View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UPCommons. Portal del coneixement obert de la UPC

Software for mesh
partitioning

P B EL L

BB TR AAE B HR e

E-mail : danibarrero@hotmail.com Hii%: 13520078012

http://www.cems.bj.cn

https://core.ac.uk/display/41794492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

N [{ o 1o [¥ ot o T o F PP P U PR PP PR 3
Yo i a1 V= ¢ o] o) [o -SSP PSPRNS 4
B IMIBEIS ettt re e s ae e 6
4. Matlab Mesh Partitioning and Graph Separator ToolboX........ccccccccvvveeeeeeeccnrnnnn. 16

T 211 o [ToT={ =1 o] o |V RSP 19

1. Introduction

Graph partitioning is a fundamental problem in many scientific contexts. Algorithms that find
a good partitioning of highly unstructured graphs are critical for developing efficient
solutions for a wide range of problems in many application areas on both serial and parallel
computers. For example, large-scale numerical simulations on parallel computers, such as
those based on finite element methods; require the distribution of the finite element mesh
to the processors. This distribution must be done so that the number of elements assigned
to each processor is the same, and the number of adjacent elements assigned to different
processors is minimized.

The goal of the first condition is to balance the computations among the processors. The goal
of the second condition is to minimize the communication resulting from the placement of
adjacent elements to different processors. Graph partitioning can be used to successfully
satisfy these conditions by first modeling the finite element mesh by a graph, and then
partitioning it into equal parts.

Software for graph partitioning is widely available. This document contains a brief summary
of the most famous ones and a detailed explanation of MeTis Graph Partitioning Software
and a Matlab toolbox, justified in the following section the choice of this software.

2. Software options

Among all the algorithms and tools that can be found, in this section there is a brief
explanation of the most important ones:

- Metis (Karypis and Kumar): Metis is a set of serial programs for partitioning graphs,
partitioning finite element meshes, and producing fill reducing orderings for sparse
matrices. The algorithms implemented in Metis are based on the multilevel recursive-
bisection, multilevel k-way, and multi-constraint partitioning schemes.

- Party (Preis): The Party partitioning library serves a variety of different partitioning
methods in a very simple and easy way. Instead of implementing the methods directly,
the user may take advantage of the ready implemented methods of the library. All
implementations increases the performance of the partitioning heuristics. Two kinds of
interfaces allow the use as stand-alone tool as well as the inclusion into application
codes. The data-structures used as interface to Party are simple and easy to generate.

- Jostle (Walshaw): Jostle is a software package designed to partition unstructed meshes
(for example, finite element or finite volume meshes) for use on distributed memory
parallel computers. It can also be used to repartition and load-balance existing partitions
(such as those deriving from adaptive refined meshes). It achieves this by modeling the
mesh as an undirected graph and then using state-of-the-art graph partitioning
techniques.

- Scotch (Pellegrini): The Scotch distribution is a set of programs and libraries which
implement the static mapping and sparse matrix reordering algorithm.

- Chaco (Bruce Hendrickson) a variety of algorithms for graph partitioning and
implemented them into a package. The code is being used to simplify the development
of parallel applications, and to ensure that high performance is obtained.

- Zoltan (Karen D.): the Zoltan library is a collection of data management services for
parallel, unstructured, adaptive, and dynamic applications. It simplifies the load-
balancing, data movement, unstructured communication, and memory usage difficulties
that arise in dynamic applications such as adaptive finite-element methods, particle
methods, and crash simulations. Zoltan's data-structure neutral design also lets a wide
range of applications use it without imposing restrictions on application data structures.

Election justification

Since there are not clear advantages between the different algorithm/software and each one
has a better performance in different fields, it has been chosen the METIS software because
is the one that has a free distribution and it provides high quality partitions in finite element
methods domain (aim of the study):

The advantages of METIS compared to other similar packages are the following:

+ Provides high quality partitions in finite element methods domain

Experiments on a large number of graphs arising in various domains including finite element
methods, linear programming, VLSI, and transportation show that METIS produces partitions
that are consistently better than those produced by other widely used algorithms.

+ Faster than other algorithms
Experiments on a wide range of graphs have shown that METIS is one to two orders of
magnitude faster than other widely used partitioning algorithms.

3. Metis

Metis is a software package for partitioning large irregular graphs, partitioning large meshes,
and computing fillreducing orderings of sparse matrices. The algorithms in Metis are based
on multilevel graph partitioning. These algorithms reduce the size of the graph by collapsing
vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition
for the original graph. These highly tuned algorithms allow METIS to quickly produce high-
quality partitions for a large variety of graphs.

Metis provides a variety of programs that can be used to partition graphs, partition meshes,
compute fill-reducing orderings of sparse matrices, as well as programs to convert meshes
into graphs appropriate for Metis’s graph partitioning programs.

But among all the programs that Metis has, this document just give an explanation of
partition meshes programs, since is the aim of the study.

Metis algorithms

The algorithms in METIS are based on multilevel graph partitioning. Traditional graph
partitioning algorithms compute a partition of a graph by operating directly on the

original graph as illustrated in the next figure (a). These algorithms are often too slow and/or
produce poor quality partitions.

Multilevel partitioning algorithms, on the other hand, take a completely different approach.
These algorithms, as illustrated in the next figure (b), reduce the size of the graph by
collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct
a partition for the original graph. METIS uses novel approaches to successively reduce the
size of the graph as well as to further refine the partition during the uncoarsening phase.
During

coarsening, METIS employs algorithms that make it easier to find a high-quality partition at
the coarsest graph. During refinement, METIS focuses primarily on the portion of the graph
that is close to the partition boundary. These highly tuned algorithms allow METIS to quickly
produce high-quality partitions for a large variety of graphs.

Muiltilevel partitioning algorithms compute a partition
at the coarsest graph and then refine the solution!

Traditional partitioning algorithms compute
a partition directly on the original graph! ?‘
__11

(=} u o

Initial Partitioning Phase

(b)
Mesh partitioning programs

Metis provides two programs partnmesh and partdmesh for partitioning meshes (e.g., those
arising in finite element or finite volume methods) into k equal size parts. These programs
take as input the element node array of the mesh and compute a partitioning for both its
elements and its nodes. Metis currently supports four different types of mesh elements
which are triangles, tetrahedra, hexahedra (bricks), and quadrilaterals.

The difference between these two programs is that partnmesh converts the mesh into a
nodal graph (i.e., each node of the mesh becomes a vertex of the graph), whereas partdmesh
converts the mesh into a dual graph (i.e., each element becomes a vertex of the graph). In
the case of partnmesh, the partitioning of the nodal graph is used to derive a partitioning of
the elements. In the case of partdmesh, the partitioning of the dual graph is used to derive a
partitioning of the nodes.

Both of these programs produce partitioning of comparable quality, with partnmesh being
considerably faster than partdmesh. However, in some cases, partnmesh may produce
partitions that have higher load imbalance than partdmesh.

Both partnmesh and partdmesh are invoked by providing two arguments at the command
line as follows:

partnmesh MeshFile Nparts

partdmesh MeshFile Nparts

The first argument MeshFile, is the name of the file that stores the mesh (whose format is
described in the following section), while the second argumentNparts, is the number of
partitions that is desired. Both partnmesh and partdmesh can partition a mesh into an
arbitrary number of partitions. Upon successful execution, both programs display statistics
regarding the quality of the computed partitioning and the amount of time taken to perform
the partitioning.

The actual partitioning is stored in two files named: MeshFile.npart.Nparts which stores the
partitioning of the nodes, and MeshFile.epart.Nparts which stores the partitioning of the

elements. The format of the partitioning files is described in the following section.

The output of partnmesh and partdmesh for partitioning a mesh print information about the
mesh, such as its name, the number of elements (#Elements), the number of nodes
(#Nodes), and the type of elements (e.g.TET). Next, they print some information regarding
the quality of the partitioning. Specifically, they report the number of edges being cut (Edge-
Cut) by the partitioning, as well as the balance of the partitioning. For both partnmesh and
partdmesh, the balance is computed with respect to the number of elements. The balance
with respect to the number of nodes is not shown, but it is in general similar to the element
balance.

Finally, both partnmesh and partdmesh show the time that was taken by the various phases
of the algorithm.

Input files format

The primary input of the mesh partitioning programs in METIS is the mesh to be partitioned.
This mesh is stored in a file in the form of the element node array. A mesh with n elements is
stored in a plain text file that contains n +1. lines. The first line contains information about
the size and the type of the mesh, while the remaining n lines contain the nodes that make
up each element.

The first line contains two integers. The first integer is the number of elements n in the mesh.
The second integer etype is used to denote the type of elements that the mesh is made off.
Etype can either take the values of 1, 2, 3, or 4, indicating that the mesh consists of either
triangles, tetrahedra, hexahedra (bricks), or quadrilaterals, respectively.

After the first line, the remaining n lines store the element node array. In particular for
element i, line i +1 stores the nodes that this element is made off. Depending on etype, each
line can either have three integers (in the case of triangles), four integers (in the case of
tetrahedra and quadrilaterals), or eight integers (in the case of hexahedra). In the case of
triangles and tetrahedra, the ordering of the nodes for each element does not matter.
However, in the case of hexahedra and quadrilaterals, the nodes for each element should be
ordered according to the numbering illustrated in next figure(b). Note that the node
numbering starts from 1. Next figure illustrates this format for a small mesh with triangular
elements. Note that the etype field of the mesh file is set to 1 indicating that the mesh
consists of triangular elements.

(%]
(%]
—
o=y
I

Mesh File:

i

(b) Ordering of nodes

[n TR =S O T S S
I SN L T S Oy
Loy o

(a) Sample Mesh File

Output File Formats

The partition file of a mesh with n vertices consists of n lines with a single number per line.
The i th line of the file contains the partition number that the i th vertex belongs to. Partition
numbers start from 0 up to the number of partitions minus one.

Mesh Data Structure

All of the mesh partitioning and mesh conversion routines in METISlib take as input the
element node array of a mesh. This element node array is stored using an array called
elmnts. For a mesh with n elements and k nodes per element, the size of the elmnts array is
n*k. Note that since the supported elements in Metis are only triangles, tetrahedra,
hexahedra, and quadrilaterals, the possible values for k are 3, 4, 8, and 4, respectively.

The element node array of the mesh is stored in elmnts as follows. Assuming that the
element numbering starts from 0 (C style), then the k nodes that make up element i are
stored in array elmnts starting at index i*k and ending (but not including) index (i +1)*k. The
ordering of the nodes is not important for triangle and tetrahedra elements. However, in the
case of hexahedra, the nodes for each element must be ordered.

The array that describes the element node array of the mesh is defined in METISlib to be of
type idxtype, which by default is equivalent to int (i.e., integers).

Mesh partitioning test

86400 elements mesh

Next figure shows the output of partnmesh and partdmesh for partitioning a mesh with
tetrahedron elements into 100 parts. From this figure we see that both programs initially
print information about the mesh, such as its name, the number of elements (#Elements),
the number of nodes (#Nodes), and the type of elements (e.g., TET). Next, they print some
information regarding the quality of the partitioning. Specifically, they report the number of
edges being cut (Edge-Cut) by the partitioning, as well as the balance of the partitioning. For
both partnmesh and partdmesh, the balance is computed with respect to the number of
elements. The balance with respect to the number of nodes is not shown, but it is in general
similar to the element balance. Finally, both partnmesh and partdmesh show the time that
was taken by the various phases of the algorithm. All times are in seconds. This time includes
the time required both to construct the dual graph and to partition it. As can be seen from
this example, partnmesh is considerably faster than partdmesh. This is because of two
reasons: the time required to construct the nodal graph is smaller than the time required to
construct the dual graph; the nodal graph is smaller than the dual graph.

e o o o oo o o o o o oo o o o o oo o o o o o o o o
[Daniel@ZUCHONGZHI metis-4.0]% ./partdmesh big _mesh.mesh 100
e o o o oo o e o o o oo o o o o oo B o o o oo o o o

METIS 4.08.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information ---------------------"-"“--"““““- e
Mame: big mesh.mesh, #Elements: 86400, #Nodes: 20449, Etype: TET

Partitioning Dual Graph... -----------cmmmcmmmr e e e e e e e e oo
188-way Edge-Cut: 11691, Balance: 1.03

Timing Information ---------------------~--~--"-~--“~--~“- -
I/0: B.130
Partitioning: 0.370
e o o o o o o o o o oo o o o o oo o o o o o o o o
[Daniel@ZUCHONGZHI metis-4.0]% ./partnmesh big _mesh.mesh 100

e e e TR TR R o e R R R OB e T e TR B TR TR T e R R TR TR e R R OB OB o o B R B 2B 2T T TC TR TR TR TR o R R OB OB o o B R R B e e TC R R s s o e R OB 0B o o R R

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information -------------"-“-“-““““““““- -+~
Name: big mesh.mesh, #Elements: 86408, #Nodes: 20449, Etype: TET

Partitioning Modal Graph... ---------------------- oo
188-way Edge-Cut: 22029, Balance: 1.03

Timing Information ----------------“--““-“““““““ - oo
I/0: 0.150
Partitioning: 0.170

e e e TR TR R o e R R R OB e T e TR B TR TR T e R R TR TR e R R OB OB o o B R B 2B 2T T TC TR TR TR TR o R R OB OB o o B R R B e e TC R R s s o e R OB 0B o o R R

2560000 elements mesh

Next figure shows the output of partnmesh and pardmesh for partitioning a big mesh of
2560000 elements with tetrahedron elements into 2 to 20 parts. In this case it is compared

the time that was taken by the various phases of the algorithm using both algorithms. As can
be seen the difference is not very big and the time taken doesn't depend on the number of
partitions.

[Daniel @ZUCHONGZHI metis-4.0]$./partnmesh superbig.mesh 2

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 5k 3k 5k %k >k >k 5k 3k 5k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k 3k %k 5k 3k 3k %k 3k 3k 5k 3k 3k %k %k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k >k 3k %k %k k kk 3k

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: superbig.mesh, #Elements: 2560000, #Nodes: 426465, Etype: TET

Partitioning Nodal Graph...
2-way Edge-Cut: 233223, Balance: 1.03

Timing Information
1/0: 2.960
Partitioning: 59.610

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k 3k 3k %k >k >k 5k 3k 5k %k %k 3k 5k 3k %k %k 3k 5k 3k 3k %k 3k %k 3k 3k 3k %k 3k 3k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k 3k >k 3k 3k %k ok %k >k 5k 3k %k k k kk 3k

[Daniel @ZUCHONGZHI metis-4.0]S ./partnmesh superbig.mesh 4

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k >k >k 5k 3k 5k %k %k 3k 3k 3k 3k k sk 3k 3k 3k %k %k %k 5k 3k 3k %k 3k >k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k %k 5k %k >k 5k 3k %k %k k kk 3k

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: superbig.mesh, #Elements: 2560000, #Nodes: 426465, Etype: TET

Partitioning Nodal Graph...
4-way Edge-Cut: 359716, Balance: 1.03

Timing Information
1/0: 2.970
Partitioning: 60.100

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k >k >k 5k 3k 3k 5k %k 3k 5k 3k 3k %k %k 3k 3k 3k 3k 3k %k 5k 3k 3k %k 3k 3k 5k 3k 3k %k %k 3k 3k 3k 3k %k %k %k >k 5k 3k %k %k %k >k >k sk %k %k kkk ok

[Daniel @ZUCHONGZHI metis-4.0]S ./partnmesh superbig.mesh 6

3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk 3k >k 5k 3k 3k 5k >k >k 5k 3k 5k %k %k 3k 5k 3k %k %k 3k 3k 3k 3k %k 3k %k 5k 3k 3k %k 3k >k 5k 3k 3k %k 3k 3k 5k 3k 3k %k %k %k >k 3k 3k %k %k %k >k >k 3k %k %k k kk 3k

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: superbig.mesh, #Elements: 2560000, #Nodes: 426465, Etype: TET

Partitioning Nodal Graph...
6-way Edge-Cut: 416717, Balance: 1.03

Timing Information
1/0: 2.990

Partitioning: 62.730

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 5k 3k 5k 5k >k >k 5k 3k 3k 5k %k 3k 5k 3k %k %k 3k 5k 3k 3k %k 3k %k 5k 3k 3k %k sk 3k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k 5k 3k %k k k kk 3k

[Daniel @ZUCHONGZHI metis-4.0]S ./partnmesh superbig.mesh 8

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k 5k %k >k 5k 3k 5k 5k %k 3k 5k 3k %k %k 3k 3k 3k 3k 3k 3k %k 5k 3k 3k %k 3k 3k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k >k 3k %k k k kk 3k

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: superbig.mesh, #Elements: 2560000, #Nodes: 426465, Etype: TET

Partitioning Nodal Graph...
8-way Edge-Cut: 449047, Balance: 1.03

Timing Information
1/0: 3.010
Partitioning: 62.420

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 5k 3k 3k %k >k >k 5k 3k %k 5k %k 3k 5k 3k 5k %k 3k 3k 3k 3k %k 3k >k 5k 3k 3k %k 3k 3k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k 5k 3k %k %k k kk k

[Daniel @ZUCHONGZHI metis-4.0]$./partnmesh superbig.mesh 10

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 5k 3k 5k %k >k >k 5k 3k 3k %k %k 5k 5k 3k %k %k %k 3k 3k 3k 5k k %k 5k 3k 3k %k 3k %k 5k 3k 3k %k %k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k >k 3k %k k k kkk

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: superbig.mesh, #Elements: 2560000, #Nodes: 426465, Etype: TET

Partitioning Nodal Graph...
10-way Edge-Cut: 472797, Balance: 1.03

Timing Information
1/0: 2.950
Partitioning: 60.420

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k >k >k 5k 3k %k %k %k 3k 5k 3k 3k %k 3k 3k 3k 3k %k %k %k 5k 3k 3k %k 3k >k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k 5k 3k %k k k kk ok

[Daniel @ZUCHONGZHI metis-4.0]S ./partnmesh superbig.mesh 15

3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k sk 3k 3k 5k 3k 5k 5k %k >k 5k 3k 3k 5k %k 3k 5k 3k %k %k sk 5k 3k 3k 5k 3k %k 5k 3k 3k %k 3k %k 5k 3k 3k %k %k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k >k 3k %k k sk kk 3k

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: superbig.mesh, #Elements: 2560000, #Nodes: 426465, Etype: TET

Partitioning Nodal Graph...
15-way Edge-Cut: 512481, Balance: 1.03

Timing Information
1/0: 3.070
Partitioning: 60.910

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k >k >k 5k 3k 3k %k %k 3k 5k 3k 3k %k sk 3k 3k 3k %k 3k >k 5k 3k 3k %k 3k >k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k 3k >k 3k 3k 3k ok %k >k 5k 3k %k %k k kk 3k

[Daniel @ZUCHONGZHI metis-4.0]$./partnmesh superbig.mesh 20

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 5k 3k 5k 5k %k >k 5k 3k 3k 5k %k 3k 5k 3k %k %k 3k 3k 3k 3k %k %k %k 5k 3k 3k %k 3k %k 5k 3k 3k %k %k 3k 3k 3k 3k %k %k %k >k 3k 3k %k ok %k >k >k %k %k %k k kk ok

METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota

Mesh Information
Name: superbig.mesh, #Elements: 2560000, #Nodes: 426465, Etype: TET

20-way Edge-Cut: 542762, Balance: 1.05

Timing Information
1/0: 3.070
Partitioning: 65.030

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k >k 5k 3k 5k 5k %k >k 5k 3k 5k 3k %k 3k 3k 3k 3k sk %k 3k 3k 3k %k %k %k 5k 3k 3k %k 3k >k 5k 3k 3k %k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k %k %k %k >k 5k 3k %k %k k kk 3k

[Daniel@ZUCHONGZHI metis-4.0]S

As a summary the next table shows the time taken for each partition:

partnmesh
Nparts Timing I/O Timing part |Balance
2 2.96 59.61 1.03
4 2.97 60.1 1.03
6 2.99 61.73 1.03
8 3.01 61.87 1.03
10 2.95 62.42 1.03
15 3.07 62.91 1.03
20 3.07 65.03 1.05
partdmesh
Nparts Timing I/O Timing part |Balance
2 2.49 82.37 1.03
4 2.51 83.12 1.03
6 2.59 83.78 1.03
8 2.58 83.4 1.03
10 2.61 84.01 1.03
15 2.61 84.13 1.03
20 2.65 86.8 1.03

As can be seen partdmesh requieres more time to partitoning the mesh for the reasons
mentioned before.

The quality of the partition is measured in terms of the edge-cut, the total number of edges

between nodes belonging to different partitions, and the balance in the number of nodes
assigned to each part.

In this case the upper bound on the imbalance between the weights of the partitions

produced is 3%. It means that the number of nodes in any partition does not exceed 1.03 x

n/k, where n is the total number of nodes and k is the number of parts. This small load

imbalance may result due to the logk levels of recursive bisection.

Mesh Partitioning Routines

Metis also includes some routines that can be used to partition a mesh. Those routines are
PartMeshNodal and PartMeshDual, detailed the parameters in this section.

METIS PartMeshNodal (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int
*nparts, int * edgecut, idxtype *epart, idxtype *npart)

Description
This function is used to partition a mesh into k equal-size parts. It provides the functionality
of the partnmesh program.

Parameters
ne The number of elements in the mesh.
nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Mesh Data Strcuture.

etype Indicates the type of the elements in the mesh. etype can take the following values:
1 The elements are triangles.
2 The elements are tetrahedra.
3 The elements are hexahedra (bricks).
4 The elements are quadrilaterals.

numflag Used to indicate which numbering scheme is used for the element node array.
numflag can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the mesh.

edgecut Upon successful completion, this variable stores the number of edges that are cut
by the partition in the nodal graph.

epart This is a vector of size ne that upon successful completion stores the partition
vector for the elements of the mesh. The numbering of this vector starts from
either 0 or 1, depending on the value of numflag.

npart Thisis a vector of size nn that upon successful completion stores the partition
vector for the nodes of the mesh. The numbering of this vector starts from either 0
or 1, depending on the value of numflag.

METIS PartMeshDual (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int *nparts,
int *edgecut, idxtype *epart, idxtype *npart)

Description
This function is used to partition a mesh into k equal-size parts. It provides the functionality
of the partdmesh program.

Parameters
ne The number of elements in the mesh.
nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Mesh Data Strcuture.
etype Indicates the type of the elements in the mesh. etype can take the following values:
1 The elements are triangles.
2 The elements are tetrahedra.
3 The elements are hexahedra (bricks).
4 The elements are quadrilaterals.
numflag Used to indicate which numbering scheme is used for the element node array.
numflag can take the following two values:
0 C-style numbering is assumed that starts from 0
1 Fortran-style numbering is assumed that starts from 1
nparts The number of parts to partition the mesh.
edgecut Upon successful completion, this variable stores the number of edges that are cut
by the partition in the dual graph.
epart This is a vector of size ne that upon successful completion stores the partition
vector for the elements of the mesh. The numbering of this vector starts from
either 0 or 1, depending on the value of numflag.
npart Thisis a vector of size nn that upon successful completion stores the partition
vector for the nodes of the mesh. The numbering of this vector starts from either 0
or 1, depending on the value of numflag.

4. Matlab Mesh Partitioning and Graph Separator Toolbox

This toolbox contains Matlab code for several graph and mesh partitioning methods,
including geometric, spectral, geometric spectral, and coordinate bisection. It also has
routines to generate recursive multiway partitions, vertex separators, and nested dissection
orderings; and it has some sample meshes and mesh generators.

The toolbox contains a Matlab interface to Karypis et al.'s Metis partitioning package, using
Robert Bridson's "metismex" code. This interface is going to be used to plot the meshes
partitioning.

Toolbox Contents

Partitioning methods.

geopart - Geometric.

specpart - Spectral.

gspart - Geometric spectral.
coordpart - Coordinate bisection.

Inertpart- Inertial bisection.
metispart - Multilevel method from Metis.
metismex - Interface to more options of Metis.

Multiway partitions.

dice - Use any 2-way partitioner to get a multiway partition.
geodice - Recursive geometric partitioning.

specdice - Recursive spectral partitioning.

gsdice - Recursive geometric spectral partitioning.

metisdice - Multiway partitioning from Metis.

Visualization and graphics.

gplotpart - Draw a 2-way partition.

gplotmap - Draw a multiway partition.

highlight - Draw a mesh with some vertices highlighted.

gplotg - Draw a 2D or 3D mesh

etreeplotg - Draw an elimination tree

spypart - Matrix spy plot with partition boundaries.

dmspy - Spy plot of matrix in block triangular form.

Matlab graph/mesh partitioning toolbox tests

In this section a mesh has been generated with the Matlab toolbox as example. It has been
used the metisdice function for partitioning this mesh since it uses the Metis partitioning
routine described before.

The mesh used is a 2D finite-element mesh with 547 nodes, and it has been partitioned into
10 parts, as can be seen in the following pictures obtaining 184 cut edges.

Metis Multiway Partition

184 cut edges

y Partition

Wetis Multiway Partition

5. Bibliography

C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software - An
Overview. In F. Magoules, editor, Mesh Partitioning Techniques and Domain Decomposition
Techniques. Civil-Comp Ltd., 2007.

G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 1998

John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh partitioning:
Implementation and experiments. SIAM J. Scientific Computing 19:2091-2110, 1998.

Tony F. Chan, John R. Gilbert, and Shang-Hua Teng. Geometric spectral partitioning. Xerox
PARC Technical Report CSL-94-15, 1995.

Bruce Hendrickson and Robert Leland. The Chaco user's guide, version 2.0. Sandia National
Laboratories Technical Report SAND94-2692, 1994.

George Karypis et al. METIS, Serial graph partitioning, version 4.0.1, November 1998.
http://www.cs.umn.edu/~karypis/metis

Robert Bridson. A MATLAB CMEX interface to the Metis library.
http://www.stanford.edu/~rbridson/download/metismex.c

