
Tı́tol: Policy-Driven Resource Management
for virtualized Grid providers

Volum: 1/1
Alumne: Gemma Reig Ventura

Director/Ponent: Jordi Guitart Fernández
Codirector: Mario Macı́as Lloret
Departament: Arquitectura de Computadors
Data: 17 de juny de 2008

DADES DEL PROJECTE

Tı́tol del Projecte: Policy-Driven Resource Management
for virtualized Grid providers

Nom de l’estudiant: Gemma Reig Ventura
Titulació: Enginyeria Informàtica
Crèdits: 37.5
Director/Ponent: Jordi Guitart Fernández
Codirector: Mario Macı́as Lloret
Departament: Arquitectura de Computadors

MEMBRES DEL TRIBUNAL (nom i signatura)

President: Jordi Torres i Viñals

Vocal: Ana Cristina Zoltán Torres

Secretari: Jordi Guitart Fernández

QUALIFICACIÓ

Qualificació numèrica:
Qualificació descriptiva:

Data:

Agraı̈ments

En primer lloc, m’agradaria donar les gràcies als directors d’aquest
PFC, Mario Macı́as i Dr. Jordi Guitart per l’oportunitat de realitzar aquest
projecte i per la seva guia i els seus consells al llarg dels darrers mesos.
Sense cap mena dubte, la meva famı́lia es mereix que li dongui les gràcies per
la seva confiança en mi i la seva paciència.
Voldria agrair especialment a en Xavi i a la Montse el seu suport i els ànims
que m’han donat en tot moment.
Per últim, vull recordar als companys tant de la UPC com de la UAB per tot
el que hem compartit.

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context and opportunity . 2

1.2 Project overview and objectives . 2

1.3 Task description and initial plan . 3

1.4 Report structure . 4

2 Preliminary concepts 5

2.1 Grid . 5

2.1.1 Grid architecture . 5

2.2 Virtual machines . 7

2.2.1 Process Virtual Machine . 7

2.2.2 System Virtual Machine . 8

2.2.3 Virtualization in Xen . 10

2.3 Business Rules Engine . 10

2.3.1 JESS: Java Expert System Shell . 11

3 Requirements 13

3.1 Background . 13

3.1.1 SORMA . 13

3.1.2 EERM . 15

3.2 Functional requirements . 17

3.2.1 Resource Fabrics requirements . 17

3.2.2 Economic Resource Manager requirements 17

3.2.3 Policy Manager requirements . 18

vii

CONTENTS

3.3 Non-functional requirements . 18

4 Specification 21

4.1 Actors . 21

4.2 Resource Fabrics specification . 22

4.3 Economic Resource Manager specification . 24

4.4 Policy Manager specification . 28

5 Architecture 29
5.1 Resource Fabrics architecture . 30

5.1.1 Resource Coordinator . 30

5.1.2 Local Virtualization Manager . 31

5.2 Economic Resource Manager architecture . 32

5.3 Policy Manager architecture . 33

6 Design 35

6.1 Resource Fabrics design . 35

6.1.1 Image Transfer . 35

6.2 Economic Resource Manager design . 36

6.2.1 Virtual machines reservations . 36

6.3 Policy Manager design . 39

6.4 Use cases . 40

6.4.1 Create Machine . 40

6.4.2 Reserve Resource . 43

6.4.3 Send Job . 44

7 Implementation 47

7.1 Common issues . 47

7.2 Resource Fabrics implementation . 48

7.3 Economic Resource Manager implementation 54

7.4 Policy Manager implementation . 54

8 System evaluation 55

8.1 Policy Manager and Reservations . 55

8.2 Create Machine improvement . 64

8.3 Transfer protocols comparison . 66

viii

CONTENTS

9 Related work 67
9.1 The XenoServer Open Platform . 67

9.2 BREIN project . 68

9.3 In-VIGO project . 69

9.4 SoftUDC . 70

9.5 Globus Virtual Workspace . 71

9.6 SODA . 72

9.7 Amazon Elastic Computing Cloud . 73

9.8 Elastic Server . 73

10 Project plan and economic evaluation 75

10.1 Plan and human cost . 75

10.2 Software cost . 77

10.3 Hardware cost . 77

11 Conclusions and Future Work 79
11.1 Project outcomes . 79

11.2 Future work . 80

11.2.1 Economic Resource Registry . 80

11.2.2 Migration of VMs . 80

11.2.3 Reservations . 81

11.2.4 Store maintenance . 82

11.3 Personal remarks . 82

A Deployment 83

A.1 Components placement . 83

A.2 Software . 83

A.3 Configuration files . 84

A.3.1 Configuration properties . 84

A.3.2 Advertising resources . 85

A.3.3 Store Environment . 86

A.3.4 Pool Environment . 87

A.4 Security issues . 88

B Resource Fabrics Language specification 91

B.1 Communication elements . 93

ix

CONTENTS

B.2 Basic complex elements . 101

B.3 Basic simple elements . 104

B.4 RFL types . 111

C Scripts specification 113

C.1 Checker . 113

C.2 Image Builder . 116

C.3 Image Installer . 119

C.4 Local Resource Manager . 121

D Glossary 125

Bibliography 129

x

List of Figures

1.1 Initial plan . 4

1.2 Initial plan gantt . 4

2.1 Grid architecture . 6

2.2 Process and system VMs . 8

2.3 Virtual machine taxonomy . 9

3.1 SORMA architecture . 14

3.2 EERM architecture . 16

4.1 System actors . 22

5.1 Logic architecture . 29

5.2 Resource Fabrics architecture . 30

5.3 Resource Coordinator architecture . 31

5.4 Local Virtualization Manager architecture . 31

5.5 Economic Resource Manager architecture . 32

5.6 Policy Manager architecture . 33

6.1 Image Transfer factory diagram . 36

6.2 Reservations mechanism design . 39

6.3 Policy Manager diagram . 39

6.4 Create Machine sequence diagram I . 41

6.5 Create Machine sequence diagram II . 42

6.6 Reserve Resource sequence diagram I . 43

6.7 Reserve Resource sequence diagram II . 44

6.8 Reserve Resource sequence diagram III . 45

6.9 Send Job sequence diagram . 46

xi

LIST OF FIGURES

8.1 Interval improvement worst case . 58

8.2 PM improvement worst case . 60

8.3 Test IV . 62

8.4 Test V . 62

8.5 Test VI . 63

8.6 Test VII . 64

8.7 Test scenario . 64

8.8 Create Machine improvement . 65

9.1 The XenoServer platform . 68

9.2 In-VIGO project . 70

9.3 SmartFrog framework . 71

9.4 Globus Virtual Workspace . 72

9.5 Elastic Server . 73

10.1 Final plan . 76

10.2 Final gantt diagram . 76

A.1 Deployment scenario . 84

xii

List of Tables

8.1 Fixed vs Interval reservations . 57

8.2 Policy Manager test I . 59

8.3 Policy Manager Test II . 60

8.4 Policy Manager test III . 61

8.5 Data transfer protocols comparison . 66

10.1 Costs by roles . 76

B.1 Constraint Type specification . 112

B.2 Package Format Type specification . 112

xiii

Chapter 1

Introduction

Over the last years, the computing necessities have changed. The necessity of solving large scale

computational intensive problems as in genetics or physics fields, or those that require access to big

amount of data, or to provide high available services as in business, etc. brings us to a cooperative

and large scale computing paradigm. Besides, due to the competitiveness of the business world,

users demand high configurable and adaptative software to enable changing the system behaviour

as quick as the world change.

Grid computing has emerged for solving large scale problems by means of a cooperative infras-

tructures. But this computing paradigm entails the server underutilization problem. It is due to the

fact that user necessities of these servers change frequently throughout the time. This is a huge

trouble because underutilized servers lead to a waste of resources, money and space, besides they

are contaming unnecessarily.

Virtualization and resource management are two topics that can help to solve these problems. We

can improve server utilization by virtualizing it. This way, there is no need for a server per client

as we might be able to consolidate them. Different clients can share the same physical server in

a secure, efficient and transparent way. And with an efficient resource management, the virtual

machines can be dimensioned, started, stopped and even replicated on demand. Moreover, driving

this resource management through policies allows building high configurable and high adaptative

systems.

Therefore, in this PFC, we propose a Policy-Driven Resource Management system (PDRM). This

allows resource providers to control which policies they want to apply to adapt the behaviour

of the system in order to fulfil their business goals. Furthermore, our proposal avoids resource

underutilization by means of an efficient resource management and server consolidation through

1

Chapter 1. Introduction

virtualization.

1.1 Context and opportunity

This PFC arise from a collaboration grant of the Ministry of Education and Science (MEC) to col-

laborate with the Computer Architecture Department (DAC). The work done in this collaboration

grant has been used as a starting point for the project.

This project is developed within the framework of the EERM, Economically Enhanced Resource

Manager component of the European Project SORMA, Self-Organizing ICT1 Resource Manage-

ment [1].

The main goal of SORMA is to develop a platform that allows ICT resources trading on demand.

This platform also has to control the fulfilment of the contracts between resource clients and

resource providers and to provide them with mechanisms to efficiently exchange resources without

clients concerning where their jobs are being executed.

Once in the SORMA market a resource usage has been agreed, a contract is supplied to EERM

over the Grid Market Middleware (GMM). It contains the necessary information to allocate the

resource, fulfill the agreement between resource provider and consumer and to execute the client’s

requested job.

The EERM component has the onus of the isolation between the economic and technical part of

SORMA. Its main responsabilities are to evaluate whether a job can be done –carrying out with

the agreement– or not, to fix a price for performing the job, and to monitor both resource per-

formance and SLA violations. Besides, these jobs are executed in isolated machines by means of

resource virtualization [2] which allows the separation between application semantics and resource

management.

1.2 Project overview and objectives

The main purpose of this project is to construct a prototype that render resource providers with

a mechanism to create virtual customized execution environments on-demand and define policy

rules to maximize the revenue yielded by selling these execution environments and to maximize

clients’ satisfaction.

In order to achieve this goal, we must build three EERM components and define the interactions
1Information and Communication Technologies

2

1.3. Task description and initial plan

with the rest of components. These components are: Policy Manager (PM), Economic Resource

Manager (ERM) and Resource Fabrics (RF). Thereafter, we can divide that main goal in other

more specific goals which can be classified depending on the EERM component they belong:

Resource Fabrics For our purpose, it is necessary a way to interact with resources to provide

consumers with an isolated and customized environment to execute their jobs and with an

API to manage them.

Economic Resource Management To ensure an efficient use of local resources.

Policy Manager To store and manage policies to adapt the EERM behaviour at runtime.

1.3 Task description and initial plan

The project is divided in the following tasks to reach the goals presented in the previous section:

Initial planning : A work plan to develop the project and to define its scope and objectives.

Resource Fabrics : We will use virtualization to provide users with an isolated and customized

environment for the jobs’ execution. Thus, we will need:

Virtualization Services to manage virtual machines.

Repository image A repository image service to provide on-demand customized disk im-

ages for the client’s virtual machines.

Job Management To describe orders to manage clients’ jobs.

Economic Resource Management To allocate resources to clients. It should query Policy Man-

ager and take simple decisions.

Policy Manager To provide an infrastructure for rules definition and to construct a simple exam-

ple of policy.

Test and evaluations At this point, each component must be tested separately. This task includes

integration, test and collect the results of the overall project.

Final Report In the tasks described above it is included a documentation subtask. Hence, this

task consist in the final report writing and revision.

Presentation To prepare the final presentation.

Figures 1.1 and 1.2 show how we had scheduled these tasks along the time.

3

Chapter 1. Introduction

Figure 1.1: Initial plan.

Figure 1.2: Initial plan gantt.

1.4 Report structure

The remainder of this document is structured as follows: we explain several concepts to facilitate

the understanding of this report in chapter 2; in chapter 3 and chapter 4, project requirements and

specification are introduced; later on this report, we discuss the architectural view of the system in

chapter 5; we introduce our design and implementation decisions in chapters 6 and 7 respectively;

we gather the results of testing our system in chapter 8; through chapter 9, we present the related

work of this project and through chapter 10 we compare the initial development plan with the real

one and we calculate the cost of the project; finally chapter 11 concludes and presents some future

work. These chapters are structured in project components in a bottom-up fashion (RF, ERM, PM)

when possible.

Moreover, this report is enclosed with several appendixes to complete the information about the

overall project: in appendix A we provide a guide for the deployment and installation of the

system; in appendixes B and C, a developers manual is supplied. In the first, we describe the

language used to communicate remote components and in the second, we specify how to interact

with and how to extend the lowest level components; finally, the reader can refer to the Glossary

appendix D to find out about concepts and abbreviations definitions used along this report.

4

Chapter 2

Preliminary concepts

In order to help the reader with the comprehension of this report, some basic concepts are presented

in this chapter. For a quick reference of these terms the reader can also look up for them in the

glossary chapter D.

2.1 Grid

Grid intention is to share resources between virtual organizations (VOs). Those resources may be

heterogeneous, geographically distributed, accessed on-demand and owned by diverse organiza-

tions which potentially have different policies for administer them. VOs are logical entities formed

by a set of individuals and/or institutions created dynamically to resolve a common problem.

In 2002, Ian Foster wrote a checklist [3] with the intention of formalizing what is the Grid because

there was a trend to use freely this term and the truly scope of the concept Grid was not clear . In

its checklist he publicizes that a Grid is a system that coordinates resources that are not subject

to centralized control using standard, open, general-purpose protocols and interfaces to deliver

nontrivial qualities of services.

Earlier definitions were advertised before, maybe the most popular is the analogy between Grid

computing and electrical power, in both (electrical/computing) power are provided on demand

without the user caring about where and how this power is generated.

2.1.1 Grid architecture

Next, is explained the Grid architecture as defined in Foster et al [4].

5

Chapter 2. Preliminary concepts

Figure 2.1: The layered Grid architecture.

Grid architecture is a protocol architecture in nature because it requires the capability of sharing

relationships among any potential participants. In a networked context, that means reach interop-

erability by means of common protocols. VO users and resources negotiate, manage and exploit

sharing relationships using the basic mechanisms defined by those protocols. Figure 2.1 shows

Grid architecture layers. From bottom to top those layers are:

Fabric: This layer implements resource specific operations to provide access to those resources

and resource management mechanisms. (e.g. in computational resources, mechanisms are

required for starting/stopping applications and for controlling and monitoring the execution

of that process).

Connectivity: Defines transport, routing and naming protocols for the secure exchange of data

among Fabric layer resources.

Resource: Defines protocols for the secure negotiation, initiation, monitoring, control, account-

ing and payment of sharing operations on individual resources.

Collective: It is in charge of coordinating interactions across multiple resources.

Application: User applications within a VO are constructed in terms of services defined at any

layer.

6

2.2. Virtual machines

2.2 Virtual machines

The term virtual machine has a bunch of very different definitions in the literature. For this reason,

the intend of this section is to clarify which types of virtual machine exist and what we would

mean in this document for virtual machine.

First of all, it is necessary to define what a machine is in the context of virtual machines. Therefore,

there are two big families of virtual machines depending on what the definition for machine.

• On one hand, from the point of view of a process executing user code, a machine is what a

process needs to execute its associated code. In this case, a logical memory address space,

registers, user-level instructions and I/O resources which are available only through operat-

ing system. Thus, from the operating system perspective and its applications a system is a

full execution environment in charge of supporting several simultaneous process and assign

them memory and I/O resources. This kind of virtual machines are termed process virtual

machines.

• On the other hand, from the perspective of the system, a machine is the ISA provided as

an interface to interact with the hardware. This type of machines are called system virtual

machines.

Hereafter, throughout this document we will refer to virtual machine (VM) as system virtual ma-

chine.

In the following sections, we present a summary of the different types of process and system

virtual machines. This information and figures have been extracted from [5] and [6]. Please refer

to them for a more extended explanation.

2.2.1 Process Virtual Machine

A process virtual machine is a virtual platform that executes a process. So, the virtual machine is

created with the process and is terminated when the process dies.

The virtualization software that implements a process virtual machine is called runtime. In figure

2.2 a) we can see that the virtualizing software is at level of API or ABI interfaces, over the op-

erating system and hardware. Thus, runtime emulates user-level instructions as well as operating

system or library calls.

Within the family of process virtual machines we can also distinguish many classes:

7

Chapter 2. Preliminary concepts

Figure 2.2: a) Process virtual machine perspective of the machine b) System virtual machine machine’s
point of view

Multiprogrammed systems: They use multiprogramming to support multiple user processes, it

gives each process the illusion of a whole machine for itself (e.g. most operating systems).

Emulators and dynamic binary translators: VMs that support binary programs compiled in an

instruction set which differs from the one executed by the host (e.g. Intel IA32-EL).

Same-ISA binary optimizers: VMs with the solely purpose of optimize code during translations.

The instruction set of the host and the guest must be the same (e.g. Dynamo).

High-level-language (HLL) VMs: They are intended to reach cross-platform portability. In a

HLL VM a compiler front end generates abstract machine code in a virtual ISA that specifies

the VM’s interface. Each host platform implements a VM capable of loading and executing

the virtual ISA (e.g. Java).

2.2.2 System Virtual Machine

A system virtual machine is a complete, persistent runtime environment that allows an operating

system and the applications that it supports to run over it.

The term of Virtual Machine Monitor (VMM, a.k.a hypervisor) is used to refer to the virtualizing

8

2.2. Virtual machines

software used in a system virtual machine. As depicted in figure 2.2 b) we can notice that the VMM

is atop the host hardware and under the guest software. So the VMM emulates the hardware ISA.

Within the family of system virtual machines we can also distinguish many classes:

Classic system VMs: in this approach the VMM runs in the most privileged mode, whilst guest

system runs with reduced privileges. VMM can intercept and emulate guest operating sys-

tem actions that manipulate hardware resources.

Hosted VMs: Implementation that builds virtualizing software on top of an existing host oper-

ating system. User installs it just like a typical application program (e.g. VMware GSX

server).

Whole-system VMs: it virtualizes all software, including the operating system and applications.

It is useful when the host and the guest do not have the same ISA (e.g. Virtual PC in which

a Windows system runs on a Macintosh platform).

Multiprocessor virtualization: it is used when the underlying host platform is a large shared-

memory multiprocessor.

Codesigned VMs: its sole purpose is to emulate the guest’s ISA (e.g. Transmeta Crusoe).

Figure 2.3: Virtual machine taxonomy. First they are divided into either process or system VMs and within
this two big categories they are classified in terms of whether both the guest and the host use the same ISA
or not.

9

Chapter 2. Preliminary concepts

2.2.3 Virtualization in Xen

Xen is a VMM based on a x86 processor architecture [7] [2] [8] [9]. It was developed by the

Systems Research Group at the University of Cambridge Computer Laboratory as part of the

XenoServers project [10]. Nowadays the project has grown enabling researches to investigate

techniques for virtualize resources (CPU, memory, disk and network). Some of the project con-

tributors include: Intel, IBM, HP, AMD, Novell, RedHat.

The most important goals and challenges of Xen are:

• To support great many operating systems to accommodate the heterogeneity of applications

in a functional and easy way.

• To isolate virtual machines’ instances from each others.

• The overhead introduced by the virtualization software should be small.

To reach these objectives, Xen offers two forms of virtualization:

Paravirtualization: This type of virtualization force guest operating systems to be modified to

use a special hypercall ABI. This allows Xen to achieve a performance nearly to the one

of the host machine (i.e. the overhead introduced by the hypervisor is minimum) without

any hardware support. The hypervisor must be loaded in kernel space as is in charge of the

resource management between the different operating systems.

Full virtualization: This form of virtualization allows to run any operating system without being

specifically ported to Xen. In this case, the hypervisor introduces some more overhead on

the performance. It is needed hardware support to do full virtualization.

2.3 Business Rules Engine

A Business Rule Engine is a software that permits the isolation of business policies from the

application design. That means, in some business environments or in any frequent changing en-

vironment it is useful to adapt the behaviour of our applications without compiling the source

code, whether it be because the source code is not available or because any change in the business

logic must to be immediately reflected in the application behaviour (e.g. dealing with the dynamic

changes of market economics). A Rule Engine (RE) could evaluate and execute business rules and

use them to manage some of the business logic. Therefore, each day becomes more frequent that

applications will externalize their business logics as much as possible using rules.

10

2.3. Business Rules Engine

A business rule is a statement, expressed as if-then-else statements, that represents a business logic.

Rules define or constraint some aspects of our business that must to be present in the application.

Some examples of REs are: Drools, Fair Isaac Blaze Advisor, ILOG JRules, and Jess, the lastest

is explained in the section below. Existing so many different REs, some efforts have been done

to define a common API for the interaction between a high level programming language and REs.

Concretely, JSR 94 (Java Specification Request) is an API to access to a RE from Java. The JSR

94 reference implementation is built as a wrapper over the Jess Rule Engine.

2.3.1 JESS: Java Expert System Shell

Jess [11], is a small, lightweight and fast Rule Engine for the Java platform developed by Earnest

Friedman-Hill at Sandia National Laboratories in Livermore, CA. Jess is also a scripting environ-

ment that provides access to the complete Java API.

On the one hand, this RE is able to inference knowledge using forward chaining reasoning. For

this purpose, it uses an efficient mechanism for solving the problem of many-to-many matching.

Concretely, it uses an enhanced version of Rete [12], an algorithm for solving this matching prob-

lem. On the other hand, Jess has some extra features that outstand Jess from the rest of REs. These

include: backwards chaining and working memory queries.

Therefore, Jess is a good choice if we want to externalize the business logics from a Java applica-

tion.

11

Chapter 3

Requirements

This chapter presents the background and requirements of the project. The global context of the

project is explained here to facilitate the understanding and to justify project’s requirements which

are listed later on.

3.1 Background

3.1.1 SORMA

As explained in the Introduction (see chapter 1) SORMA is an European Project which aims to

build a platform for an efficient market-based allocation of resources. For a better comprehension

of the scope of SORMA, here is explained its logical architecture view.

Figure 3.1 shows the layered architecture of SORMA in terms of its functional components, their

responsabilities and their dependencies. Thereafter, we explain each layer in a top down fashion,

from system users to hardware resources:

Layer 5: Grid Application Layer

This layer takes into account Grid applications which are going to run in the resources and

the humans involved in it, such as Grid applications end-users or IT support staff.

Layer 4: Intelligent Tool Layer

This layer provides to the upper layer with mechanisms for an easier access to the SORMA

market. It offers tools to the clients for describing the technical requirements of their Grid

13

Chapter 3. Requirements

Figure 3.1: SORMA architecture logical view. Arrows in the figure represent dependencies not data or
control flow.

14

3.1. Background

applications and for describing their economical preferences that will determine their bid-

ding strategies on the Open Grid Market. Analogously, providers can also technically spec-

ify their offers and describe their business models to determine the generation of their offers

on the Open Grid Market.

Layer 3: Open Grid Market Layer

This layer is in charge of the allocation of the resources to the clients’ Grid applications.

These assignments are carried out taking into account certain rules played into the market.

Layer 2: Core Market Services

This layer extends the standard Grid middleware from layer 1 with the necessary services

for an open marketplace. It offers services to: communicate participants in a secure and

reliable way, log all the transactions executed on the market, trade which resources are used

by whom, interact with the lower layer and provide information about prices, resources’

usage and so on. An association of some of these services is what is called Grid Market

Middleware (GMM [13]) in the following chapters.

Layer 1: Economically Enhanced Virtualization Middleware

Within this layer EERM and resource fabrics components are placed. Those components

conform the core of this PFC, so they are explained in further detail in the next section

(3.1.2). Besides these components, a monitoring element is located in this layer. The lastest

is in charge of measuring the state of the resources in terms of technical parameters.

Layer 0: Physichal Resource Layer

Layer of the plain technical resources traded on the SORMA market, such as virtual ma-

chines.

3.1.2 EERM

In a similar way as the previous section, this section is intended to explain the functionality of the

EERM in terms of its architectural elements, which are showed in figure 3.2.

As explained in the Introduction chapter (see chapter 1), once a client has contracted a resource

where to execute its tasks a SLA is supplied to the EERM through the GMM. Next, the respons-

abilities of EERM are exposed :

Economy Agent (EA): This EERM component is responsible of deciding if a task is technically

and economically feasible and calculating its price based on the client’s preference (e.g.

15

Chapter 3. Requirements

Figure 3.2: EERM architecture.

regular client, standard), economic policies and current and future estimated amounts of

resources’ supply and demand.

Estimator Component (EC): EC estimates the expected impact of executing a task on the uti-

lization of resources. Thus, the system is able to prevent losing performance due to an

overload of these resources.

System Performance Guard (SPG): This component is in charge of the fulfilment of the SLAs.

In case of resource performance problems it is notified by the monitoring component. There-

after SPG might take decisions about cancelling, migrating tasks, etc. with the objective of

accomplishing more important SLAs, i.e. those SLAs which maximize the overall revenue.

Those decisions are made in terms of the policies stored in the Policy Manager.

Policy Manager (PM): This component stores and manages policies concerning to client clas-

sification and task cancellation or suspension, etc. This is a very important component of

EERM –almost all the components interact with it– because it allows to adapt EERM’s

behaviour at runtime.

Economic Resource Manager (ERM): The Economic Resource Manager has the onus of ensur-

ing an efficient use of local resources. For this purpose, it is in charge of the communication

with local resource managers and influence them to achieve a more efficient global resource

usage.

16

3.2. Functional requirements

3.2 Functional requirements

In this section, functional requirements will be explained. These are classified in terms of the

architecture component within which they belong. This separation in components (Resource Fab-

rics, Economic Resource Manager and Policy Manager) is maintained in following chapters when

possible.

3.2.1 Resource Fabrics requirements

The main functionalities of this component are enumerated and briefly described next:

• Must provide mechanisms for the customized creation of virtual machines over heteroge-

neous resources. The resource fabrics component must be able to create customized virtual

machines. It means, that the user can decide which kernel version, which distribution and

with which applications the virtual machine will be created.

• Must provide mechanisms for the management of a virtual machine. This functionality

include start and stop VM and its services.

• Job management. This component must provide functions for the management of the jobs

that will be executed by virtual machines (e.g. to send a job to a VM).

• Must maintain a resource register. This component has the onus of maintaining information

about available physical resources.

3.2.2 Economic Resource Manager requirements

Next, the requirements of the ERM component are listed:

• Must maintain the necessary information about VMs. ERM must maintain a registry of the

available VMs and their characteristics (e.g. which applications each one has installed, its

reservation timetable, etc.).

• Must be able to contact with Resource Fabrics for the managing of VMs. That is, it could

call create, start and shutdown mechanisms offered by the RF component.

• Must be able to send jobs to VMs. It can contact with the VMs and send jobs to execute on

them.

17

Chapter 3. Requirements

• Must be able to manage reservations for each VM. It must be able to accommodate new

reservations (agreement by which a client reserves in advance a VM) taking into account

the current state of the reservation schedule.

3.2.3 Policy Manager requirements

Requirements of the Policy Manager are the following:

• Must provide an API for resolving conflicts to the users of PM. It consists of a software

infrastructure that permits users of the PM to query it about decisions they have to take.

3.3 Non-functional requirements

Non-functional requirements are characteristics or constraints related to the quality that software

must provide. In our prototype, these are:

• Must work on heterogeneous resources. A provider could offer resources from different

processor architectures.

• Must work on Debian based system. For the purpose of this prototype, it is not necessary

that the software have to be distribution independent. But it could be interesting that the

software could be easily extensible to other distributions.

• Resource Fabrics must be remotely accessible. The resource fabrics component must be

remotely accessible through web services inside the LAN of the provider.

• Must be extensible. This is a very important requirement because the software that we are

developing is just a prototype that will be included in the SORMA’s prototype, not a final

commercial software. For this reason many changes are expected in the prototype.

• The documentation must be clear. The documentation, specially in the APIs of the com-

ponents developed in the context of this PFC must be clear for the same reason as the

previously point, for an easy extensibility.

• Rule Engine independent. Changing the Rule Engine must be smooth.

• Must use the following software:

– Java 1.5: The generated software must be JAVA API 1.5 compliant.

18

3.3. Non-functional requirements

– JESS: Java Expert System Shell. The PM component has to use this software as its

rule engine to store and manage policies. We have chosen this rule engine because of

its interoperability with Java.

– Xen: The hypervisor used for the virtualization. Xen is an open source virtualization

software with a great amount of functions for managing virtual machines.

– Tycho: Communication platform used in SORMA to send jobs to VMs.

– Axis 2: SOAP engine used to build web services.

– XMLBeans: Web service data binding provided by Apache. It creates Java types based

on XML schema.

19

Chapter 4

Specification

In this chapter we will introduce the API of the software components of the project as well as

the actors that will use these elements. We provide the Resource Fabrics API as it is a meaningful

component by itself ready to be used in other scenarios/projects. Anyway, this component is meant

to be used by the ERM component within the context of this PFC.

For each component functionality, we provide the following information: function name, brief

description, input and output parameters description and kind of exception that the function might

through.

Most of the specification of the data types for the input and output parameters can be found in the

appendix B. The rest is explained in detail in the Design chapter 6. This separation is due to the

fact that those data types included in the appendix follows an XML schema and deserve an special

attention as it is intended to be as standard as possible.

4.1 Actors

In this section we specify the actors which will interact with the project’s components. As it is part

of a bigger project, it is expected that all the actors will be software elements instead of humans:

EERM : SORMA’s software component. It is explained briefly in chapter 1 and in further detail

in chapter 3. We can find the following actors according to the EERM’s subcomponent that

they represent:

SPG : System Performance Guard. EERM software component that monitors the state

of resources and take decisions consequently. It can act on behalf of the resource

21

Chapter 4. Specification

Figure 4.1: Actors hierarchy.

provider or on behalf of the client (resource consummer). Therefore, it is specialized

in two different actors:

SPG Resource Provider : SPG EERM software component that may act on behalf

of the resource provider.

SPG Client : SPG EERM software component that is acting on behalf of the final

client.

ERM : Economic Resource Manager. EERM software component. (See section 3.1.2 for

a component description).

EA : Economy Agent. EERM software component. (See section 3.1.2 for a component

description).

4.2 Resource Fabrics specification

For the scope of this prototype, we only provide three functionalities for the Resource Fabrics

component, the lowest layer that communicates with physical resources. These are: create a new

VM and the necessary operations to manage them. At the moment, these management functions

are start and shutdown VMs. However, in a commercial product based on this project this layer

should also offer functions for suspending and resuming VMs, migrate VMs from one host to

another, change the resources assigned to each VM (amount of memory, number of VCPUs, disk

22

4.2. Resource Fabrics specification

space, etcetera), and functionalities for the management of jobs (cancelling tasks, suspending,

resuming them and so on).

createMachine

Description Choose an available resource according to the processor architecture spec-

ified inside parameter MachineDescription and creates there a new virtual

machine accomplishing with the other requirements also specified in the

parameter MachineDescription.

Actors ERM

Input MachineDescription: specification of the requirements that the new ma-

chine must serve. See appendix B.

Output MachineIdentifier: list of the necessary information to manage and access

to the new machine. See appendix B.

Exception NoResourceAvailable: there is no resource of the required architecture.

InvalidRequirement: one of the specified requirements cannot be accom-

plished.

CommunicationFailed: it is impossible to contact or transfer data to the

target resource.

23

Chapter 4. Specification

startMachine

Description Start the machine identified by MachineIdentifier.

Actors ERM

Input MachineIdentifier: list of the necessary information to manage and access

to the VM. See appendix B.

Exception UnableToStart: an error has occurred while starting the machine and it is

impossible to start it.

MachineNotFound: there is no machine identified by MachineIdentifier in

this resource.

shutdownMachine

Description Shutdown the machine MachineIdentifier.

Actors ERM

Input MachineIdentifier: list of the necessary information to manage and access

to the VM. See appendix B.

Exception UnableToShutdown: an error has occurred while stopping the machine.

MachineNotFound: there is no machine identified by MachineIdentifier in

this resource.

4.3 Economic Resource Manager specification

In this section we introduce the ERM specification to help other EERM components to interact

with it. This layer aims to provide functions for managing resources, more concretely functions

to handle VMs such as create, start and shutdown a VM; methods for managing an efficient use

of VMs such as handle its related information and schedule reservations; and lastly, functions for

sending jobs to those VMS. However, in a real product, this API would include a bigger set of

functions to manage VMs and the jobs that will be executed on them, for instance: pause job,

migrate job, pausing/resume VM, etcetera.

24

4.3. Economic Resource Manager specification

createMachine

Description Choose an available resource according to the architecture required and cre-

ates there a new virtual machine accomplishing with the requirements spec-

ified in the parameters HardwareDescription and ImageDescription. This

function also provides a unique name to the VM.

Actors SPG Resource Provider

Input HardwareDescription: description of the hardware required for the new

VM. See appendix B.

ImageDescription: description of the requirements for the construction of a

disk image for the new VM. See appendix B.

Output MachineIdentifier: list of the necessary information to manage and access

to the new machine. See appendix B.

Exception NoResourceAvailable: there is no resource specified for the required archi-

tecture.

InvalidRequirement: one of the specified requirements cannot be accom-

plished.

CommunicationFailed: it is impossible to contact or transfer data to the

target resource.

startMachine

Description Start the machine identified by MachineIdentifier.

Actors SPG Resource Provider

Input MachineIdentifier: list of the necessary information to manage and access

to the VM. See appendix B.

Output boolean: whether machine is started properly or not.

Exception UnableToStart: an error has occurred while starting the machine and it is

impossible to start it.

MachineNotFound: there is no machine identified by MachineIdentifier in

the target resource.

CommunicationFailed: it is impossible to contact or transfer data to the

target resource.

VMDoesNotExist: there is no VM identified by MachineIdentifier.

25

Chapter 4. Specification

shutdownMachine

Description Shutdown the machine identified by MachineIdentifier.

Actors SPG Resource Provider

Input MachineIdentifier: list of the necessary information to manage and access

to the VM. See appendix B.

Output boolean: whether machine is stopped properly or not.

Exception UnableToShutdown: an error has occurred while starting the machine and

it is impossible to start it.

MachineNotFound: there is no machine identified by MachineIdentifier in

the target resource.

CommunicationFailed: it is impossible to contact or transfer data to the

target resource.

VMDoesNotExist: there is no VM identified by MachineIdentifier.

getResources

Description Returns the set of provider’s VMs.

Actors SPG

Output Set(MachineIdentifier): a list of MachineIdentifiers of all the available

VMs.

getResourceInfo

Description Request for information about the VM identified by MachineIdentifier.

Actors SPG

Input MachineIdentifier: list of the necessary information to manage and access

to the new machine. See appendix B.

Output MachineInfo: information related to a VM, its hardware, the software it has

installed and its reservations plan.

Exception VMDoesNotExist: there is no VM identified by MachineIdentifier.

26

4.3. Economic Resource Manager specification

reserveResource

Description Reserves the resource identified by MachineIdentifier fullfiling the charac-

teristics described in Reservation (e.g. period of time).

Actors SPG Client

Input MachineIdentifier: list of the necessary information to manage and access

to the new machine. See appendix B.

Reservation: information about the reservation.

Output boolean: whether the reservation can be planned properly or not.

Exception VMDoesNotExist: there is no VM identified by MachineIdentifier.

getReservations

Description Request for the list of reservation of the resource identified by MachineI-

dentifier.

Actors SPG

Input MachineIdentifier: list of the necessary information to manage and access

to the new machine. See appendix B.

Output ReservationSet: register of all the reservations of a resource.

Exception VMDoesNotExist: there is no VM identified by MachineIdentifier.

27

Chapter 4. Specification

sendJob

Description This method sends the job specified in the JSDL parameter by client Client

to the VM identified by MachineIdentifier.

Actors SPG Client

Input Client: system consumer.

MachineIdentifier: list of the necessary information to manage and access

to the new machine. See appendix B.

JSDL: job description. (See [14]).

Output SentJobId: job identifier.

Exception VMDoesNotExist: there is no VM identified by MachineIdentifier.

NoClientReservation: there is no reservation of this client on this VM.

CommunicationFailed: it is impossible to contact or transfer data to the

target resource.

4.4 Policy Manager specification

This component is in charge of managing policies to help EERM to take decisions. We provide

these functions to fullfil with the requirement of being RE independent (see Requirements chapter

3). The functionalities listed below are enough for accomplishing our necessities in this prototype.

Nevertheless, a complete software should provide operations for managing modules, facts, etc.

executePolicy

Description Executes a policy which helps to take some decision or to resolve a conflict.

Actors SPG, EA, ERM.

Input Policy: policy for a conflict resolution. See Design chapter 6.

Exception RuleEngineNotFound: the expert system is not specified properly in the

configuration file.

PoliciesNotFound: the policies location is not specified properly in the con-

figuration file.

RuleEngineException: any fault related to the rule engine.

28

Chapter 5

Architecture

In this chapter, we present the scope of the architecture for this project. Concretely, we explain the

logical architecture of the Resource Fabrics, Economic Resource Manager and Policy Manager

components. To shed light on this chapter, every section comes with a figure showing the relations

and dependencies between elements.

As in previous chapters, we present a bottom-up structure. As depicted in figure 5.1 and as we

known for previous chapters, the ERM component is the central component which receives re-

quests for managing resources and forwards them to resource fabrics layer when necessary, and in

case of any foreseen conflict asks PM to resolve it.

Figure 5.1: Architecture.

29

Chapter 5. Architecture

5.1 Resource Fabrics architecture

Resource Fabrics is the component that provides access to and control of the resources inside a

resource provider’s LAN.

As shown in figure 5.2 Resource Fabrics component is formed by two main subcomponents: the

Resource Coordinator and the Local Virtualization Manager which are explained in detail in the

next sections. On one hand, Resource Coordinator chooses and helps to prepare a resource for

creating new virtual machines. On the other hand, the Local Virtualization Manager is placed

in every resource to offer functionalities for the management of its virtual machines.

Figure 5.2: Resource Fabrics architecture.

5.1.1 Resource Coordinator

The Resource Coordinator is built upon the following elements (see figure 5.3).

The Virtual Machine Creator is in charge of the correct creation of virtual machines. For this

purpose, it contacts the Resource Registry, Repository Image and Transfer Manager components.

It also contacts with the Local Virtualization Manager explained in the next subsection.

The Resource Registry component maintains a list of the available resources and theirs charac-

teristics, such as the architecture, default user and so on.

The Repository Image is formed by two elements: the Store in which we cache base systems,

kernels and software packages for the disks images, and the Image Builder which is responsible

of maintaining and filling the Store.

Finally, the Transfer Manager is the component who transfers disk images created by Repository

Image to the Local Virtualization Manager explained in the next subsection.

30

5.1. Resource Fabrics architecture

The latest three components, Resource Registry, Repository Image and Transfer Manager are co-

ordinated by the first one, Virtual Machine Creator.

Figure 5.3: Resource Coordinator architecture.

5.1.2 Local Virtualization Manager

As in the previous section, we will define the responsibilities and capabilities of the Local Virtu-

alization Manager in terms of the components that conform it.

Figure 5.4: Local Virtualization Manager architecture.

The Local Virtualization Manager Gateway is the access point to the local services. Every

incoming request has to pass through this component. It do not perform any action, just acts as a

gateway.

The role of the Pool in the Local Virtualization Manager is similar to the Store module in the

Resource Coordinator component. Within the pool, we store the most recently used kernels and

base systems as well as all the necessary information for the correct operation of VMs, i.e. , its

31

Chapter 5. Architecture

disk images and configurations files.

The Checker component is accessed during the creation of a new machine. It checks if the ma-

chine creation requirements are available in the Pool cache. That is, whether the required kernel

and base system are cached locally or not, and reserve a space in the Pool for the new machine.

The Image Installer element has the onus of installing the base system, kernel, and create the

necessary ramdisk for a VM creation.

Finally, the Local Resource Manager is the component in charge of managing the VMs. For this

prototype it just offer create, start and stop capabilities, but in a final prototype or in a commercial

product it is supposed to provide functions for migrating and redimensioning VMs.

5.2 Economic Resource Manager architecture

Figure 5.5: Economic Resource Manager architecture.

This component is in charge of the efficient use of the set of virtual machines created in the

hardware resources offered by a provider.

As depicted in figure 5.5, the central architectural element of ERM is the Machine Manager
component. This, has the onus to orchestrate the rest of the elements and it is also in charge of

assigning unique names to virtual machines and to request the creation and destruction of them.

The Machine Registry maintains a register with the available virtual machines and information

related to them. Some of this information is: the mechanism to contact the VM, the software

installed on it, and its reservations. A user must reserve a VM before he could execute a job on it.

The Reservations component registers the reservations of each machine. It is the responsible for

deciding whether a reservation is feasible or not and schedule it in the timetable associated to each

machine.

Lastly, the Job Manager contacts VMs to send them jobs and to manage these jobs.

32

5.3. Policy Manager architecture

5.3 Policy Manager architecture

Finally, the Policy Manager architecture is presented. It consists of a Rule Engine and a Policy
Manager Frontend to operate with the Rule Engine in a transparent way.

The architecture of this component naturally arise to satisfy the requirement of being Rule Engine

independent (see chapter 3). That is, the Rule Engine might be changed by another one easily. To

achieve this requirement the front-end isolates the Rule Engine from the way to access to it.

Figure 5.6: Policy Manager architecture.

33

Chapter 6

Design

This chapter presents the main design decisions related to project’s components (RF, ERM, PM).

It is divided in two parts. On one side, we describe the design solution for each component in

terms of class diagrams including the design patterns that we have applied. In the second part,

we explain our design in terms of the most interesting use cases to help the reader to grasp the

interactions among components.

During the design phase of the top level components, both ERM and PM, we always had in mind

that they are EERM’s components. Therefore, they must be designed to help EERM to achieve its

goals, maximizing provider’s revenue and client’s and provider’s satisfaction.

6.1 Resource Fabrics design

The Resource Fabrics component is the closest element to physical resources. One of its respon-

sabilities consists of transferring software packages from the Resource Coordinator component

to the target Local Virtualization Manager. In this section, we explain how this transfer is de-

signed. The rest of components, specially those placed inside the Local Virtualization Manager,

are explained directly in the implementation chapter (see chapter 7) as most of them are not object

oriented components and their designs are very tightly coupled to implementation decisions.

6.1.1 Image Transfer

This section corresponds to the explanation of the design of the Transfer Manager architectural

component placed inside the Resource Coordinator component. (See Architecture chapter 5).

35

Chapter 6. Design

In this project, the provider of the bundle of resources could specify which data transfer mechanism

(i.e. which protocol: SCP, FTP, etcetera) will use for transferring disk images to each resource

(see System Evaluation chapter 8 for a protocol comparison discussion). The resource provider

specifies the protocol in the resources XML file, detailed in the appendix section A.3.2. Thus, the

application is able to know about the transfer protocol at runtime.

Figure 6.1: Image Transfer factory diagram.

This capability lead us to use the factory design pattern to resolve the problem of which image

transfer class we instantiate for the image transfer at runtime. Figure 6.1 shows how we apply

this pattern. In this figure we show a Tranfer Factory class with a static method getImageTrans-

fer(String protocol) and two implementations of the interface ImageTransfer used for transferring

files from a component to another. Thereafter, if we want to use the SCP protocol for the trans-

fer, we just only have to call TransferFactory.getImageTransfer(“SCP”) and this will return us an

interface implemented with the SCP mechanism.

6.2 Economic Resource Manager design

The EERM component, as well as its subcomponent ERM have to guarantee an efficient use of

the marketable resources. To achieve this goal we propose an extensible and policy-driven design

for reserving these resources.

6.2.1 Virtual machines reservations

First of all, we have to introduce the definitions of reservation and planned reservation. We define

a reservation as the client’s intention to reserve a VM for a period of time. We will say that this

reservation is planned/scheduled to the agreement by which the client reserves in advance a VM

to use it from a period of time, i.e. the reservation is scheduled in the reservation timetable of a

VM without overlapping in time with any other reservation. Therefore, a client must had made a

reservation for a VM before he could send a job to it. In this section, we propose an extensible

design for the reservation mechanism. It allows the clients to specify reservations in several ways

depending on the inherent characteristics of their resource necessities.

36

6.2. Economic Resource Manager design

For this prototype we have defined two kinds of reservations depending on the way they can be

scheduled:

Fixed: a reservation specified in terms of the beginning date-time and the ending date-time. That

is, the reservation is feasible if it is scheduled within those dates. For instance, a client may

ask for a reservation from Monday, April 21 2008 at 11:40 AM to Monday, April 28 2008

at 11:40 AM.

Interval: a reservation specified by means of its duration time and a lower and upper bound

where it is feasible to plan it. That is, the booking can be performed if it is scheduled in

the timetable after the lowerbound and before the upperbound for a duration period of time.

For example, a client might want a reservation for a 20 hours period between Monday, April

21 2008 at 11:40 AM and Saturday, April 26 2008 at 12:00 AM, but no matter when this

booking will be done exactly. Thus, we said that this kind of reservation is mobile, because

we can reschedule it.

Scheduling process restrictions

In the project’s framework, we have imposed some restrictions to the timetable scheduling process

to simplify its complexity because fitting reservations in a timetable could be a computational

complex problem. Thus, when we are trying to plan a reservation R in a virtual machine timetable,

we have to take care about possible conflicts and restrictions:

[1] If R is overlapping with an already started reservation (this is, the beginning reservation’s

date is in the past), R cannot be planned.

[2] If R is overlapping with more than one scheduled reservations, R cannot be planned. We

could have a policy specifying the maximum number of overlapped reservations as is sug-

gested in Conclusions and Future Work chapter 11.

[3] If R is overlapping with just one reservation S:

[3.1] if S is of type Fixed, the Policy Manager is called to resolve the conflict between R

and S. This decision will be taken in terms of which client, R’s or S’ client, is the most

preferential. In case of equality between client’s preferences the reservation S will rest

planned. We should understand client preference’s as the grade in which the provider

wants to encourage or maintain client’s loyalty.

[3.2] if S is mobile, such as an Interval reservation, we will try to reschedule it inside its

defined-range. If it could not be rescheduled, we call the PM to resolve the conflict

37

Chapter 6. Design

as in the case described before. For the sake of simplicity, we only consider one

reservation rescheduling for a given reservation overlap.

To sum up, we are encouraging to build client’s loyalty rather than anything else (in case of conflict

between reservations we choose to plan that one owned by the most preferential client). Although

this policy might seem to be opposite to the EERM goal of maximizing revenue, it is not because

a client’s loyalty could bring us higher revenue on the long-term. Even though, in the Conclusions

and Future Work chapter 11 we discuss about taking into account the current reservation revenue

besides the client’s preference grade when deciding about a conflict resolution.

Design

The design of these reservations is shown in figure 6.2. We can see that each machine has its

timetable of booked reservations. As each reservation has its own mechanism to be scheduled

on a timetable, our design approach consists of an abstract class Reservation where the common

part is defined and two subclasses for the different types of reservations. The schedule function is

implemented into the specialized reservation classes. As it can be seen, this solution is based on

the template pattern. In our case, we call the method reserve when we want to plan a reservation.

This function is in charge of doing the first common part (if the timetable is empty we append the

reservation without taking any other consideration) and call to specialized function schedule. It

trys to schedule the reservation in the timetable and calls to method resolve of the superclass (that

function is the hook of the template) to resolve a reservation conflict when necessary.

Reservations are planned in the first empty timetable’s gap when possible. Other approaches could

be taken into account, as schedule reservations in the hole that they fits better or in the biggest hole

and so on. The study and evaluation of which approach could be better for this system is out of

the project’s scope even so, we suggest some alternatives to this decision in the Conclusions and

Future Work chapter 11.

In the figure 6.2, a Client class is depicted. This is a simplification used by this project because

the onus of representing clients belongs to another SORMA’s partner.

This design permits ERM to manage resources more efficiently than if it just have had reserva-

tions specified with a beginning and ending date. This improvement is quantified in the System

Evaluation chapter 8. It also allows to be extended easily in case we want to specify bookings in

any other way. For example, a client might want 3 hours of duration as soon as possible or as last

as possible, etc.

We refer the reader to Conclusions and Future Work chapter 11 for an explanation of different

38

6.3. Policy Manager design

Figure 6.2: Reservations mechanism design. Application of the template pattern in reservations. Getters
and setters methods are omitted from the figure.

alternatives to plan reservations that should be evaluated in the future. Besides, there can be found

several policies examples in addition the one presented in the following section 6.3. Later on

this chapter, it is presented the use case Reserve Resource for a complete comprehension of the

reservation mechanism.

6.3 Policy Manager design

This component is the one that interacts with the RE. For this reason and to fullfil with the re-

quirement (see chapter 3) of being RE independent, we designed the PM component as depicted

in figure 6.3.

Figure 6.3: Policy Manager1 diagram.

We have an interface IRuleEngine that acts as a connector to the RE. For each different RE we

want to use for the system, we have to provide an implementation of this interface. Therefore,

39

Chapter 6. Design

we use again the factory pattern in our proposal. We think that could be useful to allow changing

from one RE to another without compiling the source code in a development context, although we

consider that almost never it will be necessary to change between Rule Engine implementations

on runtime in a real scenario.

On the one hand, we have a RuleEngineFactory which return us an interface through which we can

work with the RE implementation. This class is in charge of controlling that a unique instance of a

IRuleEngine implementation exists in the system. To decide which implementation of the interface

we want to instantiate we query it to a configuration file (see appendix A), in a different way to

what we have done in the case of Image Transfer factory explained previously in this chapter.

Finally, we have the Policy abstract class that represents each provider’s policy specified in the

RE language. The objective was to provide an infrastructure through which the rest of EERM

components could use PM, not to do policies themselves. Thus, we just provide a simple example

of policy introduced in the previous section. It consists of resolving a conflict between two reser-

vations when planning them by means of the clients’ reservations preference. In the next chapter

we show the policy implementation (see chapter 7) and throughout the Conclusions and Future

Work chapter 11 we propose several policies that may be applied to EERM.

To sum up, if we want to change the current RE by another implementation of RE we just have to

implement the IRuleEngine interface. And for each policy that we add to the RE we have to create

its wrappered class extending the abstract class Policy.

6.4 Use cases

To clarify the functionalities provided by our prototype, we explain the most representative use

cases, those which are more complex regarding the number of interactions between classes and

more interesting from the functional point of view.

6.4.1 Create Machine

The use case Create Machine is used when creating a new virtualized resource is required (see

specification chapter 4 for the details of this functionality). The architectural components involved

in this use case are ERM and RF.

We present a simplified sequence diagram of this use case in figures 6.4 and 6.5. These are

simplified due to the omission of parameters types, the omission of singleton patterns as in the

case of ResourceRegistry, PoolLock, StoreLock, etc. and the omission of error cases. Although,

40

6.4. Use cases

the parameter’s types could be deduced from the parameters name, the reader can refer to appendix

B for a specification of the most important parameter types.

Figure 6.4: Create Machine use case sequence diagram. Economic Resource Manager fragment.

Once a create machine request arrives to the ERM component, the ResourceManager class gen-

erates a unique name for the new virtual machine and forwards the call to the ResourceVirtual-

izationCoordinator of the Resource Fabric component. As soon as the RF component returns,

the ResourceManager creates an instance of MachineInfo and fills it with information about the

characteristics and reservations of the new virtual machine. Finally it registers the new machine

in the MahineRegister. This process is depicted in figure 6.4.

What is happening inside RF once a request has arrived is shown in figure 6.5. The Resource-

VirtualizationCoordinator class contacts with the ResourceRegistry for a resource where to create

the new virtual machine (if no resource exists an error message is returned). Then, it forwards the

call to the ImageCoordinator. It calls the ImagePoolManager from the Local Virtualization Man-

ager of the target resource to find out which requirements it can accomplish without downloading

anything from Internet. Then if there exists a requirement that cannot be fullfilled by the target

resource, it asks for the software required to build an image to the ImageStoreManager in mutual

exclusion to ensure no interference of concurrent requests. After that, it transfers that software to

the target resource, in this example, using the SCP protocol. Then it asks, in mutual exclusion,

to the ImagePoolManager to install the disk image and finally it asks, again in mutual exclusion,

to the VirtualizationManager for the virtual machine creation strictly speaking. In case the Lo-

cal Virtualization Manager could satisfy all the requirements, the calls to methods buildImage,

getImageTransfer and send are skipped.

The interaction between the previous explained classes and the Image Builder, Checker, Image

Installer and Local Resource Manager components is explained in the next chapter 7 because

these components follow a non object oriented design.

41

Chapter 6. Design

Figure 6.5: Create Machine use case sequence diagram. Resource Coordinator fragment.

42

6.4. Use cases

6.4.2 Reserve Resource

This section presents the Reserve Resource use case as shown in figures 6.6, 6.7 and 6.8.

The use case starts when a reserveResource request arrives at ResourceManager. This request

specifies the VM where to perform the reservation and the reservation going to be scheduled. If

this VM does not exist, it is not registered in the MachineRegister, an error message is returned.

Otherwise, the ResourceManager gets its plan (that is, the reservation timetable) and calls the

reserve function. If the plan is empty this reservation is planned immediately. Otherwise, the

method schedule is called to plan the reservation. This schedule method returns whether the

reservation has been planned or not.

Figure 6.6: Reserve Resource use case sequence diagram. Method reserve.

Figure 6.7 shows the behaviour of method schedule for the case that we are trying to plan an In-

terval reservation. We depict this case because it is more complex than the fixed one. In 6.7(a)

we call to the private schedule method rendered in 6.7(b) advertising that the implicit reservation

is not planned (we will call this function with a true value in case we want to reschedule a reser-

vation). Then, the Interval reservation calls to method overlappedInterval to calculate with which

reservation its range overlaps, i.e. which reservations are already planned between its lower and

upperbound. After this, the fitsHole function is called to plan the reservation in any empty gap

between the planned reservations. In the case that the fitsHole function could schedule the reser-

vation, this schedule function will return true, otherwise that means that it is necessary to call to

43

Chapter 6. Design

method resolve for deciding between this implicit reservation and the ones already planned.

(a) Method schedule (b) Private method schedule
Figure 6.7: Reserve Resource use case sequence diagram. Method schedule.

Finally, the method resolve is shown in figure 6.8. Firstly, it calls to method tryToSwap trying

to reschedule any reservation inside its feasible range as well as plan the implicit reservation and

keep the planned ones. If it is not possible, for each reservation that could be changed by that one

we are trying to plan, Policy Manager is called (executePolicy method) to resolve between them.

When PM will resolve the conflict in favour of the implicit reservation this method will swap

the reservations and return true. If the implicit reservation cannot be changed for any planned

reservation, false is returned.

6.4.3 Send Job

This section shows the interactions among ERM’s classes when it is required to send a job to a

VM. Once a client has made a reservation over a VM he can send a job there. Figure 6.9 illustrates

this use case. First of all, the Resource Manager class from the ERM component asks to the

Machine Register whether the required VM exists or not. If it does not exist an error message is

returned, otherwise the Resource Manager queries for the reservation plan of the VM and asks to

it whether this client has a reservation for it or not. If the client has no reservation for the VM an

error message is returned, otherwise the job is sent to the target VM through the Tycho2 classes.
2TychoManager and TychoResourceWrapper classes have been already done in SORMA’s project.

44

6.4. Use cases

Figure 6.8: Reserve Resource use case sequence diagram. Method resolve.

45

Chapter 6. Design

Figure 6.9: Send Job use case sequence diagram.

46

Chapter 7

Implementation

So far, we have explained the overall project without concerning about the technologies involved

in it. In this chapter, we present these technologies and the most relevant implementation details

related to them. This chapter is structured as the previous ones, in terms of project components.

However, first of all, we will explain those characteristics that are present in more than one com-

ponent.

7.1 Common issues

In these section we introduce all those implementation decisions that affect more than one project

component.

First of all, we have decided to implement the project components in Java 1.5 as this was agreed

in the context of SORMA’s project. Nevertheless, some subcomponents of RF are written in bash

script due to its proximity to the OS (see section 7.2).

Secondly, we have implemented synchronous stateless Web Services (WS) for the communica-

tion among remote components, those that may be deployed in separate servers (see chapter A).

These are generated with Axis2 [15] which is a toolkit from Apache Software Foundation [16]

for developing and deploying WSs. Concretely, we specify these WSs using WSDL (Web Ser-

vice Description Language) and then, we use the Axis utility wsdl2Java to construct the client

stubs and server skeletons for the marshalling and unmarshalling of the service parameters. These

parameters, are those specified by XML schemas in the appendix B. On the other hand, we use

XMLBeans [17] from Apache Software Foundation as data binding because it translates XML

schemas to Java types, so within the Java code we can manipulate these parameters without deal-

47

Chapter 7. Implementation

ing directly with the XML data representation. We use the synchronous version of these WSs

because the requests need to be blocking.

We have implemented several registers in this project: the Resource Registry which registers hard-

ware resources within Resource Coordinator RF component and Machine Registry inside ERM

component which registers those VMs created in the resources. Those are implemented transient,

just as Java HashMaps. Although, in future versions of this prototype, more sophisticated reg-

isters will be required, leastways persistents because it is indispensable that the registers will be

persistent to avoid data loses in case of failure or service maintenance.

Finally, as we want to construct a high configurable software, we use a Java properties file to

parameterize some decisions. This configuration file is shown in appendix A.

7.2 Resource Fabrics implementation

In this section, we will focus our attention in the Resource Fabrics layer. This is the component in

charge of creating VM using Xen virtualization [2]. Xen is an open source hypervisor that offers

low overhead even though without hardware support for virtualization.

Firstly, we are going to explain how the provider can communicate its available resources to the

software components. Then we will center the discussion in the scripts deployed within RF com-

ponent, including the following components: Checker, ImageBuilder, ImageInstaller and Local

Resource Manager1. Then, we comment how we implement the software transfer between the

Store and Pool elements and finally, we list the characteristics that a VM will offer.

Advertising resources

The provider specifies its resources in a XML file to advertise them (see appendix A). This way,

the Resource Registry can be fullfiled with the information provided in this file. This register

is implemented in Java and uses JDOM, a Java representation of an XML document [19], to

manipulate the XML encoded data.

1A previous version of the Local Resource Manager was already done in the context of BREIN project [18]. This
has been used as a starting point to do the current Local Resource Manager.

48

7.2. Resource Fabrics implementation

The scripts

The corpus of RF is formed by the Checker, ImageBuilder, ImageInstaller and Local Resource

Manager components as far as they do almost all the component’s logic. These components per-

form low level actions close to the operating system such as: operations over the file system,

creating an empty file to accommodate a new file system for a new VM, etc. For that reason, we

decided to do these actions in a scripting language, in this case bash, because it has more func-

tionalities than Java to deal with low level OS details. Next, we will explain how we communicate

these elements with the ones implemented in Java (the Local Virtualization Manager Gateway and

the Virtual Machine Creator).

To achieve this communication, Java supplies us with a singleton Runtime instance, through which

we can execute anything over the operating system and treat it as a process. When a process

is about to die it can send an exit code to his father. We use this code, as most of the GNU-

commands do, to notify whether a certain command has finished successfully (return code 0) or

not (return code different from 0). The inconvenient of this kind of communication is that the

code is an integer number belonging into the range [0,255]. That allows us to define 255 error

messages but only one message in case of success. Because of this limitation, we use another kind

of communication, using the standard channel. This way we can send any string which can be

defined at execution time.

To sum up, we use different mechanisms to get the results from scripts. On the one hand, the exit

code to notify whether the script is successfully executed or not and on the other hand, the standard

output to inform about the localization of the data in case of success or the failure message in case

of error. For the sake of clarity, the following example pretend to show how this communication

can be used:

Runtime rt = Runtime.getRuntime();

Process proc = rt.exec("test.sh", "parameter");

proc.waitFor();

int ret = proc.exitValue();

byte[] mesg = new byte[100];

proc.getInputStream().read(mesg);

String smesg = new String(mesg);

System.out.println("script exit message "+smesg);

System.out.println("script exit value "+ret);

If the test.sh script is like this:

49

Chapter 7. Implementation

#!/bin/bash

echo $1

exit 111

The output of executing this program will be:

script exit message parameter

script exit value 111

The reader can refer to the Architecture chapter 5 for a description of the scripts functionalities

or to appendix C for the precise specification of the actions that can perform each script. Here,

we explain these components from an implementation point of view. Next, there are listed several

tools that have been used through the implementation of our script solution:

debootstrap: It is used to create a Debian base system from scratch. It does this by downloading

.deb files from a mirror site, and carefully unpacking them into a directory which can be

chrooted into (i.e. change the root directory of the file system). [20]

wget: It is an utility to retrieve files from the Web using HTTP(s) and FTP protocols. This utility

is used by debootstrap to download software packages. We do not use it directly because its

use is very tightly coupled to the Linux repository structure. [21]

dpkg: It is a package that contains the low-level commands for handling the installation and

removal of packages on the system. It is used for installing the kernel and its modules

properly. [22]

apt*: This is Debian’s front-end for the dpkg package manager. It provides the apt-get utility and

APT dselect method that provides a simpler, safer way to install and upgrade packages. It

is used for downloading those packages required by the Client. [23]

Those utilities are provided in any basic Debian-based distribution, except wget that is provided

in any Linux basic system. Nevertheless, they can be installed over a non Debian based distribu-

tion. Therefore, our scripts are not coupled to Debian, although we recommend to use a Debian

base system in the provider’s deployment because they use packages developed by Debian’s com-

munity. Besides, over a Debian OS we can install typical utilities from other distribution. For

instance, if we want to construct an rpm-based system we can use rpmstrap (similar to deboot-

strap) and yum (similar to apt) utilities running over a Debian system. Thereafter, to permit our

scripts to be extended in this sense, we use what is often termed a hook to wrap these utilities (see

appendix C for the hook’s description).

50

7.2. Resource Fabrics implementation

Storage

Two storage components exist inside RF, namely Pool and Store, that have to maintain a cache

with kernels, releases, software and so on. The Checker, ImageBuilder, ImageInstaller and Local

Resource Manager component access to these physic elements in mutual exclusion to avoid in-

consistencies and because the tools that they use (such as apt*) cannot be accessed concurrently.

Here is an example of the current structure of these storage elements:

/store/

|-/kernels/

| |-linux-image-2.6.18-6-xen-amd64_2.6.18.dfsg.1-18etch1_amd64.deb

| |-linux-modules-2.6.18-6-xen-amd64_2.6.18.dfsg.1-18etch1_amd64.deb

|

|-/packages/

| |-/etch/

| |-fortune-mod_1%3a1.99.1-3_amd64.deb

|

|-/releases/

| |-/etch/

| | |-base-deb-etch-amd64.tgz

| | |-base-deb-etch-i386.tgz

| |

| |-/sarge/

| |-base-deb-sarge-amd64.tgz

|

|-/archives/

| |-/30173/

| |-image-30173.tar.gz

|

|-log

|-error_log

The Store is intended to be a central repository for every provider’s resource. Thus, it has to

maintain a great variety of realeases, kernels, etc. We have introduced this cache in our solution

because transfer data within a LAN is faster than downloading it from Internet. In the System

evaluation chapter 8 the improvement caused by this cache is quantitatively evaluated. Although

caching is a good practice, we have to take into account the size of the Store (because there is a

51

Chapter 7. Implementation

hardware resource constraint) as well as maintaining softwares packages up-to-date. Through the

concluding chapter 11, we propose a solution to carry out these issues.

/pool/

|-/kernels/

| |-linux-image-2.6.18-6-xen-amd64_2.6.18.dfsg.1-18etch1_amd64.deb

| |-linux-modules-2.6.18-6-xen-amd64_2.6.18.dfsg.1-18etch1_amd64.deb

|

|-/releases/

| |-base-deb-etch-amd64.tgz

| |-base-deb-sarge-amd64.tgz

|

|-/swap/

| |-swap.img

|

|-/aplic/

| |-/tycho/

| | |-/lib/

| | |-resourceFabrics

| | |-resourceFabrics.jar

| |

| |-jdk5.tgz

|

|-/archives/

| |-/VM0/

| |-VM0.cfg

| |-vmlinuz-2.6.18-6-xen-amd64

| |-initrd.img-2.6.18-6-xen-amd64

| |disk-VM0

|

|-log

|-error_log

Regarding the Pool element, it has a similar structure than the Store component, regardless it is

supposed to be smaller because it is intended to be a cache for the resource itself. To maintain the

Pool updated and small (the disk space is supposed to be used by the VMs, so we do not want to

waste too much space) we have implemented a Least Recently Used (LRU) policy. We keep in

52

7.2. Resource Fabrics implementation

the cache the two least recently used kernels and releases. We have taken this decision because we

assume that clients will use the same kernels and realeases (the newest ones), therefore producing

a low miss rate. The improvement caused by the introduction of this cache is quantified in the

System Evaluation chapter 8. This improvement is pretty smaller than the one got with the Store

caching. Thus, a higher miss rate does not overhead our solution.

Data transfer

We have decided that the data stored in the Store will be shipped to the target resources’ Pool using

the SCP protocol with RSA based authentication. We have taken this decision because it facilitates

the deployment phase. It is so because SCP works over SSH and installing and configuring a SSH

server is as easy as installing one single package and leave it with the default configuration. In the

System Evaluation chapter 8 we compare the performance of this protocol with the one obtained

by the FTP protocol, showing a better performance in the case of SSH-based protocol. This way,

it reasserts our decision of using the SCP.

VM characteristics

Finally, the VM created with these scripts will have the following characteristics:

• Its file system will be stored in a file without gaps.

• The software packages that the client had required will be installed properly, (i.e. configu-

ration files under /etc/ and so on).

• Every VM will have Java 1.5 installed by default, This Java software corresponds with the

jdk5.tgz file under pool/aplic/ diretory.

• VMs will have installed and running a Java application (pool/aplic/tycho/resourceFabrics.jar)

in charge of publishing the state of the resource and the reception of jobs to be executed on

the VM (see section 7.3 for the job sending description). In order to start up and stop

this software when the VM is boot up and shutdown respectively, we have built an script

(pool/aplic/tycho/resourceFabrics) stored in /etc/init.d directory (of the VM) and softlinked

inside the suitable run levels directories.

• VMs will incorporate a SSH server. It is specified using the MANDATORYPACKAGES

variable in the configuration file (see appendix A).

53

Chapter 7. Implementation

7.3 Economic Resource Manager implementation

With respect to the technologies used inside ERM component we have to outstand Tycho software

[24] used to send jobs to the VMs. Tycho is A Resource Discovery Framework and Messaging

System for Distributed Applications as they advertise in their web page. Thus, in this project we

do not have to worry about how we send jobs to VMs. We just have installed the Java application

mentioned at the end of the previous section within every VM from the RF side and from the side

of ERM we interact with Tycho Java classes as detailed in previous chapter (see Design chapter

6).

7.4 Policy Manager implementation

The decision of which Rule Engine is meant to be used, is not part of the project. However, we

decided to use JESS because it is available for free for academic research, it is highly interoperable

with Java and it is used by other partners of the SORMA project.

For this prototype, we have only implemented one rule. This is used when a reservation conflict

occurs. Given two numbers representing clients’ preference, it returns the most preferential client

between them:

(deffunction clientConflict (?c1 ?c2)

(if (> ?c1 ?c2) then

(return 1)

else (if (< ?c1 ?c2) then

(return 2)

else

(return 0)

)

)

)

This is just a very simple example of what we could do using a RE. Of course, if we would

had done it in Java it would be easier to implement, but more sophisticated rules and functions are

expected in the future. Besides, this way the rule could be smoothly changed. Creating an accurate

ontology and adding facts to the base fact on runtime, converts PM into a high tool for adapting

behaviour at execution time. However, this ontology is out of the scope for this prototype as well

as SORMA’s prototype due to its complex design.

54

Chapter 8

System evaluation

In this chapter, we present the experiments done to evaluate the performace of our system. The

aim of these tests is to obtain results that will reassert our design decisions. Related to ERM and

PM we evaluate the improvement of having Interval reservations with respect to Fixed ones and

how the PM achieves provider’s goals (section 8.1). And related to RF we show the improvements

due to the introduction of Store and Pool caches and a comparison between data transfer protocols

(see sections 8.2 and 8.3 respectively).

We use the commons math library 1.2 under the Apache Software License 2.0 to calculate the

statistics presented in this chapter.

8.1 Policy Manager and Reservations

The aim of this section is twofold. On one hand, we will show that the design of the reservations

helps to achieve an efficient use of the virtualized resources, in terms of increasing the number

of planned reservations. And, on the other hand, we will demonstrate empirically that using the

Policy Manager we are able to accomplish provider’s objectives. In the case of this prototype, it

means prioritizing reservations of the most preferred clients taking into account the current state

of the system. To a complete description of the reservations and the Policy Manager rules refer to

chapters 6 and 7.

Experimental setup

The experiments presented in this section are based on the following setup:

55

Chapter 8. System evaluation

Number o f experiment iterations = 20 (8.1)

The number of test iterations is set to 20 times.

Number o f reservation requests = 200 reservations per timetable (8.2)

The 200 reservations in equation 8.2 are the same for each timetable. It is so, to have comparable

results.

1h <= reservation duration <= 10h (8.3)

Timetable length = 168h (8.4)

We will plan the reservations into a timetable of a week of duration (168h).

0h <= lowerbound <= 167h (8.5)

The inequation above represents that the reservations can start at any time of the timetable length.

lowerbound + duration h <= upperbound <= 167 + duration h (8.6)

The reservations may finish at the end of timetable plus its duration. It is so, because a reservation

of duration 10 can be planned to start at the hour 167 of the timetable so, it will finish at 167 + 10

h.

Timetable extralength = 167 + 10 h = 177h (8.7)

We set the timetable length to a week long (168h), but as we want to avoid cutting reservations if

their end exceeds timetable’s length, we permit reservations to finish when they need. 10 is the

maximum duration of a reservation and 167 is the latest a reservation can start.

Percentage o f reservations o f gold clients = 30% (8.8)

56

8.1. Policy Manager and Reservations

A 30% of the requested reservations will be done by gold clients.

We generate these values using an uniform distribution. Tests IV-VII demonstrates the validity of

this setup by changing the range value of each parameter.

Fixed vs Interval reservations

First of all, we just had Fixed reservations, these are the reservations specified by means of a

beginning and end date time for a VM booking. But this reservation representation is very poor

because, its an innefficient time slot representation (e.g. imagine that we have two huge reser-

vations that are overlapped only by a unit of time, we only can plan one of them into our VM

timetable). That is the reason for which we had designed Interval reservations. These are the ones

which are specified by means of the booking duration and a time interval where is feasible to plan

them.

The improvement achieved by introducing Interval reservations is intuitive. In the worst case,

an Interval reservation can be thought of as a Fixed reservation, when the upperbound of the

interval is equal to the lowerbound plus the duration. Otherwise, we have the freedom to move

the planned reservations, within their interval, to try to fit a new reservation. Therefore, having

Interval reservations might increase the number of planned reservations with respect to having just

Fixed Reservations. In the current prototype, we have implemented both of them and they can be

mixed.

To test the improvement introduced by Interval reservations with respect to Fixed reservations, we

try to schedule 200 Interval reservations on a timetable and the same 200 reservations converted

into Fixed reservations (changing equation 8.6 for this: upperbound = lowerbound + duration h)

on another timetable.

Table 8.1 shows the number of planned reservations in both cases, notice that with Interval reser-

vations we gain a mean of 7.2 planned reservations.

Mean Stdev Min Max

Reservations Fix 34.1 3.386 29 40

Reservations Interval 41.3 4.231 35 53
Table 8.1: Fixed vs Interval reservations.

On average, we always earn several planned reservations but theoretically some worst cases exists,

as shown in figure 8.1. On the left side of the figure, we show some requests of Fixed reservations

and under the horizontal line we show how the timetable will look like after these requests. We

57

Chapter 8. System evaluation

had to reject the second reservation because it overlaps with the first one already planned. On the

right side, we show the same reservations but now with an interval of time where to plan them. As

a result of this range, after planning the first reservation we can reschedule it, move it later until

its ending interval. This way, we can accept the second reservation but we have to reject the third

and forth ones. Thus, with Fixed reservations we have planned 3 reservations. Conversely with

Interval reservations, we have planned just 2 reservations. This is a very particular case, hidden

in the tests because of its low probability of happening. Nevertheless, we are still maximizing the

number of planned reservations online, that is just considering the already planned reservations

and the reservation we are about plan. Notice that after the second reservation, we have planned

only one reservation, in the case of having Fixed reservations (left side of the figure) against the

two planned reservations in the case of Interval reservations.

Figure 8.1: Interval improvement worst case.

Policy Manager improvement

The second improvement that we have introduced to achieve a great satisfaction of providers’

goals is the use of Policy Manager rules to decide which reservation must to rest planned in the

case of conflict between a reservation about to be planned and an already planned reservation. In

our prototype, the resource provider wants to prioritize reservations of clients with a higher loyalty

(preference). To demonstrate that the use of Policy Manager helps the provider to get its objectives

we have designed tests I-VII.

Test I:

For this test, we use two timetables where to plan Interval reservations. We will try to plan the

same reservations in each one. The difference between them is that in one of them, we have

activated and follow the advises of the Policy Manager component and in the other we do not take

58

8.1. Policy Manager and Reservations

into account PM advises.

The results of the test are collected in table 8.2. We show the number of reservations planned (with

and without PM) and then we breakdown them into reservations of standard clients and those of

gold clients. The number of gold reservations has significatively increased with the activation of

PM. We have pass from having about 12 gold reservations to 31. Moreover, we can observe that

the number of reservations using PM has increased in 12.45 on average, that is a 29% higher than

without using PM. This growth is due to the fact that when the timetable is quite plenty the PM

only can decide to change one reservation for another in the case that the new one will be smaller

than the planned one, otherwise the new one will not fit in the timetable. Thereby, we can plan

more reservations because they are smaller

Mean Stdev Min Max

Reservations without PM 42.95 3.90 35 49

with PM 55.40 4.50 46 64

Standard clients without PM 30.90 4.69 23 39

with PM 23.7 5.57 14 34

Gold clients without PM 12.05 3.14 8 20

with PM 31.70 4.19 26 39

Reservations growth 12.45 3.50 7 19

Gold clients growth 19.65 2.66 16 26

Reservations improvement 1.29x
Gold clients improvement 2.63x

Table 8.2: Policy Manager test I.

Both improvements, the reservations’ growth and the gold reservations’ growth are obtained in

most of the scenarios, but there are some scenarios where no improvement exists. Figure 8.2 illus-

trates this case. On the left side, we show an scenario without using PM. There, when the second

reservation request arrives we have to reject it because it overlaps with the first one. Conversely,

on the right side, the second request is accepted and the first one is removed using PM. Therefore,

we are maximizing the number of gold reservations at each time, just taking into account the cur-

rent state of the timetable (after the arrival of the second reservation, the timetable on the left has

0 gold reservations while the timetable that uses PM has 1 gold reservation), although we are not

maximazing this at the end of the experiment.

59

Chapter 8. System evaluation

Figure 8.2: PM improvement worst case.

Test II:

This test will demonstrate that Policy Manager also works when we only have Fixed reservations,

table 8.3 quantifies this utility. The setup for this test is the same as the previous section, but

changing equation 8.6 for this:

upperbound = lowerbound + duration h

Mean Stdev Min Max

Reservations without PM 34.1 3.386 29 40

with PM 34.55 2.781 29 40

Standard clients without PM 22.7 2.577 18 27

with PM 12.65 2.834 6 18

Gold clients without PM 11.4 2.722 7 18

with PM 21.9 2.426 18 29
Table 8.3: Policy Manager test II. Fixed reservations.

The results show that with PM we can plan 1.92 times more gold reservations than without using

PM, so in this case PM also works adequately.

Test III:

This test will illustrate that client classification could be as sophisticated as wanted, having dif-

ferent levels of preferential clients. In this experiment, we have introduced the diamond clients,

more preferred than the gold ones. For their setup, we change the percentage of gold clients’

reservations (shown in equation 8.8) for these two percentages:

60

8.1. Policy Manager and Reservations

Percentage o f reservations o f gold clients = 28%

Percentage o f reservations o f diamond clients = 2%

Table 8.4 shows the results of this test, we can conclude that using PM we could achieve the

provider’s desire of prioritizing reservations of most preferred clients.

Mean Stdev Min Max

Reservations without PM 43.3 4.52 35 56

with PM 55.75 4.22 47 63

Standard clients without PM 29.85 4.28 22 41

with PM 24.15 3.27 20 32

Gold clients without PM 11.5 2.54 6 15

with PM 26.45 3.24 22 32

Diamond clients without PM 1.95 1.36 0 5

with PM 5.15 2.60 2 11

Reservation growth 12.45 4.84 4 20

Gold clients growth 14.95 3.52 8 20

Diamond clients growth 3.2 1.96 0 8

Reservations improvement 1.29x
Gold clients improvement 2.3x
Diamond clients improvement 2.64x

Table 8.4: Policy Manager test III. 3 Levels of clients’ loyalty

Test IV:

In this test, we vary the number of generated reservations (equation 8.2) to observe the behaviour

of our system in case of high contention. Figure 8.3 shows the results of increasing the number

of requests (x axis). We conclude that the number of reservations and the number of gold clients

reservations planned increase as the number of reservation’s requests increase (the scheduler has

more reservations variability to choose that ones that fit better in the timetable). It also shows that,

without using PM, the number of planned reservations is independent of the number of requests.

61

Chapter 8. System evaluation

 10

 20

 30

 40

 50

 60

 70

 80

 6400 3200 1600 800 400 200

N
um

be
r

of
 p

la
nn

ed
 r

es
er

va
tio

ns

Number of request reservations

total
totalPM

std
stdPM

gold
goldPM

Figure 8.3: Test IV. Number of planned reservations vs requested ones.

Test V:

In this test, we vary another parameter, the percentage of gold reservations (equation 8.8) to ob-

serve the consequences of changing it. Figure 8.4 illustrates the results. We can observe that the

amount of gold reservations increase as the amount of requests of gold reservations increase. This

provokes a decrease in the number of standard clients as their percentage decrease. Therefore, we

conclude that the amount of planned reservations is independent of their preference.

 0

 10

 20

 30

 40

 50

 60

 70

 50 45 40 35 30 25 20 15 10 5 2

N
um

be
r

of
 p

la
nn

ed
 r

es
er

va
tio

ns

Gold client percentage

total
totalPM

std
stdPM

gold
goldPM

Figure 8.4: Test V. Number of planned reservations vs gold clients’ percentage.

62

8.1. Policy Manager and Reservations

Test VI:

This test infers the reaction of our system as we vary the length of the reservations (equation

8.3). We plot the results in figure 8.5. In subfigure 8.5(a), we vary the duration length from 1

to 10 hours, that corresponds to our default setup (equation 8.3). In subfigure 8.5(b), we vary

the duration from 16 to 168 hours (notice that our timetable is 168 h length plus an extra length

quantified in 8.7, so with reservations of 85 h or more the timetable would contain two reservation

at most). We conclude that as the reservation duration increase the number of planned reservations

decrease, approximately each time we duplicate the length of the reservations, the number of

planned reservations is divided by two.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 8 6 4 2

N
um

be
r

of
 p

la
nn

ed
 r

es
er

va
tio

ns

Duration of the reservations (hours)

total
totalPM

std
stdPM

gold
goldPM

(a) Short reservations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 168 128 64 32 16

N
um

be
r

of
 p

la
nn

ed
 r

es
er

va
tio

ns

Duration of the reservations (hours)

total
totalPM

std
stdPM

gold
goldPM

(b) Long reservations
Figure 8.5: Test VI. Number of planned reservations vs reservations length.

Test VII:

In this last test, we characterize the performace of the system with respect to the length of its

interval. We change equation 8.6 for this:

upperbound = lowerbound + duration + f reeRange

Where freeRange is the difference between the interval length and the duration of the reservation.

Figure 8.6 depicts the number of reservations planned as function of the freeRange variable. These

results show that the bigger the freeRange, the bigger the amount of planned reservations.

63

Chapter 8. System evaluation

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 9 8 7 6 5 4 3 2 1 0

N
um

be
r

of
 p

la
nn

ed
 r

es
er

va
tio

ns

FreeRange size (hours)

Planned reservation vs reservation range (short)

total
totalPM

std
stdPM

gold
goldPM

(a) Small freeRange

 10

 20

 30

 40

 50

 60

 70

 80

 90

 168 128 64 32 16

N
um

be
r

of
 p

la
nn

ed
 r

es
er

va
tio

ns

FreeRange size (hours)

Planned reservation vs reservation range (long)

total
totalPM

std
stdPM

gold
goldPM

(b) Big freeRange
Figure 8.6: Test VII. Number of planned reservations vs freeRange length.

8.2 Create Machine improvement

In this section, we show the improvement due to the introduction of Pool and Store caches in the

VM creation process. To do this test, we deploy our system in a cluster, as shown in figure 8.7.

We use one machine (pcaudet) to execute EERM, and a machine with Xen hypervisor (pccasals)

to execute the LVM component. Furthermore, we use a VM to host the Resource Coordinator

component. We use a VM instead of a physical machine to host RC because there were not

any other machine in the cluster with the same processor architecture of pccasals. That suppose

a problem because RC is in charge of downloading the software that will be used in the VMs

using apt-get tool and although apt-get is supposed to be prepared to download packages from any

architecture available the truth is that it does not do so.

Figure 8.7: Test scenario.

64

8.2. Create Machine improvement

Figure 8.8: Create Machine Improvement.

We consider three different scenarios: the first one, when the software requirements for creating

the VM cannot be satisfied by neither the Pool cache nor the Store cache; the second one is when

those requirements cannot be satisfied by the Pool cache but can be satisfied by the Store cache;

and the third case is when the requirements can be satisfied by the Pool cache.

Figure 8.8 shows in which phase of the process of creating a VM the time is spent in each scenario.

The install phase (installing release packages) takes roughly the same time in any case. In chapter

11 Conclusions and Future Work there are some suggestions to reduce this time. In case of a miss

in both caches, we expend a great amount of time (120493 ms) downloading the requirements

from Internet (build phase) and packaging them to be sent in the send phase. In the case of a miss

in the Pool and a hit in the Store, we can observe that the build phase time has been reduced to

5868 ms, which is more than 20 times smaller than in the previous case. This time is spent in

preparing what is going to be sent to the Pool. And in the last case, if we hit in the Pool, we

can skip the build and send phases, although comparing with the previous case it just supposes

7534ms of reduction.

Therefore, we conclude that the introduction of the Store cache has a great impact in the system

performance as we reduce almost half of the time for creating a machine. The introduction of the

Pool is not so noteworthy because it is intended to avoid the transfer time from the Store to the

Pool. Although this time is negligible in our LAN, it could be more significant in slower LANs.

Besides, the overhead introduced by this design is minimum if we compare it with an oblivious

solution in which there is no caching. Thus, the cost of creating a VM in our solution when the

caches are empty is similar to creating a VM in the oblivious solution, but for the check and send

phases (which are the smallest phases with regard to time). Once the Store and Pool caches are

initialized, the results are greatly improved compared with the oblivious solution even considering

the overhead introduced by the check and send phases.

65

Chapter 8. System evaluation

8.3 Transfer protocols comparison

In this section we compare two transfer protocols to decide which is the most suitable for our

system. For this test, we have installed in one cluster machine wu-ftpd Debian package to act

as a FTP server and we use already installed open-ssh package as a SSH server. We also install

package expect which is used to automate interactive applications to do the FTP test.

Our test consists of computing the time spent in sending packages from one cluster node to another

node (these two nodes are depicted in figure 8.7) in slots of 10 repetitions for each protocol and

data package (connection establishment time + data transfer time). We use RSA authentication

in the case of SCP test. Table 8.3 shows the results. We can observe that SCP is faster than FTP

if the size of the data is small, less than 100MB. Contrary, the FTP protocol is faster for bigger

data . We deduce that the time to establish a connection is bigger in the case of FTP (as it have to

establish two TCP connections, one for control and one for data), but it transfers data faster than

SCP. In our system we have implemented SCP as the data that we use to transfer is about 50MB

(base release + kernel).

FTP SCP
Base system (44MB) 2.7371 s 1.7151 s
Kernel (4MB) 2.1857 s 0.4721 s
200 MB 6.0678 s 6.651 s
100 MB 3.5164 s 3.7144 s
50 MB 3.1258 s 1.9563 s
Table 8.5: Data transfer protocols comparison.

66

Chapter 9

Related work

This chapter present the related work for this project: a set of projects, that are currently being

developed and have been used as ideas source for the design of the project. In the following

sections, we introduce each system and we compare the main aspects that they have in common

with our project and what is useful for our design.

9.1 The XenoServer Open Platform

The XenoServer Open Platform is a public infrastructure for global-scale service deployment,

where XenoServers are spread around the world and available for any member of the public. This

project covers so many topics: resource management, resource discovery, authentication, privacy,

charging, billing, payment and auditing. It has been developed in the Computer laboratory of the

University of Cambridge.

In this project, clients can submit tasks to a VM hosted in a XenoServer, all the transactions are

done through XenoCorp, a trusted third party. The virtualization software used in this project is

Xen.

This platform provides clients with several immutable template images for operating system ker-

nels and file-systems. They store these images locally in the hosts where the virtual machines

will be created, a.k.a the XenoServers (but there is not guarantee that all the images will be per-

sistently cached). Clients define a tailored image, in terms of modifications to these templates,

called an overlay. Although the templates are cached locally at the XenoServers, client overlays

are remote stored in the XenoStore (a trusted distributed storage service) and are accessed trough a

NFS server (see figure 9.1). This approach reduces the amount of data shipped by the network dur-

67

Chapter 9. Related work

ing deployment. Since the overlay is remote it may be shared between multiple virtual machines

running on a set of XenoServers.

We have decided to install the software packages as proposed by Unix recommendations. Config-

uration files in /etc, and so on. This is opposed to XenoServer’s design as they have its software

installations under a unique directory. Their solution has a potential drawback when accessing re-

mote software as it might be very slow. They also propose Pasta [25], a distributed storage system

based on a DHT, as an alternative to XenoStore, but does not fit our goals (having a DHT has no

sense in a LAN context).

See [10] for an overview of their project and [26] for the explanation of their proposal.

Figure 9.1: The XenoServer platform. Deploying a Guest OS in the XenoStore model. Figure extracted
from [26].

9.2 BREIN project

Brein European project[18] (Business objective driven REliable and Intelligent grids for real

busiNess) aims to provide an infrastructure that foster the collaborations among grid’s Virtual

Organizations. To achieve this objective they use the Grid, semantic web, multi-agents and virtu-

alization technologies.

68

9.3. In-VIGO project

Inside this project, the VtM component (Virtualization Manager) is in charge of creating and

efficiently-managing VMs. Its current implementation of the disk image creation for a VM is

different from our design in these aspects:

• They do not have a central repository for caching releases and kernels, they only cache one

release locally in the servers that will run the VMs.

• The VMs that can be created through VtM, are not customized. They will run the same

kernel as the host and will use the default release.

• The applications that will be installed in the VMs are installed in another disk partition

mounted under /aplic. Furthermore, all the VMs will have the same software at creation

time as there is no system actor in charge of describing VMs software.

The VtM component, concretely its Resource Manager subcomponent, has been used by this

project as an starting point for our implementation.

9.3 In-VIGO project

The In-VIGO project [27] (In Virtual Information Grid Organizations) is another approach to

Grid-computing which aims to decouple user environments from Grid resources.

In-VIGO provides users with tools to automate the creation of application services by describing

how its services work. It also provides each user with a persistent private virtual workspace for

launching and developing applications and using and managing private data. This is achieved by

means of virtualizing all resources (see figure 9.2): machines, networks, applications and data.

They have designed VMPlant [28], a Grid service that automates the creation of VMs. Once a

machine is created and configured to meet application needs, it can be copied and instantiated to

provide homogeneous execution environments scattered across Grid resources. For automate this

process, they maintain a cache of VMs’ images. The design is as following: a client can express

his requirements by means of a direct acyclic graph (DAG) specification of a virtual machine.

Nodes in the DAG configuration may be associated with actions to be performed within a virtual

machine’s guest. The DAG enforces a partial order between the actions (e.g, first install red hat

linux 8.0, secondly install Web File Manager, start file manager, etc.). This DAG aids the virtual

machine created process by supporting partial matches of cached VM images. The process of

cloning and configuring is thus based on: firstly, the copy of a machine’s state from its original

69

Chapter 9. Related work

Figure 9.2: High-level view of the In-VIGO project approach. Figure extracted from [27].

image to the cloned image. Thereafter, the instantiation of the machine and finally, the execution

of configuration actions.

The In-VIGO proposal differs in our requirements in the sense that they store virtual machines

resumed and saved and we only want cache disk images. Furthermore, they consider quite homo-

geneous images. Otherwise, the cache space required might be unmanageable. Conversely, we

have preferred to have a fine-grain control over the software installed in our VMs.

9.4 SoftUDC

SoftUDC [29] is a software-based utility data center that virtualizes server, network, and storage

resources. It is being developed in the HP laboratories.

Their approach abstracts a bundle of hosts as a single node which may contain several VMs on it. It

uses Xen as the virtualization software, although it incorporates some modifications for managing

services and controlling the I/O network traffic. It uses SmartFrog [30] to automate the process of

creating and deploying VMs and to control online maintenance operations.

SmartFrog is a framework with a language for describing and activating services (see figure 9.3).

It is implemented in Java by the HP laboratories as well and released under LGPL license.

This proposal do not have a central repository like ours to cache packages and base systems. They

install application packages and instantiate requested applications and services using a daemon

running in Domain 0 of each host.

70

9.5. Globus Virtual Workspace

Figure 9.3: SmartFrog framework. Figure extracted from [30].

9.5 Globus Virtual Workspace

The Globus Virtual Workspace [31] is a project from the Globus Alliance.

They define a workspace as an execution environment that can be made dynamically available to

authorized clients by using well-defined protocols. These workspaces are implemented as VMs

for the current infrastructure.

This project provides users with functions based on WSRF (Web Service Resource Framework)

protocols to manage VM (as depicted in figure 9.4). Therefore, clients can deploy their workspaces,

manage them and control the resources allocated to them. We use Web Service instead of WSRF

because there is no need of maintaining any state.

In their project’s web page [31], they offer several workspaces already prepared to be deployed.

However, they do not provide a tool to automate the process of creating virtual workspaces. Con-

trary, we have focus our project in the automation of building customized workspaces (i.e. virtual

machines).

71

Chapter 9. Related work

Figure 9.4: Globus Virtual Workspace. Figure extracted from [32].

9.6 SODA

SODA [33] is a Service-On-Demand Architecture which focus on the hosting of application ser-

vices.

SODA uses User-Mode-Linux (UML) as a virtualization technique. UML runs without requiring

any modification of the host user space. Processes within an UML (guest OS) can be executed

like on a real Linux machine. Conversely, our proposal requires that guest OSs have been ported

to Xen.

To create services automatically, SODA downloads the service from the Application Service

Provider (location specified by the customer). These services must be packaged using RPM an

organized into a file system with a single root.

SODA is a quite old project and it uses the old version of UML that does not provide neither

CPU nor bandwith isolation. Therefore, they have to implement as part of their project some

enhancements inside the host OS in order to isolate these resources.

72

9.7. Amazon Elastic Computing Cloud

9.7 Amazon Elastic Computing Cloud

Amazon Elastic Compute Cloud [34] (Amazon EC2) is a commercial product that offers compute

capacity in the Amazon’s Cloud. Cloud computing (promoted by Amazon) differs from Grid

computing. In the first one, the customers buy an infrastructure (a VM) where they can deploy

or execute their own productivity applications. However, in a Grid, the customer submit jobs and

gather results. Nevertheless, it is part of our related work as in both computational paradigms we

might use virtualization.

Amazon EC2 offers a web service interface for users to create Xen VMs. Clients can only decide

among three types of available VMs (small, large and extra large) as Amazon does not offer a

more fine grain customization process for creating VMs. Furthermore, these VMs only differ in the

amount of resources allocated to them and VMs only support their own Xen-enabled Linux kernel.

This homogeneity in the VMs offered by Amazon differs from our system requirements. Anyway,

Amazon EC2 enjoys a great popularity, but we do not know more details about its implementation

as it is a private product.

9.8 Elastic Server

(a) Elastic Server. (b) Elastic Server Manager.
Figure 9.5: Elastic Server screenshots.

Elastic Server [35] offers a way to create VMs and to manage them independently of the cloud

where they will be deployed. Its main objective is the interoperability among potentially clouds

infrastructures.

73

Chapter 9. Related work

Figure 9.5(a) depicts how a client can build a VM. He can specify which software has to be

installed on the VM (coarse-grain customization, bundles in the figure), the virtualization format

(Xen, Vmware, etc.), the system configuration (memory MB, hard drive MB, OS, etc.) and in

which cloud the VM must be deployed (nowadays, only Amazon EC2 exists).

Once a VM is deployed in a cloud, the Elastic Server Manager (depicted in figure 9.5(b)) allows

clients to manage its VMs and enables dynamic system reconfiguration.

74

Chapter 10

Project plan and economic evaluation

This chapter presents the project development plan carried out during the last months. Besides, we

show the project costs including all the costs related to the project development: human salaries,

software required licenses and hardware prices.

10.1 Plan and human cost

Through the Introduction chapter 1, we have described the project tasks and showed the initial

plan, a tentative plan done during the first week of February of the current year that looked ahead

what was going to be done. Now, we present the development plan post mortem, that is, what we

have done. This final plan is a simplified plan as we have considered a full-time working day (8

hours per day). That is a simplification in the sense of that the real working day has been variable,

but on average it has been around 40 hours per week. Besides, we do not have considered Easter

week holidays, an other holiday days, but those should be considered in a real plan (e.g. in an

enterprise context).

Figure 10.1 shows how the tasks have been scheduled along the time. Here we include two tasks

that do not appear in the initial plan because they are previous to the initial plan task. These

are: Background and Related Work and Requirements specification and initial plan. This figure

also shows the tasks costs. Although the project has been developed by a single person, we have

divided each task in subtasks to assign them to an IT stuff role. Therefore, we can provided a more

realistic project cost. The salaries for role that we have considered are shown in table 10.1.

Comparing this plan with the initial one presented in the introductory chapter (see chapter 1) we

can observe that some tasks were underestimated, which led to the procrastination of several tasks,

75

Chapter 10. Project plan and economic evaluation

Role Alias e h

Project Manager PM 58

System Analyst SA 45

Programmer P 28

Table 10.1: Costs by roles

Figure 10.1: Final plan.

Figure 10.2: Final gantt diagram.

76

10.2. Software cost

but never in excess. Contrary, the development of Policy Manager that was estimated in 24 hours,

was reduced to 16 hours. To conclude, the project had a duration of 5 months (887 hours) and

the cost related to human salaries was 35,788 e. Thus, its duration has exceed the initial one in 2

weeks (80 hours).

10.2 Software cost

Regarding the software used in this project we have to mention:

Linux: The OS Linux and its tools debootstrap, etc, are under GNU-GPL License, thus they not

involve any monetary cost.

Tomcat: The application server is available under Apache License, i.e. with no cost.

Axis: This toolkit is also distributed under Apache License.

JESS: Jess is provided with no cost for academic research projects.

Xen: Xen is an open-source virtualization software under GNU-GPL License.

Java: Java is distributed with no cost.

Libraries: The libraries used during the project were under a free License as GNU-GPL or

APACHE License.

Therefore, the software used in this project does not increase its cost.

10.3 Hardware cost

The software developed as part of this project and this report have completely been done in a

single laptop, a Samsung R40, Intel Core 2 Duo at 1.66GHz and 1 GB of Memory, which costs

1,200 euros.Besides, the prototype was tested in the eDragon research group’s cluster with no

additional cost to charge on this project. However, in a real environment we should take this cost

into account.

77

Chapter 11

Conclusions and Future Work

We end this report presenting our conclusions. Firstly, explaining several considerations about the

system that we have built and secondly, we suggest some future trends to keep on working on

the main topic of this project: the resource management. To close this chapter, I express some

personal comments.

11.1 Project outcomes

We have presented a Policy-Driven Resource Management system to help providers to achieve

their objectives as well as render them with a mechanism to create virtual customized execution

environments on-demand.

Our final results derived from the initially proposed objectives includes:

• Construct a system for the customized creation of VMs on demand. This includes a hierar-

chy of caches to reduce this creation time.

• Design and implement a reservation mechanism that maximize the utilization of the VMs.

Therefore, it maximizes provider’s satisfaction as its resources are potentially fully utilized

and maximize client’s satisfaction by means of accommodating its reservations for VMs in

advance.

• Build the infrastructure of Policy Manager for interpreting provider’s rules and enabling

EERM components to query it for recommendations to take decisions.

79

Chapter 11. Conclusions and Future Work

This system has been prototyped and tested proving that it works properly helping providers to

accomplish their objectives.

We conclude that we have achieved with the objectives established for this project.

11.2 Future work

11.2.1 Economic Resource Registry

The Resource Registry introduced in the architecture chapter 5 within RF element is the compo-

nent in charge of selecting a resource each time that creating a machine is required.

The current implementation of this registry is not taking into account the utilization of each re-

source. It just takes care about the required architecture for the new machine. Besides, the alloca-

tion of the VM on a resource is done randomly.

An interesting issue to work around in the future could be, how to apply economic models to

resource registry to improve its behaviour. That means, how to avoid the overload in a resource

whilst other resources are underutilized in terms of the number of virtual machines over each

resource and their utilization.

11.2.2 Migration of VMs

The SORMA prototype will include the capability of migrating VMs from one host to another

with the intention of managing these resources more efficiently (e.g. suppose that a VM on a host

demands more resources (memory, disk, etc.) and that host cannot allocate them to the VM, but

in the bundle exists a host that can offer them. Thus, we could migrate this VM to that host.).

This migration can be done by pausing and saving the VM, transfer it through the LAN to the new

host and resuming it there. This is the easiest way of migrating VMs. However, any server or

any process running on this VM must be paused. Therefore, it will be unavailable for a period of

time and in so many cases this will not be allowed. Alternatively, live migration permits migrating

VMs just stopping them about 300ms [36].

In order to reach an easy live migration of VMs among hosts, some changes should be done with

respect to the current implementation. On the one hand, we will need an storage system shared

among VMs as Xen’s virtualization do not support disk migration. We can study the possibility

of having locally scratch zones to write partial results which can be synchronized with the remote

80

11.2. Future work

disk periodically. Alternatively, we can use that shared storage only for customers’ data and we

can have cached in the Store and in the Pool read only images with several operating systems.

11.2.3 Reservations

In this section, we discuss about several issues related to the reservation scheduling process. First,

we enumerate several ways of scheduling reservations. Secondly, we suggest how to improve

the Policy Manager rules for resolving conflicts among reservations in a way that the provider’s

revenue and the client’s and provider’s satisfaction will be improved.

On the one hand, when trying to plan a reservation, we first try to schedule it in an empty

timetable’s gap. In the current implementation of both Fixed and Interval reservations, we plan

a reservation in the first empty gap, a.k.a. first fit. Maybe, that is not the best choice because it

might lead to the timetable’s fragmentation. The same problem occurs in other areas, e.g. in the

heap space of Java or in the Linux memory management to supply different sizes of contiguous

memory, etc. Some solutions might be:

best fit : schedule the new reservation in the smallest gap that is bigger or equal to the reservation

duration. However, this way we might have a lot of fragmentation (lots of tiny gaps).

worst fit : plan the new reservation in the biggest hole. This way we will have gaps as big as

possible, but we will have a shortage of big gaps.

We have implemented the first fit policy because we are dealing with a timetable (as the time goes,

it is not advisable to have gaps at the beginning of the timetable). Besides, the complexity of this

solution is linear in the worst case (with respect to the number of already planned reservations).

Conversely, in best fit as well as in worst fit cases the cost is linear, if we have not no more extra

data structures (e.g. the Linux kernel uses the Buddy System Algorithm to allocate contiguous

memory. It maintains lists of 1 contiguous block, 2, 4, 8,...1024).

On the other hand, we can introduce request reservation prediction per client. That is saving

statistics per client of when they use to request a reservation, its duration, etc. Thereby, we can

pre-reserve VMs. It will be useful if we have to pay a fine to a client for cancelling his reservation.

For instance, if we know that our most preferential client use to request a machine reservation

each Wednesday for the next Monday, we could pre-reserve each Monday (block reservations

of other clients on that day) until that preferred client performs its reservation request or until

Thursday morning, whatever comes first. Thereby, we potentially avoid cancelling reservations as

the request of that preferential client does not overlap with any planned reservation.

81

Chapter 11. Conclusions and Future Work

Finally, when we are trying to plan a reservation and it overlaps with a planned reservation, we call

Policy Manager to resolve that conflict. It sorts out the situation by choosing the most preferential

reservation. However, this policy is extremely simple because it does not concern about monetary

factors. A more accurate rule should consider at least: the reservations’ duration, the price per

hour, the client’s preference and the cost of breaking the SLA of the planned reservation in case it

has to unplan it. Thereby, if we provide PM with all this information, the provider might be able

to elaborate more sophisticated policies (e.g. suppose that the provider wants to prioritize large

reservation with high revenue. Then, he should define a rule taking into account the reservations’

duration, and the price per hour).

11.2.4 Store maintenance

This section suggests a solution for maintaining up to date and size-limited the Store. This is the

repository that caches kernels, releases and software packages to be deployed to resources.

The size of kernel and releases directories is quite limited. We can estimate it by multiplying the

number of different processor architectures a provider has in its bundle by the number of available

releases/Xen kernels (which is small). The problem arise when dealing with software packages,

because the default behaviour of the Store is to search if it had the required package in its cache

without consulting it through an official repository.

To maintain the Store up-to-date, we propose to create a background process that performs an

update (to download the most up-to-date package list), scans the cached packages and removes

the older versions. New packages will be downloaded on demand in a lazy manner. This process

can be executed periodically using the cron application (to automate its execution).

11.3 Personal remarks

I also have seen accomplished my personal goals through the realization of this project.

The work done in this PFC has supposed a personal challenge to overcome and a good chance to

know about some research projects that are currently being partially done in the Barcelona Su-

percomputing Center (BSC) such as SORMA [1] and BREIN [18]. Moreover, I have learnt about

some topics of my interest such as Operating Systems, Virtualization and Resource Management.

I have enjoyed collaborating with the Computer Architecture Department (DAC) within the eDragon

research group at the Technical University of Catalonia (UPC).

82

Appendix A

Deployment

This appendix is meant to be a quick guide to deploy and install our system. Throughout it, we

explain where to place each component and how to install and configure them to work properly.

We assume that our deployment is done over a Debian Linux OS.

A.1 Components placement

Figure A.1 shows a possible scenario where to deploy our prototype. We need one machine for the

EERM components (ERM i PM), one for the RC component and several machines where to deploy

LVM component. We call each server with the name of the component that must be installed on

it prefixed by pc (e.g. the computer where we place the RC component will be called pc RC for

the rest of the manual).

Notice that this deployment represents the most distributed configuration. However, a provider

can put together all these components in the same server machine.

A.2 Software

We require to install and/or configure some extra software for a proper setup:

Tomcat : We use Apache Tomcat version 6.0.14 as the application server. We copy our services

(.aar files) into $TOMCAT HOME/webapps/axis2/WEB-INF/services and configure Tomcat

to listen on port 8080. We have to install Tomcat in pc RC and in pc LVM.

83

Appendix A. Deployment

Figure A.1: Deployment scenario example.

JESS : Jess is the Rule Engine. It is necessary to copy jess.jar into $JAVA HOME/jre/lib/ext/

directory or set this jar into the CLASSPATH variable.

debootstrap : It must be installed in pc RC and in pc LVM (it can be installed by typing in a

terminal as root: apt-get install debootstrap).

SSH : The system needs a SSH client in pc RC and a SSH server in pc LVM.

apt : Apt use to be already installed in Debian-based systems. Nevertheless, it is necessary to

configure it. Modify the file /etc/apt/sources.list from the pc RC to point to the required

repositories for the different architectures of the pc LVM.

A.3 Configuration files

In this section, we explain the configuration files by means of complete examples. These configu-

ration files must be stored on a directory named PDRM placed in /etc.

A.3.1 Configuration properties

The file config.properties is used to parametrize those components implemented in Java. This is a

set of properties:

84

A.3. Configuration files

RESOURCES /etc/PDRM/resources.xml

This property points to where the file that describes the bundle of physical resources is placed.

This property must be set on pc RC

BUILDER /usr/share/PDRM/ImageBuilder.sh

CHECKER /usr/share/PDRM/Checker.sh

INSTALLER /usr/share/PDRM/ImageInstaller.sh

VTM /usr/share/PDRM/ResourceManager.sh

Those properties must point to where the scripts elements are placed. Builder property must to be

set on pc RC the rest in pc LVM.

TIMEOUT 1000000000

This property specifies the timeout of a web service client. If no timeout is specified a default

value is set. This property must be set on pc EERM and pc RC.

RESOURCOORDINATOR 192.168.1.83:8080

This is the Location of the Resource Coordinator services. This must be set on pc EERM.

RULEENGINE eu.sormaproject.eerm.policymanager.JessRuleEngine

This property determines which RE the PM should use. This must be set on pc EERM.

POLICYDIR /usr/share/PDRM/policy/

This is used to specify the directory where the policies that the RE should use are placed. This

must be set on pc EERM.

A.3.2 Advertising resources

The file resources.xml is used by the provider to publish its resources. This must be placed on the

pc RC. The provider must specify for each resource, its address, port where to find the services,

processor architecture of the resource and a host user. It can also specify a protocol for the data

transfer and a password if it is required for the transfer protocol.

85

Appendix A. Deployment

<provider-resources>

<resource>

<url>192.168.3.2</url>

<port>8080</port>

<arch>i386</arch>

<user>greig</user>

<protocol>scp</protocol>

</resource>

<resource>

<url>192.168.3.3</url>

<port>8080</port>

<arch>amd64</arch>

<user>greig</user>

<password>password</password>

<protocol>ftp</protocol>

</resource>

</provider-resources>

A.3.3 Store Environment

This is the configuration file for the Store component (the file must be named: storeEnv.cfg and

placed in pc RC):

BASEDIR=/usr/share/PDRM #base directory, where the scripts are placed

#Store organization

STORE=/aplic/greig/store #store location

DRELEASES=$STORE/releases #releases directory

DKERNELS=$STORE/kernels #kernels directory

DPACKAGES=$STORE/packages #archives directory

ARCHIVES=$STORE/archives #archives directory

LOG=$STORE/log #log file

ERRORLOG=$STORE/error_log #error log file

PACKAGEFORMAT=deb #default package format

RELEASE=etch #default release

86

A.3. Configuration files

dKERNEL=2.6.18 #default kernel version

MANDATORYPACKAGES="ssh" #not basic packages which will be included in

#every base images

MIRROR=http://ftp.rediris.es/debian

MOUNT=mnt #mount point directory

KERNELPIN=atleast #default constraint for kernels

#[atleast|newest|exactly]

A.3.4 Pool Environment

This is the configuration file for the Pool component (the file must be named:poolEnv.cfg and

placed in pc LVM):

BASEDIR=/usr/share/PDRM #base directory, where the scripts are placed

#Pool organization

POOL=/aplic/greig/pool #pool location

DRELEASES=$POOL/releases #releases directory

DKERNELS=$POOL/kernels #kernels directory

ARCHIVES=$POOL/archives #archives directory

SWAP=$POOL/swap #swap directory

LOG=$POOL/log #log file

ERRORLOG=$POOL/error_log #error log file

KERNELPIN=atleast #default constraint for kernels

BS="1024k" #default disk size

COUNT=768 #default number of disk blocks

IMAGEFILE="image.tar.gz" #name of the package sent by the Store

MANDATORYPACKAGES="ssh" #not basic packages which will be included in

#every base images

MIRROR=http://ftp.rediris.es/debian

PACKAGEFORMAT=deb #default package format

Domains defaults settings

MEMORY=1024 #MB of memory

87

Appendix A. Deployment

CPU=1 #number of CPUs

GATEWAY=192.168.1.30

NETMASK=255.255.255.0

BROADCAST=192.168.1.255

NETWORK=192.168.1.0

BRIDGE=brein0 #network bridge

DEFAULTSWAPSIZE=128 #default swap size (MB)

MOUNT=$POOL/mnt #mount point directory

A.4 Security issues

This section describes how to avoid sending passwords through the network when executing a web

service and when transferring data through SCP.

Sudoers file

We should adapt the sudoers file to allow the application server user to execute some commands

without be prompted for passwords. The process described below should be done in pc RC and

pc LVM.

In order to access to the sudoers file in mutual exclusion, as root execute:

visudo -f /etc/sudoers

and add the following:

Cmnd alias specification

Cmnd_Alias XENUTILS = /usr/sbin/xm

Cmnd_Alias DEBUTILS = /usr/bin/dpkg, \

/usr/bin/apt-get, \

/usr/sbin/debootstrap

Cmnd_Alias FSUTILS = /sbin/mkfs.ext3, \

/bin/mount, \

/bin/umount, \

/usr/sbin/chroot, \

/bin/cp, \

/bin/cat, \

88

A.4. Security issues

/bin/echo, \

/bin/rm, \

/bin/mv, \

/bin/mkdir, \

/sbin/MAKEDEV, \

/bin/chown, \

/bin/sh, \

/bin/tar, \

/bin/ln

User privilege specification

greig ALL= NOPASSWD: DEBUTILS, FSUTILS, XENUTILS

SSH communication

To install SSH open a console an type as root:

apt-get install openssh-client openssh-server

To use SSH from pc RC to pc LVM without passwords, using RSA keys, follow these steps:

ssh-keygen

answer the question or accept default values. Then you should have id rsa and id rsa.pub files

into your /.ssh directory. Copy the id rsa.pub file to remote machines (pc LVM)

scp id_rsa.pub greig@pc_LVM:.ssh/.

Then, ssh to pc LVM and append the contents of your public key into the authorized keys file. If

this file does not exist it will be created.

cat id_rsa.pub >> authorized_keys

Make sure that the permissions for .ssh directory are set to 700. Otherwise, change them by typing:

chmod 700 .ssh

89

Appendix A. Deployment

Finally, the permissions of the authorized keys file must be 644. Otherwise:

chmod 644 authorized_keys

90

Appendix B

Resource Fabrics Language
specification

The aim of this appendix is to formalize the XML schemas used in the project for the creation and

management of virtual machines. These schemas conform the Resource Fabrics Language (RFL)

and its namespace is: http://www.ac.upc.edu/rfl. Throughout this documentation we present the

first approach to the RFL (version 0.1), thus, it should not be considered as an stable version. The

RFL elements are listed in the next page.

For each schema element, we present a brief definition including the type of the element and the

multiplicity and type of the subelements that it contains. Also, we show a pseudo schema for

an easy understanding of the described elements. These pseudo schemas use BNF-style conven-

tions for the elements notation. That is, * denotes zero o more multiplicity, + for one or more

occurrences and ? for zero or one occurrences.

The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”,

”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be

interpreted as described in RFC 2119. [38]

91

Appendix B. Resource Fabrics Language specification

Table of contents

Communication elements

MachineDescription
ImageDescription
HardwareDescription
Requirements
SatisfiedRequirements
InstallationDescription
DiskInformation
CreateMachineDescription
MachineReference
MachineIdentifier

Basic complex elements

PackageList
Package
Kernel
Release

Basic simple elements

Name
Architecture
KernelVersion
Constraint
Codename
PackageFormat
PackageName
Mirror
MachineHome
KernelLocation
InitrdLocation
DiskLocation
DiskSize
Memory
NumberOfVCPU
SwapSize
HostIP
HostPort
MachineIP

RFL types

ConstraintType
PackageFormatType

92

B.1. Communication elements

B.1 Communication elements

In this section we enumerate and explain the elements used in the communication between differ-

ent components (refer to chapter Design 6 to see their interactions).

MachineDescription

Definition
This complex element describes the requirements that a new VM must accomplish. These are:

how it will be named and which software and hardware characteristics it will have.

It MUST support the following elements:

• Name, with multiplicity one.

• ImageDescription, with multiplicity one.

• HardwareDescription, with multiplicity one.

Pseudo schema

<MachineDescription >

<Name />

<ImageDescription />

<HardwareDescription />

</MachineDescription >

Example

<MachineDescription >

<Name>VM-Lite</Name>

<ImageDescription>

<Architecture>i386</Architecture>

</ImageDescription>

<HardwareDescription>

</HardwareDescription>

</MachineDescription >

93

Appendix B. Resource Fabrics Language specification

ImageDescription

Definition
This element is used to describe the requirements that MUST be accomplished by the disk image

of a virtual machine: it MAY specify a kernel to run in the VM; it MUST specify the architecture

of the host machine; it MAY specify a set of software packages to be installed on the VM; it MAY

specify a mirror from which download the necessary software; it MAY specify the size of the VM

disk; it MAY specify the package format required for the VM and it MAY specify the release

required for the VM.

It MUST support the following elements:

• Kernel, with multiplicity zero or one.

• Architecture, with multiplicity one.

• PackageList, with multiplicity zero or one.

• Mirror, with multiplicity zero or one.

• DiskSize, with multiplicity zero or one.

• Release, with multiplicity zero or one.

Pseudo schema

<ImageDescription>

<Kernel />?

<Architecture />

<PackagesList />?

<Mirror />?

<DiskSize />?

<Release />?

</ImageDescription>

Example

<ImageDescription>

<Kernel>

<Constraint>newest</Constraint>

94

B.1. Communication elements

</Kernel>

<Architecture>i386</Architecture>

<Mirror>http://ftp.rediris.es/debian</Mirror>

<DiskSize>1024k</DiskSize>

</ImageDescription>

HardwareDescription

Definition
This element is intended to describe the initial configuration of the VM. We are evaluating the

possibility of replace this element by using JSDL [14].

It MUST support the following elements:

• Memory, with multiplicity zero or one.

• NumberOfCPU, with multiplicity zero or one.

• SwapSize, with multiplicity zero or one.

Pseudo schema

<HardwareDescription>

<Memory />?

<NumberOfCPU />?

<SwapSize />?

</HardwareDescription>

Example

<HardwareDescription>

<Memory>1024</Memory>

<NumberOfVCPU>2</NumberOfVCPU>

<SwapSize>512</SwapSize>

</HardwareDescription>

95

Appendix B. Resource Fabrics Language specification

Requirements

Definition
This element describes the kernel and base system required for a VM identified by its name.

It MUST support the following elements:

• Name, with multiplicity one.

• Kernel, with multiplicity zero or one.

• Release, with multiplicity zero or one.

Pseudo schema

<Requirements>

<Name>

<Kernel>?

<Release>?

</Requirements>

Example

<Requirements>

<Name>VirtualMachineName</Name>

</Requirements>

SatisfiedRequirements

Definition
This is a complex type used to list the requirements that a host could satisfy without downloading

anything from Internet.

It MUST support the following elements:

• Name, with multiplicity one.

• MachineHome, with multiplicity one.

• Kernel, with multiplicity zero or one.

96

B.1. Communication elements

• Release, with multiplicity zero or one.

Pseudo schema

<SatisfiedRequirements>

<Name>

<MachineHome>?

<Kernel>?

<Release>?

</SatisfiedRequirements>

Example

<SatisfiedRequirements>

<Name>VirtualMachineName</Name>

<MachineHome>/pool/VirtualMachineName/</MachineHome>

</SatisfiedRequirements>

InstallationDescription

Definition
This element specifies what is needed to install and how to perform this action.

It MUST support the following elements:

• Name, with multiplicity one.

• PackageList, with multiplicity zero or one.

• Release, with multiplicity one.

• Mirror, with multiplicity zero or one.

• DiskSize, with multiplicity zero or one.

Pseudo schema

<InstallationDescription>

<Name/>

97

Appendix B. Resource Fabrics Language specification

<PackagesList/>?

<Release/>

<Mirror/>?

<DiskSize/>?

</InstallationDescription>

Example

<InstallationDescription>

<Name>VirtualMachineName</Name>

</InstallationDescription>

DiskInformation

Definition
This element describes the necessary information related to those locations of disk elements to

create and run a VM (where the VM home is, where the kernel to run is, where the ramdisk is and

where the file system is).

It MUST support the following elements:

• KernelLocation, with multiplicity one.

• KernelLocation, with multiplicity one.

• InitrdLocation, with multiplicity zero or one.

• DiskLocation, with multiplicity one.

Pseudo schema

<DiskInformation>/

<MachineHome />

<KernelLocation />

<InitrdLocation />?

<DiskLocation />

</DiskInformation>

98

B.1. Communication elements

Example

<DiskInformation>/

<MachineHome>/pool/Machine/</MachineHome>

<KernelLocation>/pool/archives/VM/vmlinuz-2.6.18-xen</KernelLocation>

<InitrdLocation>/pool/archives/VM/initrd.img-2.6.18-i686</InitrdLocation>

<DiskLocation>/pool/archives/VM/disk-VM</DiskLocation>

</DiskInformation>

CreateMachineDescription

Definition
This element describes the necessary information to create and run a VM: how it is named, where

its disk is and its hardware characteristics.

It MUST support the following elements:

• Name, with multiplicity one.

• DiskInformation, with multiplicity one.

• HardwareDescription, with multiplicity one.

Pseudo schema

<CreateMachineDescription>

<Name/>

<DiskInformation/>

<HardwareDescription>

</CreateMachineDescription>

Example

<CreateMachineDescription>

<Name/>

<DiskInformation>

<KernelLocation>/pool/archives/VM/vmlinuz-2.6.18-xen</KernelLocation>

<InitrdLocation>/pool/archives/VM/initrd.img-2.6.18-i686</InitrdLocation>

99

Appendix B. Resource Fabrics Language specification

<DiskLocation>/pool/archives/VM/disk-VM</DiskLocation>

</DiskInformation>

<HardwareDescription>

</HardwareDescription>

</CreateMachineDescription>

MachineReference

Definition
This complex element has the necessary information to contact with a VM.

It MUST support the following elements:

• MachineIP, with multiplicity one.

Pseudo schema

<MachineReference>

<MachineIP/>

</MachineReference>

Example

<MachineReference>

<MachineIP>147.83.83.83<MachineIP/>

</MachineReference>

MachineIdentifier

Definition
This complex element has the necessary information to identify and contact with a VM.

It MUST support the following elements:

• Name, with multiplicity one.

• HostIP, with multiplicity one.

100

B.2. Basic complex elements

• HostPort, with multiplicity one.

• MachineIP, with multiplicity one.

Pseudo schema

<MachineIdentifier>

<Name/>

<HostIP/>

<HostPort/>

<MachineIP/>

</MachineIdentifier>

Example

<MachineIdentifier>

<Name>SORMAVM<Name>

<HostIP>147.83.23.24<HostIP/>

<HostPort>8080<HostPort/>

<MachineIP>147.83.83.83<MachineIP/>

</MachineIdentifier>

B.2 Basic complex elements

This section explains those complex elements that are subelements of the communication elements

presented in the previous section (see section B.1).

PackageList

Definition
This element is a complex type specifying a set of Linux packages that the virtual machine MUST

have installed. It also MUST have installed the dependencies of each package without needing

any further specification.

It MUST support the following elements:

101

Appendix B. Resource Fabrics Language specification

• Package, with multiplicity zero or more.

Pseudo schema

<PackagesList >

<Package />*

</PackagesList>

Example The packages pdftk and vim and their dependencies must to be installed in the VM.

<PackageList>

<Package>

<PackageName>pdftk</PackageName>

</Package>

<Package>

<PackageName>vim</PackageName>

</Package>

</PackageList>

Package

Definition
This element is a complex type specifying a Linux package by its name.

It MUST support the following elements:

• PackageName, with multiplicity one.

Pseudo schema

<Package>

<PackageName />

</Package>

Example Specification of package pdftk.

<Package>

<PackageName>pdftk</PackageName>

</Package>

102

B.2. Basic complex elements

Kernel

Definition
This complex element describes the kernel that virtual machines SHOULD run. It is described in

terms of an optional kernel version number and an optional modifier. Notice that it has no sense

to specify the kernel version if we use the constraint newest.

It MUST support the following elements:

• KernelVersion, with multiplicity zero or one.

• Constraint, with multiplicity zero or one.

Pseudo schema

<Kernel>

<KernelVersion />?

</Constraint>?

</Kernel>

Example A kernel newest or equal than the kernel 2.6 MUST be provided.

<Kernel>

<KernelVersion>2.6</KernelVersion>

<Constraint>atleast</Constraint>

</Kernel>

Release

Definition
The release element is useful for specifying which release MUST be installed in the virtual ma-

chine. Alternatively we MAY specify just a package format.

Notice that, it has no sense to specify a release based on a format type in the field codename and

a different format in the field PackageFormat.

It MUST support the following elements:

103

Appendix B. Resource Fabrics Language specification

• Codename, with multiplicity zero or one.

• PackageFormat, with multiplicity one.

Pseudo schema

<Release>

<Codename />?

</PackageFormat>

</Release>

Example

<Release>

<Codename>etch</Codename>

<PackageFormat>deb</PackageFormat>

</Release>

B.3 Basic simple elements

This section explains those simple elements that are subelements of the communication elements

(see section B.1).

Name

Definition
This element specifies a name for the VM. It SHOULD be unique within the provider’s LAN to

facilitate the VM migration between hosts.

The type of this element is xsd:string.

Pseudo schema

<Name>xsd:string</Name>

Example VirtualMachineName identifies a VM.

<Name>VirtualMachineName</Name>

104

B.3. Basic simple elements

Architecture

Definition
This element specifies the processor architecture required by the VM.

The type of this element is xsd:string.

Pseudo schema

<Architecture>xsd:string</Architecture>

Example The VM MUST run over an amd64 processor.

<Architecture>amd64</Architecture>

KernelVersion

Definition
This is a simple type for identifying the family version of a Linux kernel.

The type of this element is xsd:string.

Pseudo schema

<KernelVersion>xsd:string</KernelVersion>

Example

<KernelVersion>2.6.18</KernelVersion>

Constraint

Definition
This constraint element specifies a requirement that the kernel of the VM must accomplish.

The type of this element is rfl:ConstraintType.

Pseudo schema

<Constraint>rfl:ConstraintType</Constraint>

105

Appendix B. Resource Fabrics Language specification

Example The newest Linux kernel is required.

<Constraint>newest</Constraint>

Codename

Definition
This element specifies the name of the release that MUST be installed in the VM.

The type of this element is xsd:string.

Pseudo schema

<Codename>xsd:string</Codename>

Example

<Codename>dapper</Codename>

PackageFormat

Definition
This element identifies the file format of the software Linux packages that the VM MUST have

installed.

The type of this element is rfl:PackageFormatType.

Pseudo schema

<PackageFormat>rfl:PackageFormatType</PackageFormat>

Example We want that the VM will be able to work on a debian-based system.

<PackageFormat>deb</PackageFormat>

PackageName

Definition
Name of a Linux package. It represents the package which is identified by package’s name and its

dependencies.

106

B.3. Basic simple elements

The type of this element is xsd:string.

Pseudo schema

<PackageName>xsd:string</PackageName>

Example The VM MUST have the pdftk program installed properly.

<PackageName>pdftk</PackageName>

Mirror

Definition
A Linux mirror address from where to download the software for the VMs.

The type of this element is xsd:string.

Pseudo schema

<Mirror>xsd:string</Mirror>

Example

<Mirror>http://ftp.rediris.es/debian</Mirror>

MachineHome

Definition
This element identifies the directory that MUST be used to store VM configuration file.

The type of this element is xsd:string.

Pseudo schema

<MachineHome>xsd:string</MachineHome>

Example

<MachineHome>/pool/Machine/</MachineHome>

107

Appendix B. Resource Fabrics Language specification

KernelLocation

Definition
This element shows the path to the kernel that the VM MUST run.

The type of this element is xsd:string.

Pseudo schema

<KernelLocation>xsd:string</KernelLocation>

Example

<KernelLocation>/pool/archives/VM/vmlinuz-2.6.18-xen</KernelLocation>

InitrdLocation

Definition
This element shows the path to the kernel that the VM MAY use at boot time.

The type of this element is xsd:string.

Pseudo schema

<InitrdLocation>xsd:string</InitrdLocation>

Example

<InitrdLocation>/pool/archives/VM/initrd.img-2.6.18-i686</InitrdLocation>

DiskLocation

Definition
This element shows the path to the file system that the VM MUST use as a file system.

The type of this element is xsd:string.

Pseudo schema

<DiskLocation>xsd:string</DiskLocation>

108

B.3. Basic simple elements

Example

<DiskLocation>/pool/archives/VM/disk-VM</DiskLocation>

DiskSize

Definition
Size in bytes of the hard disk of the VM. Bytes can be followed by a multiplicative suffix: the

suffix KB is equivalent to 1000 bytes, kB to 1024 bytes, MB to 1000*1000 bytes, M to 1024*1024

bytes, GB to 1000*1000*1000, G to 1024*1024*1024, and so on for T, P, E, Z, Y.

Pseudo schema

<DiskSize>xsd:string</DiskSize>

Example A disk of 1024 Kilobytes.

<DiskSize>1024k</DiskSize>

Memory

Definition
Memory in MB allocated to the VM.

The type of this element is xsd:string.

Pseudo schema

<Memory>xsd:string</Memory>

Example

<Memory>1024</Memory>

NumberOfVCPU

Definition
Number of virtual CPUs that the VM MAY use.

109

Appendix B. Resource Fabrics Language specification

The type of this element is xsd:string.

Pseudo schema

<NumberOfVCPU>xsd:string</NumberOfVCPU>

Example

<NumberOfVCPU>2</NumberOfVCPU>

SwapSize

Definition
Size in bytes of the swap disk. Bytes can be followed by a multiplicative suffix: the suffix KB is

equivalent to 1000 bytes, kB to 1024 bytes, MB to 1000*1000 bytes, M to 1024*1024 bytes, GB

to 1000*1000*1000, G to 1024*1024*1024, and so on for T, P, E, Z, Y.

The type of this element is xsd:string.

Pseudo schema

<SwapSize>xsd:string</SwapSize>

Example

<SwapSize>1024k</SwapSize>

HostIP

Definition
IP address of the host where the VM is installed.

The type of this element is xsd:string.

Pseudo schema

<HostIP>xsd:string</HostIP>

Example

<HostIP>147.83.23.24<HostIP/>

110

B.4. RFL types

HostPort

Definition
Port to contact with the host of the VM.

The type of this element is xsd:string.

Pseudo schema

<HostPort>xsd:string</HostPort>

Example

<HostPort>8080<HostPort/>

MachineIP

Definition
IP address of the VM.

The type of this element is xsd:string.

Pseudo schema

<MachineIP>xsd:string</MachineIP>

Example

<MachineIP>147.83.83.83<MachineIP/>

B.4 RFL types

This section specifies the enumeration types used within RFL.

ConstraintType

This type is used in the context of the kernel element specified in section B.2. These MAY provide

modifiers for the kernel required by the user.

111

Appendix B. Resource Fabrics Language specification

The following kernel modifiers MUST be supported.

Normative RFL Name Definition

exactly If a kernel is provided it MUST belongs to the family kernel version

specified in the kernel version field

atleast If a kernel is provided it MUST be at least as newest as the kernel

specified in the kernel version field

newest If a kernel is provided it MUST be the newest one available

Table B.1: Constraint Type specification

PackageFormatType

This type is used in the context of the release element specified in section B.2. This type enumer-

ates the package format types that SHOULD be supported

The following package formats SHOULD be supported.

Normative RFL Name Definition

deb Debian’s based system package format

rpm Red Hat Package Manager. Package format from rpm based systems

Table B.2: Package Format Type specification

112

Appendix C

Scripts specification

The main purpose of this chapter is to expose the API specification of the lowest level components

to help any future developer to use or extend these elements. These are: Checker, Image Installer

and Local Resource Manager from Local Virtualization Manager component and Image Builder

from the Resource Coordinator component, both within Resource Fabrics layer.

This chapter is structured by components. For each one, we specify its operations in terms of a

concise description of its functionality, a list of the mandatory parameters that must be provided

to use the operation properly, a list of the optional parameters used to modify the operation’s

behaviour and the operation’s output. We also offer, for each element, a hook specification to

extend easily these components. It is provided because these components have to call to release-

specific functions to construct a system based on that release. Thereby, we encapsulate these

functions in a hook script named as the name of the release (e.g. deb). The suitable hook will be

loaded into our components at execution time.

C.1 Checker

This LVM component is in charge of the preparation of the VM home space and checking what

requirements can be satisfied as a result of the Pool caching.

Operation: prepare

Description

This operation prepares a directory where to store the information related to the future VM named

113

Appendix C. Scripts specification

by name.

Mandatory parameters

−−name name : uniquely identifier for a VM.

Operation: check

Description

This operation is used to check if the Pool owns in the cache a requirement (kernel, release). In

case that the checker requirements can be satisfied they will be copied to the VM name associated

directory.

Mandatory parameters

−−name name : uniquely identifier for a VM.

Optional parameters

−−release [codename]: checks whether a release is available locally or not. The optional co-

dename parameter specifies which release we are checking for. If there is no codename

specified, then any release will be fine. If a codename is provided then the format parameter

is mandatory.

−−format packageFormat : indicates which is the type of the package format for the release.

Therefore, it determines which hook must be used.

−−kernel [version]: checks whether a kernel is available locally or not. The optional version

parameter specifies which kernel version we are checking for (e.g. −−kernel 2.6.18). If no

version is provided any kernel will be fine.

−−constraint {newest | atleast | exactly} : this parameter depends on the previous one. We im-

pose a constraint over the kernel. This constraint should be one of these three: newest, we

are checking for the newest kernel version available; exactly, if we are checking if there is

available any kernel of the same version family that the parameter version specified before;

and atleast, if we require a kernel from a family at least as new as the specified in version

parameter.

114

C.1. Checker

Output

codename : name of the available release which satisfies the checked requirements or blank if

there is no one available.

packageFormat : name of the file format of the available release or blank if no one available.

version : version of the available kernel that satisfies what was checked or blank anyway else.

The script will answer us, only for what we had checked. For instance, if we have checked for a

release, then codename and packageFormat are displayed. The output is blank if there is no release

that could satisfy what is being checked. If we check for a kernel, then its version is outputted

when the requirement could be satisfied, otherwise blank. If we ask for both, release and kernel,

then the output is given in this order: codename, packageFormat, version.

Operation: remove

Description

This operation is used to remove the information related to a VM stored locally

Mandatory parameters

−−name name : uniquely identifier for a VM.

Operation: help

Description

This operation shows a short usage summary.

Checker hook

Function: search package

Description

This function searches a package on all available package lists. For each match, it prints out the

package name and a short description.

115

Appendix C. Scripts specification

Parameters

[1] package: package name.

C.2 Image Builder

Operation: create-store

Description

This operation is used to create the Store and all of its directories. If a Store exists it will be

removed.

Operation: create-image

Description

This operation is used to create a disk image for a new VM. It creates the Store if it does not exist.

Mandatory parameters

−−arch [arch]: processor architecture of the host machine.

Optional parameters

−−base-system : this parameter indicates that it is required to construct a base system.

−−release codename : release name.

−−format packageFormat : indicates which is the type of package format for the release (deb,

rpm, etc.). Therefore, it determines which hook must be used.

−−kernel [version [−−constraint {newest | atleast | exactly}]]: it specifies the required kernel.

We might provide a version for this kernel and impose a constraint over the kernel. This

constraint should be one of these three: newest, for the newest kernel available; exactly, for

any available kernel of the same version family; and atleast, if we require a kernel from a

family at least as new as the specified in version. Any kernel will be provided if neither a

version nor a constraint is specified.

116

C.2. Image Builder

−−packages list : comma separated list of software packages to add to the base system.

−−mirror mirror : URL from where to download any necessary software.

Output

output : absolute pathname to the required data and image identifier.

release : base system release provided.

packageFormat : format package type of the release.

Operation: remove-image

Description

To remove the information stored in the Store related to a VM.

Mandatory parameters

−−identifier id : identifier of an image. It is provided in the output of the create-image function.

Operation: help

Description

This operation shows a short usage summary.

Image Builder hook

Function: download

Description

Downloads a package and its dependencies.

Parameters

[1] release: codename of the package release.

117

Appendix C. Scripts specification

[2] output: absolute path directory to store the package and its dependencies.

[3] architecture: processor architecture.

[4] package: package name.

Function: search package arch

Description

This function searches a package on the package lists of a target processor architecture. For each

match, it prints out the package name and a short description.

Parameters

[1] package: package name.

[2] architecture: processor architecture.

Function: show

Description

It displays the package records for the package.

Parameters

[1] package: package name.

[2] architecture: processor architecture.

Function: depends

Description

Prints a list with every dependency a package has.

Parameters

[1] package: package name.

[2] architecture: processor architecture.

118

C.3. Image Installer

Function: bootstrap tarball

Description

This function builds a tarball with all the necessary packages to construct a base system.

Parameters

[1] architecture: processor architecture.

[2] output file: output (tgz) file.

[3] release: codename of the release.

[4] mount point: mount point.

[5] mirror: URL from where to download any necessary software.

[6] packages: comma separated list of extra packages to include in the base system.

C.3 Image Installer

Operation: install

Description

Creates an image disk on a file and installs a system in it.

Mandatory parameters

−−name name : uniquely identifier for a VM.

−−release codename : base system release name.

−−format packageFormat : indicates which is the type of the package format for the release.

Therefore, it determines which hook must be used.

Optional parameters

−−packages list : comma separated list of extra software packages to include in the base system.

−−mirror mirror : URL from where download any necessary software.

119

Appendix C. Scripts specification

−−disk-size size : size in bytes of the VM’s disk. Bytes can be followed by a multiplicative

suffix: the suffix KB is equivalent to 1000 bytes, kB to 1024 bytes, MB to 1000*1000 bytes,

M to 1024*1024 bytes, GB to 1000*1000*1000, G to 1024*1024*1024, and so on for T, P,

E, Z, Y.

Output

disk : absolute path to VM disk.

kernel : absolute path to VM kernel.

ramdisk : absolute path to VM ramdisk.

Operation: remove

Description

This operation is used to remove the information related to a VM stored locally

Mandatory parameters

−−name name : uniquely identifier for a VM.

Operation: help

Description

This operation shows a short usage summary.

Image Installer hook

Function: bootstrap unpack

Description

Installs the packages from a tarball file instead of downloading from a mirror site.

Parameters

[1] file: tgz file with the packages.

120

C.4. Local Resource Manager

[2] packages: comma separated list of extra software packages to install.

[3] release: codename of the release.

[4] mount point: mount point.

Function: install modules

Description

Performs the installation of a kernel and its modules for a file system.

Parameters

[1] mount point: path to the root of the VM’s file system.

[2] modules: linux-modules package name.

[3] kernel: linux-image package name.

C.4 Local Resource Manager

Operation: construct

Description

This operation is used to construct the files needed for a new VM. These files are stored in the VM

associated directory in the Pool.

Mandatory parameters

−−name name : uniquely identifier for a VM.

−−kernel kernel : path to VM kernel.

−−disk disk : path to VM disk.

Optional parameters

−−mem memory : amount of memory in MB allocated to the VM.

121

Appendix C. Scripts specification

−−cpu cpu : number of CPUs available for the VM.

−−ramdisk ramdisk : path to VM ramdisk.

−−swap size : swap disk size in bytes. Bytes can be followed by a multiplicative suffix: the suffix

KB is equivalent to 1000 bytes, kB to 1024 bytes, MB to 1000*1000 bytes, M to 1024*1024

bytes, GB to 1000*1000*1000, G to 1024*1024*1024, and so on for T, P, E, Z, Y.

Operation: run

Description

This operation runs a VM.

Mandatory parameters

−−name name : uniquely identifier for a VM.

Operation: create

Description

This operation constructs and runs a VM.

Mandatory parameters

−−name name : uniquely identifier for a VM.

−−kernel : path to VM kernel.

−−disk : path to VM disk.

Optional parameters

−−mem : amount of memory in MB allocated to the VM.

−−cpu : number of CPUs available for the VM.

−−ramdisk : path to VM ramdisk.

−−swap : swap disk size in bytes. Bytes can be followed by a multiplicative suffix: the suffix KB

is equivalent to 1000 bytes, kB to 1024 bytes, MB to 1000*1000 bytes, M to 1024*1024

bytes, GB to 1000*1000*1000, G to 1024*1024*1024, and so on for T, P, E, Z, Y.

122

C.4. Local Resource Manager

Operation: shutdown

Description

Shutdowns a VM.

Mandatory parameters

−−name name : uniquely identifier for a VM.

Operation: destroy

Description

Destroys a VM, including associated files.

Mandatory parameters

−−name name : uniquely identifier for a VM.

Operation: help

Description

This operation shows a short usage summary.

123

Appendix D

Glossary

ABI: Application Binary Interface. Interface which allows programs to access hardware through

the Instruction Set Architecture (ISA) and the system call interface.

API: Application Programming Interface. High level interface of an application.

Axis: Framework from Apache for constructing SOAP processors such as clients, servers, gate-

ways,etc.

BREIN: Business objective driven REliable and Intelligent grids for real busiNess. European

research project.

Domain: Execution context that contains a running virtual machine.

Domain 0: Xen domain which is the responsible for managing the system.

EA: Economy Agent. EERM component responsible for deciding if a task is technically and

economically feasible and calculating its price.

EC: Estimator Component. EERM component in charge of estimating the expected impact of

executing a task on the utilization of resources.

EERM: Economically Enhanced Resource Manager. SORMA component used to separate the

economic from the technical part in SORMA.

ERM: Economic Resource Management. EERM component with the onus of ensuring an effi-

cient use of local resources.

FTP: File Transfer Protocol. Application protocol used to exchange files.

125

Appendix D. Glossary

Full virtualization: An approach of virtualization which requires no modifications to the hosted

operating system, providing the illusion of a complete system of real hardware devices.

GMM: Grid Market Middleware. Scalable middleware based on a peer-to-peer structured overlay

network which offers core services for grid markets.

Grid: Distributed computing paradigm focused on large-scale resource sharing.

Guest: Process or system running on a VM.

Host: Underlying platform that supports a VM.

Hypervisor: Software that allows multiple virtual machines to be multiplexed on a single physical

machine.

ICT: Information and Communication Technologies.

IT: Information Technologies.

ISA: Instruction Set Architecture. Instruction set which allows software to access to the hardware.

JESS: Java Expert System Shell. Rule engine for the Java platform.

JSDL: Job Submission Description Language. XML based specification from the Global Grid

Forum used to describe the requirements of computational jobs for submission to resources.

LRU: Least Recently Used. Replacement policy used in caches in case of conflict.

LVM: Local Virtualization Manager. RF component placed in every resource to offer functional-

ities for the management of its virtual machines.

Paravirtualization: An approach to virtualization which requires operating system to be ported

in order to run in a virtual machine.

Planned reservation: Agreement by which a client reserves in advance a VM.

PM: Policy Manager. EERM component that stores and manages policies to adapt EERM’s be-

haviour at runtime.

RE: Rule Engine. Software that permits the isolation of business policies from the application

design.

Reservation: Client’s intention of reserving a VM in advance.

RC: Resource Coordinator. RF component that chooses and helps to prepare a resource for cre-

ating new virtual machines.

126

RF: Resource Fabrics. SORMA component that provides access to and control of the resources

inside a resource provider’s LAN.

RFL: Resource Fabrics Language. XML based specification for describing the interactions among

RF components.

RPM: Red Hat Package Manager.

SCP: Secure copy. Protocol that works over SSH for transferring data.

SLA: Service Level Agreement. Agreement between clients and service providers. It defines

the level of service with information about agreed priorities, responsibilities, guarantees,

performance metrics, penalties to apply in case of SLA violation, etc.

SOAP: Simple Object Access Protocol. It is an XML-based communication protocol and encod-

ing format for inter-application communication.

SORMA: Self-Organizing ICT Resource Management. European project to develop a platform

that allows ICT resources trading on demand.

SPG: System Performance Guard. EERM component in charge of the fulfilment of the SLAs.

Tycho: Resource discovery framework and messaging system for distributed applications.

VM: Virtual Machine. Environment in which a hosted operating system runs, providing the ab-

straction of a dedicated machine.

VMM: Virtual Machine Monitor. See hypervisor.

WS: Web Service. Defined by the World Wide Web Consortium as a software system designed

to support interoperable Machine to Machine interaction over a network.

Xen: open-source VMM for the x86 processor architecture.

127

Bibliography

[1] Sorma Web Page http://sorma-project.eu/.

[2] Xen web page. http://xen.org.

[3] I. Foster, “What is the grid: a three point check-list,” tech. rep., 2002.

[4] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the Grid: Enabling scalable virtual

organizations,” Lecture Notes in Computer Science, vol. 2150, pp. 1–??, 2001.

[5] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer, vol. 38, no. 5,

pp. 32–38, 2005.

[6] Wikipedia The Free Encyclopedia http://en.wikipedia.org.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, “Xen and the art of virtualization.,” in SOSP (M. L. Scott and L. L. Peterson,

eds.), pp. 164–177, ACM, 2003.

[8] Xen Users’ Manual v3.0.

[9] Inside Xen 3.0 A XenSource White Paper. http://xensource.com.

[10] S. Hand, T. Harris, E. Kotsovinos, and I. Pratt, “Controlling the xenoserver open platform,”

2002. In Proceedings of the 6th IEEE Conference on Open Architectures and Network

Programming (IEEE OPENARCH’03).

[11] Jess web page http://herzberg.ca.sandia.gov.

[12] C. L. Forgy, “Rete: a fast algorithm for the many pattern/many object pattern match prob-

lem,” pp. 324–341, 1990.

[13] P. Chacı́n, X. León, R. Brunner, F. Freitag, and L. Navarro, “Core services for grid markets,”

in CoreGrid Symposium, 2008.

129

http://sorma-project.eu/
http://xen.org
http://en.wikipedia.org
http://xensource.com
http://herzberg.ca.sandia.gov

BIBLIOGRAPHY

[14] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher, and

A. Savva, “Job submission description language (jsdl) specification, version 1.0,” tech. rep.,

Global Grid Forum, 2005.

[15] Axis 2 web page http://ws.apache.org/axis2/.

[16] Apache Software Fundation http://www.apache.org/.

[17] XMLBeans web page http://xmlbeans.apache.org/.

[18] Brein web page. http://www.eu-brein.com/.

[19] JDOM web page http://www.jdom.org.

[20] Debootstrap web page. http://packages.debian.org/debootstrap.

[21] Wget web page. http://packages.debian.org/wget.

[22] Dpkg web page. http://packages.debian.org/dpkg.

[23] Apt web page. packages.debian.org/apt.

[24] Tycho web page http://www.acet.reading.ac.uk/projects/tycho/index.php.

[25] T. D. Moreton, I. A. Pratt, and T. L. Harris, “Storage, mutability and naming in pasta.”

[26] E. Kotsovinos, T. Moreton, I. Pratt, R. Ross, K. Fraser, S. Hand, and T. Harris, “Global-scale

service deployment in the xenoserver platform.”

[27] A. . Matsunaga, M. . Tsugawa, M. . Zhao, L. . Zhu, V. Sanjeepan, S. . Adabala, R. .

Figueiredo, H. Lam, and J. . Fortes, On the Use of Virtualization and Service Technologies

to Enable Grid-Computing, vol. 0. Berlin/Heidelberg: Springer, 2005.

[28] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. O. Figueiredo, “Vmplants: Providing

and managing virtual machine execution environments for grid computing.,” in SC, p. 7,

IEEE Computer Society, 2004.

[29] M. Kallahalla, M. Uysal, R. Swaminathan, D. E. Lowell, M. Wray, T. Christian, N. Edwards,

C. I. Dalton, and F. Gittler, “Softudc: A software-based data center for utility computing,”

Computer, vol. 37, no. 11, pp. 38–46, 2004.

[30] Smart Frog http://www.hpl.hp.com/research/smartfrog/.

[31] Globus Virtual Workspaces web page http://workspace.globus.org.

130

http://ws.apache.org/axis2/
http://www.apache.org/
http://xmlbeans.apache.org/
http://www.eu-brein.com/
http://www.jdom.org
http://packages.debian.org/debootstrap
http://packages.debian.org/wget
http://packages.debian.org/dpkg
packages.debian.org/apt
http://www.acet.reading.ac.uk/projects/tycho/index.php
http://www.hpl.hp.com/research/smartfrog/
http://workspace.globus.org

[32] K. Keahey, “Globus Virtual Workspaces,” Supercomputing 2007, Reno, NV. November 2007

http://workspace.globus.org/papers/SC07-keahey.ppt.

[33] X. Jiang and D. Xu, “Soda: a service-on-demand architecture for application service hosting

utility platforms,” 2003.

[34] Amazon Elastic Computer Cloud http://aws.amazon.com/ec2.

[35] Elastic Server http://elasticserver.com/.

[36] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield,

“Live migration of virtual machines.,” in NSDI, USENIX, 2005.

[37] D. Spence and T. Harris, “Xenosearch: Distributed resource discovery in the xenoserver open

platform.,” in HPDC, pp. 216–225, IEEE Computer Society, 2003.

[38] S. Bradner, RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. IETF,

1997.

[39] M. Macı́as, O. Rana, G.Smith, J. Guitart, and J. Torres, “Maximising revenue in grid markets

using an economically enhanced resource manager,” September 2007.

[40] P. R. Barham, B. Dragovic, K. A. Fraser, S. M. Hand, T. L. Harris, A. C. Ho, E. Kotsovinos,

A. V. Madhavapeddy, R. Neugebauer, I. A. Pratt, and A. K. Warfield, “Xen 2002,” Tech. Rep.

UCAM-CL-TR-553, University of Cambridge, Computer Laboratory, Jan. 2003.

[41] T. Püschel, N. Borissov, M. Macı́as, D. Neumann, J. Guitart, and J. Torres, “Economically

enhanced resource management for internet service utilities,” Lecture Notes on Computer

Science (LNCS), Vol. 4831, pp. 335-348 8th International Conference on Web Information

Systems Engineering (WISE’07).

[42] T. Püschel, N. Borissov, D. Neumann, M. Macı́as, J. Guitart, and J. Torres, “Extended re-

source management using client classification and economic enhancements,” Information

and Communication Technologies and the Knowledge Economy, Volume 4 Expanding the

Knowledge Economy; Issues, Applications, Case Studies; Part 1 17th eChallenges e-2007

Conference & Exhibition (e-2007).

[43] Sudoers manual. http://www.sudo.ws/sudo/man/sudoers.html.

131

http://workspace.globus.org/papers/SC07-keahey.ppt
http://aws.amazon.com/ec2
http://elasticserver.com/
http://www.sudo.ws/sudo/man/sudoers.html

	List of Figures
	List of Tables
	Introduction
	Context and opportunity
	Project overview and objectives
	Task description and initial plan
	Report structure

	Preliminary concepts
	Grid
	Grid architecture

	Virtual machines
	Process Virtual Machine
	System Virtual Machine
	Virtualization in Xen

	Business Rules Engine
	JESS: Java Expert System Shell

	Requirements
	Background
	SORMA
	EERM

	Functional requirements
	Resource Fabrics requirements
	Economic Resource Manager requirements
	Policy Manager requirements

	Non-functional requirements

	Specification
	Actors
	Resource Fabrics specification
	Economic Resource Manager specification
	Policy Manager specification

	Architecture
	Resource Fabrics architecture
	Resource Coordinator
	Local Virtualization Manager

	Economic Resource Manager architecture
	Policy Manager architecture

	Design
	Resource Fabrics design
	Image Transfer

	Economic Resource Manager design
	Virtual machines reservations

	Policy Manager design
	Use cases
	Create Machine
	Reserve Resource
	Send Job

	Implementation
	Common issues
	Resource Fabrics implementation
	Economic Resource Manager implementation
	Policy Manager implementation

	System evaluation
	Policy Manager and Reservations
	Create Machine improvement
	Transfer protocols comparison

	Related work
	The XenoServer Open Platform
	BREIN project
	In-VIGO project
	SoftUDC
	Globus Virtual Workspace
	SODA
	Amazon Elastic Computing Cloud
	Elastic Server

	Project plan and economic evaluation
	Plan and human cost
	Software cost
	Hardware cost

	Conclusions and Future Work
	Project outcomes
	Future work
	Economic Resource Registry
	Migration of VMs
	Reservations
	Store maintenance

	Personal remarks

	Deployment
	Components placement
	Software
	Configuration files
	Security issues

	Resource Fabrics Language specification
	Communication elements
	Basic complex elements
	Basic simple elements
	RFL types

	Scripts specification
	Checker
	Image Builder
	Image Installer
	Local Resource Manager

	Glossary
	Bibliography

