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Entanglement and non-locality of pure quantum
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Canal Olimpic, 08860 Castelldefels (Barcelona), SPAIN

E-mail: belen.sainz@icfo.es

Abstract. We study the process of majorisation and interconversion of bipartite

states, and apply the formalism for analysing the local and non-local content of pure

bipartite entangled states. We proved that the states which are majorised by the

singlet are fully non-local. For that we introduce a particular chained Bell inequality

and the corresponding set of measuremets for its violation.

1. Introduction

One of the most remarkable aspects of quantum mechanics is the strength of its

predicted correlations, for they have no classical analogue. Indeed, since the 1930s,

entanglement has been recognised as one of the main features of the quantum description

of nature [1, 2]. The interest in quantum correlations has increased during the last

two decades due to the emerging field of quantum information science, in which

entanglement is the key ingredient for many applications (see [3]). This is a consequence

of a “conceptual revolution”: exploit “quantum strangeness” to perform tasks that are

classically impossible.

On the other hand, it is well known that correlations between bipartite pure

entangled states may not be ascribed to “shared randomness” [4] (local correlations),

a phenomenon called quantum nonlocality. A natural question is: what happens in a

experiment with several pairs of entangled subsystems? Can one consider that only some

pairs behave non-locally, while the others would give rise to purely local correlations?

Such a quantification of the non-local resources of a state should provide a detailed

account of which tasks can be accomplished with it.

Elitzur, Popescu and Rohrlich were the first to address this question, proving that

each pair in the ensemble behaves non-locally when the particles are spins coupled in

a singlet state [5]. Later, Barrett, Kent and Pironio (BKP) generalised this result to

arbitrary dimension and proved that the maximally entangled state of two d-dimensional

quantum systems has no local component [6].

In the last decade, the emerging connection between majorisation theory and

entanglement manipulation led to well known results in bipartite entanglement
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manipulations [7]. In this work we will use these results and those of Barrett, Kent

and Pironio to prove that those bipartite entangled states which can be deterministically

transformed by local operations and classical communication into a singlet (2-maximally

entangled state) have only non-local component, thus generalising the result of BKP.

This work is divided in four main parts. In Section 2 the fundamental concepts of

the field are presented: entanglement and non-locality. Section 3 first shows the main

points of BKP work, and then presents the basics of majorisation theory with focus on

bipartite pure state transformations and protocols.

In Section 4 we apply majorisation theory to our particular quantum states, and

present the chained Bell Inequality with which the local and non-local parts of the state

are tested. Finally, in Section 5 we sumarise the results and present future directions of

work.

2. Concepts and tools.

2.1. Entanglement

Entanglement is an important feature of Quantum Mechanics and Quantum Information

Theory. It was first noticed by Einstein, Podolsky and Rosen, in their famous EPR

paradox [1], and was considered one of the characteristic things that appear in the

quantum world without classical analog.

How to define entanglement is a complex task, which strongly depends on its

different uses [8]. From “mathematical” basis, one can define a pure entangled state

of a composite system as “a pure state that cannot be written as a product state” [9].

A bipartite pure state |ψ〉AB ∈ HA ⊗HB can always be expressed as

|ψ〉AB =
∑

i

αi|i〉A|i〉B , (1)

where {|i〉A} and {|i〉B} are particular orthonormal basis of each Hilbert space HA,B.

That is called the Schmidt decomposition of the state, and αi are the Schmidt coeficients.

For practical purposes, we will label them in decreasing order, such that αj ≥ αj+1. If

the state has only one non-zero Schmidt coeficient, it is a product state, otherwise it is

entangled. [3].

From an operational point of view, entanglement can also be defined as follows. A

bipartite state shared by two parties (Alice and Bob) is product if it can be created

by both parties using only LOCC: “Local Operations and Classical Communication”.

Thus, if a bipartite state can not be created using only LOCC, it is called entangled [8].

This recent approach to “entanglement” highlights its importance as a resource, that

can be useful for achieving tasks such as dense coding [10] and teleportation [11].

As a final remark, in this work we will constrain the set of operations to LOCC,

based on technological and fundamental motivations, for this restriction arises naturally

in many physical settings involving spatially-separated quantum communication [8].
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2.2. Non Locality

As entanglement and non-locality are different resources [12], I will, in this part, describe

general aspects of the latter. When correlations at distance are considered, the following

generic setup is used [9]. A source emits a particle to each of two distant locations. In

each one, a user Alice (Bob) chooses and performs a measurement A (B) and registers the

outcome a (b). After repeating this procedure many times, they communicate, compare

their results, and derive the probability distribution P (a, b|A,B). The question that

arises is: can these correlations be ascribed to a classical mechanism, such as a pre-

established stategy? John Bell, in 1964 [4] proved that the whole family of probabilities

predicted by quantum physics cannot. This interesting feature has some valuable

applications, in fields such as communication complexity [13], secret key distribution

[14] and randomness generation [15].

In a Local Hidden Variables model (LHV, also called local realism, i.e. classical

correlations), there is some classical information λ shared by the particles, and thus the

probability distribution takes the form

P (a, b|A,B) =

∫
dλ ρ(λ)P (a|A, λ)P (b|B, λ) , (2)

where ρ(λ) is the distribution from where λ is drawn. When this is not the case,

P (a, b|A,B) is said to form a “non-local distribution”. Therefore, local variable theories

cannot exhibit arbitrary correlations. The constraints these must obey can always be

written in the form of inequalities (generically referred to as Bell inequalities, due to

his pioneer work [4]) which must be satisfied by linear combination of elements of this

distribution (see [16]). Examples of such inequalities are by Bell [4], Clauser, Horne,

Shimony and Holt [17], and Collins et al. [18].

Throughout this work, I will study probability distributions compatible with the

non-signaling principle (NS). A distribution is said to be non-signaling if the marginal

distributions are well defined, i.e. if the probability that Alice obtains a given she

measures A does not depend on Bob’s masurement. Mathematically, a distribution is

non-signalling if and only if

P (a|A) =
∑

b

P (a, b|A,B) =
∑

b

P (a, b|A,B′) . (3)

This is a case study of many background works, and its mathematical description is well

established [9].

As a final remark, I will review the EPR2 approach [5], which consist on

decomposing a non-signaling probability distribution as the convex sum of a local (PL)

and a non-local (PNL) distributions, as follows:

PNS(rA, rB|A,B) = pL PL(rA, rB|A,B) + [1− pL]PNL(rA, rB|A,B) . (4)

The equality must hold for all outcomes ra, rb and possible measurements A,B, and

the weight pL ∈ [0, 1] of the local component is required to be independent of the

measurements and the outcomes. In the particular case of a quantum state ρ, the
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probability distribution of all possible measurements may be written as (4) with

pL = pL(ρ). Finally, in order to make this decomposition unique, PL and PNL are

require to maximise the weight of the local component. Thus, the state ρ is local if and

only if pL(ρ) = 1.

3. Previous works

3.1. Non-Local States

In 2006, Barrett, Kent and Pironio proved, by introducing a chained Bell inequality,

that the maximally entangled state of two d-dimensional quantum systems has no local

component [6]. In this section I will review their work.

In this setting, Alice and Bob each have a choice among measurements: A1, · · · , AN

and B1, · · · , BN . The chained Bell inequality is:

IN = 〈[A1 −B1]〉+〈[B1 − A2]〉+· · ·+〈[AN − BN ]〉+〈[BN − A1 − 1]〉 ≥ d−1(5)

where 〈X〉 = ∑d−1
i=1 i P (X = i), and [X] denotes X modulo d.

Barrett et al proved that, if Alice and Bob share the maximally entangled state

|ψd〉 = 1√
d

∑d−1
q=0 |q〉A|q〉B, there exist measurement settings such that IN(QM) → 0 for

large N . Here IN(QM) indicates that the probabilities computed for IN have their

origin in quantum mechanics.

The set of measurements is defined as:

• Alice: eigenvectors characterising Ak:

|r〉Ak
=

1√
d

d−1∑

q=0

exp

[
2πi

d
q (r − αk)

]
|q〉A . (6)

• Bob: eigenvectors characterising Bk:

|r〉Bk
=

1√
d

d−1∑

q=0

exp

[
−2πi

d
q (r − βk)

]
|q〉B . (7)

where αk = (k − 1
2
)/N , βk = k/N , and the eigenvectors |r〉 have eigenvalue r =

0, · · · , d − 1. With these settings and |ψd〉, it follows that IN(QM) ∝ N−1 + O(N−2),

which can be made arbitrarily small for sufficiently large N .

Finally, from eq. (4) IN may be written as IN(QM) = p IN(L) + (1 − p) IN(NL),

where IN(L) is obtained from PL, and IN(NL) from PNL. The local component of the

distribution cannot violate the Bell inequality (5), thus IN(L) ≥ d − 1. However, the

non-local part must only satisfy IN(NL) ≥ 0, which implies p ≤ IN (QM)
d−1

. It follows that

p = 0 and the probability distribution that arises from |ψd〉 is fully non-local.

3.2. Majorisation and bipartite states transformation

What does it mean to say that a given probability distribution is more disordered than

another? This question also arises in quantum theory when talking abouth quantum



Entanglement and non-locality of pure quantum states. 5

states: when is a state more disordered than another? Majorisation is a mathematical

tool that was developed to answer these questions, and gives a means for comparing

in an elegant way two probability distributions or two density matrices [7]. Another

interesting topic is interconversion of bipartite states. Suppose Alice and Bob share

a quantum state ψ. A natural question is: into what class of states φ may ψ be

transformed, assuming that both parties can only use local operations on their respective

systems, and unlimited classical communication? Majorisation also answers this.

There exist two equivalent definitions for “majorisation”:

1. The d-dimensional real vector r is majorised by the d-dimensional real vector s,

written r ≺ s, if there exists a set of d-dimensional permutation matrices Pj and a

probability distribution {pj} such that r =
∑

j pj Pj s.

2. r ≺ s if and only if:

r↓1 ≤ s↓1
r↓1 + r↓2 ≤ s↓1 + s↓2

...

r↓1 + · · ·+ r↓d−1 ≤ s↓1 + · · ·+ s↓d−1

r↓1 + · · ·+ r↓d = s↓1 + · · ·+ s↓d

(8)

The vector r↓ = (r↓1, · · · , r↓d) has the same components as r but rewritten in

decreasing order, i.e. r↓1 ≥ r↓2 ≥ · · · ≥ r↓d. The same holds for s↓ and s.

Definition (1) is intuitive and useful when proving theoretical results, and (2) is more

convenient for actual calculations.

In relation to the interconversion of bipartite states under LOCC, majorisation

theory has some results about necessary and sufficient conditions for such

transformations to be feasible. In what follows we will focus on pure quantum states of

a composite system consisting of two spatially separated parts A and B.

Let ψ =
∑d

i=1

√
λi |i〉A |i〉B be the state of the system, and let us define λ(ψ) as the

vector whose components λ(ψ)j = λj are the square of the Schmidt coeficients (1). The

following theorem, due to Nielsen [19], refers to a local deterministic conversion:

Theorem 1: State ψ can be converted into state φ by means of LOCC if, and only if,

λ(ψ) ≺ λ(φ)

Now we are only left with the problem of finding a “protocol” to perform the

transformation. There are many studies tackling this question, leading to several

procedures which are helpful in different scenarios.

Lo and Popescu [20] explained a detailed operational protocol in which, in a proven

finite number of steps, Alice and Bob may transform state |ψ〉 of dimension d into

a maximally entangled state of dimension m < d. They also proved that, as far as

entanglement manipulations are concerned, there is always a way to reduce a sequencial

two-way communication protocol into a strategy involving only a single (generalised)

measurement by Alice, followed by the one way communication of the result from Alice
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to Bob, and finally a local unitary transformation by Bob. Moreover, Nielsen and Vidal

[7] found a set of measurement operators and a corresponding protocol given |ψ〉 and

|φ〉.
As a final remark, when talking about entanglement transformations, the

measurements performed are “generalised measurements”, i.e. projective measurements

in a larger Hilbert space of “system × ancilla” (see [3, 21]).

4. Testing non-local states

In their work, Barrett, Kent and Pironio [6] studied the local and non-local components

of a maximally entangled state of arbitrary dimension. The aim of this work is to

study the case for more general states: those entangled states which can be transformed

deterministically by LOCC to a 2-dimension maximally entangled state. First we will

discuss the general process of conversion, and then we will focus on the violation of a

Bell inequality in two different scenarios.

4.1. Transformation.

Let us define as our initial state |ψ〉 = ∑d−1
i=0

√
λi |ii〉, where |ij〉 = |i〉A |j〉B. If we want

to transform |ψ〉 into |φ2〉 = |00〉+|11〉√
2

, the majorisation condition states:

λ0 ≤ 1
2

λ0 + λ1 ≤ 1
2
+ 1

2
= 1

...

λ0 + · · ·+ λk ≤ 1

λ0 + · · ·+ λd−1 = 1

(9)

As normalisation requires
∑d−1

i=0 λi = 1 and λi ≥ 0 ∀i, then the only condition for the

transformation to be feasible is λ0 ≤ 1/2.

Now let us focus on the measurements involved in the transformation. Based on Lo

and Popescu’s work, we know that there exist a finite set of measurements for Alice {Mj}
and a corresponding set of unitaries for Bob {Uj}, such that Mj Uj ψ U

†
j M

†
j = pj φ2.

The factor pj states the probability for Alice’s majorisation outcome r = j to occur.

Regarding notation, ψ = |ψ〉〈ψ| and φ2 = |φ2〉〈φ2|.
For an example of a set of this operators in arbitrary dimension, see the work by

Nielsen and Vidal, section (4.3) [7]. Here I will comment on the qutrit case.

Example: qutrits

In this particular problem, the initial state is |ψ3〉 =
√
λ0|00〉+

√
λ1|11〉+

√
λ2|22〉,

where λ0 ≤ 1/2. The set of measurements for Alice is:

M1 = k1

(√
λ1|00〉〈00|+

√
λ0|11〉〈11|

)
,

M2 = k2

(√
λ2|11〉〈11|+

√
λ1|22〉〈22|

)
,

M3 = k3

(√
λ2|00〉〈00|+

√
λ0|22〉〈22|

)
, (10)



Entanglement and non-locality of pure quantum states. 7

Figure 1. Two scenarios for Alice and Bob: Alice’s majorisation (M) and BKP (A)

measurements are performed separated (1) or very close (2).

and the corresponding unitaries for Bob are:

U1 = I ,

U2 = |00〉〈22|+ |11〉〈11|+ |22〉〈00| ,
U3 = |00〉〈00|+ |22〉〈11|+ |11〉〈22| . (11)

As {Mj} define a quantum measurement, they must satisfy the condition
∑3

j=1Mj M
†
j =

I. Thus, the following values for the constants kj are found:

k21 =
λ0 + λ1 − λ2

2λ0 λ1
, k22 =

λ1 + λ2 − λ0
2λ1 λ2

, k23 =
λ0 + λ2 − λ1

2λ0 λ2
. (12)

Majorisation condition ensures that kj are real.

4.2. Bell Inequality.

In this section the local and non-local components of |ψ〉 will be studied by means of a

Bell inequality, with a scope similar to that of Barrett, Kent and Pironio [6].

The procedure is the following: a source sends one quantum particle to Alice and

another to Bob, in the entangled state |ψ〉 which majorises the singlet. Then, Alice

performs the majorisation measurement on her particle. After that, Alice and Bob

choose each a local measurement to perform on their respective systems. Bob lists his

inputs and outputs, and Alice lists her inputs, outputs and majorisation results. This

last item correspond to the information she should classically send to Bob, in order for

him to perform the unitary operation and thus obtain the singlet |φ2〉. However, in this

setting, Bob is not capable of knowing the majorisation result before performing his

measurements. Finally, they compare their lists, and compute some probabilities which

I will coment later.

There are two possible scenarios (see fig. 1):
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1. The majorisation measurements are performed before Alice decides which Bell

observable to measure, and thus the former (and their results) do not depend on

the latter.

2. Majorisation and Alice measurement are performed together, and thus their

outcomes may be related.

In this work, we will study the first case. Let us suppose the case of n majorisation

measurementMj, and recall the N operators Ak and Bk defined in section (3.1). In this

setup we thus define Alice’s and Bob’s sets as:

• Alice may choose among N measurements {Ak}.
• Bob may choose among N × n measurements defined as B̃kj = U †

j Bk Uj, where Uj

are the “majorisation unitaries”.

Both Alice and Bob measurements have thus two outputs.

The inequality that will be used is:

Ĩ(N, n) = P (a1 6= b11, r = 1) + P (a2 6= b11, r = 1) + P (a2 6= b21, r = 1) +

· · ·+ P (aN 6= bN1, r = 1) + P (a1 = bN1, r = 1) +

P (a1 6= b12, r = 2) + P (a2 6= b12, r = 2) + P (a2 6= b22, r = 2) +

· · ·+ P (aN 6= bN2, r = 2) + P (a1 = bN2, r = 2) +
...

P (a1 6= b1n, r = n) + P (a2 6= b1n, r = n) + P (a2 6= b2n, r = n) +

· · ·+ P (aN 6= bNn, r = n) + P (a1 = bNn, r = n). (13)

Here the notation means: P (ak 6= bli, r = i) is the probability that Alice and Bob

obtain different outcomes and that the result r of the majorisation is r = i, given they

have measured Ak, B̃li, .

Following the ideas of section (3.1), let us check that ĨQM(N, n) → 0 when N → ∞.

For that purpose let us consider only one block of Ĩ, i.e. a given fixed r:

ĨN,j(QM) = P (a1 6= b1j , r = j) + P (a2 6= b1j, r = j) + P (a2 6= b2j , r = j) +

· · ·+ P (aN 6= bNj, r = j) + P (a1 = bNj, r = j) (14)

Let us analyse each term on the right hand side of (14).

P (ak 6= blj, r = j) = P (ak = 0, blj = 1, r = j) + P (ak = 1, blj = 0, r = j)

= Tr
{
|0〉〈0|Ak

U †
j |1〉〈1|Bl

Uj MjψM
†
j

}
+

Tr
{
|1〉〈1|Ak

U †
j |0〉〈0|Bl

Uj MjψM
†
j

}

= Tr
{
|0〉〈0|Ak

|1〉〈1|Bl
UjMjψM

†
jU

†
j

}
+

Tr
{
|1〉〈1|Ak

|0〉〈0|Bl
UjMjψM

†
jU

†
j

}

= Tr {|0〉〈0|Ak
|1〉〈1|Bl

pj φ2}+
Tr {|1〉〈1|Ak

|0〉〈0|Bl
pj φ2}

= pj 〈[Ak −Bl]〉 (15)
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where we’ve used the explicit form of the measurement eigenvectors and fact that, for

the BKP two outcome case, 〈[Ak −Bl]〉 = P ([Ak − Bl] = 1) = P (Ak 6= Bl).

Thus:

ĨN,j(QM)

pj
= 〈[A1 − B1]〉+ 〈[A2 − B1]〉+ 〈[A2 − B2]〉+

· · ·+ 〈[AN −BN ]〉+ 〈[A1 − BN + 1]〉 . (16)

The right hand side equals the Bell inequality explained in section (3.1), which goes to

zero as N goes to infinity. It follows that ĨQM(N, n) → 0 as N → ∞, independently of

n.

As was previously discussed in section (2.2), the local and non-local components of

ψ result in a local and a non-local probability distributions, leading to a expression for

ĨQM(N, n) of the form:

ĨQM(N, n) = p ĨL(N, n) + (1− p) ĨNL(N, n). (17)

The non-local constribution is bounded from below by the algebraic limit, thus

ĨNL(N, n) ≥ 0. Therefore, ĨQM(N, n) ≥ p ĨL(N, n). The problem that arises now is to

obtain a lower bound for ĨL(N, n). In order to do so, let us change the notation: instead

of P (aj 6= bli, r = i) we write P (a 6= b, r = i|Aj, Bli). For the local component:

ĨN,j(L) = P (a 6= b, r = j|A1, B1j) + P (a 6= b, r = j|A2, B1j) + · · ·
· · ·+ P (a 6= b, r = j|AN , BNj) + P (a = b, r = j|A1, BNj) . (18)

We will now show that ĨN,j(L) ≥ p(r = j). If p(r = j) = 0 we should prove that

ĨN,j(L) ≥ 0, which is trivial since the probabilities of outcomes are non-negative. If

p(r = j) 6= 0, let us recall the identity: P (a 6= b, r = j|Ai, Blj) = P (a 6= b|Ai, Blj, r =

j) p(r = j|Ai, Blj). The non-signalling principle assures that p(r = j|Ai, Blj) is

independent of Bob’s measurement. Besides, as we are in scenario 1 (fig. 1 ), it is

also independent of Alice’s measurement. Thus, p(r = j|Ai, Blj) = p(r = j). It follows

that:

ĨN,j(L)

p(r = j)
= P (a 6= b|A1, B1j , r = j) + P (a 6= b|A2, B1j , r = j) + · · ·

· · ·+ P (a 6= b|AN , BNj , r = j) + P (a = b|A1, BNj , r = j) .(19)

The right-hand side is just the Bell inequality presented in BKP, with an extra constrain

r = j. As the inputs Ai, Blj do not depend on r and are two-outcome measurements, it

follows that
ĨN,j(L)

p(r=j)
≥ 1. �

The lower bound for the local probability distribution is ĨL(N, n) =
∑n

j=1 ĨN,j(L) ≥∑n
j=1 p(r = j) = 1. As it is non-zero, and ĨQM(N, n) → 0 as N → ∞, it follows that

p = 0, ans thus the initial state |ψ〉 is fully non-local.

5. Summary and Conclusions

In this work we have used the results from majorisation theory in order to generalise

the study for maximally entangled states done by Barrett, Kent and Pironio. We have
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presented an extension of their Bell inequality and a set of measurements for which it

is violated by the bipartite entangled states that can be deterministically transformed

into singlets. This was studied for a scenario in which Alice’s actions (majorisation

and Bell measurements) are space-like separated events. In this case, the correlations

observed between Alice and Bob’s outcomes proved to have no local component, thus

characterising the set of states as fully nonlocal.

However, this scenario in which Alice’s two operations are independent is not the

most standard, since for a Bell experiment, a “box” with one input and two (one)

outputs would be expected for Alice (Bob). Therefore, if her actions are not space-

like separated, majorisation results may in principle be influenced by Alice’s second

measurements. This requires a different study for the local probability’s bound, which

is an interesting open question for further research.
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