDE ’commonmodel.inc’

2 CALL NMODJPL

3

4 N=9

5 DAY=0.D0

6 IPVA=3

7 OPEN (NCD,FILE=ARXOUT)

8

9 IS=1

10 CALL TRANSS(DAY,EQ,AD,IPVA,IS)

11

12 IS=-1

13 CALL TRANSS(DAY,EQB,AD,IPVA,IS)

14

15 WRITE(NCD,*) ’DIFFERENCE: ’

16 DO I=1,N

17 DIF(I)=EQB(I)-EQ(I)
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18 END DO

19 WRITE(NCD,100) (DIF(I),I=1,N)

What we are doing here is to call to the subroutine transs with value IS=1 and IPVA=3

for that in this way it makes a change of positions, velocities and accelerations from JPL

coordinates to RTBP ones at time 0 in Julian ephemerides epoch. After, with IS=-1 we

make the inverse change.

When we call to nmodjpl we read the JPL model of the Solar System that we are

adopting. In this first test, our model is ICO=3 (Earth Barycentre), and bodies: Mercury,

Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Moon and Sun. The results

are:

1 DIFFERENCE:

2 0.3725290298E-08 -0.2980232239E-07 0.0000000000E+00

3 0.4656612873E-09 -0.1164153218E-09 -0.5820766091E-10

4 0.7275957614E-11 -0.2910383046E-10 0.7275957614E-11

If we change the model, ICO=599 (i.e. Jupiter) and bodies: Jupiter, Sun, Moon, Io

and Europa; we obtain:

1 DIFFERENCE:

2 -0.4470348358E-07 -0.1490116119E-07 -0.3725290298E-07

3 0.0000000000E+00 -0.1746229827E-09 -0.2910383046E-09

4 0.1091393642E-10 -0.2910383046E-10 -0.1455191523E-10

As we can observe, the difference is very small.

2.2. Routines of vector fields and transformation of coordinates from inertial to sin-

odical coordinates. In this test we will check the subroutines transsinsin, dervin and

dervsin. We will test the diagram:

(R, Ṙ) −→ (R, Ṙ, R̈)

↓ transsinsin ↑
(r, ṙ) −→ (r, ṙ, r̈)

We take as initial conditions:

X = −0.2656698311 · 108, Y = 0.1340162335 · 107, Z = 0.5828199141 · 107
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Ẋ = −0.2583199517 · 107, Ẏ = −0.4156446631 · 106, Ż = −0.1802176846 · 106
and time:

DAY=0.0, at Julian ephemerides epoch.

The main Fortran code is:

1 INCLUDE ’commonmodel.inc’

2 CALL NMODJPL

3

4 N=6

5

6 OPEN (NCD,FILE=ARXOUT)

7 CALL DERVIN(TI,XI,N,F)

8 XI(7)=F(4)

9 XI(8)=F(5)

10 XI(9)=F(6)

11 CALL TRANSSINSIN(TI,XI,AD,3,1)

12 CALL DERVSIN(TI,AD,N,F(4))

13 F(1)=AD(1)

14 F(2)=AD(2)

15 F(3)=AD(3)

16 DO I=1,9

17 DIF(I)=F(I)-AD(I)

18 END DO

What we are doing in this program is, first we call to subroutine dervin to calculate

the acceleration of the system (R̈) as we have discussed in section 2.2. After this, we

call to transsinsin to transformate from inertials to sinodical coordinates, the position,

velocity and acceleration, so that, when we call to dervsin to calculate the acceleration

(r̈) as 2.2, we can check if the diagram closes.

If we take as model ICO=399 (Earth), and bodies: Mercury, Venus, Earth, Mars,

Jupiter, Saturn, Uranus, Neptune, Pluto, Moon and Sun. The results are:

1 (R1,R1P):

2 -0.2656698311E+08 0.1340162335E+07 0.5828199141E+07

3 -0.2583199517E+07 -0.4156446631E+06 -0.1802176846E+06

4 (R1,R1P,R1PP):

5 -0.2656698311E+08 0.1340162335E+07 0.5828199141E+07

6 -0.2583199517E+07 -0.4156446631E+06 -0.1802176846E+06

7 0.5513041339E+04 0.7341635950E+04 0.1824414001E+04

8 r, trasformed from R to r:
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9 0.8048470006E+07 0.2556588525E+08 0.4814163878E+07

10 0.4512234215E+06 0.2479470000E+07 -0.2205203149E+03

11 0.9722118781E+05 -0.1468843896E+05 -0.1281048173E+04

12 (r2,r2p,r2pp):

13 0.8048470006E+07 0.2556588525E+08 0.4814163878E+07

14 0.4512234215E+06 0.2479470000E+07 -0.2205203149E+03

15 0.9722118781E+05 -0.1468843896E+05 -0.1281048173E+04

16 DIFFERENCE:

17 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

18 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

19 0.0000000000E+00 -0.1818989404E-11 0.1591615728E-11

When we change the model, with ICO=699 (Saturn), several of their moons, the

Sun and the Moon, we obtain:

1 (R1,R1P):

2 -0.2656698311E+08 0.1340162335E+07 0.5828199141E+07

3 -0.2583199517E+07 -0.4156446631E+06 -0.1802176846E+06

4 (R1,R1P,R1PP):

5 -0.2656698311E+08 0.1340162335E+07 0.5828199141E+07

6 -0.2583199517E+07 -0.4156446631E+06 -0.1802176846E+06

7 0.4054344113E+03 -0.6262105298E+02 -0.8972787062E+02

8 r, trasformed from R to r:

9 -0.1619457957E+08 0.2155771772E+08 0.3816926892E+07

10 -0.2112956907E+07 0.1541089824E+07 -0.1101373260E+06

11 0.2156594447E+04 0.2383921360E+04 -0.3566036065E+03

12 (r2,r2p,r2pp):

13 -0.1619457957E+08 0.2155771772E+08 0.3816926892E+07

14 -0.2112956907E+07 0.1541089824E+07 -0.1101373260E+06

15 0.2156594447E+04 0.2383921360E+04 -0.3566036065E+03

16 DIFFERENCE:

17 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

18 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

19 0.1158696250E-08 0.4900357453E-08 0.3763034329E-09

We can appreciate, in both examples, that the difference is very small.

Now, we are going to do the same, but instead of to calculate the acceleration only

with the field, we are going to integrate (using the fields of section 2.2) for a given time

span. We take the same initial conditions, and for integrations, we take the conditions:

HMI=1.0 · 10−1, the minimum allowed value for the absolute value of H.

HMA=1.0 · 10−1, the maximum allowed value for the absolute value of H.
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H=1.0 · 10−1, the time step to be used.

TI=0.0, initial time in Julian ephemerides epoch.

TF=14.331103, final time in Julian ephemerides epoch.

E1 = 1. · 10−13, tolerance.

1 INCLUDE ’commonmodel.inc’

2 EXTERNAL DERVIN

3 EXTERNAL DERVSIN

4 CALL NMODJPL

5

6 CALL TRANSSINSIN (TI,XI,AD1,2,1)

7 5 CALL RK78(TI,XI,N,H,HMI,HMA,E1,R,B,F,DERVIN)

8 IF (TI.LT.TF) GOTO 5

9 CALL TRANSSINSIN(TI,XI,AD2,2,1)

10 6 CALL RK78(TI,AD1,N,H,HMI,HMA,E1,R,B,F,DERVSIN)

11 IF (TI.LT.TF) GOTO 6

12

13 DO I=1,9

14 DIF(I)=AD2(I)-AD1(I)

15 END DO

If we take as model ICO=399 (Earth), and bodies: Mercury, Venus, Earth, Mars, Jupiter,

Saturn, Uranus, Neptune, Pluto, Moon and Sun. The results are:

1 DIFFERENCE:

2 0.3296881914E-05 0.2731382847E-04 -0.2572955564E-03

3 0.9997747838E-06 0.4198402166E-05 -0.4010281737E-04

For the states that we have taken (of order of 108), the difference can be considered small.

3. Integrations

We are going to integrate the vector field of ”derivcs” to see the orbits that we can

obtain, with initial conditions:

X = −1.01126785748736,Y = 0.0, Z = 9.069633331713 · 10−04

Ẋ = −0.0, Ẏ = 9.073734203283 · 10−03,Ż = 0.0.

The main code that we will to use is:

1 INCLUDE ’commonmodel.inc’
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2 EXTERNAL DERIVCS

3 CALL NMODJPL

4 C Initial condition

5 TRI=0.D0

6 PERI=2.5D0

7 c Initial condition and time from RTBP to JPL

8 CALL CDJTA(TJI,TRI,ORIG,-1)

9 TRF=TRI+PERI

10 CALL CDJTA(TJF,TRF,ORIG,-1)

11 IPVA=2 ! pos+vel

12 CALL TRANSS(TJI,XJI,XRI,IPVA,-1)

13 50 CALL RK78 (DIA,XJP,N,H,HMIN,HMAX,TOLRK,R,B,F,DERIVCS)

14 CALL CDJTA(DIA,TRP,ORIG,1)

15 CALL TRANSS(DIA,XJP,XRT,IPVA,1)

16 IF (DIA.LT.TJF) GOTO 50

If we take as model ICO=12 (Earth+Moon Barycentre), and bodies: Mercury,

Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Moon and Sun. The results

are:

FIG. 1. Orbit in coordinates JPL.

FIG. 2. Orbit in coordinates RTBP.
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4. Application to calculate of a Quasi-Periodic orbit in the Solar System

One of the applications of this software, once we have tested it for a simple model,

is the parallel shooting, that consists in doing several refinements of a integration, from a

given initial seed.

4.1. Parallel shooting. In this section we are going to get solutions of more realistic

equations of motion (i.e., Newton’s equations using some JPL model for the motion of

the bodies of the solar system). As a first restriction, considering that we are going to

compute these solutions numerically, we will fix a time span, which means we will fix an

initial epoch (now the system is non autonomous) and a length for the time span.

The general idea is to use a multiple shooting method similar to the one used

for the numerical solution of boundary-value problems. This method is useful for the

computation of highly unstable periodic orbits with very long periods. Our problem is,

in some sense, close to this one. As in the standard procedure, first we split the total

time span into a number of shorter subintervals selecting, for instance, N equally spaced

points t1,t2,...,tN (t1 is the initial epoch and tN-t1 the length of the time interval

mentioned above). Different time intervals can be used, but we have chosen here all of

them equal. Denote by ∆t = ti+1 − ti and by

Qi = (ti, xi, yi, zi, ẋi, ẏi, żi)
T , i = 1, 2, ...N

the points on a fixed quasihalo orbit of the RTBP, equally spaced (∆t) in time, computed

using the formal expansions. Let φ(Qi) be the image of the point Qi under the flow

associated to the equations of motion in the solar system after an amount of time ∆t.

As, in this way, the epochs ti are fixed, we can write Qi = (xi, yi, zi, ẋi, ẏi, żi)
T . If all

the points Qi would be on the same orbit of the new equations, then φ(Qi) = Qi+1 for

i=1,...,N-1.

As this is not the case, we need to change the starting values. In this way, we must

solve a set of N-1 nonlinear equations, which can be written as

F
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We use Newton’s method to solve the above system. If Q(j) = (Q
(j)
1 , Q

(j)
2 , ..., Q

(j)
N )T ,

denotes hte j-th iterate of the procedure, Newton’s equations can be written as

DF (Q(j)) · (Q(j+1) −Q(j)) = −F (Q(j)),

where the differential of the funcion F has the following structure

DF =













A1 −I

A2 −I
. . .

. . .

AN−1 −I













,

and

Dφ =













A1

A2

. . .

AN−1













.

As each of the transition matrices, Ai, that appear in Dφ are 6 × 6, at each step of

the method we have to solve a system of (N − 1)× 6 equations with 6×N unknowns, so

some additional conditions must be added. This is the only difference with the standard

multiple shooting method and is due to the fact that our problem is not a real boundary-

value one. As additional equations we could fix some initial and final conditions at t=t0

and t=tN . In this case one must take care with the choice because the problem can be

ill conditioned from the numerical point of view. This is because the matrix DF(Q) has

a very large condition number. If we assume that ∆t is of the order of one revolution, all

the matrices Ai are similar and if the largest eigenvalue is λ, the smallest is λ−1 , so the

condition number is of the order of λ2. To avoid this bad conditioning, we can choose

a small value for ∆t. In this case the largest eigenvalue of Ai is not so large, but as the

number of points Qi increases (if we want to cover the same time span) the instability

is transfered to the procedure for solving the linear system. Also, the extra boundary

conditions can force the solution in a non natural way giving convergence problems when

we try to compute the orbit for a long time interval.

To avoid this, we can apply Newton’s method directly. As the system has more

unknowns than equations, we have (in general) an hyperplane of solutions. From this set
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of solutions we try to select the one closer to the initial orbit used to start the procedure.

This is done by requiring the correction to be minimum with respect to some norm (i.e.

the euclidean norm). The use of the normal equations must be avoided because they are

usually ill conditioned too. In our situation we have used the structure of the equations in

the following way.

Denoting by ∆Q(j)

∆Q(j) = ∆Q(j+1) −∆Q(j),

if we require ‖∆Q(j)‖2 to be minimum, using the Lagrange function L(∆Q, µ) with

(vector) multiplier µ

L(∆Q, µ) = ∆QT ·∆Q+ µT · (F (Q) +DF (Q) ·∆Q),

we get

(11) ∆Q(j) = −DF (Q(j))T · [DF (Q(j)) ·DF (Q(j))T ]−1 · F (Q(j)),

which gives the value of ∆Q(j) explicitly. Let M = DF (Q(j)) · DF (Q(j))T . This is a

symmetric band matrix with the following pattern

M =














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

I + A1A
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2 −A2

. . .
. . .

. . .
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−AT
N−2 I + AN−1A

T
N−1



















.

We introduce additional variables, Z(j), by M−1F (Q(j)) = Z(j), and then equation

11 becomes

(12) M · Z(j) = F (Q(j)),

(13) ∆Q(j) = −DF (Q(j))T · Z(j).

Now we use Cholesky factorization to express M as
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,

obtaining the following recursive relations

D1 = I + A1A
T
1 ,

Li = −AiD
−1
i−1, i = 2, 3, ..., N − 1

Di = I + AiA
T
i − LiDi−1L

T
i ,i = 2, 3, ..., N − 1.

With this factorization, system 12 can be solved recursively using intermediate

variables, X, Y, with block components X1,...,XN−1,Y1,...,YN−1 such that Y=Z(j)

and F=(F1,...,FN−1)

X1 = F1(Q
(j)),

Xk = Fk(Q
(j))− LkXk−1, k = 2, 3, ..., N − 1

YN−1 = D−1
N−1XN−1,

Yk = D−1
k Xk − LT

k+1Yk+1,k = N − 2, N − 3, ..., 1.

The value of ∆Q(j) can be computed using 13. From these last equations you must be

careful with matrices Dk that appear in the recursive computation of Xk and Yk.
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4.1.1. Simulation. To do simulations of parallel shooting it need a file with a ’initial seed’

for each case indicating which is the amplitude of the orbit. This file has the form:

1 % INITIAL NODES FOR PARALL. SHOOT. HALO ORBIT FROM LP

2 0.0000000000000000E+00 0.3040423398444176E-05 12 2 1 1 500

3 1 0.0000000000E+00 0.1178598970650897E+00 0.0000000000000000E+00

-0.1126259568615726E+00 0.0000000000000000E+00 -0.9071113988967449E+00

0.0000000000000000E+00

4 2 0.7000000000E+01 0.1118270637747303E+00 -0.1082006756254275E+00

-0.1101348393324709E+00 -0.9939905240374050E-01 -0.8815349516041047E+00

0.4123552402788498E-01

5 3 0.1400000000E+02 0.9430067961777955E-01 -0.2103088925768840E+00

-0.1027621787688251E+00 -0.1893949587537312E+00 -0.8064677054965651E+00

0.8080594356953390E-01

6 4 0.2100000000E+02 0.6692699208278957E-01 -0.3006212405867519E+00

-0.9080503762373199E-01 -0.2617269755118253E+00 -0.6866198393466235E+00

0.1171257425174262E+00

7 5 0.2800000000E+02 0.3223093094510870E-01 -0.3741501783347533E+00

-0.7474433499936742E-01 -0.3101854836989055E+00 -0.5290253048385434E+00

0.1487284026901428E+00.............

The second line contains, in order: initial time, value of µ, ICO taked, value of the

equilibrium point, type of coordinates (1 1) and number of nodes.

For the parallel shooting, we take periodic orbits, and we repeat the orbit several

times. So that, the rest of lines of the file contain the node i, time, position and velocity

for this time.

Below, we will show results for different simulations taking different initial condi-

tions.

If we make a simulation of the parallel shooting, with the conditions ICO=12

(Earth+Moon Barycentre), and bodies: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

Uranus, Neptune, Pluto, Moon and Sun, we obtain:
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• In the first iteration:

FIG. 3. Parallel shooting in Earth+Moon Barycentre.

FIG. 4. Parallel shooting in Earth+Moon Barycentre.

1 NORM OF THE FUNCTION: 11898.8184

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.1144595E+05 0.3251484E+04

4 0.0000000E+00 0.9599395E+03 0.2654420E+03

5 0.0000000E+00 0.9184081E+02 0.2494252E+02

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 477129.089

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.4768051E+06 0.1757930E+05

11 0.0000000E+00 0.4929047E+05 0.1388243E+04

12 0.0000000E+00 0.1675518E+04 0.1604044E+03
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• In the second iteration:

FIG. 5. Parallel shooting in Earth+Moon Barycentre.

FIG. 6. Parallel shooting in Earth+Moon Barycentre.

1 NORM OF THE FUNCTION: 547.086757

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.5258641E+03 0.1509003E+03

4 0.0000000E+00 0.1049855E+03 0.3038294E+02

5 0.0000000E+00 0.4975914E-01 0.1171015E-01

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 30077.538

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.3006367E+05 0.9132934E+03

11 0.0000000E+00 0.3538269E+04 0.1016101E+03

12 0.0000000E+00 0.7812096E+02 0.2364083E+01
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• In the third iteration:

FIG. 7. Parallel shooting in Earth+Moon Barycentre.

FIG. 8. Parallel shooting in Earth+Moon Barycentre.

1 NORM OF THE FUNCTION: 1.35948577

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.1306491E+01 0.3758751E+00

4 0.0000000E+00 0.2829894E+00 0.8152813E-01

5 0.0000000E+00 0.1837883E-03 0.5229199E-04

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 105.221174

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.1051741E+03 0.3146999E+01

11 0.0000000E+00 0.1310183E+02 0.3633340E+00

12 0.0000000E+00 0.7146532E+00 0.8468568E-02
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• In the fourth iteration:

FIG. 9. Parallel shooting in Earth+Moon Barycentre.

FIG. 10. Parallel shooting in Earth+Moon Barycentre.

1 NORM OF THE FUNCTION: 2.17353133E-05

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.2090841E-04 0.5938204E-05

4 0.0000000E+00 0.7440528E-05 0.2156530E-05

5 0.0000000E+00 0.2787752E-07 0.2818718E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 0.00111980696

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.1119306E-02 0.3347524E-04

11 0.0000000E+00 0.1608678E-03 0.4617990E-05

12 0.0000000E+00 0.2760375E-05 0.7762607E-07

In each iteration, the norm of correction is reduced, and we have a result more pre-

cise.
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Now, we are going to show other simulations with other initial conditions. These

simulations we will display halo orbits. A halo orbit is a three-dimensional periodic orbit

near the L1, L2 or L3 Lagrange point. In our case, we use the Lagrange point L1 and L2.

A spacecraft in a halo orbit does not technically orbit the Lagrange point itself (which is

just an equilibrium point with no mass), but travels in a closed, repeating path near the

Lagrange point.

• We take Jupiter with his natural satellite Io (ICO=501), with value of µ =

0.4704237643000000 · 10−04. First, we take the Lagrange point L1, and the value

of γ for L1 is γ = 0.2481942967450895 · 10−01 (and amplitude 0.1). With these

conditions we create the initial seed, and we do the parallel shooting with results:

FIG. 11. Time used at parallel shooting in L1 for Io-Jupiter.

– First iteration:

FIG. 12. Parallel shooting in L1 for Io-Jupiter.
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1 NORM OF THE FUNCTION: 1866.12102

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.2641520E+02 0.1865934E+04

4 0.0000000E+00 0.1958758E+01 0.1388491E+03

5 0.0000000E+00 0.0000000E+00 0.1692552E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 15117.9377

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2243440E+04 0.1495055E+05

11 0.0000000E+00 0.2411364E+03 0.1573064E+04

12 0.0000000E+00 0.2060475E+02 0.4252557E+02

– Second iteration:

FIG. 13. Parallel shooting in L1 for Io-Jupiter.

1 NORM OF THE FUNCTION: 70.2384356

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.9956970E+00 0.7023138E+02

4 0.0000000E+00 0.2693221E+00 0.1922797E+02

5 0.0000000E+00 0.1228781E-06 0.5277841E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 370.64696

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.5725213E+02 0.3661985E+03

11 0.0000000E+00 0.6348275E+01 0.4372009E+02

12 0.0000000E+00 0.1953608E+00 0.1411184E+01
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– Last iteration:

FIG. 14. Parallel shooting in L1 for Io-Jupiter.

1 NORM OF THE FUNCTION: 5.99282498E-06

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.4329550E-05 0.4143543E-05

4 0.0000000E+00 0.7183534E-06 0.1096791E-05

5 0.0000000E+00 0.0000000E+00 0.1809200E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 0.000165736878

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2568631E-04 0.1637343E-03

11 0.0000000E+00 0.3369432E-05 0.2132566E-04

12 0.0000000E+00 0.2656366E-06 0.1373295E-05

Now, we take the Lagrange point L2 with γ = 0.2523705103220314 · 10−01 (and

amplitude 0.08).

FIG. 15. Time used at parallel shooting in L2 for Io-Jupiter.
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– First iteration:

FIG. 16. Parallel shooting in L2 for Io-Jupiter.

1 NORM OF THE FUNCTION: 1915.00428

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.2807139E+02 0.1914799E+04

4 0.0000000E+00 0.2238172E+01 0.1516912E+03

5 0.0000000E+00 0.6664002E-07 0.3830577E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 26674.8591

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.4272006E+04 0.2633055E+05

11 0.0000000E+00 0.5344547E+03 0.3317098E+04

12 0.0000000E+00 0.2040316E+02 0.6317212E+02

– Second iteration:

FIG. 17. Parallel shooting in L2 for Io-Jupiter.

1 NORM OF THE FUNCTION: 316.268971
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2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.4648145E+01 0.3162348E+03

4 0.0000000E+00 0.1337852E+01 0.9051012E+02

5 0.0000000E+00 0.1228781E-06 0.3670080E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 624.49512

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.8721231E+02 0.6183754E+03

11 0.0000000E+00 0.9563989E+01 0.1326547E+03

12 0.0000000E+00 0.1238919E+01 0.3646977E+01

– Last iteration:

FIG. 18. Parallel shooting in L2 for Io-Jupiter.

1 NORM OF THE FUNCTION: 6.2390042E-06

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.4383272E-05 0.4439831E-05

4 0.0000000E+00 0.7257340E-06 0.1529473E-05

5 0.0000000E+00 0.0000000E+00 0.2226122E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 8.05399824E-05

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.1387084E-04 0.7933655E-04

11 0.0000000E+00 0.2037532E-05 0.1139317E-04

12 0.0000000E+00 0.7280142E-07 0.3100533E-06

• Now, we take Jupiter with his satellite Europa (ICO=502), µ = 0.2528017529000000·
10−04 and for the Lagrange point L1, γ = 0.2021061523651372 · 10−01 (amplitude

0.01):
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FIG. 19. Time used at parallel shooting in L1 for Europa-Jupiter.

– First iteration:

FIG. 20. Parallel shooting in L1 for Europa-Jupiter.

1 NORM OF THE FUNCTION: 1100.37908

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.3153068E+02 0.1099927E+04

4 0.0000000E+00 0.3222446E+01 0.1117824E+03

5 0.0000000E+00 0.5960464E-07 0.7070158E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 9591.78432

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2789491E+04 0.9177204E+04

11 0.0000000E+00 0.3848374E+03 0.1205722E+04

12 0.0000000E+00 0.2373108E+01 0.1946122E+02
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– Second iteration:

FIG. 21. Parallel shooting in L1 for Europa-Jupiter.

1 NORM OF THE FUNCTION: 58.5017755

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.1668791E+01 0.5847797E+02

4 0.0000000E+00 0.4811927E+00 0.1669594E+02

5 0.0000000E+00 0.5960464E-07 0.3944990E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 84.0559423

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2034713E+02 0.8155609E+02

11 0.0000000E+00 0.3077272E+01 0.1709398E+02

12 0.0000000E+00 0.6335030E-01 0.2622111E+00

– Last iteration:

FIG. 22. Parallel shooting in L1 for Europa-Jupiter.
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1 NORM OF THE FUNCTION: 4.65557714E-06

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.4170196E-05 0.2069750E-05

4 0.0000000E+00 0.6056548E-06 0.5688227E-06

5 0.0000000E+00 0.0000000E+00 0.9093073E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 5.10955991E-05

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.1503886E-04 0.4883229E-04

11 0.0000000E+00 0.2213957E-05 0.7663341E-05

12 0.0000000E+00 0.7099970E-07 0.3094536E-06

If we change the Lagrange point to L2, the value of γ is γ = 0.2048666615815237 ·
10−01, and we change the amplitude to 0.05:

FIG. 23. Time used at parallel shooting in L2 for Europa-Jupiter.

– First iteration:

FIG. 24. Parallel shooting in L2 for Europa-Jupiter.
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1 NORM OF THE FUNCTION: 1213.97315

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.3578549E+02 0.1213446E+04

4 0.0000000E+00 0.3806867E+01 0.1286054E+03

5 0.0000000E+00 0.0000000E+00 0.1017599E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 7974.18252

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2277481E+04 0.7642033E+04

11 0.0000000E+00 0.3203926E+03 0.1080470E+04

12 0.0000000E+00 0.1118441E+02 0.1614795E+02

– Second iteration:

FIG. 25. Parallel shooting in L2 for Europa-Jupiter.

1 NORM OF THE FUNCTION: 33.2875169

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.9766608E+00 0.3327319E+02

4 0.0000000E+00 0.3289830E+00 0.1129438E+02

5 0.0000000E+00 0.0000000E+00 0.1641910E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 113.750367

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.3647014E+02 0.1077454E+03

11 0.0000000E+00 0.5779851E+01 0.2036167E+02

12 0.0000000E+00 0.1918062E+00 0.5378395E+00
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– Last iteration:

FIG. 26. Parallel shooting in L2 for Europa-Jupiter.

1 NORM OF THE FUNCTION: 4.78185852E-06

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.4337032E-05 0.2014033E-05

4 0.0000000E+00 0.7426700E-06 0.4788686E-06

5 0.0000000E+00 0.0000000E+00 0.6193716E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 6.73618197E-05

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2171913E-04 0.6376436E-04

11 0.0000000E+00 0.2560202E-05 0.7415889E-05

12 0.0000000E+00 0.3146396E-06 0.3381366E-06

• Taking Saturn with his satellite Titan (ICO=606), in L1, µ = 0.2366393209000000 ·
10−03, γ = 0.4226718765727411 · 10−01 and with amplitude 0.02:

FIG. 27. Time used at parallel shooting in L1 for Titan-Saturn.
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– First iteration:

FIG. 28. Parallel shooting in L1 for Titan-Saturn.

1 NORM OF THE FUNCTION: 2598.33894

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.3272154E+03 0.2577653E+04

4 0.0000000E+00 0.3766018E+02 0.2967870E+03

5 0.0000000E+00 0.1332800E-06 0.4884244E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 24966.1821

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.1903281E+05 0.1615743E+05

11 0.0000000E+00 0.2261105E+04 0.1624602E+04

12 0.0000000E+00 0.4715219E+02 0.1495331E+03

– Last iteration:

FIG. 29. Parallel shooting in L1 for Titan-Saturn.

1 NORM OF THE FUNCTION: 6.43897068E-06
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2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.6316686E-05 0.1248926E-05

4 0.0000000E+00 0.1175587E-05 0.3527809E-06

5 0.0000000E+00 0.0000000E+00 0.3790320E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 3.2381252E-05

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2622020E-04 0.1900123E-04

11 0.0000000E+00 0.3653660E-05 0.2360504E-05

12 0.0000000E+00 0.1561132E-06 0.2194452E-06

In L2, with γ = 0.4349306097794173 · 10−01 and amplitude 0.06:

FIG. 30. Time used at parallel shooting in L2 for Titan-Saturn.

– First iteration:

FIG. 31. Parallel shooting in L2 for Titan-Saturn.

1 NORM OF THE FUNCTION: 2738.41267

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.3653451E+03 0.2713932E+04
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4 0.0000000E+00 0.3937384E+02 0.2919995E+03

5 0.0000000E+00 0.1192093E-06 0.1584489E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 26737.0832

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.2037314E+05 0.1731493E+05

11 0.0000000E+00 0.2644749E+04 0.1800929E+04

12 0.0000000E+00 0.7012327E+02 0.1938728E+03

– Last iteration:

FIG. 32. Parallel shooting in L2 for Titan-Saturn.

1 NORM OF THE FUNCTION: 6.66645574E-06

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.5928790E-05 0.3048128E-05

4 0.0000000E+00 0.8344650E-06 0.1029019E-05

5 0.0000000E+00 0.5960464E-07 0.4533196E-08

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 3.89973266E-05

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.3245300E-04 0.2162393E-04

11 0.0000000E+00 0.4321357E-05 0.2877422E-05

12 0.0000000E+00 0.2915433E-06 0.2421597E-06
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• Now, we build the orbit for Uranus and the satellite Ariel (ICO=701). For the La-

grange point L1, with µ = 0.1492727989000000 · 10−04, γ = 0.1697443733680036 ·
10−01 and amplitude 0.1, it obtains:

FIG. 33. Time used at parallel shooting in L1 for Ariel-Uranus.

– First iteration:

FIG. 34. Parallel shooting in L1 for Ariel-Uranus.

1 NORM OF THE FUNCTION: 94.4836796

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.1918704E+01 0.9446420E+02

4 0.0000000E+00 0.1778680E+00 0.8747047E+01

5 0.0000000E+00 0.2384186E-06 0.2593882E-06

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 477.824533

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.1033608E+03 0.4665113E+03

11 0.0000000E+00 0.1551180E+02 0.6794641E+02

12 0.0000000E+00 0.2043563E+00 0.4148731E+01
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– Second iteration:

FIG. 35. Parallel shooting in L1 for Ariel-Uranus.

1 NORM OF THE FUNCTION: 0.433965424

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.8820951E-02 0.4338758E+00

4 0.0000000E+00 0.2518004E-02 0.1249481E+00

5 0.0000000E+00 0.4298152E-06 0.1557911E-06

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 2.1018556

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.4818623E+00 0.2045875E+01

11 0.0000000E+00 0.8245416E-01 0.3477684E+00

12 0.0000000E+00 0.2837661E-02 0.7021259E-02

– Last iteration:

FIG. 36. Parallel shooting in L1 for Ariel-Uranus.

1 NORM OF THE FUNCTION: 2.20734773E-05
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2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.1561960E-04 0.1559700E-04

4 0.0000000E+00 0.2570612E-05 0.4708597E-05

5 0.0000000E+00 0.0000000E+00 0.5095807E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 0.000309964666

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.6208647E-04 0.3036830E-03

11 0.0000000E+00 0.8198286E-05 0.4554202E-04

12 0.0000000E+00 0.1518095E-06 0.1249099E-05

In L2, with γ = 0.1716873324576420 · 10−01 and amplitude 0.03 we obtain:

FIG. 37. Time used at parallel shooting in L2 for Ariel-Uranus.

– First iteration:

FIG. 38. Parallel shooting in L2 for Ariel-Uranus.

1 NORM OF THE FUNCTION: 98.6572669

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.2054024E+01 0.9863588E+02
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4 0.0000000E+00 0.2118500E+00 0.1014417E+02

5 0.0000000E+00 0.0000000E+00 0.1984822E-06

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 1804.01668

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.4067509E+03 0.1757564E+04

11 0.0000000E+00 0.5423723E+02 0.2092235E+03

12 0.0000000E+00 0.1878637E+01 0.6616225E+01

– Second iteration:

FIG. 39. Parallel shooting in L2 for Ariel-Uranus.

1 NORM OF THE FUNCTION: 6.72014517

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.1398830E+00 0.6718689E+01

4 0.0000000E+00 0.4347454E-01 0.2119937E+01

5 0.0000000E+00 0.1192093E-06 0.3900060E-06

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 10.3430768

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.1985713E+01 0.1015067E+02

11 0.0000000E+00 0.3754243E+00 0.2472699E+01

12 0.0000000E+00 0.1067216E-01 0.4354275E-01
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– Last iteration:

FIG. 40. Parallel shooting in L2 for Ariel-Uranus.

1 NORM OF THE FUNCTION: 1.98769928E-05

2 NORM in TIME, POS and VEL, MAX and MIN VALUES:

3 0.0000000E+00 0.1644311E-04 0.1116777E-04

4 0.0000000E+00 0.2514723E-05 0.2114996E-05

5 0.0000000E+00 0.0000000E+00 0.4886544E-07

6 PARAMETER IPES= 0

7 CORRECTION NORM COMPUTED WITHOUT WEIGHTS

8 NORM OF THE CORRECTION: 0.000283452823

9 NORM in TIME, POS and VEL, MAX and MIN VALUES:

10 0.0000000E+00 0.6175974E-04 0.2766428E-03

11 0.0000000E+00 0.7557017E-05 0.3541287E-04

12 0.0000000E+00 0.5856849E-06 0.1957551E-05



Chapter 5

Conclusions

The present project has kept to build a software package which will be useful in

the future for other purposes. Until now, it didn’t a software that could read ephemerides

files and allowed manage the list of bodies in function of the task that the user is going to

perform.

The first that we noted, is that ephemerides files have a very particular format to be

read. These files are in a ”especial binary format”, for which it is necessary use the library

spicelib offered by JPL. This library is a bit difficult to use, because, although is well

commented, has a lot of functions to do similar or different tasks.

Talking about the software, the first that we did, once we could read the files

ephemerides, was create several routines to manage bodies, as well as to choose what

function have the bodies in the system. After of this, we were created a routine to

calculate position, velocity, acceleration and overacceleration for a determinated body

in a determinated time. This routine is very necessary for the all tasks that we wanted to

do. In fact, we use this routine in all the routines that do a ”mathematical work”. Finally,

we have created a integration routine (a method Runge-Kutta), and, with this, we had the

routines necessaries to can do different calculations.

With this ”sub-package” created, we create other programs formed by vector fields

that we thought that could be interesting. Moreover, we create other programs to do

changes of coordinates between several reference systems.

With all routines, we could do simulations using differents initial conditions.

Finally, we applicate this software package to the calculate of real trajectories from

obtened in a simplified model.
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In this software, we have tried reduce the time of calculations to the maximum

possible. And we think that can serve to different calculate for planets and satellites.

Also, easily it can add other subroutines with contain, for example, other vector fields or

other changes of coordinates.
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