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Abstract
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In this work, a coordinate change of state variables is performed for drift-less systems of

dimension m+2 with 2 inputs using Goursat Normal Form. Then, we de�ne a feedback law

that will allow us to convert the original system into chained form. Later on, we �nd the

�at outputs and de�ne a new feedback law. Finally, numerical simulations are presented for

a planar space robot, a mobile robot with a trailer and a N-trailer.
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1
Introduction

Feedback linearization of control systems allows us to apply the theory of linear sys-

tems to the nonlinear ones and to design inputs in order to move the system along a

trajectory given initial and �nal points.

A particular case of dynamic feedback linearization is to linearize using the Goursat

normal form. Once the Goursat normal form is found, the �at outputs are derived

easily. This procedure requires several computations to determine if a system can be

linearizable by feedback linearization. However, for nonholonomic systems, it becomes

an easier task.

The compilation of results involving feedback linearization and the computation of

�at outputs using Pfa�an systems are presented in this work work. We will focus on

applying feedback linearization to robotic systems.

This project is divided into 3 di�erent topics. First of all, we give the algebraic notions

and several results involving exterior di�erential systems that will be used through

the di�erent chapters as well as the theory about Goursat normal forms and how to

obtain them. All this is contained in Chapters 2 to 5.

Then, Chapter 6 contains a simpli�ed model of a planar space robot that is feedback

linearized using Pfa�'s Theorem. In Chapter 7, a feedback linearization of a mobile

robot with a trailer is presented using Engel's Theorem. Numerical simulations are

presented in Chapters 6 and 7.

Finally, in Chapter 8 the Goursat normal form for the N-Trailer problem is realized.

We will prove that the N-Trailer can be transform into Goursat Normal Form and

therefore, into chained form. Later on, we will proceed to transformed the N-Trailer

taking coordinates from the last trailer. Finally, numerical results are presented for

a 2-trailer and a 3-trailer.
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2
Algebra

2.1 Multilinear Algebra and Ideals

De�nition 2.1.1 (Algebra). An algebra (V,�), is a vectorial space V over a �eld

(we will normally use the real �eld), with a multiplicative operation � : V ×V −→ V

that satis�es:

Given a scalar α ∈ R, α(a� b) = (αa)� b = a� (αb).

If there exists an element e ∈ V such that x� e = e� x = x, ∀x ∈ V , then it is

unique and we call it neutral or identity element.

De�nition 2.1.2 (Algebraic Ideal). Let (V,�) be an algebra, we say that a subspace

W ⊂ V is an algebraic ideal if

x ∈W, y ∈ V =⇒ x� y, y � x ∈W.

We recall that the intersection of ideals is also an ideal.

De�nition 2.1.3 (Minimal Ideal). Let (V,�) be an algebra and letA := {ai ∈ V, 1 ≤ i ≤ K}
be any �nite collection of linearly independent elements in V . Let S be the set of all

ideals containing A, i.e.

S = {I ⊂ V, I ideal, A ⊂ I} .

The ideal IA generated by A is de�ned as:

IA =
⋂
I∈S

I

and it is the minimal ideal in S containing A.

Theorem 2.1.1. Let (V,�) be an algebra with an identity element. Let A :=

{ai ∈ V, 1 ≤ i ≤ K} be a �nite collection of elements in V and IA the ideal gener-

ated by A. Then for each x ∈ IA there exist vectors v1, . . . , vK ∈ V such that

x = v1 � a1 + v2 � a2 + . . .+ vK � aK .

De�nition 2.1.4. Let (V,�) be an algebra and I ⊂ V an ideal. Two vectors x, y ∈ V
are said to be equivalent modulus I if and only if x−y ∈ I. This equivalence is denoted
by

x ≡ y mod I.
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If the space (V,�) has an identity element, the above de�nition implies that there

exists equivalence between vectors if and only if

x− y =

K∑
i=1

θi � αi

for any θ1, . . . , θK ∈ V . We will denote it as

x ≡ y mod α1, α2, . . . , αK

due to the fact that the modulus operation is performed over the ideal generated by

α1, α2, . . . , αK .

2.2 Exterior Algebra

We consider V a vectorial space, V ∗ its dual space and Λk(V ∗) the vectorial space of

the alternating k-tensors with a multiplicative operation. The wedge product is the

usual operation but this is not closed in the space Λk(V ∗). Therefore, Λk(V ∗) is not

an algebra with this operation.

We de�ne the direct sum operation on the all alternating tensors space as

Λ(V ∗) = Λ0(V ∗)⊕ Λ1(V ∗)⊕ · · · ⊕ Λm(V ∗).

Then, given ξ ∈ Λ(V ∗), this tensor can be writen as ξ = ξ0 + ξ1 + · · · + ξm where

each ξp ∈ Λp(V ∗). Notice that Λ(V ∗) is closed under the exterior multiplication. It

is therefore an algebra.

De�nition 2.2.1 (Exterior Algebra). The space of all the alternating tensors with

the exterior product, (Λ(V ∗),∧), is an algebra called the exterior algebra over V ∗.

We note that the algebra (Λ(V ∗),∧) has the identity element since 1 ∈ Λ0(V ∗). The

Theorem 2.1.1 implies that the ideal generated by a �nite set

Σ =
{
αi ∈ Λ(V ∗), 1 ≤ i ≤ K

}
.

can be written as

IΣ =

{
π ∈ Λ(V ∗) : π =

K∑
i=1

θi ∧ αi, θi ∈ Λ(V ∗)

}
.

Given an arbitrary set Σ of linearly independent generators, it may also be possible

to generate IΣ with a smaller set of generators Σ′.

2.3 Systems of Exterior Equations

The goal of this section is to solve the following system of equations

α1 = 0, . . . , αK = 0

where αi ∈ Λ(V ∗).
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De�nition 2.3.1 (System of Exterior Equations). A system of exterior equations

over V is a �nite set of linearly independent equations

α1 = 0, . . . , αK = 0

where each αi ∈ Λk(V ∗) for some 1 ≤ k ≤ m. A solution to a system of exterior

equations is any subspace W ⊂ V such that

α1|W ≡ 0, . . . , αK |W ≡ 0

where α|W stands for α(v1, . . . , vk) for all v1, . . . , vk ∈W .

We have to keep in mind that there is not uniqueness of the solutions of this system

since any subspace W1 ⊂W satis�es α|W1 ≡ 0 if α|W ≡ 0.

Theorem 2.3.1. Given a system of exterior equations α1 = 0, . . . , αK = 0, and the

corresponding IΣ generated by the collection of alternating tensors Σ =
{
α1, . . . , αK

}
where αi ∈ Λ(V ∗). A subspace W solves the system of exterior equations if and only

if also satis�es π|W ≡ 0 for all π ∈ IΣ.

Proof. If π|W ≡ 0 for all π ∈ IΣ then, since the ideal is generated by Σ =
{
α1, . . . αK

}
,

each αi belong in IΣ and consequently αi|W ≡ 0, ∀αi ∈ IΣ.

Reciprocally, if π ∈ IΣ, it can be written as

π =

K∑
i=1

θi ∧ αi, θi ∈ Λ(V ∗).

Hence, if αi|W ≡ 0 for 1 ≤ i ≤ K implies that π|W ≡ 0.

2

This result allows us to treat the system of exterior equations, the set of generators for

the ideal, and the algebraic ideal as essentially equivalent objects. From here, we may

abuse notations and denote the system of equations as its corresponding generator

and the generator set as its corresponding ideal.

De�nition 2.3.2 (Generators Algebraically Equivalents). Let Σ1 and Σ2 be two sets

of generators. If IΣ1 = IΣ2 , i.e., they generate the same ideal, we will say that the

generators are algebraically equivalents.

We will use this de�nition to represent the system of exterior equations in a simpli�ed

way.

De�nition 2.3.3 (Associated Space). Let Σ be a system of exterior equations and

IΣ the ideal which it generates. The associated space of the ideal IΣ is de�ned by

A (IΣ) = {v ∈ V : v yα ∈ IΣ,∀α ∈ IΣ} .

De�nition 2.3.4 (Retracting Space). The dual associated space, or retracting space

of the ideal is de�ned by C(IΣ) = A (IΣ)
⊥ ⊂ V ∗.
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Once the retracting space is determined, one can �nd an algebraic equivalent system

Σ′ that is a subset of Λ(C(IΣ)), the exterior algebra over the retracting space.

Theorem 2.3.2. Let a1, . . . , am be a basis for V . Then the value of an alternating

k-tensor ω ∈ Λk(V ∗) is independent of a basis element ai if and only if ai yω ≡ 0.

Proof. Let φ1, . . . , φm be a dual basis of a1, . . . , am. Then ω can be written with

respect to the dual basis as

ω =
∑
J

dJφ
j1 ∧ φj2 ∧ . . . ∧ φjk =

∑
J

dJψ
J

where the sum is taken over all ascending k-tuples J . If a basis element ψJ does not

contain φi, then clearly ai yψJ ≡ 0.

If a basis element contains φi, then ai y ∧φj1∧φj2∧. . .∧φjk 6≡ 0 because ai can always

be matched with φi through a permutation that a�ects only the sign. Consequently,

(ai yω) ≡ 0 if and only if the coe�cients dJ of all the terms containing φj are zero.

2

Theorem 2.3.3 (Characterization of Retracting Space). Let Σ be a system of exterior

equations and IΣ its corresponding algebraic ideal. Then there exists an algebraically

equivalent system Σ′ such that Σ′ ⊂ Λ(C(IΣ)).

Proof. Let v1, . . . , vm be a basis of V and φ1, . . . , φm be the dual basis, selected

such that vr+1, . . . , vm span A(IΣ). Consequently φ1, . . . , φr must span C(IΣ). By

induction:

Consider α be any 1-tensor in IΣ. With respect to the chosen basis, α can be written

as

α =

m∑
i=1

aiφ
i.

Taking into account that v yα ≡ 0 mod IΣ for all v ∈ A (IΣ), then ai = 0 for

i = r + 1, . . . ,m. Hence,

α =

r∑
i=1

aiφ
i.

Therefore, all the 1-tensors in Σ are contained in Λ1(C(IΣ)). Now, suppose that all

the tensors of degree less or equal than k in IΣ are contained in Λ(C(IΣ)). Let α be

any (k + 1)-tensor in IΣ. We consider the tensor

α′ = α− φr+1 ∧ (vr+1 yα).

The term vr+1 yα is a k-tensor in IΣ by the de�nition of associated space, and thus,

by the induction hypothesis, it must be in C(IΣ). The wedge product of this term

with φr+1 belongs in Λ(C(IΣ)). Furthermore,

vr+1 yα
′ = vr+1 yα− (vr+1 yφ

r+1) ∧ (vr+1 yα) + φr+1 ∧ (vr+1 y (vr+1 yα)) ≡ 0.

By the Theorem 2.3.2, α′ has no terms involving φr+1.
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If we now replace α by α′, the ideal generated will be unchanged since

θ ∧ α = θ ∧ α′ + θ ∧ φr+1 ∧ (vr+1 yα)

and vr+1 yα ∈ IΣ.
We can repeat this process for vr+2, . . . , vm to produce an α̂ that it is a generator of

IΣ and an element of Λ(C(IΣ)).

2

De�nition 2.3.5 (Space of Linear Divisors). Given α a p-form, we de�ne the space

of linear divisors of α as

Lα = {ω ∈ V ∗ : ω ∧ α = 0} .

Theorem 2.3.4. Let IΣ be an ideal generated by the set:

Σ =
{
ω1, . . . , ωs,Ω

}
where ωi ∈ V ∗ and Ω ∈ Λ2(V ∗). Let r be the smallest integer such that

(Ω)r+1 ∧ ω1 ∧ . . . ∧ ωs = 0.

Then, the retracting space C(IΣ) has dimension 2r + s.

Proof. We consider the �rst case s = 0. Then,

Σ = {Ω} and (Ω)r+1 = 0.

Since the ideal generated by Σ is de�ned as

IΣ =

{
π ∈ Λ(V ∗) : π =

m∑
i=1

θi ∧ Ω, θi ∈ Λ(V ∗)

}
.

any element of IΣ will be a linear combination of Ω,Ω2, . . . ,Ωr.

Since Ω ∈ Λ(C(IΣ)) and Ωr ∈ Λ2r(C(IΣ)) then

dim(C(IΣ)) ≥ 2r.

Let's consider f : V −→ V ∗ a linear map de�ned as

f(x) = x yΩ, x ∈ V.

Note that the ideal generated by Σ does not contain any 1-form, hence,

x yΩ = 0⇐⇒ x ∈ A(IΣ).

Which proves that

ker f = A(IΣ).

Therefore, dim(ker f) = dim(A(IΣ)). Since A(IΣ) = C(IΣ)⊥, then

dim(ker f) ≤ m− 2r.
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On the other hand, for s = 0

x yΩr+1 = (r + 1)(x yΩ) ∧ Ωr = 0,

the last equality is true since Ωr+1 = 0.

An element of the image of f belong in LΩr since

Im f = {ω ∈ V ∗ : ω = x yΩ, x ∈ V } .

The de�nition of =f implies that ω∧Ωp = (x yΩ)∧Ωr = 0, then, ω ∈ LΩr . Therefore,

Im f ⊂ LΩr .

Since Ωr it has degree 2r and has at most 2r linear divisors,

dim(Im f) ≤ 2r.

An elemental linear algebra result states that

dim(ker f) + dim(Im f) = m.

Hence, dim(Im f) = 2r, dim(ker f) = m− 2r and, consequently, dim(C(IΣ)) = 2r.

In the general case, we consider W ∗ =
{
ω1, . . . , ωs

}
that has dimension s.

Then W = (W ∗)⊥ ⊂ V and the quotient space V ∗/W ∗ has a relation induced by the

relation of V with V ∗, and they are dual vectorial spaces. By hypothesis

Ωr ∧ ω1 ∧ ω2 ∧ . . . ∧ ωs 6= 0

and Ωr ∧ ω1 ∧ ω2 ∧ . . . ∧ ωs ∈ Λ2r+s(C(IΣ)), so that

dim(C(IΣ)) ≥ 2r + s.

The following linear map is considered

f ′ : W
f−−−−→ V ∗

π−−−−→ V ∗/W ∗

where π is the projection to the quotient space and f is the map de�ned before.

As in the trivial case, we wish to �nd upper bounds for the dimensions of the kernel

and the image of f ′. Using the algebra result, we know

dim(ker f ′) + dim(Im f ′) = dim(W ) = m− s.

Reasoning similarly to the previous case, we �nd

dim(ker f) ≤ m− 2r − s
dim(Im f) ≤ 2r.

Consequently, dim(C(IΣ)) = 2r + s.

2
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2.4 Codistributions

De�nition 2.4.1 (Distribution). A smooth distribution associates a subspace of the

tangent space with each point p ∈M . It is represented as the span of d smooth vector

�elds with

∆ = {X1, . . . , Xd}

The dimension of the codistribution at a point is de�ned to be the dimension of the

subspace ∆(p). A distribution is said to be regular if its dimension does not vary with

p.

De�nition 2.4.2 (Codistribution). A codistribution is de�ned as the map that as-

sociates each point of the variety with a set of 1-forms. This linear combination of

1-forms will be a subspace of the cotangent space T ∗pM . We denote the codistribution

as

Θ(p) = {ω1(p), . . . , ωd(p)}.

There is notion of duality between distributions and codistributions which allows us

to construct codistributions from distributions and vice versa.

Given a distribution ∆, for each p in a neighborhood U , consider all the 1-forms which

pointwise annihilate all vectors in ∆(p),

∆⊥(p) = {ω(p) ∈ T ∗pM : ω(p)(X) = 0, ∀X ∈ ∆(p)}.

Clearly, ∆⊥(p) is a subspace of T ∗pM and it is, therefore, a codistribution. We call

∆⊥ the annihilator or dual of ∆. Conversely, given a codistribution Θ, we construct

the annihilating or dual distribution pointwise as

Θ⊥(p) = {v ∈ TpM : ω(p)(v) = 0, ∀ω(p) ∈ Ω(p)}.
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3
Exterior Di�erential

Systems

3.1 Exterior algebra on a manifold

The space of all forms on a manifold M ,

Ω(M) = Ω0(M)⊕ · · · ⊕ Ωn(M),

together with the wedge product is called exterior algebra in M . An algebraic ideal

of this algebra is de�ned as a subspace I such that if α ∈ I then α ∧ β ∈ I for any

β ∈ Ω(M).

De�nition 3.1.1 (Closed Ideal). An ideal I ⊂ Ω(M) is said to be closed with respect

to exterior di�erentiation if and only if

α ∈ I ⇒ dα ∈ I,

or more compactly, if dI ⊂ I. An algebraic ideal which is closed with respect to

exterior di�erentiation is called a di�erential ideal.

A �nite collection of forms, Σ = {α1, . . . , αK} generates an algebraic ideal

IΣ =

{
ω ∈ Ω(M) |ω =

K∑
i=1

θi ∧ αi for some θi ∈ Ω(M)

}
.

We also can talk about the di�erential ideal generated by Σ. Thus, if Sd denotes

the collection of all di�erential ideals containing Σ it is de�ned to be the smallest

di�erential ideal containing Σ

IΣ =
⋂
I∈Sd

I.

Theorem 3.1.1. Let Σ be a �nite collection of forms and let IΣ be the di�erential

ideal generated by Σ. De�ne the collection

Σ′ = Σ ∪ dΣ

and denote the algebraic ideal which generates by IΣ′ .
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Proof. By de�nition IΣ is closed with respect to exterior di�erentiation, so Σ′ ⊂ IΣ.

Consequently, IΣ′ ⊂ IΣ. The ideal IΣ′ is closed with respect to exterior di�erentiation

and contains Σ by construction. Therefore, from the de�nition of IΣ we have that

IΣ ⊂ IΣ′ .

2

The associated space and retracting space of an ideal in IΣ is called characteristic

distribution of Cauchy and is denoted by A(IΣ).

3.2 Exterior Di�erential Systems

In the previous section we have introduced systems of exterior equations on a vector

space V and characterized their solutions as subspaces of V . We are now ready to

de�ne a similar notion for a collection of di�erential forms de�ned on a manifold M .

The basic problem will be to study the integral submanifolds of M which satisfy the

constraints represented by the exterior di�erential system.

De�nition 3.2.1 (Exterior Di�erential System). An exterior di�erential system is a

�nite collection of equations

α1 = 0, . . . , αr = 0,

where each αi ∈ Ωk(M) is a smooth k−form. A solution to an exterior di�erential

system is any submanifold N of M which satis�es αi(x)|TxN ≡ 0 for all x ∈ N and

all i ∈ {1, . . . , r}.

An exterior di�erential system can be viewed pointwise as a system of exterior equa-

tions on TpM . In view of this, one might expect that a solution would be de�ned as

a distribution on the manifold. The drawback with this approach is that most distri-

butions are not integrable, and we want our solution set to be a collection of integral

submanifolds. Therefore, we will restrict our solution set to integrable distributions.

Theorem 3.2.1. Given an exterior di�erential system

α1 = 0, . . . , αK = 0

and the corresponding di�erential ideal IΣ generated by the collection of forms

Σ = {α1, . . . , αK},

an integral submanifold N of M solves the system of exterior equations if and only if

it also solves the equation π = 0 for each π ∈ IΣ.

Proof. If an integral submanifold N of M is a solution to Σ, then for all x ∈ N and

all i ∈ {1, . . . ,K},
αi(x)|TxN ≡ 0.

Taking the exterior derivative we get

dαi(x)|TxN ≡ 0.
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Hence, the submanifold also satis�es the exterior di�erential system

α1 = 0, . . . , αK = 0, dα1 = 0, . . . , dαK = 0.

By the Theorem 3.1.1 we know that the di�erential ideal generated by Σ is equal to

the algebraic ideal generated by the above system. Therefore, the Theorem 2.3.1 tells

us that every solution N to Σ is also a solution for every element of IΣ. Conversely,

if N solves the equation π = 0 for every π ∈ IΣ then in particular it must solve Σ.

2

This theorem allows us to work either with the generators of an ideal or with the ideal

itself. In fact, some authors de�ne exterior di�erential systems as di�erential ideals

of Ω(M). Because a set of generators Σ generates both a di�erential ideal IΣ and

a algebraic ideal IΣ, we can de�ne two di�erent notions of equivalence for exterior

di�erential systems.

Two exterior di�erential systems Σ1 and Σ2 are said to be equivalent if they generate

the same algebraic ideal. i.e, IΣ1
= IΣ2

. Intuitively, we want to think of two exterior

di�erential systems as equivalent if they have the same solution set. Therefore, we

will usually discuss equivalence in the latter sense.

3.3 Pfa�an Exterior Di�erential Systems

Pfa�an systems are of particular interest because they can be used to represent a set

of �rst-order ordinary di�erential equations.

De�nition 3.3.1 (Pa�an System). An exterior di�erential system of the form

α1 = α2 = · · · = αs = 0,

where the αi are independent 1-forms on a n-dimensional manifold M , is called a

Pfa�an system of codimension m− s. If {α1, . . . , αm} is a basis of Ω1(M), then the

set {αs+1, . . . , αm} is called a complement to the Pfa�an system

An independence condition is a 1-form τ that is required to be nonzero along integral

curves of the Pfa�an system. That is αi(c(t))(c′(t)) = 0, then τ(c(t))(c′(t)) 6= 0. The

1-forms α1, . . . , αs , generate the algebraic ideal

I = {I} = {σ ∈ Ω(M) : σ ∧ α1 ∧ . . . ∧ αs = 0}.

For an ideal generated by a set of 1-forms, each element in the ideal has the form

ξ =

s∑
j=1

aij θ
j ∧ αj

for some θj ∈ Ω(M). The exterior di�erential system generated by I must be closed

under di�erentiation, thus it contains I and dI. We will focus mainly in codistribu-

tions of 1-forms I which generates the exterior di�erential system.
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It is possible to rephrase Frobenius's Theorem in a concise way using ideals. Let I be
the ideal generated by {α1, . . . , αs} and write dI for the set consisting of the exterior
derivative of all elements of I. We say that I is integrable if there exist functions

h1, . . . , hs such that I is also generated by {dh1, . . . , dhs}.

De�nition 3.3.2 (Frobenius Condition). A set of linearly independent 1-forms α1, . . . , αs

in a neighborhood of a point is said to satisfy the Frobenius condition if one of the

following equivalent conditions holds:

(a) I is integrable.

(b) dI ⊂ I.

(c) dαi ∧ α1 ∧ · · · ∧ αs = 0 for all 1 ≤ i ≤ s.

(d) dαi =
∑s
j=1 θ

i
j ∧ αj for some θij ∈ Ω(M), 1 ≤ i, j ≤ s.

(e) dαi ≡ 0 mod I.

The condition dαi ≡ 0 mod I uses the notion of congruences. Given two forms

σ, ω ∈ Ω(M), we write ω ≡ σ mod I if there exists an exterior form η ∈ I such that

ω = σ+ η. If I is a codistribution, then we write ω ≡ σ mod I if there exist exterior

form α ∈ I and η ∈ Ω(M) such that ω = σ+η∧α. It follows that if I is the generator
set for an ideal I, then ω mod I = ω mod I. In the case that I is generated by

1-forms α1, . . . , αs, we will often make use of the relation

ω ≡ 0 mod I ⇐⇒ ω =

s∑
i=1

θi ∧ αi for some θi ∈ Ω(M).

When dαi is a linear combination of α1, . . . , αs, the following expression is frequently

used

dαi ≡ 0 mod α1, . . . , αs 1 ≤ i ≤ s

where the mod operation is implicitly performed over the algebraic ideal generated by

αi.

Now we can state and proof the Frobenius's Theorem for codistributions.

Theorem 3.3.1 (Frobenius Theorem for Codistributions). Let I be an algebraic

ideal generated by the independent 1-forms α1, . . . , αm−r which satis�es the Frobenius

condition. Then, in a neighborhood of x there exist functions h1, . . . , hm such that

I = {α1, . . . , αm−r} = {dhr+1, . . . , dhm}.

Proof. First of all, notice that I is a di�erential ideal because it satis�es the Frobenius

condition. We will denote by ∆ = span{α1, . . . , αm−r} ⊂ T ∗M . We will prove it by

induction on r. Let r = 1, then (∆p)
⊥ ⊂ TpM has dimension 1 for p ∈ M . Relative

to a system of local coordinates xi, for 1 ≤ i ≤ m, the equations of the di�erential

system is written in the classical form

dx1

X1(x)
= · · · = dxm

Xm(x)
,
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where the functions Xi(x1, . . . , xm), not all zero, are the coe�cients of a vector �eld

X =

m∑
i=1

Xi(x)
∂

∂xi

spanning (∆p)
⊥. By the Flow Box Coordinate Theorem we can choose coordinates

h1, . . . , hm, such that (∆p)
⊥ = span{∂/∂h1}, then ∆p = span{dh2, . . . , dhm}. The

latter clearly forms a set of generators of I. Notice that in this case the Frobenius

condition is void.

Suppose r ≥ 2 and the theorem to be true for r − 1. Let xi, for 1 ≤ i ≤ m, be local

coordinates such that

α1, . . . , αm−r, dxr

are linearly independent. The di�erential system de�ned by these m−r+1 forms also

satis�es the Frobenius condition. By the induction hypothesis, there are coordinates

h1, . . . , hm so that

dhr, dhr+1, . . . , dhm

are a set of generators of the corresponding di�erential ideal. It follows that dxr is a

linear combination of these forms or that xr is a function of hr, . . . , hm. Without loss

of generality, we suppose
∂xr

∂hr
6= 0.

Since

dxr =
∂xr

∂hr
dhr +

m−r∑
i=1

∂xr

∂hr+1
dhr+i,

we may now solve for dhr in terms of dxr and dhr+1, . . . , dhm. Since α1, . . . , αm−r

are linear combinations of dhr, . . . , dhm, they can now be expressed in the form

αi =

m−r∑
j=1

aijdh
r+j + bidx

r for 1 ≤ i ≤ m− r,

where aij , bi ∈ C∞(M) for 1 ≤ i, j ≤ m−r. Since αi and dxr are linearly independent,
the matrix (aij) must be non-singular. Hence, we can �nd a new set of generators for

I in the form

α̃i = dhr+i + gidxr for 1 ≤ i ≤ m− r,

where gi ∈ C∞(M) for 1 ≤ i ≤ m− r, and the Frobenius condition remains satis�ed.

Exterior di�erentiation gives

dα̃i = dgi ∧ dxr ≡
r−1∑
j=1

∂gi

∂hj
dhj ∧ dxr ≡ 0 mod α̃1, . . . , α̃m−r.

It follows that
∂gi

∂hj
= 0 for 1 ≤ i ≤ m− r, 1 ≤ j ≤ r − 1,

which means that gi are functions of hr, . . . , hm. Hence, in the h-coordinates, we are

studying a system of m− r forms of degree 1 involving only the m− r+ 1 coordinates

hr, . . . , hm. This reduces to the situation settled at the beginning of this proof. Hence,

the induction is complete.
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2

Corollary 3.3.2. Let y1, · · · ym be functions whose di�erentials are linearly indepen-

dent from linearly independent 1-forms α1, . . . , αp and satisfying the relative Frobenius

conditions

dαi ∧ α1 ∧ · · ·αp ∧ dy1 ∧ · · · ∧ dym = 0 1 ≤ i ≤ m.

Then, setting

α =
(
α1, · · · , αp

)t
, Y = (y1, · · · ym)t

there exists a vector of functions Z = (z1, · · · , zp)t a p × p matrix A and a p × m
matrix B, such that

α = AdZ +BdY

For more general exterior di�erential systems, we have the following integrability

results.

Proposition 3.3.1. If the Cauchy characteristic distribution A(IΣ) of IΣ has con-

stant dimension r in a neighborhood of x, then the distribution A(IΣ) is integrable.

Theorem 3.3.3. Let I be a di�erential ideal whose retracting space C(I) has a con-

stant dimension s = m − r. There is a neighborhood in which there are coordi-

nates (x1, . . . , xr; y1, . . . , ym) such that I has a set of generators which are forms in

y1, . . . , ys and their di�erentials.

Proof. By Proposition 3.3.1 the di�erential system de�ned by C(I), or what is the

same, the distribution de�ned by A(I), is completely integrable. We may choose

coordinates (x1, . . . , xr; y1, . . . , ys) so that the foliation is de�ned given by

yσ = const, 1 ≤ σ ≤ s.

By the retraction theorem, I has a set of generators which are forms in dyσ, 1 ≤ σ ≤ s.
But their coe�cients may involve xρ, 1 ≤ ρ ≤ r. The theorem follows when we show

that we can choose a new set of generators for I which are forms in the yσ coordinates

in which the xρ do not appear. To exclude the trivial case, we suppose that I is a

proper ideal, so that it contains no non-zero functions.

Let Iq be the set of q-forms in I, q = 1, 2, . . .. Let ϕ1, . . . , ϕp be the linearly inde-

pendent 1-forms in I1 such that any form in I1 is a linear combination. Since I is

closed, dϕi ∈ I, 1 ≤ i ≤ p. For a �xed ρ, we have that ∂
∂xρ ∈ A(I), which implies

∂

∂xρ
y dϕi = L∂/∂xρϕ

i ∈ I1,

since the left-hand side is of degree 1. It follows that

∂ϕi

∂xρ
= L ∂

∂xρ
ϕi =

∑
j

aijϕ
j , 1 ≤ i, j ≤ p (3.1)

where the left hand side stands for the form obtained from ϕi by taking partial

derivatives of the coe�cients with respect to xρ.
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For this �xed ρ, we regard xρ as the variable and x1, . . . , xρ−1, xρ+1, . . . , xr, y1, . . . , ys

as parameters. Consider the system of ordinary di�erential equations

dzi

dxρ
=
∑
j

aijz
j , 1 ≤ i, j ≤ p. (3.2)

Let zki , 1 ≤ k ≤ p, be a fundamental system of solutions, so that

det
(
zki
)
6= 0.

We shall replace ϕi by the ϕ̃k de�ned by

ϕi =
∑

zki ϕ̃
k. (3.3)

By di�erentiating (3.3) with respect to xρ and using (3.1) and (3.2), we get

∂ϕ̃k

∂xρ
= 0,

so that ϕ̃k does not involve xρ. Applying the same process to the other x, we arrive

at a set of generators I1 which are forms in yσ.

Suppose this process carried out for I1, . . . , Iq−1, so that they consist of forms in yσ.

Let Jq−1 the ideal generated by for I1, . . . , Iq−1. Let ψα ∈ Iq, 1 ≤ α ≤ r, linearly

independents mod Jq−1, such that any q-form of Iq is congruent mod Jq−1 to a

linear combination of them. By the above argument, such forms include

∂

∂xρ
y dψα = L∂/∂xρψ

α.

Hence, we have

∂ψα

∂xρ
≡
∑

bαβψ
β , mod Jq−1, 1 ≤ α, β ≤ r.

By using the above argument, we can replace the ψα by ψ̃β such that

∂ψ̃α

∂xρ
∈ Jq−1.

This means that we can write

∂ψ̃α

∂xρ
=
∑
h

ηαh ∧ ωαh ,

where ηαh ∈ I1 ∪ · · · ∪ Iq−1 and are, therefore, forms in yσ. Let θαh de�ned by

∂θαh
∂xρ

= ωαh .

Then, the forms ˜̃
ψα = ψ̃α −

∑
h

ηhα ∧ θhα

do not involve xρ, and can be used to replace ψα. Applying this process to all

xρ, 1 ≤ ρ ≤ r, we �nd a set of generators for Iq, which are forms only in yσ.

2
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3.4 Derived �ags

Let I = {α1, . . . , αs} be a smooth codistribution on M . The exterior derivative

induces a mapping d : I → Ω2(M)/I

d : λ→ dλ mod I ∈ Ω2(M).

The mapping d is a linear mapping over C∞(M) such that

d(fα+ gβ) =df ∧ α+ fdα+ dg ∧ β + gdβ mod I

=fdα+ gdβ mod I

=fd(α) + gd(β).

It follows that the kernel of d is a codistribution on M1. We call this subspace, I(1),

the �rst derived �ag of the system I

I(1) = ker(d) = {λ ∈ I : dλ mod I ≡ 0}.

I(1) contains the 1-forms in I which are integrable mod I.

We can represent I(1) using a set of 1-forms, but it is important to note that the basis

of I(1) may be not a simple subset of the basis of I. Linear combinations of basis

elements must be searched to �nd a basis derived from the derived system.

Since I(1) is itself a codistribution onM , one may inductively continue this procedure

of obtaining derived systems and de�ne

I(2) = {λ ∈ I(1) : dλ ≡ 0 mod I(1)} ⊂ I(1)

or, in general,

I(k+1) = {λ ∈ I(k) : dλ ≡ 0 mod I(k)} ⊂ I(k).

This procedure results in a nested sequence of codistributions

I(k+1) ⊂ I(k) ⊂ · · · ⊂ I(1) ⊂ I(0). (3.4)

If the dimension of each I(i) is constant, then, this construction terminates for some

�nite integer N .

De�nition 3.4.1 (Derived Length). Let I be an algebraic ideal corresponding to a

Pfa�an system. We de�ne the derived length of I as the smallest integer N such that

I(N) = I(N+1)

The derived �ag describes the integrability properties of the Pfa�an system generated

by I. If I is completely integrable, then by Frobenius's Theorem, we have I(1) = I(0),

i.e., the length of the derived �ag is zero. In fact, I(N) is always integrable since, by

de�nition, dI(N) mod I(N) ≡ 0. I(N) is the largest integrable subsystem contained

in I.

Thus, if I(N) 6= {0} then there exist functions h1, . . . , hr such that {dh1, . . . , dhr} ⊂ I.
As a result, if a Pfa�an system contains an integrable subsystem I(N) 6= {0}, which

1At each point p ∈M , the kernel of d is a linear subspace of T ∗
pM .
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is spanned by the 1-forms dh1, . . . , dhr, then the integral curves of the system are

constrained to satisfy the following equations for some constants ki,

dhi = 0 =⇒ hi = ki, for 1 ≤ i ≤ r,

or equivalently, trajectories of the system must lie on the manifold,

M = {x : hi(x) = ki for 1 ≤ i ≤ r}.

In particular, this implies that if I(N) 6= 0, it is not possible to �nd an integral

curve of the Pfa�an system which connects a con�guration x(t0) = x0 to another

con�guration x(tf ) = x1 unless the initial and �nal con�gurations satisfy

hi(x0) = hi(x1) for 1 ≤ i ≤ r.

In the context of control theory, this means that the system is not controllable since

there exist functions which provides a foliation of the state space and it is impossible

to move from one leaf of the foliation to another. This controllability result is provided

by Chow's Theorem.

Theorem 3.4.1 (Chow's Theorem). Let I = {α1, . . . , αs} represent a set of con-

straints and assume that the derived �ag of the system exists. Then, there exists a

path x(t) between any two point satisfying αi(x) · ẋ = 0 for all 1 ≤ i ≤ s if and only

if there exists an integer N such that I(N) = {0}.

In control theory, Chow's theorem is usually stated using regular distribution I⊥.

Theorem 3.4.2 (Chow's Theorem for Regular Distributions). Let ∆ = I⊥ a regular

distribution. Then, for regular systems of the form

ẋ =

k∑
i=1

gi(x)ui, gi ∈ ∆

there exist admissible controls to steer the system between two given arbitrary points

x0, x1 ∈ U if and only if, for some N ,

(∆N )⊥(x) = TRm ∼= Rm

for all x ∈ U .

The connection between Chow's theorem for regular distributions and exterior di�er-

ential systems formulation is made with the following lemma.

Lemma 3.4.1. If I(0) = ∆⊥, then I(1) = (∆ + [∆,∆])⊥.

This lemma allows us to compute the derived �ag for a system given the distribution

∆ = I⊥. De�ne the nested set of distributions

∆ = ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆k

as ∆i = ∆i−1 + [∆i−1,∆i−1], called the �ltration of ∆0
2. This sequence terminates if

the dimension of each ∆i is constant, and it follows from Theorem 3.4.1 that I(i) =

(∆i)
⊥.

2Or the coderived co�ag of I(0).
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4
The Goursat Normal

Forms

Now that we have de�ned an exterior di�erential system and introduced some tools

for analyzing them, we are ready to study some important normal forms for exterior

di�erential systems. We will restrict ourselves to Pfa�an systems. The �rst nor-

mal form which we introduce, the Pfa�an form, is restricted to systems of only one

equation. The Engel form applies to two equations on a four-dimensional space, and

the Goursat form is for m − 2 equations on an m-dimensional space. The extended

Goursat normal form is de�ned for systems with codimension greater than two. The

Goursat normal forms can be thought of as the generalization of linear systems. Their

study will lead us to the study of linearization of control.

4.1 Systems of One Equation

We will �rst study Pfa�an systems of codimension m− 1, or systems consisting of a

single equation

α = 0

where α is a 1-form on a manifold M . In some chart (U, x) of a point p ∈ M the

equation can be expressed as

a1(x)dx1 + a2(x)dx2 + · · ·+ am(x)dxm = 0.

In order to understand the integral manifolds of this equation we will attempt to

express α in a normal form by performing a coordinate transformation.

De�nition 4.1.1 (Rank of a Form). Let α ∈ Ω1(M). The integer r de�ned as

(dα)r ∧ α 6= 0

(dα)r+1 ∧ α = 0

is called rank of α.

The following theorem allows us, under a rank condition, to write α in a normal form.

Theorem 4.1.1 (Pfa� theorem). Let α ∈ Ω1(M) have a constant rank r in a neigh-

borhood of p. Then there exists a coordinate chart (U, z) such that in these coordinates

α = dz1 + z2dz3 + · · ·+ z2rdz2r+1.
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Proof. Let I be the di�erential ideal generated by α. From Theorem 2.3.4 the re-

tracting space of I has dimension 2r + 1. By the Theorem 3.3.3 there exist local

coordinates y1, . . . , ym such that I has a set of generators in y1, . . . , y2r+1. Then, by

dimension count, any function f1 of those 2r + 1 coordinates results in

(dα)r ∧ α ∧ df1 = 0.

Now, let I1 be the ideal generated by {df1, α, dα}. If r = 0, then the result follows

from the Frobenius's Theorem 3.3.1. If r > 0, then the forms df1 and α must be

linearly independent, since α is not integrable. Applying Theorem 2.3.4 to I1, let r1

be the smallest integer such that

(dα)r1+1 ∧ α ∧ df1 = 0.

Clearly, r1 + 1 ≤ r. Furthermore, the equality sign must hold because (dα)r ∧ α 6= 0.

Applying Theorem 3.3.3 to I1 there exists a function f2 such that

(dα)r−1 ∧ α ∧ df1 ∧ df2 = 0.

Repeating this process, we �nd r functions f1, f2, . . . , fr satisfying

dα ∧ α ∧ df1 ∧ df2 ∧ · · · ∧ dfr = 0,

α ∧ df1 ∧ df2 ∧ · · · ∧ dfr 6= 0.

Finally, let I be the ideal {df, . . . , dfr, α, dα}. Its retracting space C(Ir) is of dimension

r + 1. There is a function fr+1 such that:

α ∧ df1 ∧ df2 ∧ · · · ∧ dfr ∧ dfr+1 = 0,

df1 ∧ df2 ∧ · · · ∧ dfr ∧ dfr+1 6= 0.

By modifying α by a factor, we can write

α = dfr+1 + g1df1 + · · ·+ grdfr.

Because (dα)r ∧ α 6= 0, the functions f1, . . . , fr+1, g1, . . . , gr are independent. The

result then follows by setting

z1 = fr+1 z2i = gi z2i+1 = kfi

for 1 ≤ i ≤ r.

2

The proof uses a number of tools that are beyond the scope of this work. In the r = 1

case, the proof reduces to proving that there exist two functions f1 and f2 which

satisfy
dα ∧ αdf1 = 0 α ∧ df1 6= 0

and

αdf1 ∧ df2 = 0 df1 ∧ df2 6= 0.
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Given f1 and f2, α can be scaled such that

α = df2 + gdf1 = dz1 − z2dz3.

The Pfa� theorem guarantees that these equations have a solution (it does not to be

unique). A basis of the right null space of this constraints is given by

g1 =
∂

∂z1
+ z2 ∂

∂z3
g2 =

∂

∂z2
.

The following theorem is similar to Pfa�'s theorem and basically expresses the result

in a more symmetric form.

Theorem 4.1.2 (Symmetric Version of Pfa� Theorem). Given any α ∈ Ω1(M) with

constant rank r in a neighborhood U of p, then there exist coordinates z, y1, . . . , yr, x1, . . . , xr

such that

α = dz +
1

2

r∑
i=1

(yidxi − xidyi).

The Pfa�an system α = 0 in a manifold M is said to have the local accessibility

property if every point x ∈M has a neighborhood U such that every point in U can

be joined to x by an integral curve. The following theorem answers the question of

when this Pfa�an system has the local accessibility property.

Theorem 4.1.3 (Caratheodory Theorem). The Pfa�an system

α = 0,

on α where α a has constant rank, has the local accessibility property if and only if

α ∧ dα 6= 0.

Proof. The condition above basically says that the rank of α must be greater than

or equal to 1. If α has rank 0 then dα ∧ α = 0 and, therefore, by the Frobenius's

Theorem 3.3.1, we can write,

α = dh = 0

for some function h. The integral curves are of the form h = c for any arbitrary

constant c. Since we can only join points p, q ∈ M for which h(p) = h(q), we do not

have the local accessibility property.

Conversely, let α have rank r ≥ 1. From Theorem 4.1.2, we can �nd coordinates

z, x1, . . . , xr, y1, . . . , yr, u1, . . . , us in some neighborhood U , with 2r+ s+ 1 as dimen-

sion of M , such that

α = dz +
1

2

r∑
i=1

(yidxi − xidyi) = 0,

and therefore

dz =
1

2

r∑
i=1

(yidxi − xidyi).

Given any two points p, q ∈ U we must �nd integral curve γ : [0, 1] −→ U with

c(0) = p i c(1) = q. Since we are working locally, we can assume that the initial point
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p is the origin: z(p) = xi(p) = yi(p) = ui(p) = 0. Let the �nal point q be de�ned by

z(q) = z1, xi(q) = x1i, yi(q) = y1i, ui(q) = u1i. Because the expression of the 1-form

does not depend on the ui coordinates, we can choose the curve tu1i to connect these

ui coordinates of p and q.

In the (xi, yi) plane there are many curves(xi(t), yi(t)) that join the origin with the

desired point (x1i, y1i). We need to �nd one which steers the z coordinate to z1. In

order to satisfy the equation α = 0, we must have that

dz =
1

2

r∑
i=1

(
xidyi − yidxi

)
.

Integrating this equation one gets

z(t) =
1

2

∫ t

0

r∑
i=1

(
xi
dyi

dt
− yi dx

i

dt

)
dt =

1

2

r∑
i=1

Ai,

where Ai is the area enclosed by the curve (xi(t), yi(t)) and the chord joining the

origin with (x1i, y1i). In order to reach the point q, the curve (xi(t), yi(t)) must

satisfy z(1) = z1. Geometrically, it is clear that a curve (xi(t), yi(t)) linking the

points p and q while enclosing the area prescribed by z1 will always exist. Thus, the

integral curve γ(t) given by

(z(t), x1(t), . . . , xr(t), y1(t), . . . , yr(t), tu1(t), . . . , tus(t))

has c(0) = p i c(1) = q and satis�es the equation α = 0. Therefore, the system

therefore has the local accessibility property.

2

4.2 Systems of Codimension Two

We now consider Pfa�an systems of codimension two. We are again interested in

performing coordinate changes so that the generators of these Pfa�an systems are in

some normal form.

Theorem 4.2.1 (Engels theorem). Let I be a dimension two codistribution, spanned

by

I = 〈α1, α2〉

of four variables. If the derived �ag satis�es

dim I(1) = 1,

dim I(2) = 0,

then, there exist coordinate z1, z2, z3, z4 such that

I = {dz4 − z3dz1, dz3 − z2dz1}.
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Proof. Choose a basis of I adapted to the derived �ag; that is I(0) = I = {α1, α2}, I(1) =

{α1} and I(2) = {0}. Choose α3 and α4 to complete the basis. Since I(2) = {0} we
have

dα1 ∧ α1 6= 0,

while

(dα1)2 ∧ α1 = 0,

since it is a 5-form on a 4-dimensional space. Therefore, α1 has rank 1. By Pfa�'s

theorem, we know that there exists a coordinate change such that

α1 = dz4 − z3dz1.

Taking the exterior derivative, we have that

dα1 = −dz3 ∧ dz1 = dz1 ∧ dz3.

Now, since α1 ∈ I(1), the de�nition of the �rst derived system will imply that

dα1 ∧ α1 ∧ α2 = 0,

and thus

dz1 ∧ dz3 ∧ α1 ∧ α2 = 0.

Therefore, α2 must be a linear combination of dz1, dz3 and α1:

α2 ≡ a(x)dz3 + b(x)dz1 mod α1.

By de�nition, this means that

α2 + λ(x)α1 = a(x)dz3 + b(x)dz1.

Now if either a(x) = 0 or b(x) = 0 it will imply that dα2 ∧ α1 ∧ α2 = 0 and thus the

�ag assumptions are violated because if I(0) = {α1, α2} and I(1) = {α1} that implies

dα2 6≡ 0 mod α1, α2. Thus a(x) 6= 0, then

1

a(x)
α2 +

λ(x)

a(x)
α1 = dz3 +

b(x)

a(x)
dz1,

and if we set z2 = − b(x)
a(x) and setting

1

a(x)
α2 +

λ(x)

a(x)
α1 = dz3 − z2dz1,

and thus

I = {α1, α2} =

{
α1,

1

a(x)
α2 +

λ(x)

a(x)
α1

}
= {dz4 − z3dz1, dz3 − z2dz1}.

2

It should be noted that the dimension assumption is only used in the proof so it is

guaranteed that (dα1)2 ∧ α1 = 0. If α1 as rank 1, this equality holds by de�nition.

Corollary 4.2.2. Let I = {α1, α2} be a two-dimensional codistribution. If the derived

�ag satis�es dim I(1) = 1, dim I(2) = 0 and α1 ∈ I(1) has rank 1, then there exist

coordinates z1, z2, z3, z4 such that

I = {dz4 − z3dz1, dz3 − z2dz1}.

Proof. The proof is deduced from the Engel's theorem.

2
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4.3 The Goursat Normal Form

Engel's theorem can be generalized to a system with m con�guration variables and

m− 2 constraints.

Theorem 4.3.1 (Goursat Normal Form). Let I be a Pfa�an system spanned by s

1-forms

I = {α1, . . . , αs},

on a space of dimension m = s + 2. Suppose that there exists an integrable form π

with π 6= 0 mod I satisfying the Goursat congruences,

dαi ≡ −αi+1 ∧ π mod α1, . . . , αi, 1 ≤ i ≤ s− 1,

dαs 6≡ 0 mod I.
(4.1)

Then there exists a coordinate system z1, z2, . . . , zm in which the Pfa�an system is

in Goursat normal form:

I = {dz3 − z2dz1, dz4 − z3dz1, . . . , dzm − zm−1dz1}.

Proof. The Goursat congruences can be expressed as

dα1 ≡ −α2 ∧ π mod α1,

dα2 ≡ −α3 ∧ π mod α1, α2,

...

dαs−1 ≡ −αs ∧ π mod α1, α2, . . . , αs−1,

dαs ≡ −αs+1 ∧ π mod α1, α2, . . . , αs,

where αs+1 6∈ I. It can be shown that {αs+1, π} must form a complement to I. This

basis satis�es the Goursat congruences and it is adapted to the derived �ag of I:

I(0) = {α1, α2, . . . , αs},
I(1) = {α1, . . . , αs−1},

...

I(s−1) = {α1},
I(s) = {0}.

From the Goursat congruences,

dα1 ≡ −α2 ∧ π mod α1,

which means that

dα1 = −α2 ∧ π + α1 ∧ η

for some 1-form η. But then we have that

dα1 ∧ α1 = −α2 ∧ π ∧ α1 6= 0,

(dα1)2 ∧ α1 = 0
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which means that α1 has rank 1. We can therefore apply Pfa�'s theorem and suppose

that multiplying α1 by a certain factor if it is necessary, α1 can be expressed as

α1 = dzm − zm−1dz1

of some choice of z1, zm−1, zm. Furthermore, by Corollary 4.2.2 we can express α2 as

α2 = dzm−1 − zm−2dz1. (4.2)

In these new coordinates we have

dα1 ∧ α1 = −dzm−1 ∧ dz1 ∧ dzm.

Now, we have that

dα1 ∧ α1 ∧ π = π ∧ (−dzm−1 ∧ dz1 ∧ dzm) = π ∧ (−α2 ∧ π ∧ α1) = 0,

and therefore π is a linear combination of dz1, dzm−1, dzn. Noting that dzm−1 ≡
zm−2dz1 mod α1, α2,

π = adz1 + bdzm−1 + cdzm,

= adz1 + bzm−2dz1 + czm−1dz1 mod α1, α2

where ψ = a+ bzm−2 + czm−1 is nonzero, since we have assumed that π 6= 0 mod I.

From the Goursat congruences we have that

dα2 = −α3 ∧ π mod α1, α2,

while from (4.2) we have

dα2 = −dzm−2 ∧ dz1,

and thus

−dzm−2 ∧ dz1 = −α3 ∧ π mod α1, α2,

which means that

α3 = λ(x)dzm−2 mod dz1, α1, α2,

for a nonzero function λ(x). Therefore, we can rewrite this as

α3 = dzm−2 − 1

λ(x)
dz1 mod dz1, α1, α2,

and if we set zm−3 = 1/λ(x) we have

α3 = dzm−2 − zm−3dz1 mod α1, α2,

and we can therefore let

α3 = dzm−2 − zm−3dz1.

If we inductively continue this procedure using the Goursat congruences we obtain

α4 = dzm−3 − zm−4dz1,

...

αs = dz3 − z2dz1.
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Now, from the Goursat congruences we have that

dαs 6= 0 mod I,

and, therefore,

α1 ∧ α2 ∧ · · · ∧ αs ∧ dαs 6= 0.

If we substitute the αi into the above expression we obtain

dz1 ∧ dz2 ∧ · · · ∧ dzm 6= 0,

and therefore the function z1, . . . , zm can serve as a local coordinate system.

2

The following example illustrates the power of the Goursat's theorem by applying it

in order to linearize a nonlinear system. Note that the integral curves of a system

in Goursat normal form are completely determined by two arbitrary functions in one

variable and their derivatives. For example, once z1(τ) and zs(τ) are known, all of

the other coordinates are determined from

zi =
żi+1(τ)

żi(τ)
,

where the dot indicates the standard derivative with respect to the independent vari-

able τ . Because of this property, these two coordinates are sometimes referred to as

linearizing outputs for the Pfa�an system.

Example 4.3.1 (Feedback Linearization by Goursat Normal Form). Consider the

following nonlinear system with s con�guration variables and a single input

ẋ1 = f1(x1, . . . , xs, u),

ẋ2 = f2(x1, . . . , xs, u),

...

ẋs = fs(x1, . . . , xs, u).

Equivalently, we can look at the following Pfa�an system,

I = {dxi − fi(x1, . . . , xs, u)dt}, 1 ≤ i ≤ s.

The system is of codimension 2 since we have s constraints and s+2 variables, namely

x1, . . . , xs, u, t. Assume that the form π = dt satis�es the Goursat congruences. Then

by Goursat's theorem there exists a coordinate transformation z = Φ(x, u, t) such

that I is generated by

I = {dz3 − z2dz1, dz4 − z3dz1, . . . , dzs+2 − zs+1dz1}.

The annihilating distribution of the above codistribution is

ż1 = v1,

ż2 = v2,

ż3 = z2v1,

...

żs+2 = zs+1v1,
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which, if we set v1 = 1, is clearly a linear system. If it turns out that the z1 coordinate

corresponds to time in the original coordinates, that is z1 = t, then the connection

becomes even more clear. Goursat's theorem can, thus, be used to linearize single-

input nonlinear systems that satisfy the Goursat congruences.

4.4 Converting Systems to Chained Form

Chained form is dual to the Goursat normal form presented above. That is, a system

with constraints in Goursat normal form

I = {dz3 − z2dz1, dz4 − z3dz1, . . . , dzm − zm−1dz1}

can always be written as a control system in chained form by choosing

g1 =
∂

∂z1
+ z2 ∂

∂z3
+ · · ·+ zm−1 ∂

∂zm

g2 =
∂

∂z2

which form a basis of the distribution annihilated by I. Thus, we can formulate

the problem of �nding a basis for the constraints, which is in Goursat form, as the

problem of �nding a feedback transformation to convert a system to chained form.

The Goursat congruences are somewhat unsatisfying since they require existence of a

1-form π. Necessary and su�cient conditions for the existence of such a π, and hence

converting a set of constraints into Goursat normal form.

So, let I = {α1, . . . , αs} be a codistribution of Rm and write ∆ = I⊥ for the distri-

bution which spans the null space of the codistribution. We de�ne two nested sets of

distributions

E0 = ∆ F0 = ∆

E1 = E0 + [E0, E0] F1 = F0 + [F0, F0]
...

...

Ei+1 = Ei + [Ei, Ei] Fi+1 = Fi + [Fi, F0].

(4.3)

Under the assumption that each distribution is constant rank, the two sequences have

�nite length (possibly di�erent).

The �ltration {Fi} is the one which usually appears in the context of nonlinear con-

trollability and beedback linearization. In particular, Fi consists of all brackets up

to order i. The distribution Ei also contains all brackets of order i, but may contain

additional Lie products of higher order. This is due to the iterative construction of

Fi. The �ltration Ei is precisely the sequence of distributions which is perpendicular

to the derived �ag of I = ∆⊥.

The following theorem allows us to completely characterize the set of systems which

are equivalent to a system in chained (or Goursat) form in the case that the relative

growth vector of the system is σ = (2, 1, . . . , 1). We will apply this results in the

chapter about N-Trailer.



30 4. The Goursat Normal Forms

Theorem 4.4.1. Given a 2-dimensional distribution ∆ = I⊥, de�ne Ei and Fi as

in (4.3). Suppose that Ei and Fi satisfy

dimEi = dimFi = i+ 2 0 ≤ i ≤ m− 2.

Then, there exists a local basis {α1, . . . , αs} and a 1-form π such that the Goursat

congruences are satis�ed.



5
Procedures

In this section, we will give a series of steps and explanations needed to be followed to

�nd the behavior of the state variables of a given system. In this paper, we consider

driftless control systems with two inputs over a manifold M , i.e.; systems of the form

ẋ = g1(x)u1 + g2(x)u2,

x ∈M , called nonholonomic systems or driftless systems over a m-dimensional mani-

foldM . The associated distribution to this type of systems is generated by the vector

�elds g1, g2 ∈ X(M)

∆ = 〈g1, g2〉.

The dual of this distribution is a subspace of the cotangent space T ∗M de�ned, in

this case, as follows:

∆⊥ = {ω ∈ Λ1(M) : ig(ω) = 0, ∀g ∈ ∆〉

where the 1-forms have to be linearly independents. Notice that since dim ∆ = 2,

then dim ∆⊥ = m − 2. Usually, we will work with M = Rm+2. By the de�nition

(3.3.1), the associated P�a�an system to our control systems is

α1 = α2 = · · · = αm = 0

that is a system of codimension 2.

In the previous chapter, we saw how to express the basis elements of the codistribution

in the Goursat normal form when the Pfa�an system is of codimension 2 or greater

than 2 respectively. Thus, being following the constructive demonstration of the

Pfa�an and Engel's theorems or following the developed theory about the Goursat

normal form, given a Pfa�an system on Rm+2, we are able to �nd chains of integrators

so that the ideal generated by the 1-forms belonging on the codistribution is expressed

as

I = {α1, α2, . . . , αm} = {dz3 − z2dz1, dz4 − z3dz1, . . . , dzm+2 − zm+1dz1}.
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Once found the change of the 1-forms to the Goursat normal form, we want to seek

for two generic vector �elds ḡ1 and ḡ2 such that the contraction with all the 1-forms

is zero, i.e.;

iḡj (dzi+1 − zidz1) = 0

for i = 2, . . . ,m+ 1. The solutions are

ḡ1 =
∂

∂z1
+ z2

∂

∂z3
+ · · ·+ zm+1

∂

∂zm+2

ḡ2 =
∂

∂z2
.

Often, the system found by doing the contraction of the �elds with the 1-forms and

the system obtained by derivating the variables {z} are not the same. To achieve the

last one being in the canonical Goursat form, it should be necessary to do a feed-

back. Finally, we will establish the di�eomorphism that matches the state variables

{x1, . . . , xm+2} and {z1, . . . , zm+2}.

Since we can express variables z as functions of x variables, like zi = fi(x1, . . . , xm+2),

and taking into account that the derivate of the coordinate xi is the i-th component

of ẋ = g1(x)u1 + g2(x)u2,

ẋi = gi1(x)u1 + gi2(x)u2,

we can de�ne the derivate of zi = fi(x1, . . . , xm+2) as

żi =

m+2∑
j=1

∂fi
∂xj

ẋj =

m+2∑
j=1

∂fi
∂xj

(gj1u1 + gj2u2).

Therefore,



ż1 =

m+2∑
i=1

∂f1

∂xi
(gi1u1 + gi2u2)

ż2 =

m+2∑
i=1

∂f2

∂xi
(gi1u1 + gi2u2)

...

żm+1 =

m+2∑
i=1

∂fm+1

∂xi
(gi1u1 + gi2u2)

żm+2 =

m+2∑
i=1

∂fm+2

∂xi
(gi1u1 + gi2u2).

Then, we de�ne two feedback laws that give us the new controls ū1 and ū2
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ū1 =

m+2∑
i=1

∂f1

∂xi
(gi1u1 + gi2u2)

ū2 =

m+2∑
i=1

∂f2

∂xi
(gi1u1 + gi2u2).

Then, the system expressed in the new state variables becomes



ż1 = ū1

ż2 = ū2

ż3 = z2ū1

...

żm+1 = zmū1

żm+2 = zm+1ū1.

(5.1)

and we call it system in the canonical form associated to the Goursat form. Notice that

sometimes it is convenient to add new state variables to achieve the same dimensions.

It is immediate to see that

y1 = z1 y2 = zm+2

are the �at outputs of the system (5.1), because one can express the variables {z}
depending on the �at outputs and its derivatives, let's see it:



z2 =
ż1

ū1
=
ẏ2

ẏ1

z3 =
ż2

ū1
= z3(ẏ1, ÿ1, ẏ2, ÿ2)

...

zm+1 =
żm
ū1

= zm+1(ẏ1, . . . , y
(m)
1 , ẏ2, . . . , y

(m)
2 ).

To consider the di�eomorphism between the new variables and

{y1, ẏ1, . . . , y
(m)
1 , y2, . . . , y

(m)
2 }

we have to consider the prolongation of m new state variables

zm+i+3 =
di

dti
ū1 = ū

(i)
1 for 0 ≤ i ≤ m− 1,

and two feedback laws
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v1 =
dm+1

dtm+1
y1(t) = ū

(m)
1

v2 = ū2.

The goal to be achieved in a system, given initial and �nal conditions to the state

variables, is to �nd motor controls that at each instant of time the solution trajectories

of the original system pass through ci and cf .

We will impose then, the conditions ci and cf to the original state variables. Through

the di�eomorphism {x} ↔ {z} we will �nd the corresponding initial and �nal condi-

tions for {z} that will be denoted by ci and cf . With this data and adding conditions

to zm+3, . . . , z2m+2, we �nd the conditions that have to be satis�ed by the �at outputs

and its derivatives thanks to the di�eomorphism {z} ↔ {y} and that will be denoted

by ĉi i ĉf .

Given 2m+ 2 initial and �nal conditions1, in total 4m+ 4 conditions, there exist two

unique polynomial of degree 2m+ 1 denoted by P2m+1(t) and Q2m+1(t) such that

y1(t) = P2m+1(t), y2(t) = Q2m+1(t).

Imposing the above conditions, the interpolation polynomials are determined and,

consequently, the �at outputs expression involving the time is found. Clearly, its

derivatives will be depend also on time.

We have commented above that the variables {z} can be expressed involving the �at

outputs and its derivatives that involve the time. The �at output system becomes
y

(m+1)
1 =

dm+1

dtm+1
y1 = w1

y
(m+1)
2 =

dm+1

dtm+1
y2 = w2

which is at the same time
y

(m+1)
1 =

d

dt
y

(m)
1 =

d

dt
ū

(m−1)
1 =

d

dt
z2m+2 = v1

y
(m+1)
2 =

d

dt
y

(m)
2 =

dm

dtm
ẏ2 =

dm

dtm
żm+2 =

dm

dtm
(zm+1zm+3) = α+ βv1 + γv2.

Therefore,

w1 = v1

w2 = α+ βv1 + γv2.

Finally, we �nd ū1 and ū2 as a function of v1 and v2, and we �nd the original controls

u1 and u2 solving the system

(
ū1

ū2

)
=


∑m+2
i=1

∂f1

∂xi
gi1

∑m+2
i=1

∂f1

∂xi
gi2∑m+2

i=1

∂f2

∂xi
gi1

∑m+2
i=1

∂f2

∂xi
gi2

( u1

u2

)
.

1Notice that for the �at outputs y1 and y2 we have 2m+ 2 initial and �nal conditions.
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Planar Space Robot

Consider a simpli�ed model of a planar robot, as shown in Figure 6.1. This robot

consists of two arms connected to a central body via revolution joints. If the robot is

free-�oating, then the law of conservation of angular momentum implies that moving

the arms causes the central body to rotate. In the case that the angular momentum

is zero, this conservation law can be viewed as a Pfa�an constraint on the system.

Let M and I represent the mass and inertia of the central body and let m represent

the mass of the arms, which we take to be concentrated at the tips. The revolution

joints are located at a distance r from the middle of the central body and the links

attached to these joints have length l.

Figure 6.1: A simpli�ed model of planar space robot.

We let (x1, y1) and (x2, y2) represent the position of the ends of each of the arms (in

terms of θ, ψ1 and ψ2). Let θ be the angle of the central body with respect to the

horizontal, ψ1 and ψ2 the angles of the left arm and right arms with respect to the

central body, and p ∈ R2 the location of a point on the central body (say the center

of mass). The kinetic energy of the system (See [2, pages 334�335]) has the form

K =
1

2
(M + 2m)‖ṗ‖2 +

1

2
Iθ̇2 +

1

2
m(ẋ2

1 + ẏ2
1) +

1

2
m(ẋ2

2 + ẏ2
2)

=
1

2
(M + 2m)‖ṗ‖2 +

1

2

 ψ̇1

ψ̇2

θ̇

⊥  a11 a12 a13

a21 a22 a23

a31 a32 a33

 ψ̇1

ψ̇2

θ̇

 ,
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where aij can be calculated as

a11 = a22 = ml2

a12 = 0

a13 = ml2 +mr cos(ψ1)

a23 = ml2 +mr cos(ψ2)

a33 = I + 2ml2 + 2mr2 + 2mrl cos(ψ1) + 2mrl cos(ψ2).

Note that the kinetic energy of the system is independent of the variable θ. It,

therefore, follows from Lagrange's equations (See [4]) that in the absence of external

forces,
d

dt

(
∂L

∂θ̇

)
=
∂L

∂θ
= 0.

Thus, the quantity
∂L

∂θ̇
is a constant of the motion. This is precisely the angular

momentum, α, of the system:

α = a13ψ̇1 + a23ψ̇2 + a33θ̇.

If the initial angular momentum is zero, then conservation of angular momentum en-

sures that the angular momentum stays zero, giving the following constraint equation

a13(ψ)ψ̇1 + a23(ψ)ψ̇2 + a33(ψ)θ̇ = 0. (6.1)

Since the actuated variables are the hinge angles of the left and right arm, we choose

as inputs u1 = ψ1 and u2 = ψ2. Using these in Eq. (6.1) and setting q = (ψ1, ψ2, θ)
⊥,

we get

q̇ = g1(q)u1 + g2(q)u2

where

g1(q) =

 1

0

−a13

a33

 g2(q) =

 0

1

−a23

a33

 .

Let x = (x1, x2, x3)⊥ = (ψ1, ψ2, θ)
⊥, then Eq. (6.1) is written as

α = a13(x)ẋ1 + a23(x)ẋ2 + a33(x)ẋ3.

In the x's variables, the original system is written as ẋ = g1(x)u1 + g2(x)u2 which

can be expressed as 
ẋ1 = u1

ẋ2 = u2

ẋ3 = −a13

a33
u1 −

a23

a33
u2.

(6.2)

The exterior derivative of α is

dα = −2mrl sin(x1) dx1 ∧ dx3 − 2mrl sin(x2) dx2 ∧ dx3.
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Let's �nd the rank of α:

dα ∧ α = 2m2rl (r sin(x1 − x2) + l2(sin(x1)− sin(x2))) dx2 ∧ dx2 ∧ dx3 6= 0

for all x1, x2 6= kπ, k ∈ Z. We know that dα∧α is a 3-form in a 3-dimensional space,

therefore (dα)r ∧ α = 0 for all r ≥ 2. So, the rank of α is 1.

Now, we can apply the Pfa� theorem and rewrite α as α = dz3 − z2dz1. It's easy to

check that


z1 = x3,

z2 = −a33 = −I − 2ml2 − 2mr2 − 2mrl cos(x1)− 2mrl cos(x2)),

z3 = ml2(x1 + x2) +mr(sin(x1) + sin(x2)),

is the desired change of variables. To express the system in the new variables, we

have to �nd ḡ1, ḡ2, ū1 and ū2 such that ż = ḡ1ū1 + ḡ2ū2. The vector �elds ḡi must

satisfy iḡi(α) = 0, so they are

ḡ1 =
∂

∂z2
= (0, 1, 0)⊥

ḡ2 =
∂

∂z1
+ z2

∂

∂z3
= (1, 0, z2)⊥.

(6.3)

Our new system is written as

ż =

 0

1

0

 ū1 +

 1

0

z2

 ū2 + .

By construction of the change of variables that transforms x into z we know that


ż1 = ẋ3 = −a13

a33
u1 −

a23

a33
u2 = ū2

ż2 = 2mrl sin(x1)ẋ1 + 2mrl sin(x2)ẋ2 = 2mrl sin(x1)u1 + 2mrl sin(x2)u2 = ū1

ż3 = a13ẋ1 + a23ẋ2 = a13u1 + a23u2 = z2ū2.

Therefore, our new controls ū1 and ū2 are

ū1 = 2mrl sin(x1)u1 + 2mrl sin(x2)u2,

ū2 = −a13

a33
u1 −

a23

a33
u2.
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Now, we are looking for the �at outputs y1(z, ū) and y2(z, ū). The fact that ż1, ż2

and ż3 depend on z2, ū1 and ū2, we can take as �at outputs y1 = z1 and y2 = z3.

First of all, we �nd the control ū2 as a function of ẏ1

ẏ1 = ż1 = ū2 =⇒ ū2 = ẏ1.

Then, we can �nd z2

ẏ2 = ż3 = z2ū2 = z2ẏ1 =⇒ z2 =
ẏ2

ẏ1
.

The z variables depend on the feedback laws and their derivatives like z = z(y1, ẏ1, y2, ẏ2),

but we cannot de�ne a di�eomorphism yet. We must prolong the system adding a

new state variable

z4 = ū2

and two new control laws

v1 = ū1, v2 = ˙̄u2.

Now, our system can be written as


ż1 = z4

ż2 = v1

ż3 = z2z4

ż4 = v2.

Therefore, the change of variables in the prolonged system is


z1 = y1

z2 = ẏ2/ẏ1

z3 = y2

z4 = ẏ1.

Now, we got a di�eomorphism between {y1, ẏ1, y2, ẏ2} and {z1, z2, z3, z4} given by


y1 = z1

ẏ1 = z4

y2 = z3

ẏ2 = z2z4

We have to check for which values this di�eomorphism exists and avoid the singular-

ities when we impose the initial condition values. The determinants of the change of

variables are the following

|Jz| =

∣∣∣∣∣∣
0 0 1

2mrl sin(x1) 2mrl sin(x2) 0

a13(x) a23(x) 0

∣∣∣∣∣∣ = 2m2rl3(sin(x1)−sin(x2))+2m2r2l sin(x1−x2)).
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So, if x1 6= x2 and x1, x2 6= kπ, k ∈ Z, then the inverse exist. For the y variables,

|Jy| =

∣∣∣∣∣∣∣∣
1 0 0 0

0 0 0 1

0 0 1 0

0 z4 0 z2

∣∣∣∣∣∣∣∣ = −z4,

which is invertible if z4 6= 0. The feedback law is given by

w1 = ÿ1 = ż4 = v2,

w2 = ÿ2 = ż2z4 + z2ż4 = z4v1 + z2v2.

Inversely, we can compute the controls v1 and v2 as a function of y1, ẏ1, y2, ẏ2, w1 and

w2 as

v1 =
ẏ1w2 − ẏ2w1

(ẏ1)2
,

v2 = w1.

Now we can express ū1 and ū2 as a function of z1, z2, z3, z4, v1 and v2 as

ū1 = v1,

˙̄u2 = v2.

Finally, the initial controls u1 and u2 can be reached solving the system

(
ū1

ū2

)
=

(
2mrl sin(x1) 2mrl sin(x2)

−a13

a33
−a23

a33

)(
u1

u2

)
.

So, u1 and u2 are

u1 =
a23

2mrl(a23 sin(x1)− a13 sin(x2))
ū1 +

a33 sin(x2)

a23 sin(x1)− a13 sin(x2)
ū2,

u2 = − a13

2mrl(a23 sin(x1)− a13 sin(x2))
ū1 −

a33 sin(x1)

a23 sin(x1)− a13 sin(x2)
ū2.

(6.4)

Consider m = 1, I = 1, l = 2, r = 3l/4, t0 = 0 and tf = 1 and take as initial and

�nal conditions of x the values

x(0) =(ψ1(0), ψ2(0), θ(0)) =

(
7π

8
,
−π − 1

8
,
π

2

)
x(1) =(ψ1(1), ψ2(1), θ(1)) =

(
5π

8
,
−3π + 1

8
,

3π

4

)
.
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First of all, we must transform the initial and �nal conditions, x(0) and x(1), in terms

of z variables. Since z4 = ū2 we can take as initial and �nal condition the values that

we want. So, taking z4(0) = 1 and z4(1) = 2, the initial and �nal conditions in z

variables are

z(0) =(z1(0), z2(0), z3(0), z4(0)) = (1.570796327,−13.17048378, 8.756480043, 1)

z(1) =(z1(1), z2(1), z3(1), z4(1)) = (2.356194490,−14.17319166, 3.723971711, 2).

Finally, we transform the initial and �nal conditions of z in terms of y = (y1, ẏ1, y2, ẏ2)

as follows

y(0) =(y1(0), ẏ1(0), y2(0), ẏ2(0)) = (1.570796327, 1, 8.756480043,−13.17048378)

y(1) =(y1(1), ẏ1(1), y2(1), ẏ2(1)) = (2.356194490, 2, 3.723971711,−28.34638332) .

Consider P3(t) = a3t
3 + a2t

2 + a1t + a0 such that P3(t) = y1(t). Let's �nd the

coe�cients of P3(t).

y1(t) = a3t
3 + a2t

2 + a1t+ a0

ẏ1(t) = 3a3t
2 + 2a2t+ a1

For t = 0:

a0 = 1.570796327

a1 = 1.

For t = 1:

a3 + a2 = 2.3561945− 2.570796327

3a3 + 2a2 = 2− 1.

Solving the linear system we �nd

a2 = −1.643805511

a3 = 1.429203674.

Therefore,

y1(t) = P3(t) = 1.429203674t3 − 1.643805511t2 + t+ 1.570796327. (6.5)

Analogously, we proceed in the same way with y2(t) = Q3(t) = b3t
3 + b2t

2 + b1t+ b0.

y2(t) = b3t
3 + b2t

2 + b1t+ b0

ẏ2(t) = 3b3t
2 + 2b2t+ b1.

For t = 0:

b0 = 8.756480043

b1 = −13.17048378.

For t = 1:

b3 + b2 = 3.723971711− 4.414003737

3b3 + 2b2 = −28.34638332 + 13.17048378.
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Solving the linear system,

b2 = 39.589825884

b3 = −31.451850436.

Therefore,

y2(t) = −31.451850436t3 + 39.589825884t2 − 13.17048378t+ 8.756480043. (6.6)

Now, we must �nd the feedback as a function of time

w1 =
d2

dt2
y1(t) =

d2

dt2
P3 = 8.575222044t− 3.287611022

w2 =
d2

dt2
y2(t) =

d2

dt2
Q3 = −188.711102616t+ 79.179651768.

As a consequence, the controls v1 and v2 have the expression

v1 =
ẏ1w2 − ẏ2w1

(ẏ1)2
=
−29.28719717t2 − 75.77127978t+ 35.88022413

(4.287611022t2 − 3.287611022t+ 1)2

v2 =w1 = 8.575222044t− 3.287611022.

Finally, we obtain the expressions of ū1(t) and ū2(t) as a function of v1 and v2. For

ū2 we know that it satis�es the following equation,

˙̄u2 = v2(t) =⇒ ū2 = ẏ1(t).

So, ū1(t) and ū2(t) are

ū1(t) =
−29.28719717t2 − 75.77127978t+ 35.88022413

(4.287611022t2 − 3.287611022t+ 1)2

ū2(t) =4.287611022t2 − 3.287611022t+ 1.

Undoing the feedback in the controls ū1 and ū2, we �nd the expression of the initial

controls solving the system (6.4).

Before �nding the controls u1(t) and u2(t), we can integrate (6.2) using the numerical

method Runge-Kutta 45 implemented in Matlab.
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Figure 6.2: Trajectories of the z variables z1(t), z2(t), z3(t) and z4(t) respectively.



7
Mobile Robot with a

Trailer

In this chapter, we will derive the kinematic model of a mobile robot with a trailer

and then �nd the �at outputs of the system. The two-wheeled mobile robot is dif-

ferentially driven and the trailer is attached at the center O of the mobile robot

through a rotational joint as Figure 7.1 shows. In cartesian coordinates, the system's

con�guration is given by

q = (x1, y1, θ1, θ0)T ,

where x1, y1 are the position of the midpoint C of the trailer's axle. θ1 and θ0 are the

heading angles of the trailer and the robot, respectively. L is the distance between the

center of the mobile robot and the midpoint of the trailer's axle. Figure 7.1 shows the

schematic of the system and its con�guration. From the geometric relationship, the

center position of the mobile robot is given as x0 = x1 +L cos(θ1), y0 = y1 +L sin(θ1).

Figure 7.1: A di�erentially driven mobile robot with a trailer in Cartesian space

described by (x1, y1, θ1, θ0).

From the assumption of no-slip condition on the wheels of the robot and the trailer,

the instantaneous velocities at C and O along their respective axles become zero. One
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gets nonholonomic constraints of the form

C(q)q̇ = 0,

where

C(q) =

(
sin(θ0) − cos(θ0) −L cos(θ0 − θ1) 0

sin(θ1) − sin(θ1) 0 0

)
.

When a matrix S(q) spans the null space of C(q), it is possible to de�ne velocity

vector ν(t) such that

q̇ = S(q)ν(t). (7.1)

Hence, if we represent the velocity vector ν as the heading speed v and the turning

speed θ̇0 of the robot, or ν = (v, θ̇0)T , we can �nd that the matrix S(q) can be

written as

S(q) =


cos(θ0 − θ1) cos(θ1) 0

cos(θ0 − θ1) sin(θ1) 0

sin(θ0 − θ1)/L 0

0 1

 .

Therefore, S(q) represents the kinematic model of the system.

If we de�ne x = (x1, x2, x3, x4)T = (x1, y1, θ1, θ0)T , u1 = v and u2 = θ̇0, we can

rewrite the system (7.1) as
ẋ1

ẋ2

ẋ3

ẋ4

 =


cos(x3) cos(x4 − x3)

sin(x3) cos(x4 − x3)

sin(x4 − x3)/L

0

u1 +


0

0

0

1

u2. (7.2)

The vector �elds of the system (7.2) are

g1 =


cos(x3) cos(x4 − x3)

sin(x3) cos(x4 − x3)

sin(x4 − x3)/L

0

 and g2 =


0

0

0

1

 ,

that de�ne the distribution ∆ = 〈g1, g2〉. The system (7.2) with the distribution ∆ is

controllable.

Now, we want to �nd the �at outputs using the Engels theorem. The annihilator of

∆ is I = {α1, α2} where

α1 = − tan(x3)dx1 + dx2 and α2 =
tan(x3 − x4)

L cos(x3)
dx1 + dx3.

The derived �ags of the ideal I are

I(0) = {α1, α2}, I(1) = {α1}, I(2) = {0}.

We want to express I as I = {α1, α2} = {dz4−z3dz1, dz3−z2dz1}. It is easy to check
that 

z1 = x1

z3 = tan(x3)

z4 = x2
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holds that α1 = dz4 − z3dz1. Now, we know that

α2 + λ(x)α1 = a(x)dz3 + b(x)dz1,

but α2, dz3 and dz1 do not depend on dx2. It implies that λ(x) = 0 and

α2 = a(x)dz3 + b(x)dz1.

Imposing that this equality holds term by term

tan(x3 − x4)

L cos(x3)
dx1 + dx3 =

a(x)

cos2(x3)
dx3 + b(x)dx1,

we obtain that

a(x) = cos2(x3) and b(x) =
tan(x3 − x4)

L cos(x3)
.

Following the proof of Engel's theorem, we know that z2 = − b(x)

a(x)
. Now, I can be

expressed like I = {dz4 − z3dz1, dz3 − z2dz1} using

z1 = x1,

z2 = − tan(x3 − x4)

L cos3(x3)
,

z3 = tan(x3),

z4 = x2.

(7.3)

The next step is to look for two vector �elds ḡ1 and ḡ2, two controls ū1 and ū2 such

that ż = ḡ1ū1 + ḡ2ū2, and

iḡk(dz4 − z3dz1) = 0 and iḡk(dz3 − z2dz1) = 0 for k = 1, 2.

This vector �elds are

ḡ1 =
∂

∂z1
+ z2

∂

∂z3
+ z3

∂

∂z4
= (1, 0, z2, z3)T

ḡ2 =
∂

∂z2
= (0, 1, 0, 0)T .

(7.4)

So, it means that

ż = ḡ1ū1 + ḡ2ū2 =


1

0

z2

z3

 ū1 +


0

1

0

0

 ū2.

In these new variables the system (7.2) is expressed as

ż1 = cos(x3) cos(x4 − x3)u1 = ū1

ż2 =− sin(x4 − x3)(3 cos(x3 − x4) sin(x3 − x4) sin(x3) + cos(x3))

L2 cos2(x3 − x4) cos4(x3)
u1

+
1

L cos2(x3 − x4) cos3(x3)
u2 = ū2

ż3 =
sin(x4 − x3)

L cos2(x3)
u1 = z2ū1

ż4 = sin(x3) cos(x4 − x3)u1 = z3ū1.

(7.5)
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So, our new controls are of the form ū = b(x)u,

ū1 = cos(x3) cos(x4 − x3)u1

ū2 =− sin(x4 − x3)(3 cos(x3 − x4) sin(x3 − x4) sin(x3) + cos(x3))

L2 cos2(x3 − x4) cos4(x3)
u1

+
1

L cos2(x3 − x4) cos3(x3)
u2.

Later on, we are looking for the �at outputs y1(z, ū) and y2(z, ū). The fact that

ż1, ż2, ż3 and ż4 depend on z2, z3, ū1 and ū2 allows us to take as �at outputs y1 = z1

and y2 = z4. First of all, we �nd the control ū1 in function of ẏ1

ẏ1 = ż1 = ū1 ⇒ ū1 = ẏ1,

then we can �nd z3, z2 and ū2 in terms of ẏ1 and ẏ2

ẏ2 = ż4 = z3ū1 = z3ẏ1

ż3 =
ÿ2ẏ1 − ÿ1ẏ2

(ẏ1)2
= z2ū1 = z2ẏ1

ż2 =

...
y 2(ẏ1)2 −

...
y 1ẏ1ẏ2 − 3ÿ2ÿ1ẏ1 + 3ẏ2(ÿ1)2

(ẏ1)4
= ū2.

Now, z1, z2, z3, z4, ū1 and ū2 can be expressed in terms of y1, y2 and their derivatives

as follows 

z1 = y1,

z2 =
ÿ2ẏ1 − ÿ1ẏ2

(ẏ1)3
,

z3 =
ẏ2

ẏ1
,

z4 = y2.

(7.6)

The z variables depend on the feedback laws and their derivatives like z = z(y1, ẏ1, ÿ1, y2, ẏ2, ÿ2),

but we cannot de�ne a di�eomorphism yet. We must prolong the system adding two

new state variables

z5 = ū1, z6 = ˙̄u1

and two new control laws

v1 = ¨̄u1, v2 = ū2.

Then, our system can be written as



ż1 = z5

ż2 = v2

ż3 = z2z5

ż4 = z3z5

ż5 = z6

ż6 = v1

(7.7)
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Now, we got a di�eomorphism between {y1, ẏ1, ÿ1, y2, ẏ2, ÿ2} and {z1, z2, z3, z4, z5, z6}.
We have to check for which values this di�eomorphism exists and avoid the singular-

ities when we impose the initial condition values. The determinants of the change of

variables are the following

|Jz| =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

0 0 −cos(x3)(1 + tan2(x3 − x4)) + 3 sin(x3) tan(x3 − x4)

L cos4(x3)

1 + tan2(x3 − x4)

L cos3(x3)
0 0 1 + tan2(x3) 0

0 1 0 0

∣∣∣∣∣∣∣∣∣∣
= − 1

L cos2(x3 − x4) cos5(x3)
.

So, if x3 − x4 6=
kπ

2
and x3 6=

kπ

2
for k ∈ N, then the inverse exists.

|Jy| =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 z5 0 z3 0

0 z2
5 z6 0 2z2z5 z3

∣∣∣∣∣∣∣∣∣∣∣∣
= −z3

5 .

So, for all point with z5 6= 0 the inverse exists.

The feedback is of the form

w1 =
d

dt
ÿ1 = v1

w2 =
d

dt
ÿ2 = α+ βv1 + γv2.

Let's �nd α, β and γ:

d

dt
ÿ1 =

d

dt
(z2z

2
5 + z3z6) =

d

dt
(ż3u1 + u̇1z3) = z̈3u1 + 2ż3u̇1 + z3ü1

= (ż2z5 + ż5z2)u1 + 2ż3u̇1 + z3ü1

= v2z
2
5 + 3z2z5z6 + v1z3.

So,

α =3z2z5z6

β =z3

γ =z2
5 .

Which implies

v2 =
w2 − α− βw1

γ
.

Let's L = 1, t0 = 0 and tf = 1 and take as initial and �nal conditions of x the values

x(0) =(x1(0), x2(0), θ1(0), θ0(0)) =
(

0, 0, 0,
π

4

)
x(1) =(x1(1), x2(1), θ1(1), θ0(1)) =

(
1, 1,

π

4
,
π

4

)
.
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First of all, we must transform the initial and �nal conditions, x(0) and x(1), in terms

of z variables. Since z5 = ū1 and z6 = ˙̄u1, we can take as initial and �nal condition

whatever values we want. So, taking z5(0) = z5(1) = 1 and z6(0) = z6(1) = 0, the

initial and �nal conditions in z variables are

z(0) =(z1(0), z2(0), z3(0), z4(0)) = (0, 1, 0, 0, 1, 0)

z(1) =(z1(1), z2(1), z3(1), z4(1)) = (1, 0, 1, 1, 1, 0) .

Finally, we transform the initial and �nal conditions of z in terms of y = (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2)

as follows

y(0) =(y1(0), ẏ1(0), ÿ1(0), y2(0), ẏ2(0), ÿ2(0)) = (0, 1, 0, 0, 1, 0)

y(1) =(y1(1), ẏ1(1), ÿ1(1), y2(1), ẏ2(1), ÿ2(1)) = (1, 1, 0, 1, 0, 0) .

Consider P5(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0 such that P5(t) = y1(t). Let's

�nd the coe�cients of P5(t).

y1(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0

ẏ1(t) = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t+ a1

ÿ1(t) = 20a5t
3 + 12a4t

2 + 6a3t+ 2a2.

For t = 0:

a0 = 0

a1 = 1

a2 = 0.

For t = 1:

1 = a5 + a4 + a3 + 1

1 = 5a5 + 4a4 + 3a3 + 1

0 = 20a5 + 12a4 + 6a3.

Solving the linear system we �nd:

a3 = 0

a4 = 0

a5 = 0,

therefore,

y1(t) = P5(t) = t. (7.8)

Analogously, we proceed in the same way with y2(t) = Q5(t) = b5t
5 + b4t

4 + b3t
3 +

b2t
2 + b1t+ b0.

y2(t) = b5t
5 + b4t

4 + b3t
3 + b2t

2 + b1t+ b0

ẏ2(t) = 5b5t
4 + 4b4t

3 + 3b3t
2 + 2b2t+ b1

ÿ2(t) = 20b5t
3 + 12b4t

2 + 6b3t+ 2b2.
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For t = 0:

b0 = 0

b1 = 1

b2 = 0.

For t = 1:

1 = b5 + b4 + b3 + 1

0 = 5b5 + 4b4 + 3b3 + 1

0 = 20b5 + 12b4 + 6b3.

Solving the linear system:

b3 = 4

b4 = −7

b5 = 3,

therefore,

y2(t) = 3t5 − 7t4 + 4t3 + t. (7.9)

Now, we must �nd the feedback as a function of time

w1 =
d3

dt3
y1(t) =

d3

dt3
P5(t) = 0

w2 =
d3

dt3
y2(t) =

d3

dt3
Q5(t) = 180t2 − 168t+ 24.

As a consequence, the controls v1 and v2 have the expression

v1 =
d3

dt3
y1(t) =

d3

dt3
P5 = 0

v2 =
w2 − α− βw1

γ
= 180t2 − 168t+ 24,

where α = 0, β = 15t4 − 28t3 + 12t2 + 1 and γ = 1.

Finally, we obtain the expressions of ū1(t) and ū2(t) in function of v1 and v2. For ū1,

we know that it satis�es the following ordinary di�erential equation,

¨̄u1 = v1(t), ū1(0) = 1, ˙̄u1(0) = 0.

So, ū1(t) and ū2(t) are

ū1(t) =1

ū2(t) =180t2 − 168t+ 24.

Undoing the feedback in the controls ū1 and ū2, we �nd the expression of the initial

controls

u1(t) = =
1

cos(x3) cos(x3 − x4)

u2(t) =− sin(x3 − x4)(3 cos(x3 − x4) sin(x3 − x4) sin(x3) + cos(x3))

cos(x3 − x4) cos2(x3)

+ cos2(x3 − x4) cos3(x3)(180t2 − 168t+ 24).

Before �nding the controls u1(t) and u2(t), we can integrate (7.2) using the numerical

method Runge-Kutta 45 implemented in Matlab.



50 7. Mobile Robot with a Trailer

Figure 7.2: Trajectories of the state variables x1(t), y1(t),θ1(t) and θ0(t) respectively.

Figure 7.3: The graphic shows the trajectory of the trailer, given by (x1(t), y1(t)).
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Figure 7.4: The graphic in blue line represents the trajectory of the trailer and the

green line the trajectory of the mobile, given by x0(t) = x1(t)+cos(θ1(t)) and y0(t) =

y1(t) + sin(θ1(t)).



52 7. Mobile Robot with a Trailer



8
The N-Trailer

Pfa�an System

8.1 The System of Rolling Constraints and Its

Derived Flags

Consider a single-axle mobile robot with n trailers attached, as sketched in Figure

8.1.

Figure 8.1: The N-Trailer.

Each trailer is attached to the body in front of it by a rigid bar, and the rear set of

wheels of each body is constrained to roll without slipping. The trailers are assumed

to be identical, with possibly di�erent link length Li. The x, y coordinates of the mid-

point between the two wheels on the ith axle are refereed to as (xi, yi) and the hitch

angles (all measured with respect to the horizontal) are given by θi. The connections

between the bodies give rise to the following relations:

xi−1 = xi − Li cos(θi),

yi−1 = yi − Li sin(θi),
(8.1)

for i = 1, 2, . . . , n. Thus, it follows that the space parameterized by coordinates

(x0, y0, θ0, . . . , xn, yn, θn) ∈ R2n+2 × (S1)n+1

is not reachable. These constraints (8.1) are holonomic and will reduce the dimension

of the con�guration space, since the position (xi, yi) for i ≥ 1 can be expressed in
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terms of x0, y0, θ0, . . . , θi. By symmetry, (xi, yi) for i < n also can be expressed in

terms of xn, yn, θn, θn−1, . . . , θi. For our purposes it is useful to use as con�guration

space variables the x, y coordinates of a point on the nth trailer and the n+ 1 hitch

angles: xn, yn, θn, . . . , θ0 because the calculations that follow are vastly simpli�ed.

We will refer to the state space or con�guration space as x = (xn, yn, θn, . . . , θ0).

We have assumed that the bodies are connected between the midpoints of the two

sets of rear wheels; it should be noted that if the trailers are hitched behind the rear

axle, the equations will not simplify as shown here.

The wheels of the robot and trailers are constrained to roll without slipping; this

implies that the velocity of each body in the direction perpendicular to its wheels

must be zero. We model each pair of rear wheels as a single wheel at the midpoint of

the axle and state the nonslipping condition in terms of coordinates, beginning with

the nth trailer

ẋn sin(θn)− ẏn cos(θn) = 0. (8.2)

Equation (8.2) models the fact that the velocity perpendicular to the wheels is zero.

In the language of 1-forms, we write this as

α1(xn, yn, θn, . . . , θ0) = sin(θn)dxn − cos(θn)dyn. (8.3)

To write the other rolling constraints, we de�ne vi to be the velocity of the ith trailer.

The direction of motion of the (i+ 1)st trailer and consequently the direction of vi+1,

if its wheels are rolling without slipping, is along the direction of the hitch joining the

(i+ 1)st body to the ith body. Since the bodies are linked together by rigid rods, it

follows that the projection of vi onto the line of the hitch is equal to vi+1. Thus, we

have that

vi+1(x) = cos(θi+1 − θi)vi(x). (8.4)

Also, we have that the velocity of the nth trailer vn is given by

vn(x) = cos(θn)ẋn + sin(θn)ẏn. (8.5)

In the sequel we will need to use (8.5) as a 1-form (i.e., we will need to use vndt) ans

we denote this by abuse of notation as

vn(x) = cos(θn)dxn + sin(θn)dyn. (8.6)

We may now recursively write down the rolling without slipping constraints for all

the trailers. The velocity of each trailer has a component due to the velocity vi+1

of previous trailer and a component Li+1θ̇
i+1 due to the rotation of the hitch. The

relative geometry of this situation is illustrated in Figure 2. The component of vi+1 in

the direction perpendicular to the wheel base is vi+1 sin(θi−θi+1) and the component

of Li+1θ̇
i+1 in this direction is Li+1θ̇

i+1 cos(θi− θi+1). If the ith trailer rolls without

slipping then must have

Li+1θ̇
i+1 cos(θi − θi+1)− vi+1 sin(θi − θi+1) = 0. (8.7)
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Figure 8.2: Showing the de�nition of the angles and velocities of the ith trailer.

Dividing through (8.7) by cos(θi − θi+1) yields the form constraint for 0 ≤ i ≤ n− 1,

which we write as αn−i+1(x)ẋ = 0, where αn−i+1 has the expression, in coordinates,

αn−i+1(x) = Li+1dθ
i+1 − tan(θi − θi+1)vi+1. (8.8)

Note that we have used the 1-form version vi+1 in (8.8) and that there will be a

singularity in the constraint when θi − θi+1 = ±π/2, or one of the trailers is jack-

knifed.

The forms α1(x), α2(x), . . . , αn+1(x) represents the constraints that the wheels of

the nth, (n− 1)st, ..., zeroth trailer (i.e., the cab), respectively, roll without slipping.

They are given by formulas given by (8.8) with the recursion relations in (8.4). Thus,

the Pfa�an system for the N -trailer problem is generated by

I = span {α1, α2, . . . , αn+1}. (8.9)

The following theorem gives the derived �ags associated with this Pfa�an system.

Theorem 8.1.1 (Derived Flag for the N-Trailer Pfa�an System). Consider the Pfaf-

�an system of the N -trailer system (8.9) with the 1-forms αi de�ned by (8.8) and

(8.3). The 1-forms αi are adapted to the derived �ag in the following sense

I(0) = span {α1, α2, . . . , αn+1}

I(1) = span {α1, α2, . . . , αn}
...

I(n) = span {α1}

I(n+1) = {0}.

(8.10)
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Proof. The proof is by recursion starting from the bottom of the �ag of (8.10). Indeed

for the �rst step, we compute dα1

dα1 = cos(θn)dθn ∧ dxn + sin(θn)dθn ∧ dyn

= −vn ∧ dθn.

From (8.6) it follows that dα1 6= 0 mod α1. This establishes the last two steps of the

derived �ag above. For the preceding step, we note that the form α2 is given by

α2 = Lndθ
n − tan(θn − θn−1)vn.

This yields that dθn is proportional to vn mod α2. Consequently, we have that

dα1 = −vn ∧ dθn is equal 0 mod α2. This establishes that

I(n−1) = span {α1, α2}

I(n) = span {α1}

I(n+1) = {0}.

(8.11)

We need to show that dαi = 0 mod α1, . . . , αi−1, αi. To verify this, it is useful to

have the following preliminary lemma.

Lemma 8.1.1. For the 1-forms vi we have that

dvn−i ≡ 0 mod α1, . . . , αi+2. (8.12)

Proof. Start �rst with

dvn = − sin(θn)dθn ∧ dxn + cos(θn)dθn ∧ dyn ≡ 0 mod α1.

Thus dvn ≡ 0 mod α1, α2. From vn−1 = vn sec(θn − θn−1) it follows that

dvn−1 = sec(θn − θn−1)dvn + sec(θn − θn−1) tan(θn − θn−1)vn ∧ (dθn − dθn−1).

This �rst term is zero mod α1 since dvn ≡ 0 mod α1. The second term is zero mod

α2 since vn is proportional to dθn mod α2, and the third term is zero mod α3 since

vn is proportional to θn−1 mod α3. Thus, we have that

dvn−1 ≡ 0 mod α1, α2, α3.

Proceeding recursively, we have that

dvn−i ≡ 0 mod α1, α2, . . . , αi+2

which completes the proof of the lemma.

2

We will also need to make use of the relation

dθn−i+2 ≡ vn mod αi (8.13)

which follows directly from the de�nition of the αi in (8.8) and the linear dependence

of the 1-forms vi, given in (8.4).
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Continuing with the proof of the theorem, we now begin the calculation of

dαi =− sec2(θn−i+2 − θn−i+1)(dθn−i+2 − dθn−i+1) ∧ vn−i+2

− tan(θn−i+2 − θn−i+1)dvn−i+2.

This expression has three terms. By (8.12), we have that dvn−i+2 ≡ 0 mod α1, . . . , αi.

Also by the proportionality of dθi to vn (8.13) and the linear dependence of the

vi's (8.4), we have that dθn−i+2 ∧ vn−i+2 ≡ 0 mod αi and dθn−i+2 ∧ vn−i+2 ≡ 0

mod αi−1. Thus, we have that dαi ≡ 0 mod α1, . . . , αi which implies that the de-

rived �ag has the form I(n−i+1) = {α1, . . . , αi}, as stated.

2

We note that the I(n+1) = {0} implies that the N -trailer system is completely con-

trollable by Chow's Theorem.

8.2 Conversion to Goursat Normal Form

In the preceding section, we have shown that the basis of the constraints α1, . . . , αn+1

de�ned in (8.3) and (8.8) is adapted to its derived �ag in the sense of (8.10). It

remains to check whether the αi satisfy the Goursat congruences and if they do, to

�nd a transformation that puts them into Goursat canonical form.

Theorem 8.2.1 (Goursat Congruences for the N -Trailer System). Consider the Pfaf-

�an system associated with the N - trailer system (8.9) with the 1-forms αi de�ned in

(8.3) and (8.8). There exist a change of basis of the 1-forms αi to ᾱi which preserves

the adapted structure, and a 1-form π such that the Goursat congruences are satis�ed

dᾱi ≡ −ᾱi+1 ∧ π mod ᾱ1, . . . , ᾱi i = 1, . . . , n

dᾱn+1 6= 0 mod I.

The 1-form which satis�es these congruences is given by π = cos(θn)dxn+sin(θn)dyn =

vn, and it is equivalent to the velocity form of the nth trailer.

Proof. The outline for the proof is �rst to determine a suitable 1-form π from the �rst

Goursat congruence, dα1 ≡ −α2 ∧ π. Then, we construct the new basis elements ᾱi

one at a time such that satisfy the rest of the congruences. For this example, we �nd

that these new basis elements are multiples of the original basis elements, and since

the original basis is adapted to the derived �ag, the new basis is also adapted.

We determine π by completing the basis of {α1, . . . , αn+1} with

αn+2 = cos(θn)dxn + sin(θn)dyn

αn+3 = dθ0.

Note that αn+2 = vn, the velocity form of the last trailer. We then set π = λ1α
n+2 +

λ2α
n+3 and solve λ1, λ2 using

dα1 ≡ −α2 ∧ π mod α1.
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Calculating the exterior derivative of α1

dα1 = cos(θn)dθn ∧ dxn + sin(θn)dθn ∧ dyn

= dθn ∧ vn
(8.14)

and then examining α2 ∧ π

α2 ∧ π = (Lndθ
n − tan(θn − θn−1)vn) ∧ (λ1v

n + λ2dθ
0)

we see if we choose λ1 = 1, λ2 = 0, then

α2 ∧ π = Lndθ
n ∧ vn = Lndα

1.

We note here that we could have chosen λ1 = −1/Ln, but instead we will de�ne a

new basis element ᾱ2 = −(1/Ln)α2. Then the 1-form π = vn will satisfy

dα1 = −ᾱ2 ∧ π.

We now continue this procedure to �nd the rest of the transformed basis. Taking the

exterior derivative of ᾱ2

dᾱ2 =
1

Ln
sec2(θn − θn−1)(dθn − dθn−1) ∧ vn − 1

Ln
tan(θn − θn−1)dvn

and noting that

vn ∧ dθn ≡ 0 mod ᾱ2

dvn ≡ 0 mod α1

it can be seen that

dᾱ2 ≡ − 1

Ln
sec2(θn − θn−1)dθn−1 ∧ vn mod α1, ᾱ2.

Also, since

α3 ∧ π = Ln−1dθ
n−1 ∧ vn

a choice of

ᾱ3 =
1

LnLn−1
sec2(θn − θn−1)α3

will result in the congruence

dᾱ2 ≡ −ᾱ3 ∧ π mod α1, ᾱ2.

Since the new basis we are de�ning is merely a scaled version of the original basis,

mod-ing out by αi or ᾱi is equivalent.

In general, we assume that ᾱi has been de�ned as

ᾱi =
(−1)i−1

Ln · · ·Ln−i+2
seci−1(θn−1−θn) seci−2(θn−2−θn−1) · · · sec2(θn−i+3−θn−i+2)αi.

Using the congruences

dθn−i ∧ dθn−i+1 ≡ 0 mod αi+2, αi+3

dθn−i ∧ vn ≡ 0 mod αi+2

dvn−i ≡ 0 mod α1, . . . , αi+2
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we can show that

dᾱi ≡ (1)i−1

Ln · · ·Ln−i+2
seci−1(θn−1 − θn) seci−2(θn−2 − θn−1) · · · sec2(θn−i+3 − θn−i+2)

· sec2(θn−i+2 − θn−i+1)dθn−i+1 ∧ vn−i+2 mod α1, ᾱ2, . . . , ᾱi

≡ (1)i−1

Ln · · ·Ln−i+2
seci(θn−1 − θn) seci−1(θn−2 − θn−1) · · · sec3(θn−i+3 − θn−i+2)

· sec2(θn−i+2 − θn−i+1)dθn−i+1 ∧ vn mod α1, ᾱ2, . . . , ᾱi

≡− ᾱi+1 ∧ vn mod α1, ᾱ2, . . . , ᾱi.

All that remains now is to demonstrate that

dᾱn+1 6≡ 0 mod I.

From the above analysis, we know

dᾱn+1 ≡ (−1)n

Ln · · ·L1
secn+1(θn−1 − θn) · · · sec3(θ2 − θ1)

· sec2(θ1 − θ0)dθ0 ∧ vn mod α1, ᾱ2, . . . , ᾱn+1

which is nonzero.

2

8.3 Conversion to Chained Form

In Chapter 4, we described a method for converting the N -trailer exterior di�erential

system into Goursat normal form. Recalling that the dual of Goursat normal form is

a chained form, we now show how a similar procedure can be used to transform the

nonholonomic control system corresponding to the N -trailer system into a chained

canonical form.

We note that an exterior di�erential system on Rn of codimension two, given by

I = {α1(x), . . . , αn−2(x)}

is the dual to a two-input nonholonomic control system

Σ : ẋ = g1(x)u1 + g2(x)u2 (8.15)

where the vector �elds gj(x) span a 2-dimensional distribution ∆ which is annihilates

by the 1-forms αi

αi(x) · gj(x) = 0.

When we transform an exterior di�erential system into Goursat normal form, we only

perform a coordinate transformation z = f(x). There is no input per se to a formal

exterior di�erential system, although we can speak of the two degrees of freedom

of the system, given by the distribution ∆ = I⊥. The procedure for transforming

a nonholonomic control system such as (8.15) into a chained form requires both a
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coordinate transformation and state feedback. Although for the most general case,

and a state feedback is given by

ū = a(x) + b(x)u

for drift-less nonholonomic systems it is easily seen that a(x) = 01. The purpose of

the state feedback ū = b(x)u is therefore to transform the basis of the distribution ∆

into chained form in the new coordinate system

ḡ1(z) =
∂

∂z1
+ z2

∂

∂z3
+ · · ·+ zn−1

∂

∂zn

ḡ2(z) =
∂

∂z2
.

(8.16)

Proposition 8.3.1. Consider an N -trailer system with n+ 1 rolling constraints

α1 = sin(θn)dxn − cos(θn)dyn = 0

αn−i+1 = Li+1dθ
i+1 − tan(θi+1 − θi)vi+1 = 0 for i = 0, . . . , n− 1,

where the vi are speci�ed in (8.4). A basis for the distribution ∆ which is annihilated

by these 1-forms {α1, . . . , αn+1} is given by

g1 =



cos(θn)

sin(θn)
1

Ln
tan(θn−1 − θn)

...

1

L1

n∏
i=2

sec(θi−1 − θi) tan(θ0 − θ1)

0


g2 =



0

0

0
...

0

1



Proof. The proof of this proposition requires the constraints αi to be written out in

coordinates (xn, yn, θn, . . . , θ0), and then it can be checked that the two given vector

�elds, g1 and g2, are in the null space of this set of constraints. Since αn−i+1 =

Li+1dθ
i+1− tan(θi+1− θi)vi+1, vi = sec(θn− θn−1) sec(θn−1− θn−2) · · · sec(θn−i+1−

θn−i)vn and vn = cos(θn)dxn + sin(θn)dyn, we know that

αn−i+1 = Li+1dθ
i+1−tan(θi+1−θi)

 i∏
j=0

cos(θn−j − θn−j−1)

 (cos(θn)dxn+sin(θn)dyn).

Then, is a tedious calculation check that αn−i+1(x) · gj(x) = 0.

2

Although there are many di�erent choices of g1, g2 which will span ∆, the two which

we have picked are natural in the sense that when the nonholonomic control system

is written as

ẋ = g1(x)u1 + g2(x)u2

1If this were not the case, the state feedback would add a drift term to a drift-less system and

could not result in a chained form.
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the input functions have the physical meaning u1 = vn in the linear velocity of the

nth trailer, and u2 = w is the rotational velocity of the lead cab (i.e., the cab). From

a practical point of view, we have control only in the velocity v0 of the lead car given

in terms of vn by

v0 = sec(θn − θn−1) sec(θn−1 − θn−2) · · · sec(θ1 − θ2) sec(θ0 − θ1)vn.

This is merely an input transformation, and will not change any of the properties of

the chained-form system.

We will now derive the coordinate transformation and the changes of inputs required

to put the system into chained form, as was discussed in Chapter 4. Recall that a

system in chained canonical form is de�ned to be

ż1 = ū1

ż2 = ū2

ż3 = z2ū1

...

żn+3 = zn+2ū1.

We note that the functions z1(t) and zn+3(t) will completely de�ne all the state

variables of a chained-form system. These functions are referred to by as �at outputs

since the other n+ 1 states and the two inputs can be determined from the equations

ū1 = ż1

ū2 = ż2

zi = żi+1/ū1.

(8.17)

Consequently, a coordinate transformation into chained form is completely de�ned by

the �rst and last coordinates of the chain z1 and zn+2, as functions of the original

coordinates x, along with (8.17) 2. It does need to be checked that the transformation

which results from (8.17) is a valid di�eomorphism.

8.4 Coordinates from the Last Trailer

Now, we have to show that the 1-forms αi do satisfy the Goursat congruences, we can

follow the steps of the proof of Goursat Normal Form Theorem to �nd the coordinate

transformation. First of all, applying Pfa� Theorem to the 1-form α1, we look for

possibly nonunique functions f1, f2 which satisfy (8.18), namely

dα1 ∧ α1 ∧ df1 = 0 α1 ∧ df1 6= 0

and

α1 ∧ df1 ∧ df2 = 0 df1 ∧ df2 6= 0.

(8.18)

2The fact that such a transform exists follows from our having veri�ed the Goursat congruences

for the αi in the previous subsection.
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Since α1 = sin(θn)dxn− cos(θn)dyn and dα1 = −vn ∧ dθn, it follows that dα1 ∧α1 =

−dxn∧dyn∧dθn. Thus, f1 may be chosen to be any function of xn, yn, θn exclusively.

We now proceed to explain the coordinates from the last trailer.

If we choose f1 = xn, then the second equation of (8.18) becomes

cos(θn)dxn ∧ dyn ∧ df2 = 0

with the proviso that df1 ∧ df2 6= 0. A nonunique choice of f2 is f2 = yn. For the

change of coordinates, we have

z1 = f1(x) = xn

zn+3 = f2(x) = yn.

The 1-form α1 = 0 may be written by dividing through by cos(θn) as

α1 = dyn − tan(θn)dxn = dzn+3 − zn+2dz1

so that zn+2 = tan(θn). By the proof of Engel's theorem, we now need to �nd a, b

such that

α2 ≡ adzn+2 + bdz1 mod α1

≡ a sec2(θn)dθn + bdxn mod α1.

But α2 = Lndθ
n − tan(θn − θn−1)vn. Hence, we have that

a =
Ln

sec2(θn)
, b =

− tan(θn − θn−1)

cos(θn)

and we may write

α2 ≡ dzn+2 +
b

a
dz1.

Now, we de�ne

zn+1 = − b
a

=
tan(θn − θn−1) cos(θn)

Ln
.

The remaining coordinates are found by solving the equations

αi = dzn−i+4 − zn−i+3dz1 mod α1, . . . , αi−1

for i ≥ 2.

The corresponding input transformation is

ū1 = ż1 = cos(θn)vn

= cos(θn) cos(θn−1 − θn) cos(θn−2 − θn−1) · · · cos(θ0 − θ1)v0.

The other input ū2 = ż2 is a complicated function of x, v0, w for the general case

with n trailers; however, it is easily veri�ed that ∂ū2/∂w 6= 0, implying that the input

transformation ū = b(x)u is nonsingular. The remaining coordinates z = f(x) are

de�ned using (8.17). But in the proof of Theorem 8.2.1 we de�ne the 1-form

ᾱi =
(−1)i−1

Ln · · ·Ln−i+2
seci−1(θn−1− θn) seci−2(θn−2− θn−1) · · · sec2(θn−i+3− θn−i+2)αi
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as a rescaling of αi. Then, the coordinate zi is the coe�cient of dxn in ᾱn+3−i.

After obtain zi we know from (8.17) that

ū1 = ż1

ū2 = ż2

zi = żi+1/ū1.

Since the functions z1(t) and zn+3(t) de�ne completely all the state variables, our �at

outputs are

y1 = z1 y2 = zn+3 (8.19)

because ż1, . . . , żn+3 depends on z2, z3, . . . , zn+2, ū1 and ū2. Using (8.17) we can �nd

z2, . . . , zn+2 as functions of y1, y2 and their derivatives. So, the z variables depend

on the feedback laws and their derivatives like

zi = zi(ẏ1, . . . , y
(n+1)
1 , ẏ2, . . . , y

(n+1)
2 ) for 2 ≤ i ≤ n+ 2,

but we cannot de�ne a di�eomorphism yet. We must prolong the system adding n+1

new state variables de�ned as

zn+i+3 =
di−1ū1

dti−1
= ū

(i−1)
1 (8.20)

for i = 1, . . . n+ 1, and two new control laws

v1 =
dn+2

dtn+2
y1 = ū

(n+1)
1 , v2 = ū2. (8.21)

Now, our system is written as

ż1 = zn+4

ż2 = v1

ż3 = z2zn+4

...

żn+3 = zn+2zn+4

żn+4 = zn+5

żn+5 = zn+6

...

ż2n+3 = z2n+4

ż2n+4 = v2.

(8.22)

It should be noted that this coordinate transformation is only de�ned locally. Since

its de�nition requires a division by ū1, if any of the factors in ū1 are zero, the transfor-

mation is unde�ned for that con�guration. For example, if θn = π/2, corresponding

to the last trailer being at right-angles with the coordinate frame, this coordinate

transformation is no longer valid. In addition, if the ith trailer is jack-knifed, that is

to say, for some 1 ≤ i ≤ n, θi − θi−1 = ±π/2, the coordinate transformation is also

singular.

Notice that if we de�ne φ = θ0 − θ1, the system of the N-trailer is equivalent to a

system of (N − 1)-trailers pulled by a car, where φ is the angle of the directional

wheels of the car. So, we will consider this con�guration because it is useful for future

implementations.
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8.4.1 The 2-Trailer

Consider the system of the 2-trailer, de�ned by the variables (x2, y2, θ2, θ1, θ0) ∈ R5

and the 1-forms

α1 = tan(θ2)dx2 − dy2

α2 = − tan(θ1 − θ2) cos(θ2)dx2 − tan(θ1 − θ2) sin(θ2)dy2 + L2dθ
2

α3 = − tan(θ0 − θ1) cos(θ2)

cos(θ1 − θ2)
dx2 +

tan(θ0 − θ1) sin(θ2)

cos(θ1 − θ2)
dy2 + L1dθ

1.

De�ning the ᾱi as

ᾱ1 = α1

ᾱ2 = − 1

L2
α2

ᾱ3 =
1

L2L1
sec2(θ2 − θ1)α3.

we obtain that

ᾱ1 = tan(θ2)dx2 − dy2

ᾱ2 =
tan(θ1 − θ2) cos(θ2)

L2
dx2 +

tan(θ1 − θ2) sin(θ2)

L2
dy2 − dθ2

ᾱ3 =
tan(θ0 − θ1) cos(θ2)

L2L1 cos3(θ1 − θ2)
dx2 +

tan(θ0 − θ1) sin(θ2)

L1L2 cos3(θ1 − θ2)
dy2 − 1

L2 cos2(θ1 − θ2)
dθ1.

Taking z1 = x2, z5 = y2 and using that zi is the dx
2 coe�cient of ᾱ5−i for i = 2, 3, 4,

we have that 

z1 = x2

z2 =
tan(θ0 − θ1) cos(θ2)

L2L1 cos3(θ1 − θ2)

z3 =
tan(θ1 − θ2) cos(θ2)

L2

z4 = tan(θ2)

z5 = y2.

Using (8.17) and (8.19), we take as �at outputs y1 = z1 and y2 = z5. Since we cannot

de�ne a di�eomorphism, we must prolong the system adding 3 new state variables

de�ned in (8.20)

z6 = ū1, z7 = ū
(1)
1 , z8 = ū

(2)
1

and two feedback laws de�ned in (8.21)

v1 =
d4

dt4
y1(t) =

d3

dt3
ū1 = ū

(3)
1

v2 =ū2.
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Now, our system is written as (8.22)

ż1 = z6

ż2 = v2

ż3 = z2z6

ż4 = z3z6

ż5 = z4z6

ż6 = z7

ż7 = z8

ż8 = v1.

The di�eomorphism between z variables and the �at outputs is given by

y1 = z1

y
(1)
1 = z6

y
(2)
1 = z7

y
(3)
1 = z8

y2 = z5

y
(1)
2 = z4z6

y
(2)
2 = z3z

2
6 + z4z7

y
(3)
2 = z2z

3
6 + 3z3z6z7 + z4z8.

The feedback is of the form

w1 =v1

w2 =6z2z
2
6z7 + 3z3z

2
7 + 4z3z6z8 + z4v1 + z3

6v2,

and it implies that

v1 =w1

v2 =
w2 − 6z2z

2
6z7 − 3z3z

2
7 − 4z3z6z8 − z4w1

z3
6

.

Let t = 0 and tf = 1 be the initial and �nal time, and impose the initial and �nal

conditions

x(0) = (x2(0), y2(0), θ2(0), θ1(0), θ0(0)) = (1, 1, 0, 0, 0)

x(1) = (x2(1), y2(1), θ2(1), θ1(1), θ0(1)) =
(

0, 0,
π

4
,
π

4
,
π

4

)
.

Then, the trajectories of the 2-trailer are shown in the following �gures.
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Figure 8.3: The trajectories of the 2-trailer, where the blue curve is the trajectory of

the rear wheels of the trailer, the green curve the rear wheels of the cab and the red

curve the trajectories of directional wheels.

Figure 8.4: Trajectories of the state variables x2(t) and y2(t) respectively.

8.4.2 The 3-Trailer

Consider the system of the 3-trailer, de�ned by the variables (x3, y3, θ3, θ2, θ1, θ0) ∈ R6

and the 1-forms

α1 = tan(θ3)dx3 − dy3

α2 = tan(θ2 − θ3) cos(θ3)dx3 + tan(θ2 − θ3) sin(θ3)dy3 − L3dθ
3

α3 =
tan(θ1 − θ2) cos(θ3)

cos(θ2 − θ3)
dx3 +

tan(θ1 − θ2) sin(θ3)

cos(θ2 − θ3)
dy3 − L2dθ

2

α4 =
tan(θ0 − θ1) cos(θ3)

cos(θ1 − θ2) cos(θ2 − θ3)
dx3 +

tan(θ0 − θ1) sin(θ3)

cos(θ1 − θ2) cos(θ2 − θ3)
dy3 − L1dθ

1.
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De�ning the ᾱi as

ᾱ1 = α1

ᾱ2 = − 1

L2
α2

ᾱ3 =
1

L2L1
sec2(θ2 − θ1)α3

ᾱ4 =
sec3(θ2 − θ3) sec2(θ1 − θ2)

L3L2L1
α4.

we obtain that

ᾱ1 = tan(θ3)dx3 − dy3

ᾱ2 =
tan(θ2 − θ3) cos(θ3)

L3
dx3 +

tan(θ2 − θ3) sin(θ3)

L3
dy3 − dθ3

ᾱ3 =
tan(θ1 − θ2) cos(θ3)

L3L2 cos3(θ2 − θ3)
dx3 +

tan(θ1 − θ2) sin(θ3)

L3L2 cos3(θ2 − θ3)
dy3 − 1

L3 cos2(θ2 − θ3)
dθ2

ᾱ4 =
tan(θ0 − θ1) cos(θ3)

L3L2L1 cos4(θ2 − θ3) cos3(θ1 − θ2)
dx3 +

tan(θ0 − θ1) sin(θ3)

L3L2L1 cos4(θ2 − θ3) cos3(θ1 − θ2)
dy3

− 1

L3L2 cos3(θ2 − θ3) cos2(θ1 − θ2)
dθ1.

Taking z1 = x3, z6 = y3 and using that zi is the dx
2 coe�cient of ᾱ6−i for i = 2, . . . , 5,

we have that 

z1 = x3

z2 =
tan(θ0 − θ1) cos(θ3)

L3L2L1 cos4(θ2 − θ3) cos3(θ1 − θ2)

z3 =
tan(θ1 − θ2) cos(θ3)

L3L2 cos3(θ2 − θ3)

z4 =
tan(θ2 − θ3) cos(θ3)

L3

z5 = tan(θ3)

z6 = y3.

Using (8.17) and (8.19), we take as �at outputs y1 = z1 and y2 = z6. Since we cannot

de�ne a di�eomorphism, we must prolong the system adding 4 new state variables

de�ned in (8.20)

z7 = ū1, z8 = ū
(1)
1 , z9 = ū

(2)
1 , z10 = ū

(3)
1

and two feedback laws de�ned in (8.21)

v1 =
d5

dt5
y1(t) =

d4

dt4
ū1 = ū

(4)
1

v2 =ū2.
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Now, our system is written as (8.22)

ż1 = z7

ż2 = v2

ż3 = z2z7

ż4 = z3z7

ż5 = z4z7

ż6 = z5z7

ż7 = z8

ż8 = z9

ż9 = z10

ż10 = v1.

The di�eomorphism between z variables and the �at outputs is given by

y1 = z1

y
(1)
1 = z7

y
(2)
1 = z8

y
(3)
1 = z9

y
(4)
1 = z10

y2 = z6

y
(1)
2 = z5z7

y
(2)
2 = z2z

2
7 + z5z8

y
(3)
2 = z3z

3
7 + 3z4z7z8 + z5z9

y
(4)
2 = z2z

4
7 + 6z3z

2
7z8 + 3z4z

2
8 + 4z4z7z9 + z5.

The feedback is of the form

w1 =v1

w2 =10z2z
3
7z8 + 15z3z7z

2
8 + 10z3z

2
7z9 + 10z4z8z9 + 5z4z7z10 + z5v1 + z4

7v2,

and it implies that

v1 =w1

v2 =
w2 − 10z2z

3
7z8 + 15z3z7z

2
8 + 10z3z

2
7z9 + 10z4z8z9 + 5z4z7z10 − z5w1

z4
7

.

Let t = 0 and tf = 1 be the initial and �nal time, and impose the initial and �nal

conditions

x(0) = (x2(0), y2(0), θ3(0), θ2(0), θ1(0), θ0(0)) = (1, 1, 0, 0, 0, 0)

x(1) = (x2(1), y2(1), θ3(1), θ2(1), θ1(1), θ0(1)) =
(

0, 0,
π

4
,
π

4
,
π

4
,
π

4

)
.

Then, the trajectories of the 3-trailer are shown in the following pictures.
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Figure 8.5: The trajectories of the 3-trailer, where the blue curve is the trajectory

of the rear wheels of the second trailer, the green curve the rear wheels of the �rst

trailer, the red curve the rear wheels of the cab and the cyan curve the trajectories

of directional wheels.

Figure 8.6: Trajectories of the state variables x3(t) and y3(t) respectively.
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9
Conclusions

The work presents three robotics systems solved using di�erential �atness. The �rst

robotic system consists in a simpli�ed planar space robot with two arms, which is

solved using Pfa�'s theorem and feedback linearization. After that, Engel's theorem

has been applied to a mobile robot with a trailer to establish a feedback linearization.

Finally, we presented the N-Trailer system viewed from the last trailer. In order to

apply feedback linearization, we converted the system into Goursat normal form and

later into chained form. It has been proved that the N-Trailer system can always

be transformed into Goursat normal form and then, into chained form. Later on,

we introduced coordinates from the last trailer that allow us to �nd the new state

variables. Then, these new coordinates are used in the feedback linearization process.

We observe that di�erential �atness considerably simpli�es the development of control

design via feedback linearization. It is a powerful tool when we work with systems

of m+2 state variables and two inputs, because that ensures us that we can apply

Goursat normal form, which cannot be applied always, and therefore, convert the

system into chained form.

However, we have to remark that the proposed method will �nd a path between any

start and goal points in chained form coordinates, but there is no guarantee that

this path, when transformed back into original variables, will avoid transformation

singularities. This must be checked for every path.
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