Implementation of an agent-based model for
studying the acquisition of language systems of
logical constructions

by

Joan Ginés i Ametllé

Submitted to

Facultat d’Informatica de Barcelona (FIB)
Universitat Politecnica de Catalunya (UPC) - BarcelonaTech

in partial fulfilment of the requirements for the
Bachelor’s Degree in Informatics Engineering
Major in Computing
Director:

Dr. Maria Josefina Sierra Santibanez
Department of Computer Science

15t July 2015

UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

https://core.ac.uk/display/41794298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A la meva familia © amics,

que d’alguna manera o altra m’ajuden

a arribar més lluny, sempre més lluny.

Abstract

Within the broad field of linguistics, the emergence and evolution of human languages remain
matters without generally consensed theories. Nevertheless, and during recent years, the gradual
introduction of agent-based models has provided a tool for hypothesis-validation which is

accelerating the progress being made.

In this project we review some influential experiments in evolutionary linguistics and implement
a basic form of an existing agent-based model for studying the acquisition of language systems
of logical constructions. The model here presented has been built using the Prolog programming
language and designed around a series of reusable modules, so that it can be employed by

external researchers of related fields in conducting future studies.

Resum

Dins de 'ampli camp de la lingiiistica, 'origen i I’evolucié dels llenguatges humans és manté
com una qiiestioé sobre la qual no s’ha arribat a formular teories ampliament acceptades. Tot i
aixi, durant els ultims anys, la introducci6é gradual de models basats en agents com a una eina

per a validar hipotesis ha accelerat notablement el progrés d’aquests estudis.

Aquest projecte analitza alguns experiments influents de lingiiistica evolutiva i presenta
una implementacié basica d’'un model basat en agents existent per a l'estudi de I'adquisicié
de sistemes lingiiistics sobre construccions logiques. El model en qiiestié ha estat construit
utilitzant el llenguatge de programacioé conegut com a Prolog i dissenyat al voltant d’una seérie
de moduls reutilitzables. L’objectiu final és que pugui ser emprat per altres investigadors de

camps relacionats en futurs estudis que es duguin a terme.

Resumen

Dentro del amplio campo de la lingiiistica, el origen y la evolucién de los lenguajes humanos
se mantiene como una cuestiéon atn sin explicaciones ampliamente aceptadas. Sin embargo, la
introduccién de modelos basados en agentes durante los tltimos afios como herramienta para la

comprobacién de hipétesis, ha propiciado el progreso de dichos estudios.

Este proyecto analiza algunos experimentos influyentes de lingiiistica evolutiva y propone
una implementacién béasica de un modelo basado en agentes existente para el estudio de la
adquisicién de sistemas de lenguaje sobre construcciones loégicas. El modelo en cuestién ha sido
construido utilizando el lenguaje de programaciéon Prolog y disefiado entorno a una serie de
modulos reutilizables. El objetivo final es que pueda ser empleado por otros investigadores de

campos relacionados en futuros estudios llevados a cabo.

Acknowledgements

The work done in this project would not have seen the light were it not for the patient and model
guidance of my director Maria Josefina Sierra Santibanez. Beyond teaching and explaining the
academic topics and articles contained herein, she inculcated in me the academic rigour needed

to finally consummate this project.

Please accept my deepest appreciation and my most humble gratitude.

Contents

1. Introduction and objectives

1.1.

Scope of the project . . .

1.2. Working methodology and validation

1.3.
1.4.

Actors and stakeholders .

Resources and impact . .

2. Agent-based models

2.1.
2.2.

Language systems

Examples in the literature

2.2.1. Compositional structure L oo

2.2.2. Agreement systems

2.2.3. Verb tense aspect .

3. A model to study logical constructions

3.1. A language system for expressing logical constructions

3.2.
3.3.

3.1.1. Conceptual system
3.1.2. Linguistic system .
Language game

Cognitive capabilities . . .

3.3.1. Generation and invention

3.3.2. Imterpretation and adoption oo

3.3.3. Induction
3.3.4. Adaptation

3.4. This project in the literature o oL

The Prolog programming language

4.1. Fundamentals and logic programming

4.2.

4.3.
4.4.
4.5.
4.6.

Definite Clause Grammars

4.2.1. Extension of the grammar formalism

Structure inspection . . .
Meta-logical predicates . .
Extra-logical predicates .

Second-order programming

13
17

21
21
21
22
23
24
24
25
26
27
28

5. Specification: modules and their interaction

5.1. Simulation
5.1.1. Module language_game
5.1.2. Module population

5.2. Conceptual system L L Lo
5.2.1. Module conceptual_sys

5.3. Generation and invention oL oL
5.3.1. Module generation e

5.4. Interpretation and adoption L
5.4.1. Module interpretation L.

5.5. Adaptation
5.5.1. Module adaptation

5.6. Induction L e
5.6.1. Module induction

5.7.1. Module agent
5.7.2. Module agent_params
5.8. General functionality oL L Lo
5.8.1. Moduleutils

. Case studies and experimental results
6.1. Emergence of a language system L L L.

6.2. Transmission of a language system L L.

. Planning
7.1. Project Management Course (GEP)

7.2. Deviations and corrections

. Budget and sustainability

8.1. Budget estimation
8.1.1. Hardware resources v v v v i it e e e e
8.1.2. Software resources
8.1.3. Human resources i e e e
8.1.4. Indirect costs e
8.1.5. Unforeseen costs e
8.1.6. Cumulative budget

8.2. Budget control

8.3. Sustainability of the project
8.3.1. Economic sustainability
8.3.2. Social sustainability L Lo

8.3.3. Environmental sustainabilityo

42
43
43
46
47
47
49
49
53
53
56
56
58
58
59
59
62
64
64

66
66
69

73
73
74

9. Conclusions
10.Future work
Bibliography

A. User manual

B. Applicable laws and regulations

82

83

84

86

87

1 INTRODUCTION AND OBJECTIVES

1. Introduction and objectives

During recent years, we have witnessed an increasing amount of interest towards the origin and
evolution of human languages. However, we are still lacking widely accepted theories to explain
these phenomena and many crucial questions are still unanswered. In this context, agent-based
models and simulations have gained importance, as they provide an interesting balance between

theorizing and formal mathematical modelling,.

This project builds on an existing agent-based model for studying the emergence and evolution
of language systems of logical constructions [SSn14]. We attempt to generalise the implementation
of this model in order to provide a set of software modules that allow the construction of new
agent-based models which can be adapted to study language systems of logical constructions,

using different language strategies and potentially other types of language systems.

The present work differs from other agent-based models reported in the literature in the
specific type of language system studied, which focuses on the expression of logical constructions,
and in the programming language and approach used to implement it, which is Prolog and in
general logic programming. In order to achieve the overall aim of this project, we can stablish
four different subgoals, which build on the results of the previous ones and are the object of the

different sections of this document.

The first subgoal was to identify the main software modules that should be part of our
implementation and to understand the functionalities they should provide. This was done by
analysing a significant number of agent-based models proposed in the literature to study the
emergence and evolution of language systems associated with different aspects of grammar, such
as compositionality, verb tense aspect or agreement, and by comparing these systems to the

agent-based model proposed in [SSn14].

Once a generic and sufficient set of modules had been designed, the second subgoal was to
address the main issues associated with their implementation in Prolog. This required, among
other things, being able to synchronise the behaviour of the agents in the population, which
interact with each other playing language games, to monitor the overall simulation, and to use
appropriate data-structures and algorithms to implement the cognitive abilities needed by the
agents to engage in linguistic interactions, learn from each other, and adapt their behaviour to

the widespread conventions among the population.

1 INTRODUCTION AND OBJECTIVES

Given that the resulting implementation wants to prove useful to other researchers interested
in conducting experiments on the origins and evolution of language, the third subgoal was to
specify the reusable Prolog modules around which the implementation was structured as clearly
and systematically as possible. This, together with the declarative semantics of Prolog programs,

might be especially helpful in a multi-disciplinary area such as evolutionary linguistics.

Finally, the fourth subgoal was to show how complete agent-based models could be configured
using the modules implemented in this project with concrete examples that could be used
to conduct experiments addressing novel aspects of the emergence and evolution of language

systems of logical constructions.

1.1. Scope of the project

As stated at the beginning of this chapter, this project does not attempt to build a new model
from scratch (which is beyond the scope of a final degree project), but rather to implement and
generalise an existing model. To achieve this, and complete the objectives outlined before, we
need access to the work presented in [SSnl4] and a simple computer in which to develop and
test the model. Because this project aims to become a tool for other researchers, we also need
to provide a clear implementation and a detailed documentation that allows an external user to

understand and customise the underlying mechanisms of the model.

The software itself is written in Prolog, a choice motivated by the fact that this programming
language is familiar to computational linguists, and that it is in general considered to be easier
to understand and master by researchers from fields such as cognitive psychology, anthropology
or evolutionary biology, who might also be interested in studying the origins and evolution of
languages. Other studies, which are discussed chapter 2, use Lisp instead [Kir02, Vog05, BS13,
Ste99, GSB12].

Out of the available Prolog implementations on the market we chose to use the Ciao system,
owing to the fact that it is free software and supports standard ISO-Prolog, which makes it
easy to run the model in any machine, independently of its settings and operating system. Ciao
support for concurrency and in particular concurrent predicates, which can be modified by
different processes, was another strong point of the system, because each agent in the model is
represented by an independent process and communicates with each other via socket connections.
Other reasons for choosing Ciao include the integration with Emacs and its straight-forward

user interface.

1 INTRODUCTION AND OBJECTIVES

1.2. Working methodology and validation

The model presented in this project has been developed via the accomplishment of intermediate
goals, following the planning established (please refer to chapter 7) and using an iterative and

incremental developing methodology.

Initially, research on different areas relevant to the project was conducted, including topics
such as agent-based models, language systems or the structure and objectives of past successful
experiments. Technical aspects of Prolog that seemed useful for the future implementation were

also studied.

After this phase, the construction of the model began. A total of eight modules have been
implemented, each one engineered to provide a particular functionality. Overall, the implemen-
tation process followed an iterative development, with each one of the modules representing a

particular task and in the order below presented:
1. Interaction of the population.
2. Definition of agent.
3. Definition of the conceptual system.
4. Population parameters and operations.
5. Sentence generation from given meanings (speaker role).
6. Sentence interpretation (hearer role).
7. Induction operations.
8. Adaptation mechanisms.

To ensure that the development proceeded according to the plan, weekly objectives and
meetings were scheduled in agreement with the project director. Each one of those objectives
included assignments such as completing the implementation or the documentation for a particular
module, implementing and testing certain parts of the model or writing chapters of this document.
Naturally, this is in addition to the 3 mandatory milestones mentioned in the university

regulations.

The behaviour of the model itself once completed was tested by conducting different ex-
periments on language emergence and transmission (explained in chapter 6). The modular
implementation of the agent-based model allowed an easy configuration of different experi-
ments from the basic module system, which only required simple extensions, modifications or

substitutions of some modules particularly relevant to the goals of each experiment.

1 INTRODUCTION AND OBJECTIVES

1.3. Actors and stakeholders

The people and collectives below listed and described are the ones directly or indirectly

involved in this project.

- Project developer. Only one person will assume the role of project developer and its
associated responsibilities. This means that I myself am going to work in the planning,
information research, implementation, documentation and experimental tasks existing

within this project.

- Project director. There is a single director whose role is to guide the developer of the
project and provide assistance when it encounters difficulties during the overall process.
The director of this project is Dr. Maria Josefina Sierra Santibdnez, associate professor

from the Computer Science department at the Technical University of Catalonia (UPC).

- Project users. Our aim is to implement and document a system in such a way that it can be
used by other researchers in other fields. Therefore, the users of this project are researchers
interested in performing simulations to study the origin and evolution of human language
systems with a population of independent agents. Nevertheless, it is a requirement for the

potential users to have minimum prior knowledge of the Prolog programming language.

1.4. Resources and impact

The work presented in this project does not require an extensive amount of resources, and
further financing by external bodies has not been necessary. It suffices to have a computer
in which to develop and test the model. A more precise list of the resources used is provided

next:

— Computer, with no particular hardware requirements, running the Windows 8.1 and Debian

6.0 operating systems (or equivalent).

— Ciao Prolog version 1.10 (or higher).

GNU Emacs 23.4 (or another editor of choice).

TexStudio 2.8.8 IXTEX environment (or equivalent).

— Access to published research papers.

1 INTRODUCTION AND OBJECTIVES

It is not straight-forward to foresee the outcomes and benefits that may originate after the
successful completion of this project, mainly because its research-oriented character. Nevertheless,
the model implemented here aims to be customisable and useful to researchers in a broad range
of fields, from computer science to computational linguistics or cognitive psychology, wanting
to conduct computational experiments on the origin and evolution of language systems via

simulations with a population composed of autonomous agents.

2 AGENT-BASED MODELS

2. Agent-based models

There are extensive surveys [Stellb] of the research conducted within the field of language
evolution, which can be divided into two different approaches. While the biolinguistic approach
regards biology, genes and the physical traits of the human communicative apparatus as a
driving factor in the origins of the linguistic structure, the evolutionary linguistic approach
emphasises the role of cultural forces in which the human population is inevitable immersed.
This project is notably focused on the latter evolutionary model, but at all times one should
keep in mind that language origins and evolution are likely to be explained by an interaction of

ecological, cultural and biological aspects [Stel2].

Social Evolution Cultural Evolution

I d social aesanestinma,, . Increased linguistic
ncreased social .- . complexity

and ecological P .
complexity {

™ Increased brain
capacity

Biological Evolution

Figure 2.1: The origins and evolution of language is a complex process driven by several biological,
social and cultural factors (an image from [Stellb]).

Several different approaches to biolinguistics exist [DSB11], some even employing agent-based
iterated learning and game theoretic models. Their focus is to show that if a population has an
innate bias for learning a certain structure, this bias becomes expressed in their language after a
number of generations. Those experiments have successfully shown that compositional structure
may emerge from teacher-learner chains [Kir02], given that the biological mechanisms favour
such a structure. Acknowledging the importance of the such results, we now proceed to give a

brief overview of the here more relevant evolutionary linguistic approaches.

Early investigations in the field of evolutionary linguistics explored topics such as typological
data and construction of cladistic trees that reflect family relations among languages with
common origins [Stellb]. Tracking and observing the similarities of different linguistic features
among various regions strongly supported the idea that cultural evolution is the primal factor

that determines the structure of a language.

2 AGENT-BASED MODELS

A second set of investigations focused on how phonetic systems and grammatical categories
change over the time, seeking to find plausible explanations to this historical data. However,
and co-occurring with significant advances in hardware and software engineering, what really
pushed the state-of-art was the introduction of agent-based models, which are extensively
used nowadays to construct models that can be used to validate hypothesis about how different

particularities of the language appeared or came to be.

Agent-based models of cultural evolution usually involve a population of robotic or non-
physical software-based agents who interact pairwise by playing language games, assuming the
roles of speaker and hearer respectively [Stel2]. The speaker has a specific communicative goal,
conceptualises the world for language, and transforms this conceptualisation into an utterance.
The hearer tries to parse that utterance, reconstruct its meaning and map it onto its own
perceptual experience of the world. Depending on the outcome of the game, speaker and hearer
use different strategies to adapt their internal languages in order to be more successful in future

language games.

It is commonly assumed that the agents in these models are initially endowed with an
specialised learning mechanism which can be compared to human cognitive abilities. This is
necessary for observing the emergence of possible language systems that allow the agents to be
successful in a language game. Some examples are the ability to construct complex concepts,
or to use and detect linguistic devices such as word order, syntactic categories or case markers.
The experiments conducted consist of various simulations, in each of which the agents in the
population play a series of language games, configure possible strategies, try them out and select

those that are more useful.

The goal of the experiments is to find out whether the population as a whole communicates
effectively, and to observe the conceptualisations and linguistic constructions that emerge in
the population as a result of the processes of collective invention and negotiation, as well as the
evolution over time of various macroscopic features of these language systems, such as the average

size of the agents’ grammars or the similarity of their grammatical constructions [SSn15].

2.1. Language systems

Theories of language evolution study language change at two different levels: that of language
systems and that of language strategies. Language systems capture the regularity observed in
some part of the vocabulary or grammar of a language, for example, a system of basic colour
terms, tense-aspect distinctions or cases. In short, they group a set of paradigmatic choices both

on the side of meaning (the conceptual system) and on the side of form (the linguistic system).

2 AGENT-BASED MODELS

The conceptual system includes pragmatic and semantic distinctions that are expressible in
a language system and can therefore be used as building blocks for conceptualisation. The
linguistic system includes all the syntactic and morphological categories and grammatical

constructions needed to turn a conceptualisation into a concrete utterance [Stellb].

A given language, such as Catalan, English or Spanish, comprises many language systems,
which are closely integrated. Linguists call the approach underlying a language system a lan-
guage strategy. They refer to relative-clause formation strategies or coordination strategies for
combining nouns. Agent-based experiments aim to provide explanations of the processes by which

concrete language systems may emerge and evolve using a particular language strategy.

2.2. Examples in the literature

We summarise below some studies of different types of language systems that are described
in the origins and evolution of language literature and use agent-based models as a tool. This
serves the purpose of familiarising with the different techniques used by researchers, but also to

introduce concepts which will relate later on to the model developed in this project.

2.2.1. Compositional structure

Compositionality and recursion are two of the most distinctive features present in human-
spoken languages [Kir02]. A particular expression is compositional when its meaning can be
defined in terms of the meaning of its parts and how they are glued together. Expressions where
this does not hold are referred to as holistic expressions. On the other hand, recursion occurs

when a certain part of an expression can contain a constituent of the same category.

The emergence of compositional structures has been investigated using the observational game,
the guessing game and a particular type of agent-based models known as iterated learning
models. In this type of agent-based models some agents assume the role of teachers (speakers)
and others the role of learners (hearers), and simulations can be carried out using a simple

population of two agents (with a single teacher and a learner) or more.

One example of an iterated learning model can be found in [Kir02]. Kirby shows that the
compositionality and recursion properties emerge over the time with social transmission as the

sole trigger for the process. To understand his experiments, we need to define two concepts:
- I-language: The knowledge of a language possessed by each user of that language.

- E-language: The language represented in the utterances produced by the population of

speakers of a language.

2 AGENT-BASED MODELS

The model proposed by Kirby consists of only two agents who play language games. One of
the agents takes always the role of teacher and the other one the role of hearer. The teacher is
first given a meaning to express, which it attempts to transform into an utterance by means of
its I-language. This utterance is later used as an input for the learner, who tries to understand
it. After repeating this process a certain number of times generation shift occurs: the learner
becomes the new teacher, the old teacher is discarded and a new learner is created with an

empty knowledge of the language.

[-Language [-Language
R4 v
- Acquisition o
Production Production
E-Language E-Language
|
Time

Figure 2.2: Transmission of language over time in a teacher-learner chain (an image from [Kir02]).

Utterances in this model are pairs consisting of a meaning and a string of characters repre-
senting it. To construct those meanings, the agents use a series of atoms representing nouns or
verbs and combine them to form predicates which take a number of arguments and can have
hierarchical structure. The complete range of available atoms is known and shared by all agents

before the first language game is played. Some illustrative examples can be found next:
- Atoms: cat, dog, food, eats, fight, fears.
- Predicates: eats(dog, food), fears(cat, fight(cat, dog)).
- Utterances: [’dogeatsfood’, eats(dog, food)].

Each agent uses an initially-empty context-free grammar which allows them to represent their
knowledge of the language. Once an utterance is heard by an agent and not understood, the
agent incorporates the simplest possible rule that generates the utterance, which is a holistic
rule. Taking [’dogeatsfood’, eats(dog,food)] as an example of an utterance, this would produce a

rule of the form S/eats(dog, food) — dogeats food.

2 AGENT-BASED MODELS

Rule induction is applied then to the agents’ grammars. This is a process which aims to
obtain higher-level rules by looking for ways to generate similar expressions and generalising
the associated rules. For example, given the two rules: S/eats(dog, food) — dogeats food
and S/eats(cat, food) — cateatsfood, we can generalize the concepts cat and dog by doing
S/eats(x, food) — N/x eatsfood. Note that now a new syntactic category N must appear in
order for the two resulting grammars to be equivalent, and also two more rules of the form
N/cat — cat and N/dog — dog need to be added.

Let us review now the simulation cycle in [Kir02]:

1. The speaker is given a meaning to express, and tries to communicate it using its knowledge
of the language. Should this not be possible, it invents an expression taking advantage of

rules which can be used to express parts of the meaning.

2. The learner tries to parse the utterance. If this is not possible, then it adds the minimal

rule necessary to parse the utterance and applies rule induction.

3. Steps 1 and 2 are repeated a number of times inferior to the cardinality of the meaning
space (the reason for this is discussed later). Next, the teacher is deleted, the learner
becomes the new teacher and a new agent with no knowledge of the language becomes the

new learner.

By using this model, Kirby is able to demonstrate that as the simulation goes on, the
grammars of the agents decrease in size and allow them to express a higher number of meanings.
In fact, those grammars are able to evolve into a complex compositional syntax where nominal
and verbal categories appear, together with different sentence orders such as (Subject - Verb -
Object) or (Object - Verb - Subject). If the meaning space is infinite, that is predicates can take
other predicates as arguments, then recursion also appears in the obtained rules, representing

subordinate sentences.

Kirby argues that this evolution occurs because more general rules allow the expression
of a wider range of meanings and thus, these rules have a higher change of appearing in the
E-language from the I-language, constituting a better replicator (this also allows convergence
towards shorter grammars, because the generality of the rules in them is higher). Finally, it
is argued that holistic languages cannot survive because the E-language used by hearers to
learn only allows the observation of part of the speaker’s language. This occurs due to the
number of meanings selected before changing the agents being always less than the count of all
possible meanings. The difference between the set of all possible meanings and the subset of
meanings selected for communication is commonly referred in the literature as a transmission
bottleneck and pointed as the main factor that pressures the appearance of compositional

languages.

10

2 AGENT-BASED MODELS

Another study similar to the previous is conducted in [Vog05]. It also studies the emergence
of compositional structures, but with a few notable differences. First, it assumes that syntactic
structures co-evolve with semantic ones, instead of being given from the start. More precisely,

the following is stated:

- The emergence of compositional linguistic structures is constrained by semantic structures

and based on exploiting regularities in expressions.

- The emergence of combinatorial semantic structures and how words are modified by others
is constrained by compositional structures and based on the regularities shown while

interacting.

The former model has a strong basis on the Talking Heads experiment [Ste99]. In the Talking
Heads model, a group of agents observe a scene composed of a blackboard which contains plain
figures of different colours and shapes. The goal of the population as a whole it to evolve a

lexicon to refer to them individually.

Objects can have four features in Vogt’s model: level of red, green and blue (rgb colouring)
and shape. These four features are the basic building blocks for constructing meanings (also
known as categories). In turn, categories are represented as points in a high-dimensional space,
where each dimension accounts for a single feature. For simplicity, meanings need to cover all

dimensions, either as a holistic space or as a composition of non-overlapping spaces.

FEach agent maintains its own ontology and uses it to produce and parse utterances. Such
an ontology contains a set of categorical features, represented as points along one particular
dimension in the feature space. The agents use it for extracting features and combine them into
categories. This process is known as a discrimination game, and succeeds if the category

obtained for a given object is distinctive and fails otherwise.

Similarly to the previous model by Kirby, the agents also maintain their own grammar, which
allows them to construct utterances for a particular category and to parse them. The terminal
slots of these grammars however, represent points in the feature space. For example, the rule
N/rgb — blue/[0,0, 1] means that a terminal slot in the rgb space will be uttered as the string
“blue” if its meaning is [0,0, 1] (no red nor green components in the rgb space). With this
example, it also becomes clear than the meaning of a rule can be formed from the categorical

features listed in square brackets.

Additionally, each rule has an inherent weight value which determines how effective it has been
in past language games. Categorical features also have a weight value associated to them. If a rule
contains terminals, its score is computed as the product of its own weight and the average weight
among terminals. This score will become valuable later on as a tool allowing the population to

agree on the same structures for meanings, a process known as self-organisation.

11

2 AGENT-BASED MODELS

Given the communicative context, we now discuss the particular type of linguistic interactions

used in this model, which are known as the observational game and the guessing game:

1. The speaker is given a a certain object to talk about, a topic, and then extracts the

distinctive features that describe the object properties.

2. The speaker non-verbally informs the hearer about the topic selected in the observational

game. In the guessing game no information is given.

3. Both agents form a category that distinguishes the topic from the rest of objects in the
context. If this category can not be obtained using the agents’ ontologies, a new category
is created using discrimination games (in the guessing game all objects in the context are

considered as potential topics).

4. The speaker produces an utterance, obtained using the combination of grammar rules with

highest score that match the chosen meaning.

5. The hearer tries to decode the utterance produced by the speaker. To do so, it creates a set
of rule compositions that decode the utterance, and then extracts the ones not matching
the topic (observational game) or the ones not matching any of the objects existing in
the context (guessing game). Finally, the hearer generates a meaning which allows to
discriminate the topic by selecting the composition of rules with highest score. If this

composition can not be found, the hearer fails.

Note that in Vogt’s model, two different types of language games are considered. In the
observational game, the speaker communicates its topic to the speaker, and thus both share
joint attention to a particular object in the scene. However, in the guessing game, this
communication is not present, and the hearer has to guess which object the speaker is trying to
refer to. It is only after this process that the hearer receives feedback on whether the guessed

topic was right or not.

A language game may fail when the speaker is unable to produce an utterance or the hearer
fails to interpret the utterance. In the first one of the situations, the speaker needs to invent
new rules using similarities with existing rules in the same way as previously seen in the Kirby’s
model. When the hearer is not able to decode an utterance, it starts a process known as
tnduction, which allows it to derive new grammatical structures. Hearers can operate using the

following:
- Incorporation: add a holistic rule.

- Exploitation: take advantage of an existing rule capable of decoding part of the sentence

and add a new rule covering the remaining parts.

12

2 AGENT-BASED MODELS

- Chunking: split a holistic expression and create new rules in the grammar, based on the
largest common chunk and provided the utterance is not parseable, but aligned with some

previous holistic rules.

Along language games, there is an adaptation process which increases the weight of the rules
used and decreases the weight of competing ones in both the speaker and hearer. More formally
refereed to as lateral inhibition, this serves as a competitive selection mechanism and allows
agents to unlearn certain rules and to self-organise, an issue not addressed in the previous model

by Kirby. Rule generalisation and merging are present as explained in Kirby’s model.

Experimental results confirm the previous findings claiming that the transmission bottle-
neck triggers the emergence of compositional rules. Nevertheless, Vogt is also able to create
compositional rules even without introducing such a bottleneck, although the proportion of
compositional expressions is fairly unstable, and can eventually collapse in a holistic language.
Compositionally emerges in this case because of the high statistically recurring structures in

both utterances and meanings.

The guessing game seems to be more stable with different populations sizes, and this is
expected, because there is more pressure to disambiguate the language, as the hearer does not
know the original intended meaning of the speaker and has to guess from the utterance. The size
of the bottleneck also plays an important role, being smaller bottlenecks a more fertile ground

for compositionality.

2.2.2. Agreement systems

Grammatical agreement occurs when features associated with one linguistic unit, such as
number or gender, become associated with another unit. Typically this association is made
explicit by using some kind of morphological marker which shows the dependencies between
words. Beuls and Steels [BS13] present an agent-based model and a series of experiments that
show how agreement systems could arise, and which cognitive and cultural traits intervene in
the overall process. It is hypothesised in their work that agreement systems are motivated by

the need to minimise combinatorial search and semantic ambiguity when parsing.

As we have seen in previous examples, the Beuls-Steels model uses a set of objects present in
the situation with various properties that are observable and known by the agents. Each object
has a number of features that are expressed using predicates such as green(o;), meaning the
object o; is green. A population of 10 agents is initialised with a predefined vocabulary, in the
form of associations between a set of properties and a word. For instance, the word “jubope”

could mean green(z) and small(x), where & can be bound to an object.

13

2 AGENT-BASED MODELS

Apart from vocabulary, each agent has also a grammar which allows them to construct and
parse expressions. Both vocabulary and grammar are implemented using Fluid Construction
Grammar, which is not explained in detail here. We encourage the reader to look up the technical

details appearing in [BS13].

Agents in the Beuls-Steels model play what is called game of reference, also known as naming
game. In this particular language type of linguistic interactions, the topic can be composed of

either one or more objects. The overall process is as follows:
1. The speaker selects a set of objects as a topic to communicate.

2. The speaker looks for distinctive properties for each object in the topic. Note that each

object is of a certain type, which defines the possible attributes and values of its instances.

3. The speaker retrieves the set of words to express these properties. Words can cover more

than one property, but all properties must be true for the objects associated with the word.
4. The speaker utters the words in random order.
5. The hearer tries to reconstruct the set of properties from the words uttered by the speaker.

6. The hearer identifies which objects satisfy these properties, and succeeds if this set of

objects is the same as the one chosen by the speaker.
7. The game fails if the interpretation is ambiguous or the set of inferred objects differs.

This language game can be viewed as a simple interaction, but in fact, the hearer does not
know the number of objects the speaker is referring to or which words refer to which object or
objects. Thus the hearer must try all possible combinations of objects, which are exponential

with respect to the number of words.

While this ambiguity and exponentiation indeed exists in real human interactions, we can use
some strategies to help reduce it. We humans know as a matter of fact that some attributes
are not possible for certain objects (the sky can be blue, but this is not a natural property to
describe an idea). Selection restrictions are implemented in the agents by giving them access to

an ontology defining the different types of objects and their possible attributes and values.

The other mechanism used to reduce ambiguity is the application of constraints that arise
from the situation model. That is, because the speaker is referring to a topic in the situation,
we can assume that a certain attribute must be linked to an object in the situation which has

the same value for that attribute. This is used for pruning some hypothesis in the model.

Nevertheless, in order to reduce the hypothesis space drastically, some kind of agreement
system is needed. This is initially presented in the form of markers, which are associated to

uttered words that refer to the same object in the topic.

14

2 AGENT-BASED MODELS

The first language strategy implemented in [BS13] attempts to simulate the rise of marker
systems. To do this the speaker tries to detect the difficulties that the hearer may encounter
when parsing the words by trying to the parsing job itself, a process known as re-entering. If
the speaker notices combinatorial complexity or some ambiguities, it adds a marker to each word
(syntactically represented as a suffix) that introduces properties of the same object. Markers are
stored in private inventories that the agents possess and are used in subsequent games, even if
not needed. The hearer undergoes a similar process than the speaker, uses markers in subsequent
communications and is now able to instantly identify which words refer to the same objects,

even if it is the first time seeing a marker invented by the speaker.

Regardless, there is still an issue because agents need to agree globally on markers, through a
process of self-organisation. This is done with using lateral inhibition, which we have already
seen in Vogt’s model from the previous section. Weights are set for each marker and when a
marker is used, its weight increases while decreasing the weights of competing markers. When
choosing which marker to use, the speaker prefers the marker that has the highest score and has

not yet used in the current utterance.

The model at this point is able to show that marker systems indeed emerge and get transmitted
culturally. Occasionally some new markers appear, but get damped because of lateral inhibition.
Still in real human languages, we tend to prefer markers which are not formal, but carry some
kind of meaning or connotation. To simulate, Beuls and Steels propose a second language
strategy in which an inventory of associations between a feature matrix conveying semantic

information, a marker and a score is kept by each agent.

When the speaker decides to use a marker for a word referring to a particular object, it first
searches the inventory fo find one not used in the same utterance, and whose feature matrix fits
the feature matrix of the word used to refer to the object. In cases where no such marker is
found, the speaker tries to find an attribute which is distinctive for words used to refer to the
different objects in the utterance and creates new markers for each distinctive attribute-value
pair. On the other side of the coin, whenever the hearer encounters new markers, it treats them
as formal, and constructs and adds a feature matrix by using the same induction process as the

speaker.

This strategy leads to a self-organisation where the agents share which markers they prefer
but also the feature matrices associated to them. Markers that express a single feature dominate,
because they can be applied to a wider range of situations. However, more modifications to
the model are still possible in order to resemble more the strategies used by humans to create

agreement systems.

15

2 AGENT-BASED MODELS

Linguists have observed that markers in real life are derived from existing words such as
pronouns or classifiers. This is actually preferred by humans because it is less ambiguous and
does not require uncertain guesses when new markers are encountered. Rather than inventing a
random string when a new marker is needed, the speaker will now take an existing word that
expresses one or several features of the topic and use that as a marker. Again, an agreement
system self-organises, but this time with even fewer variations between markers, which are more

quickly discarded. Once a marker system efficient enough takes off, it is hardly challenged.

Another observation made by linguists is that markers erode. This happens because of an
increase of articulatory efficiency, and because parsing takes less effort if we use a new shorter
form of the word rather than the original one associated to the marker, which is most likely to
appear in other situations. This process is simulated by adding a tendency for optimizing on
top of the aforementioned reuse strategy. The word used is simplified with a certain probability,
and parsing in the hearer becomes now flexible enough so as to recognise such variations as the

original word and still remain coherent.

This mechanism leads to a problem: the alteration cannot become a norm because of the
lateral inhibition process, which quickly discards it. In order to correct this, the new variant of
the word and the original word are stored, and both words are used randomly when selecting a
marker. If the marker is encountered a second time, then it becomes the norm and the older word

is discarded for this agent. Experiments performed show that forms become continuously reduced.

& conventional

reuse /

Existing Agreement | Meaning
word Marker = |Form

&, affix

%\
(%)

Figure 2.3: Humans build agreement systems by reusing existing words. The form of those words
erodes and their meaning becomes more abstract, with purely conventional semantic features
(an image from [BS13]).

16

2 AGENT-BASED MODELS

Finally, the authors address the phenomenon of coercion. Markers in real life are applied to
situations which do not fit the original meaning and features become conventional. This is what
happens with gender in most languages, being arbitrarily assigned to inanimate objects while
originally meant for male/female distinction. The explanation is that having a large number of
markers makes it difficult to learn. Us humans take the ones which are more general (semantic
bleaching) and recategorize a word to assign more agreement features, even though the previous

word did not have this feature.

To include coercion in the model, the differentiation between controller and target words
is introduced. Controllers determine the agreement features of targets. In the Beuls-Steels
implementation, some words at the beginning of the simulation are initialised as controllers.
Then an extra step is added to the invention of a marker by the speaker, who will now assign by
convention the values of a partial marker to the controller if the controller is undecided on those

features. This automatically makes the controller compatible with the marker.

Lateral inhibition is also used in this case as a way to self-organise the population, storing
a score for each feature matrix of each controller, and increasing it when used and decreasing
it when not. Additionally, agents are now initialised with a minimum marker system as well
for convenience. By running this experiment, a reduction in the number of markers is observed.
It shows that some feature matrices denoting a certain meaning become dominant over others

associated with the same marker.

This research as a whole is, according to their authors, another example which supports the
idea that the structure of language is a consequence of its function and usage in communication,

operating within the processing constraints of human cognition and physical characteristics.

2.2.3. Verb tense aspect

Another study by Gerasymova et al. [GSB12] deals with the parsing, production and learning
of an aspect system. To do so, it employs an existing system of aspect markers found in the

Russian language as a model.

Consider the sentences “Pieter wrote a thesis” and “Pieter has been writing a thesis”. It is
true that both of them express the action of writing. However, while in the first sentence the
action was completed in the past (perfective aspect), in the second one the process of writing is
still ongoing (imperfective aspect). Aspectual distinctions such as this one allow speakers to
highlight the whole or a specific part of an event and thus increase their expressiveness and

communicative success.

17

2 AGENT-BASED MODELS

In English, most fine-grained aspectual distinctions are optional and expressed periphrastically
(e.g. “she swims regularly”, “he finished writing”) or by means of auxiliaries (e.g. “he has written
the letter”). For Russian speakers though, it is mandatory to denote aspect by using prefixes
attached to the verb. In this section we refer to aspect as a grammatical category denoting the
distinction between the imperfective and perfective character of the verbs. This is closely related
to the notion of Aktionsart, which is the lexical aspect and refers to the part of the verb that is
structured. The category of Aktionsart introduces a more refined aspectual categorization of

events, including aspects like activity, achievement, state, etc.

Russian overtly marks perfective aspect by placing prefixes next to the verb, while imperfective
aspect is assumed by default if no prefix is found. The model presented by Gerasymova et al.
attempts to reconstruct such an aspect system by using an agent-based model. Similarly to
the previous examples of agent-based models we have seen, the agents interact with each other
by using language game, in this case denoted as aspect language games, and executed as

follows:

1. Both agents perceive a shared context, which models their joint attention frame. The
context is composed of two or more events of the same kind but with different temporal
semantics, and each event has a different protagonist. We can picture for example, as
suggested in the paper, “Micheal reading for a while” and “Masha reading the whole time”.
Those events are coded in types, an enclosed in a time frame so that they are perceived

and represented appropriately.

2. The speaker chooses one event, the topic to communicate. It then asks a question about
the protagonist of that event by using the information of the event in which the protagonist
is involved. Continuing with the previous example, this could be something like “Who was
reading for a while?”. Note that a temporal structure needs to be incorporated into the

question in order not to be ambiguous.
3. The speaker conceptualises the meaning and utters an expression.

4. The hearer parses and interprets the utterance by comparing the result of interpretation
to the context. The task of the hearer is to identify the protagonist of the focus event

unambiguously (guessing is not allowed in this model).

5. If the hearer is able to discern the answer, it verbalises it and forwards it to the speaker.

Otherwise it fails.

6. The speaker signals whether the correct answer was given or not (in case received). The

game succeeds only if this feedback is positive.

18

2 AGENT-BASED MODELS

7. It the hearer could not identify an answer (or the answer was wrong), then the speaker

reveals the right answer.

The agents conceptualisations are implemented by means of Incremental Recruitment Lan-
guage (IRL) networks. IRL is a formalism that allows representing and computing semantic
structures that can be used for communication. These networks link mental operations with
concrete semantic entities, such as the temporal characteristics denoted by Aktionsarten. Gram-
matical processing of the utterances is achieved with Fluid Contruction Grammars, which allow
to map lexical stems to particular event types, recategorise the verbs in terms of semantic
categories, map semantic structures to a abstract syntactic ones and finally to a certain marker

based on the aspect and Aktionsart.

In the model described up until now, the authors introduce different types of agents: tutors
and learners. Tutors know everything about the aspect system, and learners miss all grammatical
aspects related to aspect and Aktionsarten. By playing language games among them, learners
try to produce questions but also try to answer the ones inquired by tutors and other learners.
Provided that a good learning strategy exists, at the end of the simulations agents converge
to the same set of grammatical constructions. The learning strategy that makes it possible to

achieve this is detailed next.

Agents learn by enacting diagnosis and repairs. Diagnosis is a process that monitors the
production and parsing of sentences and signals potential problems, in particular, inability to
parse an utterance or ambiguous interpretation. The repairing mechanism attempts to extend

the linguistic repertory to avoid such problems.

Ambiguous interpretation is identified by the speaker with the help of the lexicon by re-
entering the expression he produced and trying to parse it. If two hypothesis seem plausible (no
disambiguation) then there is an error. Inability to parse is detected by the hearer, who will fail
the language game consequently. Learners in the model use 3 repairing strategies to solve this
problem, which try to simulate the learning process of a language in children and are organised

in different layers of abstraction:

- Holophrases: They are single words that communicate intentions about a scene. When
the hearer cannot parse a prefix, it searches for semantic distinction between possible topics.
Then the hearer, after the speaker reveals its intentions, stores the complete utterance as
a chunk or holistic expression in its grammar, which maps meaning and form. Note that a
system with only holophrases reaches maximum coherence after all possible prefix-verb

combinations are seen.

19

2 AGENT-BASED MODELS

- Item-based construction. These are general constructions that the learning agent tries
to create based on repeatedly encountering the same structure. By encountering the same
pattern multiple times and keep storing them in a particular inventory, the agent is able to
infer the usage pattern prefix+verb for a particular meaning, which is then learnt. Even

with this and holophrase mechanisms, learning agents still can not derive new Aktionsarten.

- Abstract contructions. When the speaker detects ambiguity of this own utterance upon
the re-entering process, it looks at its inventory of item-based constructions. This makes it
realise that temporal semantics of a verb are usually expressed by means of prefixation
and then the speaker learns an abstract construction, such as “A verb becomes marked
for perfective aspect”. Therefore the agent can generate a unit for prefix, but without
linguistic material, simply by mimicking what it observes from teacher agents. In fact,

they are now able to generate perfective derivation of any known verb.

Simulations conducted with this system show that agents are able to acquire the aspectual
grammar. In the beginning only holophrases exist, but as the agents start noticing the similarities
between stored constructions and start to generalise other grammatical constructions are created,
namely item-based constructions and abstract constructions. Communicative success then
converges rapidly. It is important to note that all constructions in the agent inventory have a score,
which is updated depending on the success of the communication (unsuccessful constructions
are punished). This is what triggers the dwindling of holophrases in favour of more general

rules.

The final modification introduced in the Gerasymova et al. model attempts to tackle the
emergence of the Aktionsarten system. Now no tutors are endowed with the aspect system,
and agents are only initialised with basic lexicon. The repair procedure must undergo some
modifications in this case. When the speaking agents are unable to express a non-ambiguous
question, they invent a new random marker covering that meaning. In turn, when hearers can

not parse, they use an item-based construction process.

Experiments show convergence towards the optimal number of markers for a given number
of actions and aspects. However, some synonyms may appear during the process. A score
mechanism of lateral inhibition is used as a way to self-organise the agents grammars, rewarding

the score of markers used successfully and punishing competitors.

20

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

3. A model to study logical constructions

This chapter provides extensive details about the agent-based model implemented in this project.
We will initially focus on how the logical expressions we want to study are structured, and
then, on the particular type of language game used and on the working principles of certain

behavioural aspects of the agents.

3.1. A language system for expressing logical constructions

Our current work is based in the agent-based model for the study of the acquisition of a
language system of logical constructions presented in [SSnl4]. This language system has its own

conceptual system and a linguistic system, both of which are discussed next.

3.1.1. Conceptual system

In our simulation environment, we assume that a group of several agents are trying to
communicate logical combinations of basic categories!, which are true for a particular subset
of the set of all the objects in a given context. This context is similar to the one used in “The
Talking Heads Experiment” [Ste99], which consists of the set of objects pasted in a whiteboard
situated in front of the agents. We also assume that at the beginning of a simulation run, the
agents have developed a common vocabulary that allows them to refer to individual object
features (basic categories). These features are represented by propositional symbols in the agents’
memories. Some mappings of propositional symbols and the propositions they denote could

be:
- up — Every object situated in the upper part of the blackboard.
- da — Every dark object which is pasted in the blackboard.

At the same time, we suppose that the agents have developed certain logical categories which
give them the ability to construct propositional logical formulas from propositional symbols.
However, it is important to note that the agents do not yet know how to express these logical
categories nor the logical formulas they can construct with them through their shared language.
Thus, linguistic communication of logical formulas among agents is non-viable at the beginning

of a simulation, and it is developed afterwards.

!'Examples of basic categories are left, right, up, down, light and dark.

21

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

Our experiments aim to show that a population comprised of autonomous agents can construct
a shared language, that is a vocabulary and a set of grammatical constructions that allows them
to communicate such complex meanings. These formulas are non-recursive and so they are

formed with a single boolean function and one or two propositions.

The particular set of logical categories the agents can use is the set of unary and binary boolean
functions. Their meaning can be expressed using the standard connectives of propositional logic
as shown in Table 1. We will use prefix notation to represent these formulas. For example, the
formula up V ri, which means “The set of objects which are in the upper or the rightmost part”,

will be written as [or,up,ri] from this point on.

’ Boolean function ‘ Logical meaning ‘

not —-A
and ANB
nand -(AAB)
or AV B
nor -(AV B)
if A— B
nif —|(A — B)
oif B— A
noif —(B — A)
iff A+ B
xor (AVv B)A=(ANB)

Table 1: Unary and binary boolean functions and their meanings.

3.1.2. Linguistic system

To represent the grammars generated by the agents during the simulation we will use Prolog
Grammar Rules [CKPR72, CMO03, SSn15]. The head of such rules is an atomic formula whose
predicate symbol denotes a syntactic category (e.g. ’s’ for compound sentence or ’p’ for
simple sentence). In this project the head uses two arguments, the first one carrying semantic
information and the second one being a score which estimates the usefulness of that rule in
previous communications. Semantic information can either be a proposition, a boolean function,

or a non-recursive logical formula constructed from the former.

For example, if we want to express the formula [or,up,left] we could use a single rule
of the form s([or,up,left],S) — arroizq, where the right-hand side indicates the expression
“arroizq” is associated to the formula. However, we also may like to express the same meaning

using the following compositional grammar:

22

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

p(up, S) — arr, {S is 0.70}

p(left,S) — izq, {S is 0.25}

c2(or,S) — 0,{S is 0.50}

s([P,Q, R],S) = p(Q,S2),c2(P,S1),p(R,S3),{S is S1-52-53-0.1}

1
2
3

(
(
(
(4

)
)
)
)

In the previous example, the syntactic category *p’ is used to characterise simple sentences
such as “arr” or “izq” and the syntactic category ’s’ denotes compound sentences such as
“arroizq”. Finally, the syntactic category ’c2’ is used to outline words expressing binary boolean
functions which are placed in the second position of the sentence, and which are used in
grammatical constructions that do not invert the order of the expressions associated with the
arguments of the boolean function in the sentence with respect to the order of these arguments

in the formula.

Agents can construct grammar rules that concatenate the expressions associated with the
components of a formula in different orders. In particular, the word used for expressing a boolean
function can be placed in the first, second or third position of the sentence, and the expressions
associated with the arguments of the boolean function can also be placed in the sentence in
same order as in the formula or in reverse order. For example, grammar rule 5 puts the word
associated with the boolean function in the third position of the sentence and it inverts the order
of the expressions associated with the arguments of the boolean function in the sentence. This
rule generates the sentence “izqarro” to express formula [or,up,left], instead of the sentence

“arroizq” as grammar rule 4 does.

s([P,Q,R],S) — p(R,S2),p(Q,S3),3(P,S1),{S is 51-52-53-0.1} (5)

3.2. Language game

In the agent-based model described in [SSn14], which constitutes the starting point of the
present project, language emergence is seen as a joint activity by which a group of agents
construct a common language system as a result of a process of self-organisation of their
linguistic interactions. The agents in the population interact with each other playing language
games. A language game is a linguistic interaction which typically takes place between two

agents randomly chosen from the population, acting as speaker and hearer.

23

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

The particular type of language game used in this model consists of the following steps. First
of all, the speaker chooses a boolean formula referring to a subset of the objects present in the
context of the language game. After this, it generates or invents a sentence to express this
formula, and then utters that sentence for the hearer to interpret. The hearer tries to parse the

sentence the speaker communicated using its lexicon and grammar.

The game succeeds if the hearer can parse the sentence uttered by the speaker and the
meaning interpreted by the hearer is logically equivalent to the meaning the speaker had in mind.
Otherwise, the language game fails, and in such a case the speaker communicates the boolean
formula it had in mind to the hearer, so that the hearer can adopt an association between the

formula and the sentence used by the speaker.

At this moment it might be useful to clarify which aspects of the language system of logical
constructions studied by the agent-based model proposed in [SSn14] are present in the agents at
the beginning of the simulation, which elements of that language system they should construct

during simulations and which cognitive abilities allow them to do so.

The agent-base model described in [SSnl4] assumes the agents initially have a common
vocabulary for basic categories and the ability to construct complex meanings combining one or
two basic categories with a single boolean function. It also supposes that the agents initially do not
have a vocabulary for boolean functions nor grammatical constructions. They should construct
these elements of their linguistic system during the simulations and do it in a coordinated manner.
To achieve this, they can employ some general purpose cognitive abilities for invention, adoption,
induction and adaptation. In the following section, we explain briefly how these abilities are

used in during the simulations.

3.3. Cognitive capabilities

3.3.1. Generation and invention

At the beginning of a simulation run the agents cannot use their internal grammars to
express most meanings, because they initially do not have a vocabulary for boolean functions
nor grammatical constructions. In order to form a common language, agents are allowed to

invent new sentences for those meanings they cannot express using their grammars.

24

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

Invention is performed as follows. If a given formula is atomic, then invention is not necessary
(there is already an existing word in the lexicon which uniquely expresses it). In the remaining
situations, where the formula consists of a boolean function followed by one or two arguments, a
sequence of random letters from the alphabet is chosen to invent a word for the boolean function.
A word is generated for each propositional symbol and the two or three words, depending on the

type of formula, are concatenated in random order.

As the agents play language games, they learn associations between expressions and meanings,
and include those in their individual grammars in the form of rules. Eventually, an agent will
be able to express a meaning using only its grammar. In this case, no invention is needed, and
the agents generate the sentence with highest score out of the ones they can form to express
that meaning. The score of a sentence is computed combining the scores of the grammar rules
used in its generation, using the arithmetic expressions on the right hand side of these rules
[Vog05].

As an example, we will consider the generation of the sentence “arroizq” for expressing the
meaning [or,up,left] using the rules 1 to 4 from the previous section. The score of the
sentence is computed by multiplying the scores of each one of the compositional grammar rules
used to generate this sentence and the score of the grammatical rule itself. Therefore the score
of “arroizq” is 0.7 - 0.5 - 0.25 - 0.1.

3.3.2. Interpretation and adoption

In the second step of a language game, the hearer tries to interpret the sentence communicated
by the speaker using its own grammar. Again, at an early stage of a simulation run the hearers
will not be able to parse most of the sentences communicated by the speakers, because of the
lack of grammatical constructions. When this happens, the speaker communicates the formula
F' it had in mind to the hearer, and the latter adopts an association between this formula and
the sentence E used by the speaker, adding a rule of the form s(F,S) — E,{S is 0.1} to its

grammar, where 0.1 is the initial score of the grammar rules created by the agents.

Once the agents can parse a sentence using their own grammar, they select the meaning with
the highest score from the set of all the meanings they can obtain for that sentence. Sometimes
it will occur that the grammars of speaker and hearer are not compatible, and the interpretation

the hearer produces is far away from what the speaker intended to communicate.

25

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

The strategy used to coordinate the grammars of both agents in this situation is to decrease
the scores of the grammar rules used by the hearer to obtain its interpretation of the sentence,
striving for an agreement between all agents, who play in different pairs each turn; and to
communicate the meaning the speaker had in mind, so that the hearer can adopt an association

between the meaning and the sentence used by the speaker.

3.3.3. Induction

Invention and adoption allow the agents to construct and learn associations between sentences
and meanings. However, the agents are also able to extract generalisations from the rules
they have learnt so far and induce grammatical constructions and lexical entries that can be
incorporated to their grammars and used in subsequent language games to generate and interpret
other sentences. Induction is applied whenever the agents invent or adopt an association between

a sentence and a meaning, to avoid redundancy and increase generality in their grammars.

Two distinct induction processes can be found in [Kir02], called chunk and simplification.
The induction mechanisms used in this project are based only on the latter, but adapted to
grammar rules containing scores as a mechanism of self-organisation. As outlined in [SS07, SSn14],

the following definition holds:

Assume a pair of grammar rules r1 and ro such that the semantic argument on the left-hand
side of r1 comprises a subterm my, ro is of the form n(my,S) — e1,{S is C1}, and e is a
substring of the terminals of r1. Simplification can be applied to r1 and a simplified rule is

obtained. This new rule is identical to r1 except for the facts that:

1. The subterm mq is replaced with a new variable X in the semantic argument on the

left-hand side.
2. The substring ey is replaced with n(X,S) on the right-hand side.

3. The arithmetic expression {R is E - Cy} on the right-hand side is replaced with a new
arithmetic expression of the form {R is E - S -0.1}, where C1 and Cy are constants in the
range [0,1], and E is the product of the score variables that appeared on the right hand

side of r1.

The process of simplification can perhaps become clearer with an example. Assume an agent’s
grammar containing the rules 6 and 7. Suppose now that this agent plays a language game with

another agent and invents rule 8.

26

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

p(light, S) — claro, {S is 0.50} (6)
p(right, S) — derecha, {S is 0.30} (7)
s([and, light, right|, S) — claroyderecha, {S is 0.1} (8)

Simplification could be applied to rule 8 using rule 7 and obtain rule 9 as follows:

s(land, light, R],S) — claroy,p(R,SR),{S is SR-0.1} 9)
s([and, Q, R],S) — p(Q,SQ),y,p(R,SR), {S is SQ-SR-0.1} (10)

Now rule 9 could be simplified again, this time using rule 6, to obtain rule 10. Note that in this
last rule, the connective is located at the corresponding position within the sentence. If now the
agent invents or adopts a rule that associates the formula [or,1ight,right] with the sentence

“clarooderecha” and applies simplification, then its grammar will contain the rule:

s([or,Q, R],S) = p(Q,SQ),0,p(R,SR),{S is SQ-SR-0.1} (11)

3.3.4. Adaptation

There is one more feature we will need to implement in our model which is commonly referred
to as adaptation. This mechanism is a way to ensure that the agents’ grammars are coordinated.
It is likely to happen that different agents refer to the same boolean function in distinct ways,
or that two agents choose to concatenate the expressions associated with the components of a
given formula in different orders. Coordination is achieved through a process of self-organisation
of the agents’ linguistic interactions that takes place when the agents adapt their preferences for
vocabulary and grammatical constructions to those they observe are used more often by other

agents.

At the last step of a language game, when the speaker communicates its intended meaning to
the hearer, the agents adapt the scores of their grammar rules. This happens only when the
speaker can generate at least one sentence for the meaning it is trying to communicate and
the hearer can parse the sentence produced by the speaker. In a language game only the agent
playing the role of hearer adapts the scores of its grammar rules. However, all agents are fated
(probabilistically speaking) to take both roles eventually, and thus have chances to adapt their

graminars.

27

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

Whenever a game succeeds, the hearer takes the interaction as a positive instance and adjusts
the scores of its grammar rules, both at interpretation and generation levels. The hearer also
increases the scores of the rules it used to obtain the meaning that the speaker had in mind and
decreases the scores of the grammar rules that generate competing meanings. After that, the
hearer tries to express the meaning the speaker intended to communicate using its own grammar
rules, and it increases the scores of the rules that generate the sentence chosen by the speaker

and decreases the scores of the rules that generate competing sentences.

The process of adjusting the scores at the level of interpretation reduces ambiguity and
discourages homonym sentences from appearing. The adjustment at generation level means
reducing ambiguity and discouraging a phenomenon similar to synonymy of sentences. In any
case, the scores of the grammar rules used by the hearer to obtain the meaning the speaker had

in mind are increased only once.

If the meaning interpreted by the hearer is not logically equivalent to the meaning the speaker
had in mind, the game fails, and the hearer decreases the scores of the grammar rules it used for

obtaining the wrong meaning for the sentence uttered by the speaker.

3.4. This project in the literature

The project developed in this work belongs, as previously stated, to the evolutionary linguistics
branch. More precisely, it fits more appropriately into the set of experiments that study
grammar acquisition [BS13, GSB12, Vog05, vT12, SBK03, Kir02] rather than lexicon acquisition
[Ste95, SBO5].

It is worth noticing that word order plays a vital role in our experiments. This is because
in the experiments described in [SSn14], which constitute the basis of the present work, the
position of each sub-expression in a sentence determines how it is semantically related to the
rest of sub-expressions. Kirby [Kir02] also studies the emergence of word-order based grammar,
but without addressing the problem of negotiation, as the population he uses consists only of
two individuals. In the experiments described in [SSn14], however, the population consists of
10 agents, which need to reach consensus on how to order the expressions associated with the
constituents of each different type of boolean formula to construct a sentence. In the present

project we wish to generalise this model so that it can use an arbitrary number of agents.

28

3 A MODEL TO STUDY LOGICAL CONSTRUCTIONS

Another difference between the agent-based model described in [SSn14], on which the present
work is based, and Kirby’s work [Kir02] is the manner in which communicative success is
evaluated. While Kirby considers syntactic equality as an indicator of mutual understanding,
[SSn14] uses logical equivalence. As a result of this, the grammars constructed by the agents
in the experiments described in [SSn14] do not impose a strict order between the expressions

associated with the arguments of commutative boolean functions.

Beuls and Steels [BS13] also study grammar acquisition, but they use agreement markers
instead of word order as the syntactic means for semantic disambiguation. Similarly to [SSn14],
they perform simulations with software agents, initialise them with a predefined vocabulary for

basic properties and use a language game in which the topic consists of several objects.

The differing point is that the meanings constructed by the agents in [BS13] consist of a set
of distinctive properties in which each property refers to a single object of the topic. Moreover,
the role of agreement markers is to indicate which properties of the distinctive set refer to the
same object. Therefore, the set of meanings the agents can construct in the agent-based model
proposed in [BS13] are only conjunctions of basic properties, whereas the agents in [SSn14]
and those we intend to use in the present project conceptualise the topic by constructing a
discriminating logical formula. These logical formulas can be a composition of basic properties
through conjunction, disjunction, negation or any other boolean function which is true for every

object in the topic and false for the rest of the objects in the context.

Finally, taking as a starting point the Prolog implementation of the agent-based model for
studying the acquisition of a language system of logical constructions used in the experiments
reported in [SSnl14], we will build a set of Prolog software modules that allow implementing
different types of agent-based models and conduct language evolution experiments with these
models. These modules will be different from the Lisp simulation and grammar processing
systems [Stella] used in most agent-based simulation experiments described in the literature
[GSB12, Vog05, PH12, SB05, Ste95, Stella, vT12, SS12, BS13, Ste99].

29

4 THE PROLOG PROGRAMMING LANGUAGE

4. The Prolog programming language

Before revealing the implementation details of the model developed in this project, it might be
useful to give a brief overview of the Prolog programming language. To this effect, this chapter
wants to discuss the basic terminology and concepts in Prolog and also the advanced techniques
featured in the model. Nevertheless, this chapter is not a detailed explanation of all features
in Prolog, and we strongly encourage the reader to refer to some suitable references in case
necessary [CM03, SS94, Bra90]. Also, note that various of the technical aspects below explained
have been inspired by [SS00].

4.1. Fundamentals and logic programming

To begin with, Prolog is a general purpose and logical programming language which has its
roots in first-order logic. It is for this reason that writing Prolog programs can turn out to be a
very different process compared to what one may encounter in other programming languages.
Here, the user needs to specify which relationships and objects occur in the problem and which
relationships are true about the desired solution. Therefore, the process is more about describing

the problem as logical axioms rather than giving the sequential steps to solve it.

These kind of programs can be executed by providing the system with a problem, formalized
as a logical statement and called the goal statement. The execution is an attempt to prove the
goal statement, given the assumptions in the logic program. For example, when we say “Sarah
owns the laptop” we are declaring a relation of ownership between the objects “Sarah” and
“laptop”. In contrast, when we ask the question “Does Sarah own the laptop?” we are trying to

find out whether or not that relation of ownership exists.

Thus, we are always working with a set of statements, and each statement is either a fact
about given information or a rule about how the solution may relate to or be inferred from the
given facts. In more technical terms, writing a Prolog program consists of specifying some of the

following types of statements:
- Facts asserting that a relationship holds between objects.
- Queries asking whether or not a relationship holds between objects.

- Rules defining high-level relationships between objects.

30

4 THE PROLOG PROGRAMMING LANGUAGE

Out of the former, facts are the simplest form of statements, and are all collected in a database
maintained by Prolog. We now consider a small database containing the following facts, which

relate 2 objects each:

likes (john,mary) .
likes(john,book) .
likes(mary, john) .

The first fact states that an individual called John likes another individual called Mary.
Names of individuals or objects are known as atoms and must always begin with a lowercase
letter. Note that atoms can refer to any kind of objects and that the relationships are not
reflexive (the first and third facts are not equivalent). As a remark for later, it is also common

to use the term predicate to refer to relationships.

The second most simple form of statement in a logic program is a query. Queries are used
to find whether a particular relationship exists and look exactly the same as facts (but can be
easily told apart by the context). Answering a query means satisfying a goal and determining
whether the query is a logical consequence of the program. In the examples shown next, Prolog
will search the database for each formulated question and come up with an answer, which can

either be positive or negative:

7- likes(john,money) .
no
7- likes(mary, john).

yes

The no answer means that nothing unifies with the question. In our former case, it becomes
clear that there is no such fact in the database that contains john and money as its arguments. In
contrast, when a yes answer is returned, then there is a fact which has the arguments provided
and in the same order. Prolog however, can do much more that answering yes or no questions,
and it provides ways to make inferences from one fact to another. This implies that, for example,
we can find out which objects does John like, instead of just recovering the same information we

input beforehand.

To do this, we will need introduce the concept of logical variable. A logical variable stands
for objects that we are unwilling or unable to name. This conception is opposed to the idea of a
constant, which denotes a particular object such as an integer or an atom. Variables in Prolog

are distinguishable from constants because they start with an uppercase letter.

31

4 THE PROLOG PROGRAMMING LANGUAGE

A query containing a variable asks whether there is a value for the variable that makes the
query a logical consequence of the program. This creates questions that look like “Does John
like X?”, X being a logical variable. We refer to a variable as instantiated when there is an
object that the variable stands for, and as not instantiated when what the variable stands for is
not yet known. The question considered in this paragraph will produce two answers, resulting
from Prolog searching through all its facts to find an object that the variable could stand for

and unifying the variable with it:

?7- likes(john,X).

X = mary;
X = book;
no

After introducing variables, it is a good moment to discuss what is a term, the single and
broad data structure used in Prolog. To this effect, we provide the following recursive definition,

appearing in [SS00]:
1. Constants and variables are terms.

2. An expression of the form f(¢1,...,t,) is a term if f is a functor of arity n and each one of
the ¢; is a term. Functors are structures characterised by its name and the number of
arguments they accept, known as arity. The combination is conventionally indicated with
the notation f/n.

Queries, goals and terms where no variables occur are called ground terms. If a goal or
query contains variables, those are existentially quantified. A query) with the set of variables
{X1,..., X, } is asking whether there are values for each one of the X; such that the query holds
(note that this may lead to several solutions, or even an infinite number of solutions). If) had
been a fact instead, then the meaning of the fact would hold for any possible combination of

values in each X; (and thus, the variables are implicitly universally quantified).

It is also possible in Prolog to form a conjunctive query, which is a conjunction of goals
Q1,...,Q, separated by commas. If any variable occurs in more than one of those goals, we
refer to it as a shared variable. Conjuctive queries are a logical consequence of the program
if each one of the goals (); is also a consequence of the program and the shared variables are

instantiated to the same values in all goals.

32

4 THE PROLOG PROGRAMMING LANGUAGE

Finally, the third and most important statement is the rule, which allows to define new
relations in terms of existing relations. Rules in Prolog contain a sequence of one or more goals
(or as we have already seen, a conjunctive query). For instance, if we consider a rule of the form
H :- B,C., then H is syntactically the same as a literal and it is referred to as the rule head,
and the literals B,C form the rule body. The symbol :- is the functor denoting a rule. This
structure can be more informally read as H is true if B and C are also true. Note that facts are

rules with a sequence of 0 goals, or in other words, no rule body.

To finish with the fundamentals of the Prolog programming language, we briefly explain the
computational model of logical programs, which is based on a process called unification. A
unifier of 2 terms (or clauses) is a substitution of all variables X; present with a term ¢; such

that it holds that every X; does not occur in any of the ¢;.

In the query likes(john,X) that we previously asked, when the literal mary is found, X
becomes unifies with the atom mary. Prolog marks the place in the database where a unifier
is found, in order to continue the search later on if necessary. Should the user or the program
require more solutions, Prolog will resume the search from where it left the place marker to find
another possible answer to the question. Returning to our example, book is the next literal in
the database fulfilling the conditions. At some point, it will not be possible to re-satisfy the
goal any more, and then the search stops and the question fails. When succeeding, the program

provides a proof which gives the solution verifying the query.

The computation progresses via goal reduction. At each stage there is some resolvent, that
is a conjunction of goals to be proven. Prolog chooses a goal in the resolvent and a clause head
that unifies with it from the logic program. A new resolvent is obtained by replacing the chosen
goal with the body of the chosen clause and applying a unifier obtained from the head of the

clause and the goal. Termination happens when the resolvent is empty.

Nevertheless, this backtracking behaviour of Prolog described can be altered, something that
is necessary in various situations and also used to increase efficiency. This can be achieved by
introducing the symbol !, known as cut. Suppose that now we define the following rule in order

to list all the objects that a certain individual likes, but we include a cut by mistake:
likings(X) :- likes(X,Y), write(Y), nl, !, fail.

7- likings(john).

mary

no

33

4 THE PROLOG PROGRAMMING LANGUAGE

Had we not introduced a cut in the 1ikings clause, then the program would have also written
“book” after “mary”, as it is another thing that John likes. The cut makes inaccessible markers
for certain goals so that they cannot be re-satisfied. When the program encounters a cut, the
effect is to commit the system to all the decisions made since the first clause was chosen. This
includes the unification Y = mary. Because this decision cannot be altered, after writing “mary”,
and because fail does not allow the clause to succeed, the program tries to re-satisfy likings,

which cannot be done because X is already instantiated in the question.

4.2. Definite Clause Grammars

A grammar for a language is a set of rules that specify what sequences of words are acceptable
as sentences of that language. This means specifying how words must be put together into
phrases and what orderings of phrases are allowed. Given a grammar for a language we can look
at a sequence of words and see whether it meets the criteria for being an acceptable sentence. In
this project, each agents builds its own grammar and the objective is that all grammars within

the population are compatible.

A particularly simple kind of grammar is known as Context Free Grammar (CFG) [CMO03].
To illustrate this concept, consider the following, which may be the start of a grammar for

English sentences:
sentece --> noun-phrase, verb-phrase
noun-phrase --> determiner, noun
verb-phrase --> verb, noun-phrase
verb-phrase --> verb
determiner --> [the]
noun --> [applel
noun --> [man]
verb --> [eats]

verb --> [sings]

34

4 THE PROLOG PROGRAMMING LANGUAGE

The former grammar consists of a set of rules, and each one specifies a structure for the
different kinds of phrases. For instance, the first rule indicates that a sentence needs to always be
constructed using a noun-phrase followed by a verb-phrase. This process continues recursively,
and now in order to know how to build a noun-phrase and a verb-phrase we need to refer to
the subsequent rules. For example, the sentence "the man" is a valid noun phrase according
to the second rule, "eats the apple" is a valid verb phrase according to the third rule, and the

concatenation "the man eats the apple" is a valid sentence.

Formally, we refer to the left-hand side of the rules as the head and to the right-hand side
as the body. Given a sentence and a certain rule, by repeatedly applying the rules whose head
contains a symbol present in the body of the initial rule, we can parse sentences and determine

whether the sentence is a valid statement of the type appearing in the first rule.

Definite Clause Grammar (DCG) [CKPRT72] is formalism used in Prolog to represent gram-
matical knowledge. Prolog provides a particular grammar rule notation that is designed to
help users building parsers, because it makes the code easier to read and suppresses irrelevant
information. Although Prolog’s grammar rule notation is self-contained, it is important to
realise that it is only a shorthand for ordinary Prolog code, and that it is interpreted in this way.
The actual notation is build around the notation of Context Free Grammars that we already

introduced.

Grammar rules are Prolog structures with the main functor —->, which is declared as an
infix operator and automatically translated by Prolog systems. For example, the grammar rule
sentence —--> noun-phrase, verb-phrase is automatically translated into a Prolog clause
sentence(80,S) :- noun-phrase(S0,S1), verb-phrase(S1,S). This means that there is a
sentence between SO and S if there is a noun phrase between SO and S1 and a verb phrase
between S1 and S. In other words, the variables introduced keep consuming the input sequence,
that is S1 is the same as SO without a preceding noun phrase and seemingly, S is S1 without a

preceding verb phrase.

Terminal rules which introduce words are also automatically translated by Prolog. For instance,
the grammar rule determiner --> [the] is transformed into a clause determiner ([the|S],S).
After translating the entire grammar in this manner explained, we can ask Prolog to satisfy the
goal sentence (X, []), which will succeed if X is a valid sentence with respect to the grammar
rules specified in the program. Note that the second argument is the empty list, which denotes

that there is no remainder after parsing, or alternatively, the last position in X.

35

4 THE PROLOG PROGRAMMING LANGUAGE

4.2.1. Extension of the grammar formalism

We have already discussed the basic principles of Prolog grammars, but it is worth noting
that they do not need to be as restrictive as described up until now. It is possible to add extra
arguments to phrase types. We have seen how an occurrence of a phrase type in a grammar rule
translates to the use of a Prolog predicate with two extra arguments, but in fact, those predicates
can have any number of arguments. Adding them can be useful in various situations, such as
when trying to reconstruct complete parse trees out of the parse trees of each subcomponent.
The rules in our model also use extra arguments for various reasons, which are explained later

on in this section.

Also, up until now everything mentioned in the grammar rules had to do with how the input
sequence is consumed. Every item in the rules has had something to do with those two extra
argument positions that are added by the translator and every goal in the resulting Prolog
clause has been involved with consuming some amount of the input. Sometimes we may want to
specify goals that are not of this type, and the grammar rule formalism allows us to do this.

Any goals enclosed inside curly brackets are to be left unchanged by the translator.

To illustrate this, we will use some grammar rules that appear in our model implementation.
These rules take the form p(M,S,U,Id,L) --> [w,o0,r,d], {S is 1.0}. Here M represents the
meaning to communicate in prefix notation, S the score, U the number of uses this rule has
undergone, Id the identifier of the rule, and L the list of identifiers of other rules used by this
rule. Because this rule is a terminal one L should be instantiated to [Id]. Usually M, U and Id

are also instantiated, and L grows by reconstruction during parsing.

Note that in the previous rule, S is inside curly brackets. This happens because the score has
nothing to do with the input sequence and we would like to stop the translation mechanism
from changing it. If we omit this fact, then Prolog translation will include new variables in the

score computation and the resulting goal will probably be never satisfied.

By applying the induction operation of simplification, the agents can construct more com-
plex grammar rules, such as s([if,X,Y],R,0,Id4,[Id4|T]) --> [c,o,n,n], p(X,R1,_,_,L1),
p(Y,R2,_,_,L2), {append(L1,L2,T), R is R1*R2*0.1}. This grammar rule allows con-
structing conditional sentences by concatenating the word [c,o,n,n], which expresses the
boolean function if, to the expressions associated with two propositions X and Y, which corre-
spond to the antecedent and the consequent of the meaning expressed by this grammar rule. As
it can be observed, bracket notation is used to specify the part of the grammar rule that deals
with the computation of the score and construction of the list of identifiers of the grammar rules

used to generate a particular sentence.

36

4 THE PROLOG PROGRAMMING LANGUAGE

4.3. Structure inspection

Because their definition is very comprehensive, terms can present a lot of different forms.
Prolog has some defined predicates dedicated to recognise different types of terms, decompose
them into their functor and arguments and create new terms. We use the term type predicates
to denote those predicates that distinguish between different types of terms. Such predicates
can test whether the given term is a structure or a constant, and even determine if the constant

is an atom, an integer, etc.

An example that illustrates structure inspection is the predicate functor(Term,F,Arity),
which is true if Term is a term whose main functor has name F and arity Arity. This is important
because it directly provides access to the functor name, arity and arguments of compound terms
in a very simple way. Moreover, the system predicate functor can also be used to build a new

term given a particular functor name and arity.

Another system predicate similar to functor is the one called arg, which accesses the
arguments of a term rather than the functor name. The goal arg(N,T,Arg) is true if Arg is the
Nth argument of term T. This predicate can also be used in two ways: finding the argument of a

given compound term and create a new term instantiating a variable argument of it.

There is also a system predicate called univ, denoted by the binary operator =.., that
dissociates a term into a list containing the name of its functor followed by its arguments. The
goal Term =.. List succeeds if List is a list whose head is the functor name of the term Term
and whose tail is the list of arguments of Term. Like functor and arg, univ has two uses: it

can either build a term given a list or a list given a term.

Structure inspection and creation predicates are used in the modules implementing the
invention, induction and adaptation abilities of the agents, in particular when grammar rules are
created or modified in some way by the agents. Because grammar rules are also Prolog terms,
they can be accessed, decomposed and constructed using structure inspection predicates such as

functor, arg and univ.

4.4. Meta-logical predicates

In this section we cover a certaint type of predicates, called meta-logical predicates [SS00],
that are outside the scope of first-order logic because they query the state of the proof, treat
variables as objects of the language (rather than the terms they denote), and allow the conversion

of data structures to goals.

37

4 THE PROLOG PROGRAMMING LANGUAGE

The most fundamental meta-logical predicate is var (Term), which succeeds if the term Term
denotes a variable. Note that here we are explicitly referring to a variable name, instead of its
value. There is an opposite predicate to var, written as nonvar (Term), which is only true if

Term is not a variable.

When we place predicates such as var inside the body of a certain clause in order to decide
whether the clause definition needs to be accessed or not by the program flow, we are performing
a meta-logical test. These tests refer directly to the current state of the computation and the
values of certain terms. Possible applications of them include making the most appropriate choice

of the goal order of clauses in a program or writing more straight-forward procedures.

Meta-logical type predicates can also be used to define more complicated meta-logical relations
such as the predicate ground(Term), which is true if Term is instantiated to a ground term,
or elaborated unification algorithms that refine the system predicate =/2 used in Prolog for

unification of 2 terms.

By default, the predicate =/2 does not enforce the occurs check, which is a mechanism
that causes the unification of a variable X with a term to fail if the term contains X. In order to
implement this procedure in Prolog, one needs to be able to check whether two variables are
identical (not unifiable, because any two variables can be unified). This test is a meta-logical
one, and can be achieved by means of the predicate ==/2. The goal X==Y succeeds if X and Y
are identical variables (or identical constants) or two structures with main functors of the same
name and arity, whose matching arguments Xi and Yi also verify Xi==Yi. Same as before, there

is a system predicate with the opposite behaviour: X\==Y.

Finally, we would also like to mention the ability that Prolog has to make programs and data
equivalent. There is a meta-logical system predicate that allows a term to be converted into a
goal: the predicate call(X), which calls the goal X for Prolog to solve. By the time it is called,
the variable must be instantiated to a term or otherwise an error is obtained. This procedure
allows meta-programming and is also crucial for defining negation and allowing the definition of

higher-order predicates.

Meta-logical tests are used to implement the induction operator of simplification, which allows
the agents to extract generalizations from the holistic grammar rules they invent or adopt as
they play language games with other agents. These generalizations are incorporated into the
agents’ grammars in the form of lexical entries and grammatical constructions which contain
variables, and therefore can be used to express larger subsets of meanings and to subsume other

rules in their grammars.

38

4 THE PROLOG PROGRAMMING LANGUAGE

4.5. Extra-logical predicates

In its pure logical programming paradigm, Prolog should be free of side-effects. However,
there are a number of predicates able to induce certain side-effects when satisfied as logical
goals, and we refer to them as the group of extra-logical predicates. Some examples are those
predicates which deal with input/output operations, provide some interface with the underlying
operating system or modify certain parts of the program itself. In this section, we focus on the

latter of those aspects.

Each predicate defined by the user can either be a dynamic predicate or a static predi-
cate. The main difference is that the procedure of a dynamic predicate can be altered during
the execution, while the procedure of static predicates remains fixed. Program access and

manipulation predicates can be applied only to dynamic predicates.

To gain access to a program we can use the system predicate clause (Head,Body). When
calling this particular goal, Head must be instantiated. The behaviour obtained is that Prolog
searches for the first clause in the program that unifies with Head. The head and body of this
clause is then unified with Head and Body, and this succeeds once for each unifiable clause in

the procedure.

After obtaining clauses in the program we can manipulate them in order to create different
variations. However, we still need a way to add clauses to the program and remove them. The
basic predicate for adding clauses is assertz(Clause), which adds Clause as the last clause
of the corresponding procedure. A variant of this predicate, asserta adds the clause at the

beginning of a procedure.

Similarly, in order to delete clauses in the program we can use the predicate retract (Clause),
which removes the first clause unifying with Clause. The term Clause needs to be instantiated

to the form H :- B, and the clause head H needs also to be instantiated.

It is worth mentioning that even though the predicates assert and retract introduce
the possibility of programming with side-effects, it is in general considered bad programming
practice to use them. A Prolog code abusing on side-effects is hard to read, debug and analyse.
Nevertheless, under some circumstances, their use can be justified, for example, if a clause
already follows logically from the program, it can be added as a way to gain efficiency. In turn,
retracting redundant clauses increases speed by reducing the size of the program, and therefore

the search time associated with each clause during unification.

39

4 THE PROLOG PROGRAMMING LANGUAGE

In this project the predicates clause, assertz and retract are used, because the agents are
building and refining their grammars during the execution as they play language games. The use
of assertions is justified in the sense that the (dynamic) grammar rules added are the result of
induction processes from rules already present in the agent’s grammar. The retracting operation
is also justified by the fact that the only grammar rules removed are the ones subsumed by more

general rules added as a result of induction processes to the grammar.

4.6. Second-order programming

Prolog also includes some predicates that, instead of producing a single solution, provide sets
of solutions as a solution. Finding all the instances of a query that are implied by a program
is a not a first, but a second-order question, since it asks for the set of all the elements with a
certain property. This is also not pure Prolog because in the logical paradigm all information
about a certain branch of the computation is lost on backtracking. Predicates that return all the
instances of a query are called all-solutions predicates. Next, we describe two all-solutions

predicates provided by Prolog [SS00].

The predicate findall(Term,Goal,Sols) is true if and only if Sols unifies with the list
of values to which a variable X, not occurring in Term or Goal, would be bound by successive
re-satisfaction of the conjunctive goal call(Goal), X = Term. Of course, this only makes sense

if Term and Goal share some variables.

Procedurally, findall(Term,Goal,Sols) creates an empty list L, renames Goal to a goal G,
and executes G. For each successful execution G, and until the predicate G fails, a copy of Term is
appended to the list L. Finally, Sols is unified with L.

A similar predicate, bagof (Term,G,Sols), behaves like findall except that if there are
variables in G that do not occur in Term it returns through backtracking a list of solutions for each
possible value of these variables. If there is no solution for G in the goal bagof (Term,G,Sols),

then the goal bagof (Term,G,Sols) simply fails.

The difference between findall and bagof is that in calls to findall(Term,Goal,Sols)
all the instances of Term that represent solutions to Goal are collected together, regardless of
possible different solutions for variables in Goal that are not shared with Term. Also, if there is
no instance of Term that satisfies Goal, then the goal findall(Term,Goal,Sols) will succeed
with Sols = [].

40

4 THE PROLOG PROGRAMMING LANGUAGE

In short, first-order logic allows quantification over individuals. Second-order logic further
allows quantification over predicates and uses rules with goals whose predicate names are
variables. Thus, predicate names become “first-class” data objects that can be manipulated and
modified. From an operational perspective, this implies that goals are constructed dynamically
during the computation. We have already seen methods to deal with this in Prolog, such as
the predicate univ, which can be used to construct a goal of the form Goal =..[P|Xs], Goal,

where a variable representing a predicate P is applied to a list of arguments Xs.

Second-order all-solutions predicates are used to compute the sets of competing sentences and
competing meanings that the agents require in order to adapt their preferences for vocabulary
and grammar to those of the other agents, taking into account the results of the language
games in which they participate during a simulation. Dynamic goal construction also plays an
important role in the implementation of the induction operation of simplification, where parts of

a grammar rule are reconstructed in terms of others.

41

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5. Specification: modules and their interaction

During the process of writing a program, the necessity to provide a certain degree of documenta-
tion soon becomes self-evident. This is specially true when considering Prolog programs. One
would like to provide enough hints so that external users can comfortably use the program
without having to understand the implementation details. At the same time, other individuals
wanting to dwell in the implementation and potentially improve it, may require some help to

understand the underlying mechanisms.

One traditional manner of confronting this problem is providing comments in the very same
code [Bra90]. Those comments should first explain what the program is, how to use it, and
only then give details about the programming methods employed. In Prolog we are specially
interested in discerning the top-level predicates and knowing their inputs and meaning, among

other things.

With the name specification, we denote a document that explains the behaviour of a program
sufficiently to achieve the former goals. This chapter provides a specification for the different
modules of the model developed, following the method suggested in [SS94], which consists in

covering the following items for each predicate:
— A procedure declaration stating the name and the arity.
— Type declarations of its arguments.

— A relation scheme, that is a precise statement written in English or another language

that explains the relation computed by the predicate.

— Details about usage modes. Because of Prolog unification it is possible to define predicates
that can be used in multiple manners. The specification needs to guarantee which uses are

correct.

— Multiplicity of solutions, which states the number of solutions of the predicate for each

possible usage.

In addition to this information, the documented predicates will be grouped according to the
modules in which they appear in, and we will also detail the interface of each module, in a
similar way as the documentation of the Ciao system [BCCT06]. This information should enable

the user to combine the modules when necessary and also use them independently.

Different modes are available in standard Prolog to describe the arguments of a predicate
[SS94][BCCT06]. The convention is to use the symbol + for an instantiated argument (input
value), the symbol - for an uninstanciated one (output value), ? for either and @ for an argument

which is not further instantiated (not an output value).

42

5 SPECIFICATION: MODULES AND THEIR INTERACTION

It is worth noticing that different usages of the same predicate have arguments with different

modes. For example, the standard predicate append (Xs,Ys,Zs) for concatenating the lists Xs

and Ys to produce Zs, can either be used as (+,+,-), (-,+,+) and even more variants.

5.1.

5.1.1.

Simulation

Module language game

The language_game module is the one in charge of controlling the flow of the execution. For

each language game to play, it randomly chooses two agents and a meaning to communicate.

After the game is played, both speaker and hearer make modifications to their own grammars and

statistics are collected. At the end of the simulation then, we are able keep track of the agents

taking part in each game, the meanings communicated, the sentences used by the speaker, the

hearer’s interpretation of such sentences and whether there is agreement between the two.

5.1.1.1. Usage and interface

4 N
e Library usage:
:- use_module(language_game) .
e Predicates:
— Exported predicates:
main/1, roles_to_ports/4, report_ind/5
— Other relevant predicates:
last_resultS/1, last_resultC/1
e Other modules used:
- System library modules:
dec10_io [tell/1, told/0], format [format/2],
random [srandom/1, random/3], read [read/2],
sockets [connect_to_socket/3, socket_shutdown/2],
system [current_host/1], write [write_canonical/2, write/1]
— Model modules:
agent [ag_socket_port/2, write_stream/2],
conceptual_sys [meaning/1],
population [players/3, ini_players/1, population_size/1],
utils [rnd_select/3, atom_and_number/2]
. %

43

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.1.1.2.

main/1

Documentation on relevant predicates

PREDICATE

main (X)

X is a list of atoms of length 3 and of the form X = [NGames, NAgents, Step]. The first

element stands for the number of games in this particular simulation, and the second for

the number of agents that will be used in it. The predicate runs the simulation using

the specified number of rounds and agents, displaying the results and progression along

the way. Step is the numerical distance between points in the graphical representations

produced, and therefore determines the rate at which statistics are collected.

Usage 1: main(+X)

Description: Should X be instantiated to a list of atoms of length 3, then the first
element is assumed to be the number of games and the second element is assumed to
be the number of agents. This goal performs a simulation according to the parameters
given and writes the results upon ending. If X is instantiated to any other kind of

term this predicate fails.

The following properties should hold at call time: X must be instantiated to a compound

term, this being a list of atoms of length 3.

The following properties should hold upon exit: A simulation with the specified number

of rounds and agents is executed.

last_resultS/1, last_resultC/1 DATA PREDICATE

last_resultS(NS), last_resultC(NC)

NS and NC are integer numbers.

Usage 1: last_resultS(-NS), last_resultC(-NC)

Description: NS and NC indicate the number of times any two agents participating
in a certain window of past language games achieved communicative success and
coherence respectively. These predicates are updated dynamically and counters are
set to 0 every Step language games (please refer to main/1 of this module). They are

used to report statistical information at the end of the simulation.

The following properties should hold upon exit: Both NS and NC are instantiated to
integer numbers representing the number of language games played with communicative

success and coherence between agents among the past Step games.

44

5 SPECIFICATION: MODULES AND THEIR INTERACTION

roles_to_ports/4 PREDICATE

roles_to_ports(Speaker, Hearer, SPort, HPort)

Speaker and Hearer are integer numbers which act as identifiers for particular agents.
This predicate, provides the port numbers Sport and Hport that allow to communicate

with the speaker and hearer in a language game.
Usage 1: roles_to_ports(+Speaker, +Hearer, -SPort, -HPort)

- Description: Sport and Hport are the port numbers associated with the speaker and
the hearer respectively. They can be used to exchange messages with the corresponding

agent.

- The following properties should hold at call time: Both Speaker and Hearer are

instantiated to integer numbers.

- The following properties should hold upon exit: SPort is instantiated to the port

number used by Speaker, and HPort to the port number used by Hearer.
report_ind/5 PREDICATE
report_ind(Game, NGames, NA, Host, Step)

This predicate is used to collect statistics during the execution. All arguments are integers,
except Host. Game represents the current game, NGames the total number of games, NA the
number of agents and Step the distance between plot points. Host is the qualified name

of the current host in which the program is run.
Usage 1: report_ind(+Game, +NGames, +NA, +Host, +Step)

- Description: This predicate sends a message to all agents in the simulation via a
socket connection, provided that Step games have passed since the last time the
same message was send. Upon receiving this signal, the agents report the number of
adoptions and inventions and write the values in appropriate files, accessible after the

simulation has finished.

- The following properties should hold at call time: All arguments need to be instantiated

to ground terms.

45

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.1.2. Module population

This module is responsible for choosing which agents should participate in an arbitrary
language game. To do so, it maintains the number of times each pair of agents have played
together, and uses that information to select the 2 most suitable individuals. Selection is carried
out at random, but enforcing that all agents speak approximately the same number of times
to each other. Therefore, after selecting a speaker, the hearer candidates who have not spoken

with that speaker many times have a higher chance of being picked.

5.1.2.1. Usage and interface

4 N
e Library usage:
:— use_module(population).
e Predicates:
— Ezxported predicates:
ini_players/1, players/3, population_size/1
e Other modules used:
- System library modules:
random [random/3]

— Model modules:
utils [rnd_select/3]

5.1.2.2. Documentation on relevant predicates

ini_players/1 PREDICATE
ini_players(N)
N is an integer number.
Usage 1: ini_players (+N)

- Description: This predicate initialises an individual counter for each agent which
monitors the amount of times that the agent has participated with each other agent

in a language game. At the beginning, all the values are set to 0.

- The following properties should at call time: N is instantiated to the number of agents

in the simulation.

46

5 SPECIFICATION: MODULES AND THEIR INTERACTION

players/3 PREDICATE
players(N, Speaker, Hearer)

N is an integer type representing the T-F game of the simulation, where T is the total
number of games and F the number of games already played. The predicate unifies the
integers Speaker and Hearer with the identifiers of the two agents who will take part in

the next language game, playing the roles of speaker and hearer respectively.
Usage 1: players(+N, -Speaker, -Hearer)

- Description: First of all, the integer N is used to select a speaker number Speaker in
a rotational fashion, so that if the total population of agents is P, each agent acts as a
speaker every P games. After choosing the speaker, this goal finds another number
Hearer such that the represented hearer is the agent to which Speaker has spoken

less times.
- The following properties should hold at call time: N must be instantiated.

- The following properties should hold upon exit: Speaker and Hearer are instantiated

to integer numbers.

- Multiplicity of solutions: It can happen that there are several agents to which Speaker
has spoken to less times. In such situations, one of them is chosen at random as

Hearer.
population_size/1 DATA PREDICATE
population_size(P)
P is an integer number.
Usage 1: population_size(-P)

- Description: This predicate can be used to obtain the population size, that is the

number of agents P taking part in the simulation

- The following properties should hold upon exit: P is instantiated to an integer number.

5.2. Conceptual system

5.2.1. Module conceptual_sys

This module is the one in charge of defining and producing the logical formulas, or meanings,

that the agents try to communicate when playing language games.

47

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.2.1.1. Usage and interface

4 N
e Library usage:
:- use_module(conceptual_sys).
e Predicates:
— Ezxported predicates:
alphabet/1, connectives/1l, commutative_conns/1, meaning/1
new_exp/1, propositions/1
e Other modules used:
— System library modules:
random [random/3]

— Model modules:
utils [rnd_select/3]

5.2.1.2. Documentation on relevant predicates

PREDICATE

meaning/1
meaning (SM)

The term SM is a list of 2 or 3 atoms representing a logical formula in prefix notation.

Usage 1: meaning(-SM)

- Description: This predicate generates a random meaning SM out of all the possible
obtainable by combining the provided logical connectives, connectives(C) and prepo-

sitions propositions(A). The new meaning can be then used in the current language

game.

- The following properties should hold at call time: The facts propositions(A) and

connectives (C) should exist in the database.

48

5 SPECIFICATION: MODULES AND THEIR INTERACTION

- The following properties should hold upon exit: SM is instantiated to a list of 2 or 3
elements, depending on the number of arguments of the logical connective chosen.
The first element is an atom representing a logical connective out of the ones provided,

and the other elements are atoms representing propositions.
- Multiplicity of solutions: This predicate succeeds only once.
new_exp/1 PREDICATE
new_exp (E)
E is a list of atoms which are all single characters and represents a random expression.

Usage 1: new_exp(-E)

Description: This predicate generates an expression using the symbols in the alphabet

provided, which is listed in alphabet (Z).

The following properties should hold at call time: The fact alphabet (Z) should exist

in the database.

The following properties should hold upon exit: E becomes instantiated to a list of 3

to 6 elements, each one an atom representing a particular character.

- Multiplicity of solutions: This predicate succeeds only once.

5.3. Generation and invention

5.3.1. Module generation

The generation module implements functionalities that allow agents acting as speakers in a
language game to construct expressions which can be effectively communicated to the hearing
agents. This is achieved using Prolog’s parsing mechanism for Definite Clause Grammars, which
on backtracking can be used to generate sentences from a given grammar. The present module
also contains predicates that check the grammatical equivalence of two sentences expressing

the same meaning with respect to a particular linguistic system and its associated conceptual

system.

49

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.3.1.1. Usage and interface

- N
e Library usage:
:- use_module(generation) .
e Predicates:
— Exported predicates:
coherence/4, first_max/2, generates/5

e Other modules used:

— System library modules:
dcg_expansion [dcg_translation/2], dynamic [dynamic/1],
random [random/3], write [portray_clause/1]

— Model modules:
agent_params [games_played/1, initialise/0, new_rule_id/1],
conceptual_sys [commutative_conns/1, new_exp/1],
induction [simplify/1],
utils [rnd_select/3, rnd_permu/2, flatten/2, subseq_rest/4]

5.3.1.2. Documentation on relevant predicates

coherence/4 PREDICATE
coherence(SMeaning, SExp, HExp, R)

SMeaning is a list of atoms which represents a non-recursive propositional logic formula
constructed from a fixed set of propositions and a single boolean function of one or two
arguments, or a single atom representing an atomic propositional formula. This formula
is the one the speaker tries to communicate in a language game. Both SExp and HExp
are lists of characters representing the sentence used by the speaker to communicate the
intended meaning SMeaning and the sentence the hearer prefers to communicate that same

meaning. R is a boolean argument.

50

5 SPECIFICATION: MODULES AND THEIR INTERACTION

Usage 1: coherence(+SMeaning, +SExp, +HExp, -R)

- Description: This goal succeeds when SExp and HExp are grammatically equivalent
expressions. We consider two arbitrary expressions to be grammatically equivalent if
they use the same words to represent the boolean function and its propositions, and
if the boolean function appears in the same position within the expressions and it is
either commutative or the expressions associated to the propositions are also located

in the same position in both expressions.

- The following properties should hold at call time: SMeaning, SExp, HExp should be

instantiated to ground terms.

- The following properties should hold upon exit: R is instantiated to 1 when SExp and

HExp are grammatically equivalent expressions and to 0 otherwise.

- Multiplicity of solutions: The solution obtained is deterministic and this goal succeeds

only once.
first_max/2 PREDICATE
first_max(Set, Expressions)

This predicate is used to obtain the sentence with highest score out of the possible options
to express a meaning. Set and Expressions are both compound terms, more precisely

sets containing expressions and scores.
Usage 1: first_max(+Set, -Expressions)

- Description: Set is a set of pairs [Score, Expression], where Score is instantiated
to an integer according to the score of the sentence Expression, which is a list of
characters expressing a particular meaning. The element appearing on the head of

the set Expressions is one of the sentences with higher score.

- The following properties should hold at call time: Set should be instantiated to a

ground term.

- The following properties should hold upon exit: Expressions contains all the elements

of Set, with an element of maximum score in the first position.

- Multiplicity of solutions: If there are several sentences with maximum score, one of

them is chosen at random. This goal succeeds only once.

o1

5 SPECIFICATION: MODULES AND THEIR INTERACTION

generates/5 PREDICATE

generates (Meaning, Expression, Rest, CanSay, Inv)

Meaning is a list of atoms which represents a non-recursive propositional logic formula
constructed from a fixed set of propositions and a single boolean function of one or two
arguments. Expression is a list of characters that corresponds to a sentence the agent in
question can use to communicate Meaning to other agents. Rest is a set consisting of pairs
of the form [Score,Sentence], where Sentence is any sentence the agent could generate
to communicate Meaning by using its grammar and Score a numerical value representing
the score of the corresponding sentence. CanSay is a boolean value that indicates whether
the agent can construct a sentence to communicate Meaning using the vocabulary and
grammatical constructions stored in its grammar at call time. Inv is a boolean value which
indicates if the agent had to invent a new sentence to communicate Meaning, because it
could not express it using the vocabulary and grammatical constructions it knew at call

time.
Usage 1: generates(+Meaning, -Expression, -Rest, -CanSay, -Inv)

- Description: CanSay indicates if the agent can construct a sentence to communicate
Meaning using the vocabulary and grammatical constructions in its grammar at call
time. If CanSay is 1, Expression is instantiated to one of the sentences with highest
score out of the ones the agent can construct to express Meaning, RestExp is the set of
all pairs [Score,Sentence] the agent can construct to communicate Meaning using
its grammar at call time and Inv is 0. If CanSay is 0, Expression is instantiated to a
sentence invented by the agent to communicate Meaning, RestExp is not instantiated

and Inv is 1.

- The following properties should hold at call time: Meaning should be instantiated to

a ground term.

- The following properties should hold upon exit: If CanSay is 1, Expression is instan-
tiated to a list of characters which corresponds to one of the sentences with highest
score the agent can construct to communicate Meaning and Rest to the set of all pairs
[Score,Sentence] it can construct to express Meaning. Otherwise, Expression is
instantiated to a sentence invented by the agent to communicate Meaning and Rest

is not instantiated. Cansay and Inv are always instantiated to boolean values.

52

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.4.

5.4.1.

- Multiplicity of solutions: If CanSay is 1 and there are several sentences with highest

score that the agent can construct to communicate Meaning, Expression is instan-
tiated randomly to one of them. If CanSay is 0, Expression is instantiated to a

sentence invented by the agent, which is also generated by a random process.

Usage 2: generates(+Meaning, +Expression, -Rest, +CanSay, +Inv)

- Description: This goal succeeds if Expression is the single sentence with the highest

score the agent can construct to express Meaning using the vocabulary and grammatical

constructions in its grammar at call time.

The following properties should hold at call time: Meaning and Expression should

be instantiated to ground terms, Cansay should be 1 and Inv should be 0.

The following properties should hold upon exit: This goal succeeds if Expression is
the single sentence with highest score that the agent can construct to express Meaning
using its grammar. It fails if the agent cannot construct any sentence to express
Meaning, or if it can construct some sentence with higher score than Expression. It
may also fail if there are several sentences with highest score and Expression is just

one of them.

Interpretation and adoption

Module interpretation

The present module implements functionalities that allow agents acting as hearers in language

games to parse the expressions uttered by the speakers. In broad terms, the hearer tries to infer

a meaning based on the expression received, and then this is compared to the correct meaning

the speaker was intending to communicate.

93

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.4.1.1. Usage and interface

-

e Library usage:
:— use_module(interpretation).
e Predicates:
— Ezxported predicates:
understands/7
e Other modules used:
— System library modules:
dcg_expansion, dynamic [dynamic/1], lists [delete/3]
— Model modules:
agent_params [new_rule_id/1],
conceptual_sys [commutative_conns/1],

generation [generates/5, first_max/2],
induction [simplify/1], utils [clean_body/2]

5.4.1.2. Documentation on relevant predicates

understands/5 PREDICATE

understands (Exp, SMeaning, HMeaning, Rest, CanUnd, Agree, Adopt)

Exp is a list of characters representing the expression used by the speaker to communicate
the meaning SMeaning. SMeaning is a list of atoms which represents a non-recursive
propositional logic formula constructed from a fixed set of propositions and a single
boolean function of one or two arguments. HMeaning is the meaning obtained by the
hearer by parsing expression Exp using the vocabulary and grammatical constructions in
its grammar. This predicate is implemented using Prolog’s parsing mechanism for Definite
Clause Grammars. Rest is a list of other possible meanings which are also plausible
according to the rules rules in the hearer’s grammar. CanUnd is a boolean value that
determines whether or not the hearer could parse Exp or not. Agree is a boolean value that
indicates if the meaning HMeaning inferred is correct, that is, if it is logically equivalent to
SMeaning. Finally, the argument Adopt is also of boolean type and becomes 1 when it is
not possible for the hearer to infer the meaning of Exp, because there are no rules that

allow the parsing of the expression given.

o4

5 SPECIFICATION: MODULES AND THEIR INTERACTION

Usage 1: understands (+Exp,+SMeaning,-HMeaning,-Rest,-CanUnd, -Agree,-Adopt)

- Description: There are two possibilities for this goal to succeed, which are mutually
exclusive and jointly exhaustive. In the first situation the hearer is able to use its
grammar rules to interpret Exp, which is the expression uttered by the speaker, and
obtain a meaning HMeaning. The formula HMeaning is the one with highest score
out of all possible interpretations of Exp. The arguments CanUnd and Adopt take the
values 1 and 0 respectively, because the hearer could interpret the given expression
without the need of adopting any new rules. Agree is 1 if SMeaning and HMeaning

are logically equivalent, and 0 otherwise.

The other possible scenario is that the hearer is unable to interpret the expression
Exp. In this case HMeaning is instantiated to the same as SMeaning and both CanUnd
and Agree are instantiated to 0. When this happens, the hearer adopts a new holistic
rule which matches Exp to SMeaning, and this rule is added to its own grammar and
simplified. Because of this, Adopt is instantiated to 1, as the hearer established a new
connection between the given expression and the meaning the speaker intended to

communicate.

- The following properties should hold at call time: Exp and SMeaning need to be

instantiated to ground terms.

- The following properties should hold upon exit: HMeaning is instantiated to the
meaning the hearer inferred from Exp, or SMeaning if a new rule is adopted. Rest is
instantiated to the list containing all other possible meanings for the given expression,
only if CanUnd is true. CanUnd becomes 1 or 0 depending whether the speaker could
interpret Exp. Agree becomes 1 if the inferred meaning is logically equivalent to
SMeaning and 0 otherwise. The argument Adopt is instantiated to 1 if the hearer

adopted a new rule to its grammar, and 0 if it did not.

- Multiplicity of solutions: It is possible that several valid meanings with high score
exist. In this case the value for HMeaning is randomly chosen among them, in a

non-deterministic manner.

95

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.5.

5.5.1.

Adaptation

Module adaptation

The agent acting as hearer learns from the outcomes of the languages games and modifies

the rules in its grammar in order to be more successful in the future. This process is achieved

by altering the weights of certain grammar rules involved in the parsing of the expression

or competing rules with the ones used, as described in chapter 3. The overall process and

functionality is implemented in this module.

5.5.1.1. Usage and interface

-

e Library usage:
:— use_module (adaptation) .
e Predicates:
— Exported predicates:
repair_scores/5
e Other modules used:

— System library modules:
dynamic [dynamic/1]
— Model modules:

conceptual_sys [commutative_conns/1, propositions/1],
generation [generates/5], utils [clean_body/2]

5.5.1.2. Documentation on relevant predicates

repair_scores/5 PREDICATE

repair_scores(Exp, HMeaning, Rest, CanUnd, Agree)

Exp is a list of characters representing the expression used by the speaker. HMeaning is
a list of atoms which represents a non-recursive propositional logic formula constructed
from a fixed set of propositions and one boolean function of one or two arguments or a

proposition by itself.

o6

5 SPECIFICATION: MODULES AND THEIR INTERACTION

This expression is the one the hearer interpreted from Exp using its grammar rules. Rest
is a list of other possible interpreted meanings. CanUnd is a boolean value that indicates
whether or not the hearer could infer a meaning for Exp by itself or not. Agree is a boolean
value that indicates if the meaning HMeaning inferred by the hearer is correct, that is, it is

logically equivalent to the meaning the speaker had in mind.
Usage 1: repair_scores(+E,+HMeaning,+RMeaning,+CanUnd,+Agree) ,

- Description: This goal succeeds with no effect in case HMeaning is a propositional
formula because the agents already have a common vocabulary for propositional

symbols or basic categories.

When HMeaning is a more complex formula, and in case CanUnd and Agree are both
true, then this predicate reinforces the grammar rules that the hearer used to obtain
HMeaning. It also discourages grammar rules used to obtain competing meanings.
Next, it also discourages rules in the hearer’s grammar that generate competing

sentences different from E for expressing HMeaning.

Finally, when Agree is false, then this predicate only discourages the rules used by
the hearer to obtain the meaning HMeaning. In case there is no agree nor coherence

nothing happens.

Adaptation is done by altering the scores inherent to the affected rules, encouraging
following the update S = S+ (1 —) + p and discouraging S = S - (1 — u), where S
is the score of the rule in question. The parameter p controls the speed at which
adaptation occurs, and it is called the alignment rate. In our case, it takes the value
0.1 by default.

- The following properties should hold at call time: All variables need to be instantiated

to ground terms.

- The following properties should hold upon exit: Rules are updated and feedback
written in the user interface, according to the behaviour given in the description of

this goal.

- Multiplicity of solutions: This goal succeeds with a deterministic result.

57

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.6. Induction

5.6.1. Module induction

This module is responsible for implementing the induction capabilities of the agents. With
those, the different participants in language games are able to effectively learn and generalise
their rules. Induction is applied when an agent invents a new rule or adopts one from another

agent. In our case, we only use the simplification operator as described in chapter 3.

5.6.1.1. Usage and interface

4 N
e Library usage:
:— use_module(induction).
e Predicates:
— Ezxported predicates:
simplify/1
e Other modules used:
— System library modules:
dcg, dcg_expansion, dynamic, terms, write
— Model modules:
agent_params [new_rule_id/1], utils [clean_body/2]

5.6.1.2. Documentation on relevant predicates

simplify/1 PREDICATE
simplify(R)

R is a well-formed Prolog grammar rule which has been recently invented by an agent or

adopted by an agent from another agent.

o8

5 SPECIFICATION: MODULES AND THEIR INTERACTION

Usage 1: simplify(+R)

- Description: This predicate tries to generalise the given rule by creating a new one
which introduces variables to represent propositional symbols. This is done using the
simplification mechanism already discussed. Given two different rules R and r2 with
r2 being propositional and provided that the expression in 72 is a substring of the
expression in R, then simplification can be applied to R by replacing the symbol in the

meaning with a free variable, and replacing the substring in R with a non-terminal.
- The following properties should hold at call time: R is instantiated to a grammar rule.

- The following properties should hold upon exit: If simplification could be applied to
the rule R provided, then R is replaced by the simplified rule in the agent’s grammar.

5.7. Agents

5.7.1. Module agent

The agent module is the one in charge of simulating the behaviour of each agent participating
in the simulation. It implements predicates which allow the agents to respond to incoming
messages when acting as hearers and to speak to other agents when acting as speakers. This
module is also responsible for collecting various information, such as the number of inventions
and adoptions per agent or the agent’s inner grammar. This information is used at the end of

the simulation to produce some statistics indicators of the overall process.

99

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.7.1.1. Usage and interface

- N
e Library usage:
:- use_module(agent) .

e Predicates:
— Ezxported predicates:
main/1, ag_socket_port/2, write_stream/2
e Other modules used:
— System library modules:
concurrency [concurrent/1, eng_call/3], dynamic [dynamic/1],
format [format/2], random [srandom/1],
read [read/2], sockets [bind_socket/3, socket_accept/2],
system [current_host/1], write [write/2, write_canonical/2]
— Model modules:
adaptation [repair_scores/5],
agent_params [games_played/1, update_games_played/O,
initialise/0], generation [generates/5, coherence/4],
interpretation [understands/7],
utils [atom_and_number/2, clean_atom/2, clean_body/2]

5.7.1.2. Documentation on relevant predicates

main/1 PREDICATE
main(X)

X is a list of 2 arguments of the form X = [AgentNumber, Seed]. Here, AgentNumber is
a single integer and it is understood as the identifier of the agent. Seed is an integer used
as a seed for the random Prolog generator (in our case, it is computed automatically).
Generally speaking, the behaviour of this predicate is to load the agent’s initial rules for

expressing propositions and prepare the agent to read and respond to messages.
Usage 1: main([+AgentNumber])

- Description: This predicate tries to satisfy in a separated engine stack (potentially a
new thread) a routine that reacts to messages sent to this agent in either the roles of
speaker or hearer. As a speaker, the expression generated to communicate a certain

logical formula is sent back and to the agent acting as a hearer.

60

5 SPECIFICATION: MODULES AND THEIR INTERACTION

As a hearer, the agent tries to interpret the expression received and updates its
rules accordingly, depending on whether the inferred formula agrees with the one the
speaker intended to communicate or not. This predicate also initialises the common
vocabulary for each agent and data predicates needed for invention and adoption

statistics.

- The following properties should hold at call time: Agent number must be instantiated

to a ground term.
ag_socket_port/2 PREDICATE
ag_socket_port(Port, NA)

Both arguments are integers. Port indicates the number of the port associated to the

agent with identifier NA.
Usage 1: ag_socket_port (+Port, -NA)
- Description: Obtain the identifier NA of the agent linked to port Port.

- The following properties should hold at call time: Port is instantiated to a ground

term.

- The following properties should hold upon exit: NA is instantiated to an integer

representing the agent associated to the port.
Usage 2: ag_socket_port(-Port, +NA)
- Description: Obtain the port number Port linked to the agent with identifier NA.
- The following properties should hold at call time: NA is instantiated to a ground term.

- The following properties should hold upon exit: Port is instantiated to an integer

representing the port associated to the agent.
write stream/2 PREDICATE
write_stream(Stream, Term)
Stream is a Prolog stream and Term is any term to write in it.
Usage 1: write_stream(+Stream, +Term)
- Description: The term Term is written to the Stream.

- The following properties should hold at call time: Both arguments are instantiated at

call time.

61

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.7.2. Module agent_params

This module defines several parameters that are part of the implementation of each agent in
the population. The actual values of these parameters however, should be maintained individually
by each agent, because they depend on the interaction history of each agent, which is different

from the interaction histories of the rest of the agents in the population.

First, it monitors the current number of the game being played by a particular agent. It also
maintains the identifiers of past grammar rules created by this agent, so that the agent can
select an appropriate identifier when adding new rules or inducing. Finally, it also implements a
predicate that needs to be called prior to the start of the simulation and loads the rules for the

propositional vocabulary and the initial variables needed.

5.7.2.1. Usage and interface

- N
e Library usage:
:- use_module(agent_params) .
e Predicates:
— Exported predicates:
games_played/1, initialise/0, new_rule_id/1,
update_games_played/0

e Other modules used:
- System library modules:

dcg_expansion [dcg_translation/2], dynamic[dynamic/1]

— Model modules:

conceptual_sys [new_exp/1l, propositions/1]

5.7.2.2. Documentation on relevant predicates

games_played/1 DATA PREDICATE
games_played (N)

N is an integer value.

62

5 SPECIFICATION: MODULES AND THEIR INTERACTION

Usage 1: games_played(-N)

- Description: This is a changing data predicate which provides the number of games

played by a particular agent at a certain point.

- The following properties should hold at call time: The fact games_played(N) should

exist in the database.

- The following properties should hold upon exit: N is the number of the last game

played.
- Multiplicity of solutions: This predicate succeeds only once.
initialise/0 PREDICATE
initialise.
This predicate describes an initialisation process conducted by all agents prior to the start
of the simulation itself.
Usage 1: initialise.

- Description: Upon calling, the rules that allow the agents to express the common
vocabulary for basic categories (which is assumed to be agreed on before starting the
simulation) are created. The predicate also initialises the data predicates counting

the number of rules created, its date and the number of games.

- The following properties should hold upon exit: Data predicates representing number
of games, rule identifiers and rule dates are added to the database, together with the
initial grammar rules on basic propositions. The agent is in an appropriate state to

start the simulation.
new_rule_id/1 PREDICATE
new_rule_id(Id)

I4 is an integer number representing the identifier that must be hold by the next rule

asserted during the simulation.
Usage 1: new_rule_id(-Id)

- Description: Id is instantiated to the integer of the next rule identifier to be used,
the one after the last rule created. This goal also sets the date of this new rule to the

number of the current game.

63

5 SPECIFICATION: MODULES AND THEIR INTERACTION

- The following properties should hold at call time: The data predicates rule_id/1
and games_played/1 must exist in the database. Their arguments should be integers
representing the first free identifier for a rule and the number of games played

respectively.

- The following properties should hold upon exit: The fact rule_id(Id) is retracted
and a new fact rule_id(Id1) is added, Id1 being Id+1. A fact rule_date(Id,D) is

also added, where D is the number of the current game.

5.8. General functionality

5.8.1. Module utils

This module implements various predicates that are of general interest. Typically, these are
used by various modules and provide certain operations on data structures. Those predicates
are not relevant to the user and not necessary to understand how the present model works, but

we decided to list them here regardless for reference.

5.8.1.1. Usage and interface

- N
e Library usage:
:- use_module(utils).

e Predicates:
— Exported predicates:
atom_and_number/2, clean_body/2, flatten/2, insert_at/4
remove_at/4, rnd_permu/2, rnd_select/3, subseq_rest/4
e Other modules used:

— System library modules:

random [random/3]

64

5 SPECIFICATION: MODULES AND THEIR INTERACTION

5.8.1.2. Documentation on relevant predicates

clean_body/2 PREDICATE

clean_body(Body, BodyC)

Body is instantiated to the body of a Prolog grammar rule. BodyC is of the same form but

without the module prefixes added by the Ciao system.
Usage 1: clean_body(+Body, -Body2)

- Description:: This predicate strips the prefixes ’dao_ chunk:’, 'multifile:’, ’lists:’ and
’iso__misc:’ from Body. To clean a rule body we first separate each literal in it. A literal
representing the score constructed with the infix operator ’is’ needs no cleaning.
For all other literals, we isolate the functor and keep stripping the prefixes added to

it until there are none remaining.

- The following properties should hold at call time: Body must be instantiated to the

right-hand side of a Prolog grammar rule.

- The following properties should hold upon exit: BodyC is instantiated with the same
content and structure as Body, but stripping any prefixes of the form ’dao_ chunk:’,

‘multifile:’; ’lists:’ or ’iso_ misc:’.

65

6 CASE STUDIES AND EXPERIMENTAL RESULTS

6. Case studies and experimental results

The model described and implemented in this project has been validated by conducting a series of
experiments that study both the emergence of a shared language system of logical constructions
and its transmission from one generation to the next. Our model’s behaviour in both of these

scenarios is discussed in the subsequent sections.

The results that we are going to analyse are produced automatically by the program at the
end of the simulation. After a series of runs with the parameters specified by the user, the model
developed outputs a graphical representation that shows how different indicators evolve within
the population and the final grammars for each agent. The indicators we use to describe the

behaviour of the population are as follows:

- Communicative success: Proportion of language games completed successfully.

Coherence: Proportion of language games in which the hearer correctly understood the
sentence communicated and in which the hearer would produce the same sentence if it had

to communicate the meaning the speaker had in mind itself.
- Adoption: Number of sentences adopted.

Invention: Number of sentences invented.

It is worth noting that the first two indicators are computed using a certain discretisation
step. Therefore, communicative success and coherence at an arbitrary point in a plot are the
average over a certain number of past language games. In contrast, adoption and invention are
calculated as the average values over all agents in the simulation and cumulatively since the first

language game played.

6.1. Emergence of a language system

Experiments to study the emergence of a shared language system follow exactly the mechanisms
described in chapter 3. At the beginning, agents in the simulation possess a common lexicon of
six basic categories but no grammar rules. The agents start then to play language games using
the logical formulas derived from combining the former categories with one unary or binary

boolean connective.

A possible outcome is shown in figure 6.1, which uses a population of 10 agents and simulates
3600 language games. It can be seen that communicative success increases swiftly, reaching its
peak (1.0) after 2385 games and not decreasing from that point onwards. Coherence also reaches

its maximum value and stabilises after 2385 games, but generally shows a slower progression

66

6 CASE STUDIES AND EXPERIMENTAL RESULTS

than communicative success, for the values of the latter remain practically 1.0 since game 975. In
turn, the number of adoptions show a steep increase during the first hundreds of language games,
before reaching its maximum value of 29.32 at game 1560 and remaining constant until the end
of the simulation. Inventions evolve in a curve with a similar fashion, attaining a maximum of
5.62 at game 315.

Ratio communicative success and coherence
Average times invention and adoption

success -1 5
coherence - - -
adoption
ilhvemtimn‘

o I 1 I 1 1 I 1 I 1 I 1 I o
4] 240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880 3120 3360 3600

Number of games played

Figure 6.1: Language system emergence experiment with a population of 10 agents playing 3600
language games. The results are averaged over 10 executions and using a step of 15 games.

The former results provide some insight into the behaviour of the model developed. Increasing
communicative success and coherence show that a common shared language allowing agents to
communicate has risen. It is also expected for the number of sentences adopted and invented
to reach a point of stagnancy. In the first case, this happens when all the agents have learnt
the vocabulary and grammatical constructions used by the other agents. In the second case, it
means that the agents have learnt all the vocabulary and grammatical constructions required
to express any logical formula. It seems reasonable that the latter occurs earlier on during the
simulation, that is to say agents can easily obtain an universal set of vocabulary and rules, but
the truly difficult task is for this set to be shared by (or equivalent to) the ones used by other

agents.

67

6 CASE STUDIES AND EXPERIMENTAL RESULTS

Nevertheless, it can be argued that an experiment with only 10 agents is far from realistic. In
another simulation shown in figure 6.2, we performed a similar experiment but this time using
a b times larger population of 50 agents, who play 18000 language games. While the number
of agents is still small, it may account for a small community in real life. In this case, full
communicative success is reached at game 15600 and full coherence is never achieved, although
it is invariably over 0.98 and increasing since game 13000. Even more language games would be
needed in this setting for perfect coherence. Adoptions do not stabilise either, and they keep

growing very slowly over 80.8. Inventions cease at game 2400 with an average value of 5.6.

What it is important to observe here by comparing the first and second experiments is that
time required for full coherence and communicative success grows significantly with respect to
an increase in the population. This is because in order to achieve a common language, agents
need to self-organise by speaking to each other many times, and the complexity of such a feat
increases combinatorially with the number of agents. For the very same reason the amount of
adoptions increases with respect to the former experiment. The number of inventions and its
evolution however, remains approximately the same, which is explained because the number of
logical connectives and propositions has not changed. Once the agents have invented or adopted
grammar rules to express all possible meanings, there is no need to invent any more sentences.

Also, there is no need either to invent already adopted rules for a particular meaning.

Ratio communicative success and coherence
Average times invention and adoption

success
coherence - - =
adoption
Hl'went\on)

o 1 L 1 L L 1 1 L 1 L L 1 o

o] 1200 2400 3600 4800 6000 7200 8400 9600 10800 12000 13200 14400 15600 16800 18000

Number of games played

Figure 6.2: Language system emergence experiment with a population of 50 agents playing 18000
language games. The results are averaged over 10 executions and using a step of 200 games.

68

6 CASE STUDIES AND EXPERIMENTAL RESULTS

Apart from the previous plots, the program also writes the final grammars for each partici-
pating agent, which can be consulted by the user when the simulation is finished. These indeed
show that we are obtaining sensible results and that the induction and adaptations mechanisms

are working as expected.

A grammar rule constructed by one of the agents in a particular simulation run of the
emergence experiment is shown next as an example of the former. It states that in order to
construct a meaning of the form [or,D,E], where D and E are certain propositions, this particular
agent can append a prefix “rev” (denoting the or connective), the word for E and the word
for D in this order. Moreover, this rule is highly preferred by this agent because of its score
weight of approximately 0.94. The score A of a sentence generated using this rule is computed as
the product of 0.94 times the scores of the propositional rules, J and M, which are computed

recursively in the same manner.

s([lor,D,E],A,28,47,[47|F],B,C) :-
’C’(B,r,®),
’C’(G,e,H),
’C’ (H,v,ID),
p(E,J,_,_,K,I,L),
p(D,M,_,_,N,L,C),
append (K,N,F),
A is J*M*0.9449220687198503.

6.2. Transmission of a language system

In the previous section, we have seen that our model is indeed capable of producing a shared
language via the self-organisation of the agents. This result assumes however, that the agents can
play language games indefinitely. In real life, the population is ever-changing and people are born

and die. Moreover, most individuals do not attain a perfect command of the language.

A simplified form of this circumstance can be simulated with the model developed as well. To
do this, we introduce in this section a variant to the previous experiment. The agents are now
divided into 3 equality sized groups: the elder, the adults and the young. They keep playing
language games under similar conditions as before, but now, after a certain number of language
games, a generation shift occurs. This is to say, the elders die, the adults become elders and the
young become adults. Additionally, a new group of agents are born to replace the fallen elders,
but their grammars are completely empty (except for basic categories) and thus they have no
knowledge of the language. With this setting we aim to see how a language system is passed

from one generation to the next.

69

6 CASE STUDIES AND EXPERIMENTAL RESULTS

Because this is a another type of language game, we needed to introduce a new module to
replace language_game, called language_game_trans. Nevertheless, owing to the independent
modular structure of the model, we were able to reuse all other modules. Overall, the main
difference between language_game and its variant is that the agents are divided into generational
groups, which are alternated after a number of simulations. The agents acting as elders are
replaced by new agents who only know the vocabulary for basic categories. After 3 generation

shifts the population is completely renewed, while the learning process remains constant.

Figure 6.3 shows the results obtained under these circumstances, with a population of 10
agents playing 4200 language games and generation shifts occurring every 500 language games.
Each time a new generation is introduced the four measures drop drastically, but they catch
up before the next generation of agents takes over. It is clear that the agents do not gain full
communicative success, although its values remain reasonably high at the peaks and typically
reach 0.97 right before a generation shift. Coherence follows closely with values of 0.95 or higher,
displaying a slower progression as previously discussed but now more attenuated as generations

ensue.

0.8 -

4z

Average times invention and adoption

Ratio communicative success and coherence

- 6

Success ———

coherence - - - -

adoption

invention

1 I 1 1 I 1 I 1 I 1 I 1 I)

o] 280 560 840 1120 1400 1680 1960 2240 2520 2800 3080 3360 3640 3920 4200

Number of games played

Figure 6.3: Language system transmission experiment with a population of 10 agents playing
4200 language games. Generation shifts occur every 500 language games. The results are
averaged over 10 executions and using a step of 15 games.

70

6 CASE STUDIES AND EXPERIMENTAL RESULTS

Invention shows small fluctuations when a generation shift occurs, but overall its values
are very similar to the ones in the emergence experiments, between 5.4 and 5.7. Adoption
follows a similar fashion and has a smaller average value of approximately 20. This is due to
the fact that new agents learn an already established language in the population, the language
that is transmitted from one generation to the next, whereas agents created in the emergence
experiments must learn all the constructions invented by the rest of the population. This
partially established language uses fewer variations (typically 1 or 2) for expressing a given

meaning.

In this new experiment, words are only invented by the young agents, who do not have
any knowledge of the language but however have the need to express some meanings when
playing language games. These invented words are often neglected by the other agents who
will probably teach to the young the broadly accepted sentence for expressing this particular
meaning. Nevertheless, in the long run it is possible that some of these words take over and
become accepted by the rest of the population. This happens in real life as well, where we often
see younger generations coining neologisms which can at times pose difficulties to the rest of the

population.

We now discuss the effects of using a larger population with the same type of language
game. In this case we used 50 agents playing 19200 language games and with generation shifts
occurring every 3800 games. The results obtained are shown in figure 6.4. It can be seen that
before the first shift, the agents did not have time to learn all the language and communicate
effectively. Thus, success and coherence values remain low and well under 0.5. Regardless, after
the new generation is introduced and the unavoidable drop in success and coherence occurs,
the population is able to overcome this situation and obtain a higher values of 0.9 and 0.75 for

communicative success and coherence respectively before the following generation shift.

As happened before in the smaller version of the experiment, communicative success and
coherence keep increasing and reach higher values after each generation and before the next
one, although now this effect is more visible. This is connected with a drop in the number of
adoptions, which keeps decreasing as generations ensue. Because the language progressively
becomes more and more solid and wide-spread among the 2/3 of the population who can actually
communicate successfully, there is less need to adopt new constructions. This task is eventually

left to the young agents only, who need to learn from the elder and the adults.

71

6 CASE STUDIES AND EXPERIMENTAL RESULTS

We also observed the former reduction of adoptions in the previous transmission experiment,
but now the change is more noticeable, and the number of adoptions drops from 56 in the third
generation to 25 in the last one. This is explained because of the increase in the population,
which allows more speaker-hearer combinations and thus contributes to sky-rocketing the number
of adoptions in the first few generations. We can see that in fact, the number of adoptions in
the last generation displayed (with a partially consolidated language) is more comparable to the

one in the experiment with a population of 10 agents.

0.8 -

H 98
0.8 -

0.7 84

.
0.8 - ! 4 70

0.5 [

’
0.4 - ’

Ratio communicative success and coherence
Average times invention and adoption

0.3 [

14
0.1 - success

coherence - - -
adoption
imvention
1 !

0 1 I 1 I I 1 1 I 1 I I 1 o
4] 1280 2560 3840 5120 6400 7680 8860 10240 11520 12800 14080 15360 16640 17920 15200

Number of games played

Figure 6.4: Language system transmission experiment with a population of 50 agents playing
19200 language games. Generation shifts occur every 3800 language games. The results are
averaged over 10 executions and using a step of 200 games.

72

7 PLANNING

7. Planning

This project has been developed during the Spring semester of the academic year 2014-2015.
More precisely, it began on the 14" of February and will finish on the 24*" of June, when the
submission deadline is set. The current chapter briefly explains the initial planning build during
the initial and mandatory Project Management Course (GEP) and analyses the deviations

encountered along the process.

7.1. Project Management Course (GEP)

According to the university regulations, this document must be submitted a week before the
date of the defense, which in our case is the 15¢ of July. Those regulations also define a set of

deadlines which were met successfully:
- 20" February 2015: Deliverable 1 (scope of the project).
- 25! February 2015: Deliverable 2 (temporal planning).
- 374 March 2015: Deliverable 3 (budget and sustainability).
- 8" March 2015: Deliverable 4 (initial presentation).
- 15" Match 2015: Deliverable 5 (contextualisation and bibliography).
- 22" March 2015: Deliverable 6 (computing specific module).
- 224 March 2015: Deliverable 7 (presentation and final document).
- 28™ April 2015: Progress meeting and report.
- 227 June - 27" June 2015: Delivery of the final document.
- 1%t July 2015: Defense.

Our original schedule (previous to the start of development) and the different tasks in which
the project was divided by then are represented in the Gantt chart shown below. The estimated
duration for each task is also stated in the diagram. Assuming that 4.5 hours are dedicated
to the project per day, the total amount of hours after combining all the tasks is of 550. This
number makes it feasible to complete the project, given the appropriate amount of dedication.
Note that a darker task colour in the Gantt chart denotes a task which is more difficult to

complete than the rest.

73

7 PLANNING

Name Begin date | End date | Duration |February ‘March ‘AWH Way ‘Jur\e
¢ General planning 2/10/15 3/20/15 29
= ¢ Initial research 2/16/15 3/18/15 23
© Agent-based models 2/16/15 2/20/15 5 (-]
@ Language systems 2/16/15 2/20/15 5 I:H
¢ Language games 2/23/15 2/27/15 5 I:I—\
@ Agents’ cognitive habilities 2/23/15 2/27/15 5 I:H,
@ Existing models and work 3/2/15 3/13/15 10 [=
© Project documentation 1 3/16/15 3/18/15 3
g e ion and docur i 3/19/15 5/27/15 50
@ Interaction module 3/19/15 3/24/15 4 [—
@ Control meeting 1 3/25/15 3/25/15 1
¢ Project documentation 2 3/25/15 3/27/15 3
© Speaker module 3/30/15 4/3/15 5 r:l—.\.
¢ Control meeting 2 4/6/15 4/6/15 1 ﬂl
© Project documentation 3 4/6/15 4/8/15 3 I:h,
¢ Hearer module 4/9/15 4/15/15 5 —
@ Control meeting 3 4/16/15 4/16/15 1
© Project documentation 4 4/16/15 4/20/15 3
@ Adaptation module 4/21/15 5/1/15 9
© Control meeting 4 5/4/15 5/4/15 1]
¢ Project documentation 5 5/4/15 5/6/15 3 r:h_
¢ Induction module 5/7/15 5/22/15 12 __J_
¢ Control meeting 5 5/25/15 5/25/15 1 ﬂl
© Project documentation 6 5/25/15 5/27/15 3
¢ Experiments 5/28/15 6/5/15 7 E_ﬁ
¢ Documentation of use cases 6/8/15 6/18/15 9
© Model validation and analysis 6/19/15 6/23/15 3 I:h
¢ Finalisation 6/24/15 6/26/15 3]

Figure 7.1: Gantt chart of initial tasks within the project and their durations and dependencies.

7.2. Deviations and corrections

The initial planning of this work, shown in the previous section and derived from the GEP
course, was general to a certain extend, owing to the research nature of this project. At the time
of planning, some details about the implementation or the most appropriate course of action to
solve possible problems were not well defined or known. Similarly, the experiments we would

perform after successfully implementing the model were not established.

Despite this imprecision, we have accomplished the original planning to a great extend, but
with some alterations. During the development of the project minor difficulties have risen, and
these have introduced some delay in the overall process and forced us to reconsider certain
aspects. The initial research and familiarisation with the model took longer than expected, which
caused delays in the successive implementation of each one of the modules. This implementation

also took a bit longer than originally estimated to complete.

74

7 PLANNING

A scenario like the former was already foreseen and accounted for. Because of this, we were
able to simplify the implementation of some parts of the project, still achieving functionality and
maintaining the original objectives. In particular, we used a simpler induction module which
does not feature chunking for rule simplification. Also we cut the number of experiments planned
from three to two, covering only language emergence and transmission. Still, with these we
are providing good examples of how to use and customise the modules while obtaining relevant

results.

In economic terms there is not a significant change either. Unforeseen costs were calculated in
case more hours were needed for unavoidable complications. However, given the simplifications
we introduced in the model and the pruning of one of the planned experiments, the costs remain
stable.

75

8 BUDGET AND SUSTAINABILITY

8. Budget and sustainability

This last chapter covers the budget of the current project and its sustainability, taking into
account the scope and planning previously defined. First of all, we find a description of the
costs, both material and human. It follows an analysis of possible deviations and their potential
affectation. Finally, the project is viewed from the economical, social and environmental

perspectives.

8.1. Budget estimation

We will now consider the required budget in order to complete the project. Expenses are
divided in three different sections, depending on the nature of the resources considered: hardware,
software and human. At the end, all sections are combined in a comprehensive table covering
the global cost of the project. It is worth noticing that the depreciations presented are computed
based on the estimated lifetime for each product and the assumption that the project is going to

last 4 months.

8.1.1. Hardware resources

Hardware resources are described in Table 2. The project itself can be completed using only
one computer, and no other machinery is required. This computer can be an average model with
no particular requirements and will be used in all tasks, from the initial research and planning

to the final presentation and document. Therefore hardware costs are considered general.

Product Price Estimated lifetime Time used Depreciation
Laptop (with peripherals) € 1000.00 4 years 4 months €84.00
Total €1000.00 - - €84.00

Table 2: Hardware budget components.

8.1.2. Software resources

Table 3 shown below summarises the costs of the necessary software to develop our project.
The VirtualBox software and the Debian operating system will mainly be used during development
and testing, and the other tools will be used in all tasks. Software costs are also regarded as

general costs.

76

8 BUDGET AND SUSTAINABILITY

Product Price Estimated lifetime Time used Depreciation

Microsoft Windows 8.1 €120.00 4 years 4 months €10.00
Debian 6.0 Free 4 years 3 months -
Oracle VM VirtualBox 4.3.28 Free 4 years 3 months -
Ciao Prolog 1.10#8 Free 4 years 4 months -
Emacs 23.4 Free 4 years 4 months -
KTEX (TexStudio 2.8.8) Free 4 years 4 months -
Dropbox Free 4 years 4 months -

Total €120 - - €10.00

Table 3: Software budget components.

8.1.3. Human resources

This project could be executed by 3 individuals with differentiated roles. Table 4 describes
the cost of the human resources needed in this case. Because human resources are considered

direct costs, Table 5 summarises the distribution of the expenses among the project tasks given

in figure 7.1.
Role Estimated time Amount per hour Cost
Project manager (M) 130 h €40 €5200.00
Computer Science researcher (R) 356 h €25 €8900.00
Model tester (T) 72 h €20 € 1440.00
Total 558 €28.33 € 15540.00

Table 4: Human resources budget.

As it can be observed, the project manager will be responsible for general planning, supervising
and resolving any logistical issues that may arise. However, the development process will be
completed entirely by the researcher, who needs to implement the model itself. Finally, the tester
is the person who will perform the final tests and validate the model. The latter will also take
part in the development process, as a good amount of the tests need to be performed after the
completion of certain modules. Therefore, because of the iterative and incremental developing

methodology used in this project, the researcher and the tester need to work together.

7

8 BUDGET AND SUSTAINABILITY

Task Days Hours per day Resource Cost
General planning 29 4.5 M € 5200.00
Initial research 23 4.5 R € 2587.50
Implementation and documentation 50 4.5 R, T € 5400.00
Experiments 7 4.5 R, T € 755.00
Documentation of use cases 9 4.5 R €1012.50
Model validation and analysis 3 4.5 T €270.00
Finalisation 3 4.5 R, T € 303.75

Table 5: Human resources budget split among tasks in figure 7.1.

8.1.4. Indirect costs

We also need to consider some indirect cost derived from using the previous resources and

from tools such as internet or printers. Those are summarised in Table 6.

Component Cost
Electricity (0.1 kW / 600 hours) €15.00
Internet €40.00
Paper and printing €20.00
Total €75.00

Table 6: Summary of indirect costs.

8.1.5. Unforeseen costs

It is necessary to account for some non-predicted circumstances that may cause the project
to be more expensive than previously planned as well. For example, it may be possible that
more working hours are required in order to complete the project because the development did
not proceed as expected. Another possibility is that our computer becomes unusable at some
point during the project due to a software or hardware error. Table 7 summaries those costs
and the reserved amount considered, which is proportional to the probability of an unforeseen

circumstance occurring.

78

8 BUDGET AND SUSTAINABILITY

Component Risk Cost Amount reserved
Laptop crash 0.05 €800.00 €40.00
Extended project time 0.25 €4000.00 € 1000.00
Total €1040.00

Table 7: Summary of unforeseen costs.

8.1.6. Cumulative budget

Using data from the previous tables, this section summarises all costs within the project.
Here, some additional contingency amount has been added for impediments, amounting to a
10% of the total budget. The results are displayed in Table 8 below.

Component Cost

Hardware resources €84.00

Software resources €10.00
Human resources € 15540.00

Indirect costs €75.00
Contingency item (10%) €1572.10
Unforeseen costs €1040.00
Total €18321.10

Table 8: Final complete budget.

8.2. Budget control

It is possible that the development of the project does not fit the a priori established plan. This
is due to the limited amount of time and the complexity associated to the model. Nevertheless,
in the event of any difficulty, it is certain that we will not need any additional software or
hardware resources, as only technical difficulties can arise. Also, if there were any problems with
the software before mentioned, we could use a free alternative available on the market. To sum

up, the hardware and software budgets will most likely remain stable.

79

8 BUDGET AND SUSTAINABILITY

The development process is divided in various modules and takes a great portion of the total
time, involving the researcher and the tester in it. We need to take into account that if the
complexity of the project scales, we may require them to work more hours and consequently,
to be paid more. Hiring additional workers will not help in this situation, because it is very
complicated for a newcomer to make useful contributions to a partially finished model. The cost
that such a circumstance may incur has already been considered as an unforeseen cost in our

estimations.

To keep track of the discrepancies between the real cost of the project and the cost here
computed, we will maintain the real amount expended for each one of the completed tasks in a
file. At the end of a task then, we will be able to compute the deviation between the real and
the hypothetical cost. Using this strategy we can quickly detect those deviations, identify where

and why they occurred and calculate the additional cost necessary.

8.3. Sustainability of the project

8.3.1. Economic sustainability

This is a research-oriented project and its aim is not to build a product that may be directly
purchased by customers. While in the future it may help to develop or improve other systems,

at the moment is not integrated to any bigger project.

The salaries of the employees comprise nearly all the budget established for this project. In
contrast, the hardware and software is cheap and constitutes a very small portion of the total

cost. The total amount is very reduced and adapted to a project of this size and character.

Finally, I would like to remark that it is not possible to replicate this project in significantly
less time, unless code of a previous similar implementation is recycled. In the same fashion, the

whole model implemented, or parts of it, may be included in other programs or products.

We will regard this project as completely viable from the economic point of view, for its
price is very affordable and it does not require using expensive equipment or working in large

teams.

80

8 BUDGET AND SUSTAINABILITY

8.3.2. Social sustainability

With this project, we want to investigate human communicative processes and language
evolution. Even though the topic is closely related to humans, the project does not directly
provide any immediate benefit to the society. Similarly, and because no product is built, there is
not any improvement in the consumer’s quality of life or any harm to a particular individual or

collective.

In the future, some other investigations or ideas may use the result of this project to aid them
in developing new products that may actually be useful. This is, in part, one of the objectives of

conducting this research.

This project however, does not contribute to enhancing the quality of life of any member
of the society nor user. The model implemented does not directly nor necessarily unfold any
enhancement in this regard. Nevertheless, it provides a tool for other researchers to further
investigate in the area of language origin and evolution, which may eventually report some
benefits.

8.3.3. Environmental sustainability

It is within general understanding that, after completing the project, a computer is a product
that can be used for a broad range of tasks, deprecating its own cost. Since the other resources
needed are mainly software, the only non environmentally friendly resource is the electricity
needed to run the computer. However, even this is not an important amount compared to what

a typical student would use.

We can compute an estimation of the COy produced based on electricity consumption.
According to governmental sources, the energy mix in Spain is approximately 267g of COs per
kWh. Using this data, and assuming a computer with 100W of power working an average of 5

hours per day, the carbon footprint of this project is around 15kg of COs.

For the aforementioned reasons, we consider this project to be very low resource-consuming,
since it only requires software products and a simple computer, and the electricity consumption
and carbon emissions are kept in a low level. The materials employed in building the computer
and manufacturing the software are certainly complicated to estimate, but at any rate, not likely

to be particularly harmful.

81

9 CONCLUSIONS

9. Conclusions

In this work we have successfully implemented an existing model [SSn14] to study the emerge
and evolution of a language system of logical constructions. Following the original planning, this
model has been tested through several experiments which simulate a scenario where a group
of autonomous agents try to communicate about subsets of objects characterised by logical

combinations of common basic categories.

The results obtained show that it is indeed possible for a shared vocabulary over boolean
connectives and a set of grammatical constructions to emerge as the result of self-organisation
processes within the population. Via the agents’ interactions, each individual is able to adapt
its preferences for vocabulary and grammatical constructions to those they observe are used

more often by other agents.

Additionally, the experiments conducted show that the same adaptation, adoption, invention
and induction mechanisms that allow a group of agents to construct a shared language system
of logical constructions also enable the transmission of this very language system from one

generation to the next.

Prolog has been the programming language of choice to develop our model, which is also
structured in a series of reusable and independent modules implementing different functionalities
within the simulation, such as the adaptation or induction mechanisms or the type of language
game used. These modules can be combined in order to build models studying other kinds of

language systems or using different language strategies.

The former design decisions and choice of programming language have been adopted because
we would like this implementation to become a tool that can be used by other researchers
in linguistics or related fields. To this effect, we also provide a detailed specification and
documentation of each module that can be consulted in order to gain deeper knowledge of how

the model here implemented works.

To conclude, and looking at this project from an academic point of view, I have gained insight
and maturity in different topics, ranging from the working principles of agent-based models to
advanced topics in logic programming and Prolog (a language in which I did not have much
experience beforehand) or research results on the evolution of grammatical systems from the
perspective of evolutionary linguistics. I find it valuable that computing as a field is able to
open to other areas of knowledge and cooperate with other professionals in order to help develop

new systems and unravel the unknown.

82

10 FUTURE WORK

10. Future work

Different aspects could be extended or incorporated to the implementation provided in order
to increase its functionalities or usability. The modular design of our model makes it easier
to include variations in the simulation, replacing certain parts and reusing the ones which are
common for all experiments. Those issues were not addressed during development because of
the inherent time limitations of this project, but nevertheless some possible future upgrades are

mentioned below:

- Spatial distribution: Experiments studying spatial distribution [dLAOO] consider the
fact that some agents tend to communicate more frequently with a certain group of agents
than with the rest. It is certainly a phenomenon present in real life (usually promoted by
geographical features or cultural differences) that leads to the emergence and transmission
of various languages within the same population. The model here developed could be
used to simulate and study this as well, by altering the predicate players in the module
population so that the pairs of agents chosen to participate in language games are not

uniformly distributed.

- Guessing game: Other types of language games could also be included in this model in
order to simulate more aspects of language evolution. In particular the guessing game
[Ste98], in which the hearer does not receive direct feedback on the meaning that the
speaker is trying to communicate, allows studying the co-evolution of syntax and semantics.
In the guessing game the speaker points to the object it wants to communicate and the
hearer must construct its own conceptualization of the topic which might be different
from the meaning used by the speaker. This type of language game could also be added
to the model developed, by introducing variations in the modules language_game and

interpretation.

- Graphical interface: At the current state, the model developed needs to be compiled and
executed from a terminal window passing the necessary parameters to run the simulation.
While this can be done in a single command line using a provided script, it can prove
difficult to some potential users not familiar with this kind of environment. A graphical

interface would certainly make the program more usable and intuitive.

83

Bibliography

[BCCT06]

[Bra90]

[BS13]

[CKPR72

[CMO3]

[dLA00]

[DSB11]

[GSB12]

[Kir02]

[PH12]

[SBOS]

[SBKO03]

F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lopez, and Puebla G. The Ciao
Prolog System. REFERENCE MANUAL. Technical University of Madrid, University
of New Mexico, 2006.

I. Bratko. PROLOG Programming for Artificial Intelligence. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1990.

K. Beuls and L. Steels. Agent-Based Models of Strategies for the Emergence and
Evolution of Grammatical Agreement. PLoS ONE, 8(3):e58960, 2013.

A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. In Un systéme de commu-
nication en francais, Technical Report I. Groupe Intelligence Artificielle, Université
Aix-Marseille II, 1972.

William F'. Clocksin and Christopher S. Mellish. Programming in Prolog: Using the
IS0 Standard, Fifth Edition. Springer-Verlag, Berlin, 2003.

J. de Lara and M. Alfonseca. Some strategies for the simulation of vocabulary
agreement in multi-agent communities. Journal of Artificial Societies and Social
Simulation, 3(4), 2000.

A. M. Di Sciullo and C. Boeckx. The Biolinguistic Enterprise: New Perspectives
on the Evolution and Nature of the Human Language Faculty. Oxford Studies in
Biolinguistics. Oxford University Press, 2011.

K. Gerasymova, M. Spranger, and K. Beuls. A Language Strategy for Aspect: En-
coding Aktionsarten through Morphology. In Ezperiments in Cultural Language
FEvolution, volume 3 of Advances in Interaction Studies, pages 257-276. John Ben-

jamins, Amsterdam, 2012.

S. Kirby. Learning, Bottlenecks and the Evolution of Recursive Syntax. In Lin-
guistic Evolution through Language Acquisition: Formal and Computational Models.

Cambridge University Press, 2002.

S. Pauw and J. Hilferty. The emergence of quantifiers. In Fxperiments in Cultural

Language Evolution. John Benjamins, 2012.

L. Steels and T. Belpaeme. Coordinating perceptually grounded categories through
language: A case study for colour. Behavioral and brain sciences, 28(4):469-529,
2005.

K. Smith, H. Brighton, and S. Kirby. Complex systems in language evolution:
the cultural emergence of compositional structure. Advances in Complex Systems,
6(4):537-558, 2003.

84

[S594]

[SS00]

[$S07]

[SS12]

[SSn14]

[SSn15]

[Ste95)

[Ste98]

[Ste99]
[Stella]

[Stellb]

[Stel2]

[Vog05]

[vT12]

L. Sterling and E. Shapiro. The Art of Prolog (2nd Edition): Advanced Programming
Techniques. MIT Press, Cambridge, MA, USA, 1994.

J. Sierra-Santibanez. Revised notes of "Advanced Topics in Artificial Intelligence’.
Computer Science Department, Escuela Politécnica Superior, Autonomous University
of Madrid, 2000. Chapter I: Introduction to Prolog.

J. Sierra and J. Santibafiez. The acquisition of linguistic competence for communi-
cating propositional logic sentences. In Engineering Societies in the Agents World
VIII, 8th International Workshop, ESAW, pages 175-192, 2007.

M. Spranger and L. Steels. Emergent functional grammar for space. In Fxperiments

in Cultural Language Evolution. John Benjamins, 2012.

J. Sierra-Santibanez. An agent-based model studying the acquisition of a language
system of logical constructions. In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, AAAI-2014, pages 350-357. AAAI Press, 2014.

J. Sierra-Santibanez. An agent-based model of the emergence and transmission of
a language system for the expression of logical combinations. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI-2015, pages 492—-499.
AAAI Press, 2015.

L. Steels. A self-organizing spatial vocabulary. Artificial Life, 2:319-332, 1995.

L. Steels. The Origins of Ontologies and Communication Conventions in Multi-Agent
Systems. Autonomous Agents and Multi-Agent Systems, 1(2):169-194, 1998.

L. Steels. The Talking Heads Experiment. Laboratorium, Antwerpen, Belgium, 1999.
L. Steels. Design patterns in Fluid Construction Grammar. John Benjamins, 2011.

L. Steels. Modeling the cultural evolution of language. Physics of Life Reviews,
8(4):339-356, 2011.

L. Steels. Self-organization and selection in cultural language evolution. In Ezper-
iments in Cultural Language Fvolution, pages 1-37. John Benjamins, Amsterdam,
2012.

P. Vogt. The emergence of compositional structures in perceptually grounded language
games. Artificial Intelligence, 167(1-2):206-242, 2005.

R. van Trijp. The evolution of case systems for marking event structure. In Fxperi-

ments in Cultural Language Evolution. John Benjamins, Amsterdam, 2012.

85

A. User manual

The simplest way to use the program provided is by invoking the script run.sh. To do so please

follow the next steps:

1. Open a new terminal.

2. Access the root directory of the project.

3. Run the command ./run.sh [runs] [mode] [iterations] [step] [agents]
The run.sh script takes the 5 arguments detailed next:

[runs]: number of complete simulations to be performed.

[mode]: “emerge” for emergence experiments or “trans” for transmission experiments.

[iterations]: number of language games per simulation.

[step]: interval to use when collecting and producing statistics.

[agents]: size of the population in each simulation.

After each run is completed, all agents will write [end of simulation] to its output terminal.

When the overall simulation is finished, two new directories will be created:

- ./run/X/: contains separate information of each run X. Grammars of each agent appear
in the files gram_Y.txt, and evol_com.txt collects information about communicative
success and coherence of the population. Files with the names ad_N.txt and inv_N.txt

keep track of adoption and invention for agent N.

- ./plot/: contains plots which represent the overall process. The mean communicate
success and coherence of the population is plotted, together with the average number of

adoptions and inventions. Files are generated in png format only.

Note: Advanced users may wish to use the Makefile provided with the following targets:
- make all: clean & compile targets.
- make clean: deletes ALL files produced by previous simulations.

- make compile: compiles the source code using CIAO.

B. Applicable laws and regulations

The model presented in this project is programmed using ISO-Prolog, which is affected by
the standards ISO/IEC 13211-1 (core elements of Prolog) and ISO/IEC 13211-2 (support for

modules in Prolog).
Additionally all the software used is free, as stated by the licenses given below:

- GNU Emacs 23.4 : GNU General Public License (GPLv3).

Available from http://www.gnu.org/software/emacs/.

- Oracle VM VirtualBoz 4.53.28 : GNU General Public License (GPLv3).
Available from https://www.virtualbox.org/.

- Debian 6.0 Squeeze : GNU General Public License (GPLv3).
Available from https://www.debian.org/.

- Ciao System 1.10 : GNU Lesser General Public License (LGPLv2).
Available from http://ciao-lang.org/

We are studying whether to offer the tool developed as free software as well, possibly under the

GNU General Public Licence (GPLv3) or a similar license.

	Introduction and objectives
	Scope of the project
	Working methodology and validation
	Actors and stakeholders
	Resources and impact

	Agent-based models
	Language systems
	Examples in the literature
	Compositional structure
	Agreement systems
	Verb tense aspect

	A model to study logical constructions
	A language system for expressing logical constructions
	Conceptual system
	Linguistic system

	Language game
	Cognitive capabilities
	Generation and invention
	Interpretation and adoption
	Induction
	Adaptation

	This project in the literature

	The Prolog programming language
	Fundamentals and logic programming
	Definite Clause Grammars
	Extension of the grammar formalism

	Structure inspection
	Meta-logical predicates
	Extra-logical predicates
	Second-order programming

	Specification: modules and their interaction
	Simulation
	Module language_game
	Module population

	Conceptual system
	Module conceptual_sys

	Generation and invention
	Module generation

	Interpretation and adoption
	Module interpretation

	Adaptation
	Module adaptation

	Induction
	Module induction

	Agents
	Module agent
	Module agent_params

	General functionality
	Module utils

	Case studies and experimental results
	Emergence of a language system
	Transmission of a language system

	Planning
	Project Management Course (GEP)
	Deviations and corrections

	Budget and sustainability
	Budget estimation
	Hardware resources
	Software resources
	Human resources
	Indirect costs
	Unforeseen costs
	Cumulative budget

	Budget control
	Sustainability of the project
	Economic sustainability
	Social sustainability
	Environmental sustainability

	Conclusions
	Future work
	Bibliography
	User manual
	Applicable laws and regulations

