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Abstract
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In this work, a coordinate change of state variables is performed for drift-less systems of
dimension m + 2 with 2 inputs using Goursat Normal Form. Then, we define a feedback law
that will allow us to convert the original system into chained form. Later on, we find the
flat outputs and define a new feedback law. Finally, numerical simulations are presented for
a planar space robot, a mobile robot with a trailer and a N-trailer.
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1
Introduction

Feedback linearization of control systems allows us to apply the theory of linear sys-
tems to the nonlinear ones and to design inputs in order to move the system along a
trajectory given initial and final points.

A particular case of dynamic feedback linearization is to linearize using the Goursat
normal form. Once the Goursat normal form is found, the flat outputs are derived
easily. This procedure requires several computations to determine if a system can be
linearizable by feedback linearization. However, for nonholonomic systems, it becomes
an easier task.

The compilation of results involving feedback linearization and the computation of
flat outputs using Pfaffian systems are presented in this work work. We will focus on
applying feedback linearization to robotic systems.

This project is divided into 3 different topics. First of all, we give the algebraic notions
and several results involving exterior differential systems that will be used through
the different chapters as well as the theory about Goursat normal forms and how to
obtain them. All this is contained in Chapters 2 to 5.

Then, Chapter 6 contains a simplified model of a planar space robot that is feedback
linearized using Pfaff’s Theorem. In Chapter 7, a feedback linearization of a mobile
robot with a trailer is presented using Engel’s Theorem. Numerical simulations are
presented in Chapters 6 and 7.

Finally, in Chapter 8 the Goursat normal form for the N-Trailer problem is realized.
We will prove that the N-Trailer can be transform into Goursat Normal Form and
therefore, into chained form. Later on, we will proceed to transformed the N-Trailer
taking coordinates from the last trailer. Finally, numerical results are presented for
a 2-trailer and a 3-trailer.
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Algebra

2.1 Multilinear Algebra and ldeals

Definition 2.1.1 (Algebra). An algebra (V,®), is a vectorial space V over a field
(we will normally use the real field), with a multiplicative operation ® : VxV — V
that satisfies:

m Given a scalar a € R, a(a ©® b) = (aa) © b= a ® (ab).

m If there exists an element ¢ € V such that t ®e =e®x = x, Vx € V, then it is
unique and we call it neutral or identity element.

Definition 2.1.2 (Algebraic Ideal). Let (V,®) be an algebra, we say that a subspace
W C V is an algebraic ideal if

zeW, yeV=—z0O0yyorecW.

We recall that the intersection of ideals is also an ideal.

Definition 2.1.3 (Minimal Ideal). Let (V,®) be an algebraand let A := {a; €V, 1<i< K}
be any finite collection of linearly independent elements in V. Let S be the set of all

ideals containing A, i.e.
S={IcV,Iideal,ACI}.

The ideal 14 generated by A is defined as:
In= I
Ies

and it is the minimal ideal in S containing A.

Theorem 2.1.1. Let (V,®) be an algebra with an identity element. Let A :=
{a, €V, 1<i<K} be a finite collection of elements in V and L4 the ideal gener-
ated by A. Then for each x € I there exist vectors vy,...,vx € V such that

r=v10a+v20a+...+vg ©ag.

Definition 2.1.4. Let (V, ®) be an algebra and I C V an ideal. Two vectors z,y € V
are said to be equivalent modulus I if and only if x —y € I. This equivalence is denoted
by

r=vy mod I.
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If the space (V,®) has an identity element, the above definition implies that there
exists equivalence between vectors if and only if

K
x_y:ZGiQQi
i—1

for any 61,...,0x € V. We will denote it as
r=y mod ai,qz,...,aK

due to the fact that the modulus operation is performed over the ideal generated by
a1,092,...,0K.

2.2 Exterior Algebra

We consider V a vectorial space, V* its dual space and A¥(V*) the vectorial space of
the alternating k-tensors with a multiplicative operation. The wedge product is the
usual operation but this is not closed in the space A¥(V*). Therefore, A¥(V*) is not
an algebra with this operation.

We define the direct sum operation on the all alternating tensors space as
AV =A VYO A VDo A™(V*).

Then, given ¢ € A(V*), this tensor can be writen as ¢ = 0 + ¢ + ... + €™ where
each &P € AP(V*). Notice that A(V*) is closed under the exterior multiplication. It
is therefore an algebra.

Definition 2.2.1 (Exterior Algebra). The space of all the alternating tensors with
the exterior product, (A(V*),A), is an algebra called the exterior algebra over V*.

We note that the algebra (A(V*),A) has the identity element since 1 € A°(V*). The
Theorem 2.1.1 implies that the ideal generated by a finite set

Y={a'eA(V*), 1<i<K}.

can be written as
Is = {w EAVH) =) 0Aad', 0 € A(V*)} .
i=1

Given an arbitrary set 3 of linearly independent generators, it may also be possible
to generate Iy, with a smaller set of generators X'.

2.3 Systems of Exterior Equations

The goal of this section is to solve the following system of equations
at=0,...,a%8=0

where o € A(V*).
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Definition 2.3.1 (System of Exterior Equations). A system of exterior equations
over V is a finite set of linearly independent equations

where each o' € A¥(V*) for some 1 < k < m. A solution to a system of exterior
equations is any subspace W C V such that

adlw=0,....,a%w =0
where «|y stands for a(vy,...,v) for all vq,... v, € W.
We have to keep in mind that there is not uniqueness of the solutions of this system
since any subspace Wy C W satisfies ay, =0 if a|w = 0.

Theorem 2.3.1. Given a system of exterior equations o' = 0,...,a" =0, and the
corresponding Is, generated by the collection of alternating tensors ¥ = {al, cee aK}
where o € A(V*). A subspace W solves the system of exterior equations if and only
if also satisfies wlyw =0 for all m € Iy.

Proof. If w|lyy = 0 for all © € Iy then, since the ideal is generated by ¥ = {a!,... o},
each o' belong in Iy and consequently of|W = 0, Vo' € I.

Reciprocally, if w € Iy, it can be written as
K
T=Y 0 Acd’, 6 € AV7).
i=1

Hence, if o’y = 0 for 1 < i < K implies that 7|y = 0.

This result allows us to treat the system of exterior equations, the set of generators for
the ideal, and the algebraic ideal as essentially equivalent objects. From here, we may
abuse notations and denote the system of equations as its corresponding generator
and the generator set as its corresponding ideal.

Definition 2.3.2 (Generators Algebraically Equivalents). Let 3 and X2 be two sets
of generators. If In, = I5,, i.e., they generate the same ideal, we will say that the
generators are algebraically equivalents.

We will use this definition to represent the system of exterior equations in a simplified
way.

Definition 2.3.3 (Associated Space). Let X be a system of exterior equations and
Is; the ideal which it generates. The associated space of the ideal Iy, is defined by

A(Ig)={veV :viaely,Vaels}.

Definition 2.3.4 (Retracting Space). The dual associated space, or retracting space
of the ideal is defined by C(Is) = A (Is)" C V*.
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Once the retracting space is determined, one can find an algebraic equivalent system
Y’ that is a subset of A(C(Ix)), the exterior algebra over the retracting space.

Theorem 2.3.2. Let ay,...,a, be a basis for V. Then the value of an alternating
k-tensor w € A¥(V*) is independent of a basis element a; if and only if a; sw = 0.

Proof. Let ¢',...,¢™ be a dual basis of a1,...,a,,. Then w can be written with
respect to the dual basis as

W= d;p NP AL A= d!
J J

where the sum is taken over all ascending k-tuples J. If a basis element v/ does not
contain ¢*, then clearly a; 417/ = 0.

If a basis element contains ¢?, then a; 1 A@7 A@72 A. .. A@I* Z 0 because a; can always
be matched with ¢¢ through a permutation that affects only the sign. Consequently,
(a; sw) = 0 if and only if the coefficients d; of all the terms containing ¢/ are zero.

a

Theorem 2.3.3 (Characterization of Retracting Space). Let ¥ be a system of exterior
equations and Iy, its corresponding algebraic ideal. Then there exists an algebraically
equivalent system ¥’ such that ¥’ C A(C(Ix)).

Proof. Let v1,...,v, be a basis of V and ¢',...,¢™ be the dual basis, selected
such that v,11,...,v, span A(Is). Consequently ¢!,... ¢" must span C(Is). By
induction:

Consider a be any 1-tensor in Iy. With respect to the chosen basis, o can be written

as
m
a = g a; ¢
i=1

Taking into account that v s = 0 mod Iy for all v € A(Iy), then a; = 0 for
it=r+1,...,m. Hence,
a= Z a; ¢t
i=1

Therefore, all the 1-tensors in ¥ are contained in A'(C(Ix)). Now, suppose that all
the tensors of degree less or equal than k in Ix are contained in A(C(Ix)). Let a be
any (k+ 1)-tensor in Is;. We consider the tensor

o =a—¢" A (Vg s@).
The term v, 1 s« is a k-tensor in Iy, by the definition of associated space, and thus,

by the induction hypothesis, it must be in C'(Ix). The wedge product of this term
with ¢,11 belongs in A(C(Iy)). Furthermore,

Vpy1 00 =gy o — (Vg1 0T A (Vg1 5@) + T A (Vegr 0 (vrg1 o)) = 0.

By the Theorem 2.3.2, o’ has no terms involving ¢" 1.
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If we now replace a by o', the ideal generated will be unchanged since
ONa=0Aa"+O0NGTEA (011 00)

and v,41 2 € Iy,
We can repeat this process for v,19, ..., v, to produce an & that it is a generator of
Iy, and an element of A(C(Iy)).

|

Definition 2.3.5 (Space of Linear Divisors). Given a a p-form, we define the space
of linear divisors of a as

Lo={weV*:wAa=0}.
Theorem 2.3.4. Let Is; be an ideal generated by the set:
Y= {wl,...,wS,Q}
where w' € V* and Q € A2(V*). Let r be the smallest integer such that
QAW AL AW =0.

Then, the retracting space C(Is) has dimension 2r + s.

Proof. We consider the first case s = 0. Then,
¥ ={Q} and (Q)"*' = 0.
Since the ideal generated by X is defined as
Is = {ﬂ' eAVY) = Zﬁi AQ, 0 ¢ A(V*)} .
i=1
any element of I5; will be a linear combination of Q,02,...,Q".

Since Q2 € A(C(Ix)) and Q" € A*"(C(Ix)) then

dim(C(Ix)) > 2r.

Let’s consider f: V — V* a linear map defined as
flz)=2.9Q, xzeV
Note that the ideal generated by % does not contain any 1-form, hence,
xiQ =0z € A(Iy).

Which proves that
ker f = A(Ix).

Therefore, dim(ker f) = dim(A(Ix)). Since A(Ix) = C(Ix)*, then

dim(ker f) < m — 2r.
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On the other hand, for s =0
QT = (r+ 1) (22 AQ =0,

the last equality is true since Q"1 = 0.

An element of the image of f belong in Lo since
Imf={weV":w=2.Q, zeV}.

The definition of S f implies that wAQP = (2 JQ)AQ" = 0, then, w € Lg-. Therefore,
Im f C Lq-r.
Since Q27 it has degree 2r and has at most 27 linear divisors,

dim(Im f) < 2r.
An elemental linear algebra result states that

dim(ker f) + dim(Im f) = m.

Hence, dim(Im f) = 2r, dim(ker f) = m — 2r and, consequently, dim(C(Ix)) = 2r.
In the general case, we consider W* = {wl, e ,ws} that has dimension s.

Then W = (W*)1 C V and the quotient space V*/W* has a relation induced by the
relation of V' with V*, and they are dual vectorial spaces. By hypothesis

Q" AW AWIA L AW #£0
and Q" Awr Aw? AL AwS € A?2TFS(C(Iy)), so that

dim(C(Ig)) > 2r + s.

The following linear map is considered

f/ . W f V* ™ V*/W*

where 7 is the projection to the quotient space and f is the map defined before.

As in the trivial case, we wish to find upper bounds for the dimensions of the kernel
and the image of f’. Using the algebra result, we know

dim(ker f’) + dim(Im f') = dim(W) = m — s.
Reasoning similarly to the previous case, we find

dim(ker f) <m —2r —s
dim(Im f) < 2r.

Consequently, dim(C'(Ix)) = 2r + s.
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2.4 Codistributions

Definition 2.4.1 (Distribution). A smooth distribution associates a subspace of the
tangent space with each point p € M. It is represented as the span of d smooth vector
fields with

A={Xy,..., X4}

The dimension of the codistribution at a point is defined to be the dimension of the
subspace A(p). A distribution is said to be regular if its dimension does not vary with

p.

Definition 2.4.2 (Codistribution). A codistribution is defined as the map that as-
sociates each point of the variety with a set of 1-forms. This linear combination of
1-forms will be a subspace of the cotangent space 7}y M. We denote the codistribution
as

There is notion of duality between distributions and codistributions which allows us
to construct codistributions from distributions and vice versa.

Given a distribution A, for each p in a neighborhood U, consider all the 1-forms which
pointwise annihilate all vectors in A(p),
At(p) = {wlp) € TyM :w(p)(X) =0, VX € A(p)}.

Clearly, At (p) is a subspace of Ty M and it is, therefore, a codistribution. We call
A~ the annihilator or dual of A. Conversely, given a codistribution ©, we construct
the annihilating or dual distribution pointwise as

Ot (p) = {v e T,M :w(p)(v) =0, Yw(p) € Ap)}.



10

2.

Algebra




3
Exterior Differential
Systems

3.1 Exterior algebra on a manifold

The space of all forms on a manifold M,
QM) = Q" (M) & - & Q"(M),

together with the wedge product is called ezterior algebra in M. An algebraic ideal
of this algebra is defined as a subspace I such that if & € I then o A 8 € I for any
B € Q(M).

Definition 3.1.1 (Closed Ideal). Anideal I C Q(M) is said to be closed with respect
to exterior differentiation if and only if

a€l=dael,

or more compactly, if dI C I. An algebraic ideal which is closed with respect to
exterior differentiation is called a differential ideal.

A finite collection of forms, ¥ = {al,..., o} generates an algebraic ideal

K
Iy = {w eQ(M)|w:ZGi/\ai for some 6" EQ(M)}

i=1

We also can talk about the differential ideal generated by X. Thus, if Sy denotes
the collection of all differential ideals containing ¥ it is defined to be the smallest
differential ideal containing >
Is = () L.
I€Sy

Theorem 3.1.1. Let X be a finite collection of forms and let Is. be the differential
ideal generated by 3. Define the collection

Y =XYUuds

and denote the algebraic ideal which generates by Iy .
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Proof. By definition Ty, is closed with respect to exterior differentiation, so ¥’ C Zsx.
Consequently, Isy C Zy. The ideal Iy is closed with respect to exterior differentiation
and contains ¥ by construction. Therefore, from the definition of Zy; we have that
Is C Iy,

d

The associated space and retracting space of an ideal in Ty, is called characteristic
distribution of Cauchy and is denoted by A(Zy).

3.2 Exterior Differential Systems

In the previous section we have introduced systems of exterior equations on a vector
space V and characterized their solutions as subspaces of V. We are now ready to
define a similar notion for a collection of differential forms defined on a manifold M.
The basic problem will be to study the integral submanifolds of M which satisfy the
constraints represented by the exterior differential system.

Definition 3.2.1 (Exterior Differential System). An ezterior differential system is a
finite collection of equations
at=0,...,a" =0,

where each o' € QF(M) is a smooth k—form. A solution to an exterior differential
system is any submanifold N of M which satisfies a'(z)|r,y = 0 for all z € N and
allie{l,...,r}.

An exterior differential system can be viewed pointwise as a system of exterior equa-
tions on T, M. In view of this, one might expect that a solution would be defined as
a distribution on the manifold. The drawback with this approach is that most distri-
butions are not integrable, and we want our solution set to be a collection of integral
submanifolds. Therefore, we will restrict our solution set to integrable distributions.

Theorem 3.2.1. Given an exterior differential system

and the corresponding differential ideal Is, generated by the collection of forms
¥ ={al,...,a"},

an integral submanifold N of M solves the system of exterior equations if and only if
it also solves the equation m = 0 for each ™ € Iy.

Proof. If an integral submanifold N of M is a solution to ¥, then for all x € N and
allie {1,...,K}, '
o' (z)|r,n = 0.

Taking the exterior derivative we get

do' (z)|r,n = 0.



3.3. Pfaffian Exterior Differential Systems 13

Hence, the submanifold also satisfies the exterior differential system

By the Theorem 3.1.1 we know that the differential ideal generated by ¥ is equal to
the algebraic ideal generated by the above system. Therefore, the Theorem 2.3.1 tells
us that every solution IV to ¥ is also a solution for every element of Zy,. Conversely,
if N solves the equation m = 0 for every 7 € Ty, then in particular it must solve 3.

a

This theorem allows us to work either with the generators of an ideal or with the ideal
itself. In fact, some authors define exterior differential systems as differential ideals
of Q(M). Because a set of generators ¥ generates both a differential ideal Zy; and
a algebraic ideal Iy, we can define two different notions of equivalence for exterior
differential systems.

Two exterior differential systems ¥, and ¥, are said to be equivalent if they generate
the same algebraic ideal. i.e, Iy, = Zx,. Intuitively, we want to think of two exterior
differential systems as equivalent if they have the same solution set. Therefore, we
will usually discuss equivalence in the latter sense.

3.3 Pfaffian Exterior Differential Systems

Pfaffian systems are of particular interest because they can be used to represent a set
of first-order ordinary differential equations.

Definition 3.3.1 (Paffian System). An exterior differential system of the form

a1:a2:a..:a5:0,

where the o are independent 1-forms on a n-dimensional manifold M, is called a
Pfaffian system of codimension m — s. If {a!,...,a™} is a basis of Q!(M), then the
set {1 ... a™} is called a complement to the Pfaffian system

An independence condition is a 1-form 7 that is required to be nonzero along integral
curves of the Pfaffian system. That is o(c(t))(c/(t)) = 0, then 7(c(¢))(c/(t)) # 0. The
1-forms a',...,a° , generate the algebraic ideal

I={I}={ce€QM):0Na*A...Na* =0}.

For an ideal generated by a set of 1-forms, each element in the ideal has the form
&= Z aij N
j=1

for some 67 € Q(M). The exterior differential system generated by I must be closed
under differentiation, thus it contains Z and dZ. We will focus mainly in codistribu-
tions of 1-forms I which generates the exterior differential system.



14 3. Exterior Differential Systems

It is possible to rephrase Frobenius’s Theorem in a concise way using ideals. Let Z be
the ideal generated by {a!, ..., a®} and write dZ for the set consisting of the exterior
derivative of all elements of Z. We say that Z is integrable if there exist functions
h', ..., h® such that T is also generated by {dh!, ..., dh®}.

Definition 3.3.2 (Frobenius Condition). A set of linearly independent 1-forms !, . .., o®

in a neighborhood of a point is said to satisfy the Frobenius condition if one of the
following equivalent conditions holds:

(a) Z is integrable.
(b) dT C T.
(c) da* ANa* A---Aa*=0forall 1 <i<s.

(d) da* =375_, 0% Ao for some 6% € Q(M), 1 <14, j <s.

j=177

(e) da' =0 mod Z.

The condition do’ = 0 mod T uses the notion of congruences. Given two forms
o,w € Q(M), we write w = 0 mod Z if there exists an exterior form 1 € Z such that
w = o +mn. If I is a codistribution, then we write w = ¢ mod I if there exist exterior
form « € I and 5 € Q(M) such that w = o +nA«. It follows that if I is the generator
set for an ideal Z, then w mod Z = w mod I. In the case that Z is generated by
1-forms o', ..., o, we will often make use of the relation

w=0 modZ <= w:ZHi/\ai for some 6" € Q(M).
i=1

When da’ is a linear combination of !, ..., a®, the following expression is frequently
used
da'=0 modal,....,a® 1<i<s

where the mod operation is implicitly performed over the algebraic ideal generated by

a.

Now we can state and proof the Frobenius’s Theorem for codistributions.

Theorem 3.3.1 (Frobenius Theorem for Codistributions). Let I be an algebraic
ideal generated by the independent 1-forms o', ...,a™ " which satisfies the Frobenius

condition. Then, in a neighborhood of x there exist functions h',... h™ such that

I={a',...,a™ "} ={dn" " ... dh™}.

Proof. First of all, notice that I is a differential ideal because it satisfies the Frobenius
condition. We will denote by A = span{al,...,a™ "} C T*M. We will prove it by
induction on r. Let r = 1, then (A,)* C T, M has dimension 1 for p € M. Relative
to a system of local coordinates z?, for 1 < i < m, the equations of the differential
system is written in the classical form

dx! dz™

X () - Xm(x)
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where the functions X?(x!,... ™), not all zero, are the coefficients of a vector field

X=> X'(x) o
=1

spanning (A,)". By the Flow Box Coordinate Theorem we can choose coordinates
hY,...,h™, such that (A,)t = span{9/0h'}, then A, = span{dh?,... dh™}. The
latter clearly forms a set of generators of I. Notice that in this case the Frobenius
condition is void.

Suppose r > 2 and the theorem to be true for » — 1. Let z, for 1 < i < m, be local
coordinates such that
al, ™ da”

are linearly independent. The differential system defined by these m —r+1 forms also
satisfies the Frobenius condition. By the induction hypothesis, there are coordinates
h',... ™ so that

dh",dh" L dh™

are a set of generators of the corresponding differential ideal. It follows that da" is a
linear combination of these forms or that z" is a function of A", ..., h™. Without loss
of generality, we suppose

ox"

0.
oh" 7
Since
ox"” '« Oz" ,
dz" = dh” dh™ Tt
TSt ; o
we may now solve for dh” in terms of dz” and dh™t!,...,dh™. Since a',...,a™ "
are linear combinations of dh",...,dh™, they can now be expressed in the form
ot = Z aé-dhrﬂ +bidx" for1 <i<m-—r,
j=1

where a;'», b; € C>(M) for 1 <i,j < m—r. Since o’ and dz" are linearly independent,
the matrix (a}) must be non-singular. Hence, we can find a new set of generators for
I in the form

& =dh i+ glda" for 1 <i<m-—r,

where ¢* € C>®(M) for 1 <i < m —r, and the Frobenius condition remains satisfied.
Exterior differentiation gives

r—1 i
~1 7 T _— agZ 7 T — ~1 ~m—r
da* =dg' Ndz" = %dh Adz" =0 moda,...,a .

j=1

It follows that

- = 1 (3 m r, T i
9h,j =~ > J
which means that gi are functions of h go ey h™. Hence, in the h—coordinales, we are

studying a system of m — r forms of degree 1 involving only the m —r + 1 coordinates
h", ..., h™. This reduces to the situation settled at the beginning of this proof. Hence,
the induction is complete.
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d

Corollary 3.3.2. Lety',---y™ be functions whose differentials are linearly indepen-
dent from linearly independent 1-forms o', ..., oP and satisfying the relative Frobenius
conditions

da* N A-a? ANdyt A Ady™ =0 1 <i<m.

Then, setting
a:(a17...’ap)t’ Y:(y17...ym)t

there erists a vector of functions Z = (2%,--- 2P)! a p x p matriz A and a p x m
matriz B, such that
o= AdZ + BdY

For more general exterior differential systems, we have the following integrability
results.

Proposition 3.3.1. If the Cauchy characteristic distribution A(Zs) of Ix. has con-
stant dimension r in a neighborhood of x, then the distribution A(Zx) is integrable.

Theorem 3.3.3. Let T be a differential ideal whose retracting space C(Z) has a con-
stant dimension s = m — r. There is a neighborhood in which there are coordi-
nates (z1,..., 275yt ..., y™) such that T has a set of generators which are forms in

y', ..., y° and their differentials.

Proof. By Proposition 3.3.1 the differential system defined by C(Z), or what is the
same, the distribution defined by A(Z), is completely integrable. We may choose
coordinates (z!,...,2";y%,...,y*) so that the foliation is defined given by

y’ =const, 1<o <s.

By the retraction theorem, 7 has a set of generators which are forms in dy?,1 < o < s.
But their coefficients may involve z”, 1 < p < r. The theorem follows when we show
that we can choose a new set, of generators for Z which are forms in the y? coordinates
in which the z, do not appear. To exclude the trivial case, we suppose that 7 is a
proper ideal, so that it contains no non-zero functions.

Let Z, be the set of g-forms in Z, ¢ = 1,2,.... Let ¢!,... P be the linearly inde-
pendent 1-forms in Z; such that any form in 7; is a linear combination. Since Z is
closed, dy’ € Z, 1 < i < p. For a fixed p, we have that -2 € A(Z), which implies

oxP

0 . )
— 1dy" = Lyjger® € 11,
0P ¥ 8/dxzr P 1

since the left-hand side is of degree 1. It follows that

¢t ; ; .
oxP :L6§p¢zzzaij@j’ l<ij=<p (3'1)
J

where the left hand side stands for the form obtained from ¢° by taking partial
derivatives of the coefficients with respect to x”.
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For this fixed p, we regard z” as the variable and z!,... z°~ 1, 2Pt .. 2"y, ... y°

as parameters. Consider the system of ordinary differential equations
dzt
dxP

=> a2, 1<ij<p. (3.2)
J

Let z¥,1 < k < p, be a fundamental system of solutions, so that

det (zf) # 0.

We shall replace ¢* by the @ defined by
Q= sz@k (3.3)

By differentiating (3.3) with respect to z” and using (3.1) and (3.2), we get

og" _
oxP

)

so that @* does not involve ”. Applying the same process to the other z, we arrive
at a set of generators Z; which are forms in 3.

Suppose this process carried out for 7, ...,Z;_1, so that they consist of forms in y°.
Let J,—1 the ideal generated by for Z;,...,Zy—1. Let v* € Z;, 1 < a < r, linearly
independents mod J;—1, such that any ¢-form of Z; is congruent mod J;—1 to a
linear combination of them. By the above argument, such forms include

D - dy® = Ly gee ).

Hence, we have

9y => b5v’, mod J_1, 1<a,B<r

ozP
By using the above argument, we can replace the ¥ by Jﬁ such that
™
Bap € Jam1:
This means that we can write
o

oxP :an A Wi
h

where 0y € Z; U--- UZ,_1 and are, therefore, forms in y°. Let 05 defined by

00y, e

OxP he
Then, the forms o

g =9 =3 gl Aol
h

do not involve z”, and can be used to replace ¥®. Applying this process to all
zf,1 < p <r, we find a set of generators for Z,, which are forms only in 3.
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3.4 Derived flags

Let I = {a!, ..., a®} be a smooth codistribution on M. The exterior derivative
induces a mapping d : I — Q(M)/I

d:X—d\ mod I € Q*(M).
The mapping d is a linear mapping over C* (M) such that
d(foa+ gB) =df Na+ fda +dg A B+ gd3 mod I

=fda+ gdB mod I
=fd(a) + gd(B).

It follows that the kernel of d is a codistribution on M?'. We call this subspace, I(!),
the first derived flag of the system I

I =ker(d) ={\ el :d\ modI=0}.

I contains the 1-forms in I which are integrable mod I.

We can represent 1(1) using a set of 1-forms, but it is important to note that the basis
of I™™ may be not a simple subset of the basis of I. Linear combinations of basis
elements must be searched to find a basis derived from the derived system.

Since I is itself a codistribution on M, one may inductively continue this procedure
of obtaining derived systems and define

IO =el®:dx=0 mod IV} c W

or, in general,
T6FD — X e W) g =0 mod I®} ¢ 1),

This procedure results in a nested sequence of codistributions
16D c 10 oo W ¢ 1O, (3.4)

If the dimension of each I¥ is constant, then, this construction terminates for some
finite integer N.

Definition 3.4.1 (Derived Length). Let I be an algebraic ideal corresponding to a
Pfaffian system. We define the derived length of I as the smallest integer N such that

JN) — [(N+1)

The derived flag describes the integrability properties of the Pfaffian system generated
by I. If I is completely integrable, then by Frobenius’s Theorem, we have I(1) = 1)
i.e., the length of the derived flag is zero. In fact, (V) is always integrable since, by
definition, dI™) mod I™) = 0. I™) is the largest integrable subsystem contained
in I.

Thus, if (V) # {0} then there exist functions 2, ..., h" such that {dh',... ,dh"} C I.
As a result, if a Pfaffian system contains an integrable subsystem I") % {0}, which

LAt each point p € M, the kernel of d is a linear subspace of Ty M.
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is spanned by the 1-forms dh',...,dh", then the integral curves of the system are
constrained to satisfy the following equations for some constants k;,

dhi=0=hi=k; for 1<i<r,
or equivalently, trajectories of the system must lie on the manifold,
M={z: hi(zx)=k for 1<i<r}

In particular, this implies that if 7V) # 0, it is not possible to find an integral
curve of the Pfaffian system which connects a configuration x(t9) = xo to another
configuration x(t) = x, unless the initial and final configurations satisfy

hi(zo) = hi(xy) for 1<i<r

In the context of control theory, this means that the system is not controllable since
there exist functions which provides a foliation of the state space and it is impossible
to move from one leaf of the foliation to another. This controllability result is provided
by Chow’s Theorem.

Theorem 3.4.1 (Chow’s Theorem). Let I = {a!, ..., a®} represent a set of con-
straints and assume that the derived flag of the system exists. Then, there exists a
path x(t) between any two point satisfying o'(z) - & = 0 for all 1 < i < s if and only
if there exists an integer N such that ™) = {0}.

In control theory, Chow’s theorem is usually stated using regular distribution I+.

Theorem 3.4.2 (Chow’s Theorem for Regular Distributions). Let A = It a regular
distribution. Then, for reqular systems of the form

k
&= gi(r)u, gi€A
i=1
there exist admissible controls to steer the system between two given arbitrary points
xg,x1 € U if and only if, for some N,
(AN)t(z) = TR™ = R™
forallxz € U.

The connection between Chow’s theorem for regular distributions and exterior differ-
ential systems formulation is made with the following lemma.

Lemma 3.4.1. If IO = AL then TV = (A + [A, A]) L.
This lemma allows us to compute the derived flag for a system given the distribution
A = I*+. Define the nested set of distributions

A=AOCA1C"'CAk

as A; = Aj_1+[A;_1,A;_1], called the filtration of Ag?. This sequence terminates if
the dimension of each A; is constant, and it follows from Theorem 3.4.1 that () =
(A)*.

20r the coderived coflag of 1(9).
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Exterior Differential Systems




4
The Goursat Normal
Forms

Now that we have defined an exterior differential system and introduced some tools
for analyzing them, we are ready to study some important normal forms for exterior
differential systems. We will restrict ourselves to Pfaffian systems. The first nor-
mal form which we introduce, the Pfaffian form, is restricted to systems of only one
equation. The Engel form applies to two equations on a four-dimensional space, and
the Goursat form is for m — 2 equations on an m-dimensional space. The extended
Goursat normal form is defined for systems with codimension greater than two. The
Goursat normal forms can be thought of as the generalization of linear systems. Their
study will lead us to the study of linearization of control.

4.1 Systems of One Equation

We will first study Pfaffian systems of codimension m — 1, or systems consisting of a
single equation
a=0

where « is a 1-form on a manifold M. In some chart (U,z) of a point p € M the
equation can be expressed as

ay(x)dzt + ag(x)dz? + - - 4 apm(z)dz™ = 0.

In order to understand the integral manifolds of this equation we will attempt to
express « in a normal form by performing a coordinate transformation.

Definition 4.1.1 (Rank of a Form). Let a € Q'(M). The integer r defined as
(da)" N #0
(da)" P Aa =0
is called rank of a.

The following theorem allows us, under a rank condition, to write « in a normal form.

Theorem 4.1.1 (Pfaff theorem). Let a € Q' (M) have a constant rank r in a neigh-
borhood of p. Then there exists a coordinate chart (U, z) such that in these coordinates
a=dz' +22d23 + - 22rd?
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Proof. Let T be the differential ideal generated by «. From Theorem 2.3.4 the re-
tracting space of Z has dimension 2r + 1. By the Theorem 3.3.3 there exist local
coordinates y, ..., y™ such that 7 has a set of generators in y',...,y* *1. Then, by
dimension count, any function f; of those 27 + 1 coordinates results in

(da)" N a A df; =0.

Now, let Z; be the ideal generated by {df1,a,da}. If r = 0, then the result follows
from the Frobenius’s Theorem 3.3.1. If » > 0, then the forms df; and o must be
linearly independent, since « is not integrable. Applying Theorem 2.3.4 to 7y, let 7
be the smallest integer such that

()"t A a A dfy = 0.

Clearly, 7 +1 < r. Furthermore, the equality sign must hold because (da)” A « # 0.
Applying Theorem 3.3.3 to Z; there exists a function fy such that

(da)"™ Y A a A dfy A dfy = 0.

Repeating this process, we find r functions f1, fa,..., f. satisfying

da N a Adfy Ndfs A --- Ndf, = 0,
a Adfy Ndfs Ao ANdf, # 0.

Finally, let I be the ideal {df, ..., df., «,da}. Its retracting space C(I,.) is of dimension
r + 1. There is a function f,.;1 such that:

a ANdfy Ndfa Ao Ndfr ANdfrr =0,
dfy ANdfa N - Ndfr ANdfrpr # 0.

By modifying « by a factor, we can write
o« =dfr41 + grdfy + - -+ + grdfy.

Because (da)” A « # 0, the functions fi,..., fr+1,91,--., 9, are independent. The
result then follows by setting

Zl — fT+1 Z2i =g 22i+1 _ k;fl

for 1 <i<r.

|

The proof uses a number of tools that are beyond the scope of this work. In the r = 1
case, the proof reduces to proving that there exist two functions f; and fo which
satisfy
da A adfy =0 aANdfit #0
and
adfy Ndfs =0 df1 N\ dfs # 0.
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Given f; and f3, o can be scaled such that
a =dfy + gdf; = dz' — 22d23.

The Pfaff theorem guarantees that these equations have a solution (it does not to be
unique). A basis of the right null space of this constraints is given by

0 0 0

_9 29 -9
g1 = 0zt Tz 023 92 022

The following theorem is similar to Pfaff’s theorem and basically expresses the result
in a more symmetric form.

Theorem 4.1.2 (Symmetric Version of Pfaff Theorem). Given any o € Q(M) with

constant rank r in a neighborhood U of p, then there exist coordinates z,y', ... ,y", z',. ..

such that
LS i i i
a:dz—f—ig (y*dz' — x*dy’).

=1

The Pfaffian system « = 0 in a manifold M is said to have the local accessibility
property if every point x € M has a neighborhood U such that every point in U can
be joined to = by an integral curve. The following theorem answers the question of
when this Pfaffian system has the local accessibility property.

Theorem 4.1.3 (Caratheodory Theorem). The Pfaffian system
a=0,
on o where o a has constant rank, has the local accessibility property if and only if

aNda #0.

Proof. The condition above basically says that the rank of a must be greater than
or equal to 1. If o has rank 0 then da A a = 0 and, therefore, by the Frobenius’s
Theorem 3.3.1, we can write,

a=dh=0

for some function h. The integral curves are of the form h = ¢ for any arbitrary
constant ¢. Since we can only join points p,q € M for which h(p) = h(q), we do not
have the local accessibility property.

Conversely, let a have rank » > 1. From Theorem 4.1.2, we can find coordinates
z,xt, 2"yt . y",ut, ..., u® in some neighborhood U, with 27 + s+ 1 as dimen-
sion of M, such that

A o
a:dz+§Z(yzdxl—x’dy’):O,

i=1

and therefore
L i i,
dz = 5 E_l(y dz' — x'dy").

Given any two points p,q € U we must find integral curve 7 : [0,1] — U with
¢(0) = pic(l) = q. Since we are working locally, we can assume that the initial point
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p is the origin: z(p) = z'(p) = y*(p) = u'(p) = 0. Let the final point ¢ be defined by
2(q) = 24, 2 (q) = 2, y'(q) = y**,ui(q) = u'’. Because the expression of the 1-form
does not depend on the 1’ coordinates, we can choose the curve tu'? to connect these
u® coordinates of p and g.

In the (z%,y*) plane there are many curves(x'(t),y’(t)) that join the origin with the
desired point (2!, y'"). We need to find one which steers the z coordinate to z'. In
order to satisfy the equation o = 0, we must have that

1 < o o
dz = 5 ; (:czdyl — y’d:ﬁz) .

Integrating this equation one gets

1 [T cdy’ dxt 1
i A S i A,
#(t) 2/();(96 dt ydt>dt 2; v

where A; is the area enclosed by the curve (z¢(t),y’(t)) and the chord joining the
origin with (z'%,y'"). In order to reach the point ¢, the curve (z%(t),y(t)) must
satisfy z(1) = z'. Geometrically, it is clear that a curve (z(t),y'(t)) linking the
points p and g while enclosing the area prescribed by z! will always exist. Thus, the
integral curve ~(¢) given by

(2(), 2" (), ..., 2" (&), 5" (t), ..,y  (B), tu (1), .. b’ (1))

has ¢(0) = p i ¢(1) = ¢ and satisfies the equation @ = 0. Therefore, the system
therefore has the local accessibility property.

4.2 Systems of Codimension Two

We now consider Pfaffian systems of codimension two. We are again interested in
performing coordinate changes so that the generators of these Pfaffian systems are in
some normal form.

Theorem 4.2.1 (Engels theorem). Let I be a dimension two codistribution, spanned
by
I= (a*,a?)

of four variables. If the derived flag satisfies
dim 7™M =1,
dimI® =0,
then, there exist coordinate z', 22, 23, z* such that

I ={dz* — 23dz',d2® — 2%dz').
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Proof. Choose a basis of I adapted to the derived flag; that is I(®) = I = {a!,a?}, IV =
{a'} and I® = {0}. Choose o and o* to complete the basis. Since I?) = {0} we
have
dot A at #£0,

while

(da*)* Aot =0,
since it is a 5-form on a 4-dimensional space. Therefore, o' has rank 1. By Pfaff’s
theorem, we know that there exists a coordinate change such that

al = dt — 2Bd2t.
Taking the exterior derivative, we have that
do' = —d23 Ndzt = dzt A d2P.
Now, since a' € IV the definition of the first derived system will imply that
da* Aot Aa? =0,
and thus
dz' Adz2 Aot Aa? = 0.
Therefore, a? must be a linear combination of dz!,dz> and a':
o? = a(x)dz® +b(z)dz' mod a.
By definition, this means that
o + Mz)a! = a(z)dz® + b(x)dz'.

Now if either a(x) = 0 or b(x) = 0 it will imply that da® A a! A @® = 0 and thus the
flag assumptions are violated because if I©®) = {a!, a?} and IV) = {a'} that implies
da® #0 mod at,a?. Thus a(z) # 0, then

L o® + —)\(x)al =d2* + ba) dz",

a(x) a(x) a(x)

and if we set 22 = —% and setting
1
—a?+ @al =dz? — 2%d2t,
a(x) a(x)
and thus
1 A
I=1{a"a%} = {al, maz + agg al} = {dz* — 23dzt,d2? — 2d2t ).

a

It should be noted that the dimension assumption is only used in the proof so it is
guaranteed that (da')? A a! = 0. If ! as rank 1, this equality holds by definition.

Corollary 4.2.2. Let I = {a, a2} be a two-dimensional codistribution. If the derived
flag satisfies dim IV = 1, dimI® = 0 and o' € IV has rank 1, then there exist
coordinates 21, 2%, 23, 2* such that

I ={dz* — 23dz",d2® — 2%dz'}.

Proof. The proof is deduced from the Engel’s theorem.
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4.3 The Goursat Normal Form

Engel’s theorem can be generalized to a system with m configuration variables and
m — 2 constraints.

Theorem 4.3.1 (Goursat Normal Form). Let I be a Pfaffian system spanned by s
1-forms
I=1{a"... 0%,

on a space of dimension m = s + 2. Suppose that there exists an integrable form
with m # 0 mod I satisfying the Goursat congruences,

daiE—ai+1/\7T mod ot,...,af, 1<i<s-—1, (4.1)
da®#0 mod I. '
Then there exists a coordinate system z',z2%,...,z™ in which the Pfaffian system is

in Goursat normal form:

I ={dz® - 22dz" d2* — 23d2t, ... d2™ — 2" hdt )

Proof. The Goursat congruences can be expressed as

dat = —a?A71 mod ol
do? = —a®A7m mod !, a?,

da®™!' = —a®*A7m modat,a?,..., a7},
do® = —o*T'A7m modal,a?, ..., %,

where a*T! ¢ I. Tt can be shown that {a*T! 7} must form a complement to I. This
basis satisfies the Goursat congruences and it is adapted to the derived flag of I:

IO = {at,a?,... 0%},

M = {a*, ... 0"},
I(s—l) _ {041},

9 = {o}.

From the Goursat congruences,
da! = —a? A ™ mod al,

which means that
dat =—-a?> ANm+al A7
for some 1-form 7. But then we have that
do' Aot = —a? AmAal #£0,
(da')* At = 0
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which means that o' has rank 1. We can therefore apply Pfaff’s theorem and suppose
that multiplying a! by a certain factor if it is necessary, o' can be expressed as

al =dz™ — 2™t
of some choice of z!, 2™~ 2™, Furthermore, by Corollary 4.2.2 we can express o as
o =dzmt — 2 2dR (4.2)
In these new coordinates we have
dot A at = —dz™" Y A dzt A dz™.
Now, we have that
do'* Na' Nr=a A (=dz™ P ANdet Ad2™) =7 A (—a® AT At) =0,

and therefore 7 is a linear combination of dz',dz™~! dz,. Noting that dz™ ! =

2™ 2dz! mod al, a?,

adz 4+ bdz""t + edz™,

= adz' +b2"2dzt + 2™ Mzt mod ot a?

™

where ¢ = a + bz™ 2 + cz™~! is nonzero, since we have assumed that 7 # 0 mod I.
From the Goursat congruences we have that

da? = —a® A7 mod at,a?,

while from (4.2) we have
do? = —dz™"2 A d2t,

and thus
—dz™ 2 ANdzt = —a® A1 mod at,a?,

which means that
a® = \x)dz™™? mod dz', o, a?,

for a nonzero function A(z). Therefore, we can rewrite this as

ad =dzm% - dz' mod dzt,at, o2,

A(z)
and if we set 2™ 3 = 1/\(x) we have
ad =dz""2 - 2m3dzY mod o, a?,

and we can therefore let
a’ =dzm2 = ;3G

If we inductively continue this procedure using the Goursat congruences we obtain

ot = dmT -t

a® = d2 —22dt.
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Now, from the Goursat congruences we have that
da® #0 mod I,
and, therefore,
a' A2 Ao A a® A dat #0.
If we substitute the o’ into the above expression we obtain
dz' Ndz® Ao AN dz™#£0,
and therefore the function z',..., 2™ can serve as a local coordinate system.

a

The following example illustrates the power of the Goursat’s theorem by applying it
in order to linearize a nonlinear system. Note that the integral curves of a system
in Goursat normal form are completely determined by two arbitrary functions in one
variable and their derivatives. For example, once z!(7) and 2°(r) are known, all of
the other coordinates are determined from
F+(r)

#(r)
where the dot indicates the standard derivative with respect to the independent vari-
able 7. Because of this property, these two coordinates are sometimes referred to as
linearizing outputs for the Pfaffian system.

Zi:

Example 4.3.1 (Feedback Linearization by Goursat Normal Form). Consider the
following nonlinear system with s configuration variables and a single input

jjl = f]_(l'],...,flfs,u),
i‘g = fg(ﬂ?l,...,l‘s,u),
s = fs(z1,...,x5,1u).

Equivalently, we can look at the following Pfaffian system,
I={ds' — fi(z, ... 2% uw)dt}, 1<i<s.

The system is of codimension 2 since we have s constraints and s+ 2 variables, namely
x', ..., 2% u,t. Assume that the form 7 = dt satisfies the Goursat congruences. Then
by Goursat’s theorem there exists a coordinate transformation z = ®(z,u,t) such

that I is generated by
I ={d2® - 22dz", d2* — 23d2", ..., dz"F2 — 25Tt}

The annihilating distribution of the above codistribution is

z = Ui,

2.2 = V2,

23 = 221)1,
2 s+2 s+1
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which, if we set v; = 1, is clearly a linear system. If it turns out that the 2! coordinate
corresponds to time in the original coordinates, that is z! = ¢, then the connection
becomes even more clear. Goursat’s theorem can, thus, be used to linearize single-
input nonlinear systems that satisfy the Goursat congruences.

4.4 Converting Systems to Chained Form

Chained form is dual to the Goursat normal form presented above. That is, a system
with constraints in Goursat normal form

I ={d2® - 22dz",dz* — 22dzt, . d2™ — 2" det)

can always be written as a control system in chained form by choosing

a 28 m—1 8

N=ga T e T TR o
0
92—@

which form a basis of the distribution annihilated by I. Thus, we can formulate
the problem of finding a basis for the constraints, which is in Goursat form, as the
problem of finding a feedback transformation to convert a system to chained form.

The Goursat congruences are somewhat unsatisfying since they require existence of a
1-form 7. Necessary and sufficient conditions for the existence of such a m, and hence
converting a set of constraints into Goursat normal form.

So, let I = {a!,...,a°} be a codistribution of R™ and write A = I+ for the distri-
bution which spans the null space of the codistribution. We define two nested sets of
distributions

Ey = A Ey = A
Ey = Eo+[Eo, Eo] Fi = Fy+ [Fo, Fo)
Eiyw = E;+[E,E] Fiw = F+|[F, F)

Under the assumption that each distribution is constant rank, the two sequences have
finite length (possibly different).

The filtration {F;} is the one which usually appears in the context of nonlinear con-
trollability and beedback linearization. In particular, F; consists of all brackets up
to order ¢. The distribution E; also contains all brackets of order ¢, but may contain
additional Lie products of higher order. This is due to the iterative construction of
F;. The filtration FE; is precisely the sequence of distributions which is perpendicular
to the derived flag of I = A+,

The following theorem allows us to completely characterize the set of systems which
are equivalent to a system in chained (or Goursat) form in the case that the relative
growth vector of the system is ¢ = (2,1,...,1). We will apply this results in the
chapter about N-Trailer.
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Theorem 4.4.1. Given a 2-dimensional distribution A = I+, define E; and F; as
in (4.3). Suppose that E; and F; satisfy

dmFE;, =dimF;=i+2 0<i<m-—2.

Then, there ezists a local basis {a*,... a*} and a 1-form 7 such that the Goursat
congruences are satisfied.
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Procedures

In this section, we will give a series of steps and explanations needed to be followed to
find the behavior of the state variables of a given system. In this paper, we consider
driftless control systems with two inputs over a manifold M, i.e.; systems of the form

&= g1(z) ur + g2(x) ua,

x € M, called nonholonomic systems or driftless systems over a m-dimensional mani-
fold M. The associated distribution to this type of systems is generated by the vector
fields g1, g2 € X(M)

A = (91, 92)-

The dual of this distribution is a subspace of the cotangent space T*M defined, in
this case, as follows:

At ={w e AY(M) : iy(w) =0, Vg € A)

where the 1-forms have to be linearly independents. Notice that since dim A = 2,
then dim A+ = m — 2. Usually, we will work with M = R™*2. By the definition
(3.3.1), the associated Pffafian system to our control systems is

a1:a2:~-~:a’”:0

that is a system of codimension 2.

In the previous chapter, we saw how to express the basis elements of the codistribution
in the Goursat normal form when the Pfaffian system is of codimension 2 or greater
than 2 respectively. Thus, being following the constructive demonstration of the
Pfaffian and Engel’s theorems or following the developed theory about the Goursat
normal form, given a Pfaffian system on R™*2, we are able to find chains of integrators
so that the ideal generated by the 1-forms belonging on the codistribution is expressed
as

1 2
I={a,a’,...,a"} ={dzs — 22dz1,dzq — 23d21, ..., d2mi2 — Zmy1d21 }.
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Once found the change of the 1-forms to the Goursat normal form, we want to seek
for two generic vector fields g; and g» such that the contraction with all the 1-forms
is zero, i.e.;

igj (dZi+1 — zldzl) =0

for i = 2,...,m+ 1. The solutions are
=2+ ot
e p— Zo—— PP z. _—
g 821 2 823 mt 8zm+2
A
92 T 0m

Often, the system found by doing the contraction of the fields with the 1-forms and
the system obtained by derivating the variables {z} are not the same. To achieve the
last one being in the canonical Goursat form, it should be necessary to do a feed-
back. Finally, we will establish the diffeomorphism that matches the state variables
{Z1,.. . Tmy2} and {z1,..., Zmi2}

Since we can express variables z as functions of z variables, like z; = f; (21, ..., Zmi2),
and taking into account that the derivate of the coordinate z; is the i-th component
of = g1(z) ur + ga(7) ug,

i = g} (z)u1 + gh(x)us,

we can define the derivate of z; = fi(x1,...,Tma2) as

m—+2 m+2
af; . ofi ;
Jigo =5 2 gy + ghus).

Zi = .’L‘j = .
= 3£Ej = 693]
Therefore,
m—+2
. af1, . .
Z1 = Z O (g1u1 + gaus)
i=1 ¢
m+2 ; ) .
=) By, J1t1 + g2u2)
i=1 v
m+2
. Ofma1 ., ; .
Zm+1 = Z 87:; (g1u1 + gsuz)
i=1 ¢
m—+2
. of ; .
Zm+2 = Z 82% (91w + gau2).
i=1 ¢

Then, we define two feedback laws that give us the new controls u; and s
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m—+2
=3 (g + gi)
1= o giru1 T gauz
im1
m+2
Uy = 2 (giur + ghua).
i=1 Oz

Then, the system expressed in the new state variables becomes

Z1 = U
Zo = Uy
Z3 = 2211

(5.1)

2m+1 = ZmU

Zm+2 = Zm1U1-

and we call it system in the canonical form associated to the Goursat form. Notice that
sometimes it is convenient to add new state variables to achieve the same dimensions.

It is immediate to see that

Y1 =21 Y2 = Zm+2

are the flat outputs of the system (5.1), because one can express the variables {z}
depending on the flat outputs and its derivatives, let’s see it:

21 Yo
22 = — =
Uy Y1
23 = — = Z3(y17y171/2,y2)
U1
Zm+1 = ﬂﬂ - Zm+1(y1a cee 7y§m)7y2a e 7yém))
1

To consider the diffeomorphism between the new variables and

{ylay.lw'-aygm)ay%"-aygm)}

we have to consider the prolongation of m new state variables

d? i
zm+i+3:@ﬂ1:ﬁg)forogigm—l,

and two feedback laws
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dm+1 B
v = gt = 0"
Vo = Us3.

The goal to be achieved in a system, given initial and final conditions to the state
variables, is to find motor controls that at each instant of time the solution trajectories
of the original system pass through ¢; and cy.

We will impose then, the conditions ¢; and ¢ to the original state variables. Through
the diffeomorphism {z} < {z} we will find the corresponding initial and final condi-
tions for {z} that will be denoted by ¢; and ¢y. With this data and adding conditions
t0 Zm+3, - - -, Z2m+2, we find the conditions that have to be satisfied by the flat outputs
and its derivatives thanks to the diffeomorphism {z} + {y} and that will be denoted
by ¢ i c.

Given 2m + 2 initial and final conditions', in total 4m + 4 conditions, there exist two
unique polynomial of degree 2m + 1 denoted by Pa,,+1(t) and Q241 (t) such that

Y1(t) = Pamy1(t),  y2(t) = Qami1(t).

Imposing the above conditions, the interpolation polynomials are determined and,
consequently, the flat outputs expression involving the time is found. Clearly, its
derivatives will be depend also on time.

We have commented above that the variables {z} can be expressed involving the flat
outputs and its derivatives that involve the time. The flat output system becomes

dm—i—l
m—+1
g ) = dtm+1 Y1 = wq
dm-}-l
m—+1
é ) = drm+1 Y2 = w2
which is at the same time
(m+1) _ 4 m) _ dom-1) _ A Y
! dt’t dt ! qremtr T
myy _ & my _d™ . d™ - d™ _
2 = @ 2 = WyQ = Wzm+2 = W(Zm+12m+3) =a+ pfv + YU2.
Therefore,
w1 = U1

wy = a + Py + Yvs.

Finally, we find @; and @5 as a function of v; and vs, and we find the original controls
uy and wusy solving the system

m+2% 7 m—+2 afl i

( 7._L1 ) _ Zi:l g?l 91 Zi:l g§1 92 ( Ul >
U m—+2 2 m+2 2 4 ’
2 Ez:ﬁ axl 91 Zz:ﬁ axl 92 2

INotice that for the flat outputs y1 and yo we have 2m + 2 initial and final conditions.



6
Planar Space Robot

Consider a simplified model of a planar robot, as shown in Figure 6.1. This robot
consists of two arms connected to a central body via revolution joints. If the robot is
free-floating, then the law of conservation of angular momentum implies that moving
the arms causes the central body to rotate. In the case that the angular momentum
is zero, this conservation law can be viewed as a Pfaffian constraint on the system.
Let M and I represent the mass and inertia of the central body and let m represent
the mass of the arms, which we take to be concentrated at the tips. The revolution
joints are located at a distance r from the middle of the central body and the links
attached to these joints have length I.

Figure 6.1: A simplified model of planar space robot.

We let (z1,y1) and (22, y2) represent the position of the ends of each of the arms (in
terms of 0, 1¥; and 13). Let 0 be the angle of the central body with respect to the
horizontal, ¥ and 1, the angles of the left arm and right arms with respect to the
central body, and p € R? the location of a point on the central body (say the center
of mass). The kinetic energy of the system (See [2, pages 334-335]) has the form

1 . 1_. 1 . . 1 . .
K = S(M+2m)[[p|]* + 516% + Sm(@1 + 1) + 5m(d5 + §53)
. n .
1 1/{1 a1l aiz ais 1/.11
= §(M +2m)|p|I* + (C> a1 G2 G23 Vo |

0 a3z1 G32 Q33 0

DN |
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where a;; can be calculated as

ail = 22 = ml?

a2 =0

aiz = ml? + mr cos(1y)

azs = mil? + mr cos(1s)

ass = I+ 2mi* + 2mr? + 2mrl cos(vp1) + 2mrl cos(1)s).

Note that the kinetic energy of the system is independent of the variable 0. It,
therefore, follows from Lagrange’s equations (See [4]) that in the absence of external

forces,
d (LY _oL_
da\gd) 090
. 0L . . . .
Thus, the quantity — is a constant of the motion. This is precisely the angular

momentum, «, of the system:
a = a3t + azsths + azsb.

If the initial angular momentum is zero, then conservation of angular momentum en-
sures that the angular momentum stays zero, giving the following constraint equation

a13(y)t1 + az3 (1)) + ass (1) = 0. (6.1)

Since the actuated variables are the hinge angles of the left and right arm, we choose
as inputs u; = 1, and uy = 1. Using these in Eq. (6.1) and setting ¢ = (1,2, 6)*,
we get

q = g1(q)ur + g2(q)uz

where
1 0
9i(q) = 213 92(q) = 523
a33 a33

Let x = (21,72, 23)t = (¢1,12,0)", then Eq. (6.1) is written as
a = alg(l’)fbl + (123(1’)5&2 + agg(x)itg.

In the z’s variables, the original system is written as @ = g1 (z)u; + g2(x)us which
can be expressed as

12.31 = U1

T = uz (6.2)
ai3 a23

T3 = ———Up — —U2
ass a33

The exterior derivative of « is

do = —2mrlsin(xy) dey A des — 2merlsin(xs) das A das.
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Let’s find the rank of a:
do Ao = 2m>rl (rsin(zy — x2) + 1% (sin(x1) — sin(2s))) dzo A dao A dazs # 0

for all x1,x9 # km, k € Z. We know that da A « is a 3-form in a 3-dimensional space,
therefore (da)” A« = 0 for all > 2. So, the rank of « is 1.

Now, we can apply the Pfaff theorem and rewrite a as a = dz3 — zodz;. It’s easy to
check that

21 = I3,
29 = —azz = —I — 2ml* — 2mr? — 2mrlcos(x1) — 2mrl cos(zz)),

z3 = mil?(z1 + z2) + mr(sin(zy) + sin(zz)),

is the desired change of variables. To express the system in the new variables, we
have to find g1, g2, %1 and s such that Z = g1%; + gatia. The vector fields g; must
satisfy ig, (o)) = 0, so they are

0

gl = a. = (07170)l
822
(6.3)
g _i_,_zi_(l()z)l
92 82«'1 2823 s Uy 22 .
Our new system is written as

0 1
z = 1 |u+ 0 Uo +

0 z9

By construction of the change of variables that transforms z into z we know that

.. a3 azy
Rl = &3 = ———Up — —Uz = Uz
as3 as3

Z9 = 2mrlsin(zq)E1 4+ 2mrlsin(zg)ie = 2mrlsin(zy)ug + 2mrlsin(xs)us = Uy

Z3 = a13%1 + a23T2 = a13U1 + G232 = 2als.

Therefore, our new controls #; and uo are

1 = 2mrlsin(zy)ug + 2mrlsin(zg)us,
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Now, we are looking for the flat outputs y1(z,@) and yo(z,@). The fact that 2;, 29
and Z3 depend on z9,u; and us, we can take as flat outputs y; = 21 and yy = z3.
First of all, we find the control us as a function of g

Y1 =z = Uz = Uz = Y1.
Then, we can find 25

. . _ . Y2
Y2 = 23 = 22U = 22Y1 —> 29 = —.
Y
The z variables depend on the feedback laws and their derivatives like z = z(y1, 91, Y2, ¥2),
but we cannot define a diffeomorphism yet. We must prolong the system adding a
new state variable

Z4=ﬂ2

and two new control laws
v = Uy, VU = Us.

Now, our system can be written as

2':1 = Z4
22 = U1
23 = 2224
24 = V3.

Therefore, the change of variables in the prolonged system is

21 =Y
2o =12/
23 = Y2
Z4 = Y1

Now, we got a diffeomorphism between {y1,91,y2, 92} and {21, 22, 23, 24} given by

Y1 =z
Y1 = 24
Y2 = 23
Y2 = 2224

We have to check for which values this diffeomorphism exists and avoid the singular-
ities when we impose the initial condition values. The determinants of the change of
variables are the following

0 0 1
|Jz| = | 2mrisin(x) 2mrlsin(zy) 0 | = 2m2rl®(sin(z1)—sin(xs))+2m>r?lsin(z; —2)).
a13($) a23(x) 0
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So, if ©1 # x9 and x1,x9 # k7, k € Z, then the inverse exist. For the y variables,

1 0 0 O
0 0 0 1
0 Z4 0 Z9

which is invertible if z4 # 0. The feedback law is given by
w1 = 1 = Z4 = V2,
Wo = o = Z224 + 2224 = 2401 + 2202.

Inversely, we can compute the controls v; and v, as a function of y1, 91, y2, Y2, w1 and
wo as

oy — Y1wa — Yaw
1= 5 —
(11)
Vg = W1q.
Now we can express 41 and @s as a function of z1, 2o, 23, 24, v1 and vs as
Uy = vy,
1?2 = V2.
Finally, the initial controls u; and us can be reached solving the system

- 2mrlsin(x 2mrlsin(x
<u1>:< a13(1) a23(2)><u1)-
u9 - - U9

as33 ass

So, u; and uo are

- a23 _ ass Sin((EQ)
up = : - uy + : : 2,
2mrl(ags sin(xy) — a3 sin(xs)) asg sin(x1) — ay3 sin(xs) (6.4)
ais _ ass sin(xl) _ '
Uy = Uus.

 2mrl(ags sin(z1) — ars sin(xz)) e agg sin(x1) — aqs sin(x2)

Consider m =1, I = 1,1 =2, r =3l/4, tp = 0 and ¢; = 1 and take as initial and
final conditions of x the values

m —m—1 7w

8§’ 8 2

51—377—1—131
8’ 8 4 )

2(0) =(¢1(0),92(0),60(0))

z(1) =(¢1(1),92(1),06(1))
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First of all, we must transform the initial and final conditions, 2(0) and x(1), in terms
of z variables. Since z4 = 12 we can take as initial and final condition the values that
we want. So, taking z4(0) = 1 and z4(1) = 2, the initial and final conditions in z
variables are

2(0) =(21(0), 22(0), 23(0), 24(0)) = (1.570796327, —13.17048378, 8.756480043, 1)
2(1) =(21(1), 22(1), z3(1), 24(1)) = (2.356194490, —14.17319166, 3.723971711, 2).

Finally, we transform the initial and final conditions of z in terms of y = (y1, 91, Y2, ¥2)
as follows

y(0) =(y1(0), 71(0), 12(0), #2(0)) = (1.570796327, 1,8.756480043, —13.17048378)
y(1) =(y1 (1), 91.(1), y2(1), 52(1)) = (2.356194490, 2, 3723971711, —28.34638332) .

Consider P3(t) = ast® + ast? + ait + ag such that P3(t) = yi(t). Let’s find the
coefficients of P;(t).

y1(t) = azt® + agt® + ayt + ag
U1 (t) = 3a3t2 + 2aot + a1

For ¢t = 0:
ag = 1.570796327
a1 = 1.

For t = 1:

as + az = 2.3561945 — 2.570796327
3a3+2a2:2—1.

Solving the linear system we find

az = —1.643805511
a3 = 1.429203674.

Therefore,

y1(t) = P3(t) = 1.429203674t> — 1.643805511¢% + ¢ + 1.570796327.  (6.5)

Analogously, we proceed in the same way with yo(t) = Q3(t) = bzt + bat? + byt + bo.
yg(t) = b3t3 + bgtz + blt + bo
2(t) = 3bgt® 4 2bot + by.

Fort =0:

by = 8.756480043
by = —13.17048378.

For t =1:

bs + by = 3.723971711 — 4.414003737
3b3 4 2by = —28.34638332 4 13.17048378.
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Solving the linear system,

by = 39.589825884
bs = —31.451850436.

Therefore,

ya(t) = —31.451850436t> 4 39.58982588412 — 13.17048378¢ + 8.756480043.  (6.6)

Now, we must find the feedback as a function of time

d? d?

w1 =25u1(t) = 75 Py = 8.5752220441 — 3.287611022
d? d?
wy =2 5ua(t) = 75 Q3 = ~188.711102616t + 79.179651768.

As a consequence, the controls v; and vs have the expression

oo _J1ws = gowr _ —29.98T19T174? — 75.77127978¢ + 35.88022413
) (4.287611022t2 — 3.287611022¢ + 1)2

vg =w; = 8.575222044¢ — 3.287611022.

Finally, we obtain the expressions of u(t) and @s(t) as a function of v; and ve. For
o we know that it satisfies the following equation,

17,2 = ’Ug(t) = Uy = yl(t)
So, u1(t) and u2(t) are

an(t) = —29.28719717t2 — 75.77127978t + 35.88022413
W T (4.28761102212 — 3.287611022¢ + 1)2

tip(t) =4.287611022t% — 3.287611022t + 1.

Undoing the feedback in the controls 4; and s, we find the expression of the initial
controls solving the system (6.4).

Before finding the controls u; (¢) and uy (), we can integrate (6.2) using the numerical
method Runge-Kutta 45 implemented in Matlab.
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2, ) trajestary 2,1t) trajestory

a 01 02 03 04 0a 06 07 08 08 1 1) o1 0z 03 04 o0& 06 o7 [k} 09 1

Figure 6.2: Trajectories of the z variables z1(t), z2(t), z3(t) and z4(t) respectively.



-
Mobile Robot with a

Trailer

In this chapter, we will derive the kinematic model of a mobile robot with a trailer
and then find the flat outputs of the system. The two-wheeled mobile robot is dif-
ferentially driven and the trailer is attached at the center O of the mobile robot
through a rotational joint as Figure 7.1 shows. In cartesian coordinates, the system’s
configuration is given by

q=(z1,91,01,60)",

where 1, y; are the position of the midpoint C' of the trailer’s axle. 6; and 6, are the
heading angles of the trailer and the robot, respectively. L is the distance between the
center of the mobile robot and the midpoint of the trailer’s axle. Figure 7.1 shows the
schematic of the system and its configuration. From the geometric relationship, the
center position of the mobile robot is given as x¢o = x1 + L cos(61), yo = y1 + Lsin(6y).

Figure 7.1: A differentially driven mobile robot with a trailer in Cartesian space
described by (x1,y1,61,60).

From the assumption of no-slip condition on the wheels of the robot and the trailer,
the instantaneous velocities at C' and O along their respective axles become zero. One
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gets nonholonomic constraints of the form

where

_ ([ sin(fy) —cos(6y) —Lcos(fy—61) 0O
Cla) = ( sin(fy) —sin(6,) 0 0 ) '

When a matrix S(q) spans the null space of C(q), it is possible to define velocity
vector v(t) such that

¢ = S(q)v(t). (7.1)

Hence, if we represent the velocity vector v as the heading speed v and the turning
speed 6y of the robot, or v = (v, 90)T, we can find that the matrix S(¢q) can be
written as
cos(fg — 61) cos(f1) O
| cos(Bp—61)sin(f1) 0O
Sla) = sin(fp — 61)/L 0
0 1

Therefore, S(q) represents the kinematic model of the system.

If we define x = (x1, o, x3, 14)7 = (21, ¥1, 01, 00)T, u1 = v and uy = 6y, we can

rewrite the system (7.1) as

I cos(x3) cos(xg — T3) 0
o I R R B PR
Ty 0 1
The vector fields of the system (7.2) are
cos(x3) cos(xg — x3) 0
g1 = bm;f&?ig;; Lx ) and go = 8 )
0 1

that define the distribution A = (g1, g2). The system (7.2) with the distribution A is
controllable.

Now, we want to find the flat outputs using the Engels theorem. The annihilator of
Ais I = {a1,as} where

tan(zs — x4)

a1 = —tan(zg)dx; + dzg and ag = dxy + dzs.

Lcos(x3)

The derived flags of the ideal I are
10 = {ay, a2}, I = {a}, I® = {0}.

We want to express I as I = {a1, as} = {dz4 — 23d21,dz3 — 22dz1 }. It is easy to check
that
Z1 = T

z3 = tan(zs)

24 = T2
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holds that oy = dz4 — z3dz;. Now, we know that
ag + A(z)ay = a(x)dzs + b(x)dzy,
but as,dzs and dz; do not depend on dzs. It implies that A(z) = 0 and
ag = a(x)dzs + b(z)dz.

Imposing that this equality holds term by term

a(z)
cos?(x3)

t —
tan(zs = 24) g g dvs + b(z)day,

L cos(x3)

we obtain that t
a(z) = cos?(z3) and b(z) = W

b
Following the proof of Engel’s theorem, we know that zo = — ((33 . Now, I can be
X

~—

S

~

expressed like I = {dz4 — z3dz1,dz3 — 22dz1 } using
21 = T1,
_ tan(xs — x4)
Lcos?(z3) (7.3)

z3 = tan(zs),

zZ9 =

Z4 = X2.

The next step is to look for two vector fields g; and gs, two controls @; and @y such
that 2 = gll_tl + ggﬂg, and

i, (dza — 23dz1) = 0 and i, (dz3 — 2z2dz1) =0 for k =1,2.

This vector fields are

0 0 0

g1 = = + 2= +2372— = (1,0, 29, 23)T
g1 ) 2823 3624 ( 2,23) )
5 .
go = — = (0,1,0,0)".
g2 622 ( 5 Ly Uy )
So, it means that
1 0
s—gmtgpun=| O a+| L
= g1uU1 T gaU2 = % 1 0 2-
z3 0
In these new variables the system (7.2) is expressed as
731 = COS(Z‘g) COS(IE4 — Ig)ul = U
) sin(xg — 23)(3 cos(xz — x4) sin(xz — x4) sin(z3) + cos(x3))
Bg=— uy
L2 cos? (w3 — x4) cos*(x3)
: ; (75)
us =1 .
L cos?(x3 — x4) cos®(z3) 2 2
sin(zy — x3) _
Z3 =————uj = 290U
8 L cos?(x3) tee
24 =sin(x3) cos(zy — T3)u1 = 2307
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So, our new controls are of the form @ = b(x)u,

@y = cos(zg) cos(zy — x3)uq
sin(zs4 — z3)(3 cos(xz — x4) sin(zg — x4) sin(zs) + cos(xs))
L2 cos?(x3 — x4) cos(x3)

’ELQ = U1

1
L cos?(x3 — x4) cos3(x3) “

Later on, we are looking for the flat outputs y;(z,%) and y2(z,u). The fact that
%1, %2, 23 and Z4 depend on z9, z3, U and s allows us to take as flat outputs y; = 21
and y, = z4. First of all, we find the control @ in function of ¥,

Y1 =21 = U = U1 = Y1,

then we can find z3, zo and s in terms of 3, and g9

Yo = 24 = 23U1 = 231

. Y =Gy
B3 = — 5 T kU1 = 221
(91)
P Ya(91)® — Y1tn9e — 3g2irtn + 392(51)° i
2 = . = 1Uy.
(1)

Now, 21, 29, 23, 24, 41 and us can be expressed in terms of y1,y> and their derivatives
as follows

21 =Y,
- Y291 — §192
2= "5
(41)3
. 7.6
Y2 ( )
23 = /T,
U1
24 = Y2.

The z variables depend on the feedback laws and their derivatives like z = z(y1, 91, 91, Y2, U2, ¥2),
but we cannot define a diffeomorphism yet. We must prolong the system adding two
new state variables

Z5 = U1, 26 = U1

and two new control laws

V1 = Uy, Vg = U3.

Then, our system can be written as

21 = %5
Z9 = V3
23 = 2225
(7.7)
Z4 = 2325
25 = Zg
26 =1
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Now, we got a diffeomorphism between {y1, 91, 91, Y2, Y2, §2 } and {z1, 22, 23, 24, 25, 26 } -
We have to check for which values this diffeomorphism exists and avoid the singular-
ities when we impose the initial condition values. The determinants of the change of
variables are the following

1 0 0 0
cos(z3)(1 + tan?(x3 — x4)) + 3sin(z3) tan(xs — z4) 1+ tan?(x3 — 24)
0 0 -
|Jz| = L cos*(x3) Lcos3(x3)
0 0 1 + tan?(x3) 0
0 1 0 0
1

 Lcos?(x3 — x4) cosd(x3)

k k
So, if x3 — x4 # g and x3 # g for k € N, then the inverse exists.

1 0 0 O 0 0
0 0 0 O 1 0
o0 00 0 1|
=19 0 01 o o|T7®
0 0 z5 0 z3 0
0 zg z6 0 22925 23
So, for all point with z5 # 0 the inverse exists.
The feedback is of the form
w _i y1 = v
1 _dtyl =
w —g o = a+ vy + v
2 _dty2 = 1T YV2.
Let’s find «, 8 and ~:
d . d 9 d . . .. .. ..
pris %(2225 + 2326) = %(23161 + 1 23) = Zzuy + 2237 + 2310

= (%225 + Z522)u1 + 22301 + 231

2
= va25 + 3222526 + V123.

So,
a =322252¢
B =23
¥ :zg.

Which implies
we —a — Pw;

v

Vo =

Let’'s L =1, to = 0 and t; = 1 and take as initial and final conditions of z the values
™
2(0) =(@1(0),25(0),01(0). 65(0)) = (0.0,0. )

2(1) =(21(1), 22(1),01(1), 60(1)) = (1, 1, Z, %) .
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First of all, we must transform the initial and final conditions, 2(0) and x(1), in terms
of z variables. Since z5 = 1, and zg = i, we can take as initial and final condition
whatever values we want. So, taking z5(0) = z5(1) = 1 and z6(0) = z6(1) = 0, the
initial and final conditions in z variables are

2(0) =(21(0), 22(0), 25(0), 24(0)) = (0,1,0,0,1,0)
Z(l) :(Z1(1)7 22(1)7 33(1)7 24(1)) = (1’ 0,1,1,1, 0) .

Finally, we transform the initial and final conditions of z in terms of y = (y1, 91, U1, Y2, Y2, U2)
as follows

<
—~
o
=
Il
—~
<
[
—~
o
Nagl
=
—~
=}
=
:
=
—
o
<
DN
=}
<
[\V]
—~
(=}

)’yQ(O)) = (O’ L,0,0, 170)
y(l) :(yl(l)ayl(l)vyl(l)ay2(1)7y.2(1)ajj2(1)) = (17 1a07 1,070) .

Consider Ps(t) = ast® + ast* + ast® + ast® + a1t + ag such that Ps(t) = yi(t). Let’s
find the coefficients of Ps(t).

Y1 (t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t + ag
U1 (t) = 5a5t4 + 4a4t3 + 3a3t2 + 2ast + aq
i1 (t) = 20ast® + 12a4t> + 6ast + 2as.

For ¢t = 0:
(10:0
a1:1
a2:0.
For t =1:

l=a54+as4+az3+1
1 =bas +4a4 + 3a3 + 1
0 = 20as + 12a4 + 6ag.

Solving the linear system we find:

az = 0

Ay =

as = 0,
therefore,

Analogously, we proceed in the same way with ys(t) = Qs5(t) = bst® + bat* + b3t® +
bot? + byt + by.

Yo (t) = bst® + byt* + bst® + bot? + byt + by
12 (t) = Bbst? 4 4byt® 4 3b3t? + 2byt + by
§ia (t) = 20b5t> + 12byt* + 6b3t + 2bs.
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For t = 0:
bp =0
by =1
bs = 0.
Fort =1:

1=bs+by+bs+1
0 = 5bs + 4by + 3bs + 1
0 = 20bs + 12by + 6bs.

Solving the linear system:

by = 4
by = —7
bs = 3,
therefore,
yo(t) = 3t° — Tt 4 4¢3 + t. (7.9)

Now, we must find the feedback as a function of time

3 3
w1 :%yl (t) = %P5(t) =0
3 a3 9
Wo :ﬁyg(t) = ﬁth) = 180t° — 168t + 24.
As a consequence, the controls v; and vs have the expression
a3 a3

vy zﬁyl(t) = %P5 =0
_we —a— Pw
- B!

where a =0, 8 = 15t* — 28¢3 + 12¢2 + 1 and vy = 1.

Vs = 180t% — 168t + 24,

Finally, we obtain the expressions of @;(t) and () in function of v and vy. For @,
we know that it satisfies the following ordinary differential equation,

iy =v1(t), u1(0)=1, u(0)=0.
So, u1(t) and u2(t) are
i (t) =1
Tio(t) =180t% — 168t + 24.

Undoing the feedback in the controls #; and g, we find the expression of the initial
controls

1
w(t) == cos(x3) cos(xz — 4)
(1) = — sin(xs — z4) (3 cos(x3 — x4) sin(xg — x4) sin(zs) + cos(x3))
U9 =

cos(xg — x4) cos?(x3)
+ cos?(x3 — 4) cos®(x3)(180t% — 168t + 24).

Before finding the controls u; (¢) and us (), we can integrate (7.2) using the numerical
method Runge-Kutta 45 implemented in Matlab.
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Figure 7.2: Trajectories of the state variables 1 (t), y1(t),01(¢) and 0y (t) respectively.
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Figure 7.3: The graphic shows the trajectory of the trailer, given by (z1(¢),y1(t)).
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Figure 7.4: The graphic in blue line represents the trajectory of the trailer and the

green line the trajectory of the mobile, given by xo(t) = x1(t) +cos(61(¢)) and yo(t) =
y1(t) + sin(61(1)).
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7.

Mobile Robot with a Trailer




8
The N-Trailer
Ptaftfian System

8.1 The System of Rolling Constraints and Its
Derived Flags

Consider a single-axle mobile robot with n trailers attached, as sketched in Figure
8.1.

Figure 8.1: The N-Trailer.

Each trailer is attached to the body in front of it by a rigid bar, and the rear set of
wheels of each body is constrained to roll without slipping. The trailers are assumed
to be identical, with possibly different link length L;. The x,y coordinates of the mid-
point between the two wheels on the ith axle are refereed to as (z°,y%) and the hitch
angles (all measured with respect to the horizontal) are given by #°. The connections
between the bodies give rise to the following relations:

2 = 2" — L;cos(6"),

o (8.1)
y' =t =y' — L;sin(0"),

for i =1,2,...,n. Thus, it follows that the space parameterized by coordinates

(:L,O’yO’QO7 el mn’yn’an) c R2n+2 % (Sl)n+1

is not reachable. These constraints (8.1) are holonomic and will reduce the dimension
of the configuration space, since the position (z¢,y%) for i > 1 can be expressed in
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terms of 29, y°,6°, ..., 6°. By symmetry, (z%,y*) for i < n also can be expressed in
terms of ™, y™, 6™, 71, ..., 6°. For our purposes it is useful to use as configuration
space variables the x,y coordinates of a point on the nth trailer and the n + 1 hitch
angles: z", y™, 6", ..., §° because the calculations that follow are vastly simplified.
We will refer to the state space or configuration space as = = (z™, y™, 0", ..., 6°).
We have assumed that the bodies are connected between the midpoints of the two
sets of rear wheels; it should be noted that if the trailers are hitched behind the rear
axle, the equations will not simplify as shown here.

The wheels of the robot and trailers are constrained to roll without slipping; this
implies that the velocity of each body in the direction perpendicular to its wheels
must be zero. We model each pair of rear wheels as a single wheel at the midpoint of
the axle and state the nonslipping condition in terms of coordinates, beginning with
the nth trailer

" sin(6") — y" cos(6™) = 0. (8.2)

Equation (8.2) models the fact that the velocity perpendicular to the wheels is zero.
In the language of 1-forms, we write this as

at(@™, y", 0", ..., 0°) = sin(0™)dx™ — cos(6™)dy™. (8.3)

To write the other rolling constraints, we define v’ to be the velocity of the ith trailer.
The direction of motion of the (i + 1)st trailer and consequently the direction of v*!,
if its wheels are rolling without slipping, is along the direction of the hitch joining the
(i + 1)st body to the ith body. Since the bodies are linked together by rigid rods, it
follows that the projection of v’ onto the line of the hitch is equal to v**!. Thus, we
have that

v (2) = cos(07T — 0%)v(z). (8.4)

Also, we have that the velocity of the nth trailer v™ is given by
v™(z) = cos(6™)z" + sin(0™)y". (8.5)

In the sequel we will need to use (8.5) as a 1-form (i.e., we will need to use v™dt) ans
we denote this by abuse of notation as

0™ () = cos(6™)dx™ + sin(6™)dy". (8.6)

We may now recursively write down the rolling without slipping constraints for all
the trailers. The velocity of each trailer has a component due to the velocity vi*+!
of previous trailer and a component LH_lé”l due to the rotation of the hitch. The
relative geometry of this situation is illustrated in Figure 2. The component of v*+! in
the direction perpendicular to the wheel base is v**! sin(6? —#**1) and the component
of Li 1101 in this direction is L;; 107" cos(f" — 07+1). If the ith trailer rolls without
slipping then must have

Lit107 1 cos(0' — 07+1) — o'l sin(9 — 97+ = 0. (8.7)
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Figure 8.2: Showing the definition of the angles and velocities of the ith trailer.

Dividing through (8.7) by cos(8? — 6**1) yields the form constraint for 0 <i <n —1,
which we write as o™ **!(z)i = 0, where o™~ ! has the expression, in coordinates,

an—i+1(x) _ Li+1d9i+1 o tan(ei _ 0i+1)qﬂ'+1. (88)

Note that we have used the 1-form version v**! in (8.8) and that there will be a

singularity in the constraint when 6" — §'*1 = £7/2, or one of the trailers is jack-
knifed.

The forms a!(z), a?(z), ..., @™ (x) represents the constraints that the wheels of
the nth, (n — 1)st, ..., zeroth trailer (i.e., the cab), respectively, roll without slipping.
They are given by formulas given by (8.8) with the recursion relations in (8.4). Thus,
the Pfaffian system for the INV-trailer problem is generated by

I =span {a', o?, ..., "1} (8.9)
The following theorem gives the derived flags associated with this Pfaffian system.

Theorem 8.1.1 (Derived Flag for the N-Trailer Pfaffian System). Consider the Pfaf-
fian system of the N-trailer system (8.9) with the 1-forms o' defined by (8.8) and
(8.3). The 1-forms o are adapted to the derived flag in the following sense

I = span {a*, a?, ..., a1}
IV = span {a*, a?, ..., a"}
: (8.10)
I™ = span {a'}
1+ = (o},
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Proof. The proof is by recursion starting from the bottom of the flag of (8.10). Indeed
for the first step, we compute do’

dot = cos(6™)dO™ A dx™ + sin(0™)dO" A dy™
=—v" AN dO".

From (8.6) it follows that da' # 0 mod «'. This establishes the last two steps of the
derived flag above. For the preceding step, we note that the form a? is given by

a? = L,d0" — tan(" — 0" 1),

This yields that df™ is proportional to v™ mod o?. Consequently, we have that

dot = —v™ A dB™ is equal 0 mod o2. This establishes that

1Y = span {a!, o?}

I™ = span {a'} (8.11)
I(’n+1) _ {0}
We need to show that da’ = 0 mod o', ..., o’ !, af. To verify this, it is useful to

have the following preliminary lemma.

Lemma 8.1.1. For the 1-forms v* we have that

dv"""=0 modal, ..., a2 (8.12)

Proof. Start first with
dv™ = —sin(0")d0™ A dz™ + cos(60™)d0™ Ady™ =0 mod o'.
Thus dv™ =0 mod a!, a?. From v"~! = v™sec(§™ — 6™~ 1) it follows that
dv™ ™t = sec(0™ — 0" 1)dv™ + sec(0™ — 0" 1) tan(0" — 0" Hu" A (dO™ — dO"T).

This first term is zero mod o*

since dv™ = 0 mod a!. The second term is zero mod
a? since v™ is proportional to d” mod «?, and the third term is zero mod o? since

v™ is proportional to 0"~ mod o3. Thus, we have that

dv"'=0 mod al, a?, o,
Proceeding recursively, we have that
dv" " =0 mod al, a?, ..., ait?
which completes the proof of the lemma.
O
We will also need to make use of the relation
do" "2 =™ mod o (8.13)

which follows directly from the definition of the o in (8.8) and the linear dependence
of the 1-forms v?, given in (8.4).
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Continuing with the proof of the theorem, we now begin the calculation of

d()(i — Sec2(9n—i+2 _ 0n—i+1)(d0n—i+2 _ den—i+l) A Vn—it2
— tan(6" 2 — gn = Y dy, .

This expression has three terms. By (8.12), we have that dv,,_; 12 =0 mod o', ..., o.
Also by the proportionality of df to v™ (8.13) and the linear dependence of the
v¥’s (8.4), we have that d§" "2 Av, ;1o = 0 mod o' and d0" "2 Av, ;10 =0
mod «'~1. Thus, we have that do’ = 0 mod !, ..., o which implies that the de-
rived flag has the form I~ = {a!, ... o'}, as stated.

|

We note that the 7"t = {0} implies that the N-trailer system is completely con-
trollable by Chow’s Theorem.

8.2 Conversion to Goursat Normal Form

In the preceding section, we have shown that the basis of the constraints o!, ..., ™!
defined in (8.3) and (8.8) is adapted to its derived flag in the sense of (8.10). It
remains to check whether the o satisfy the Goursat congruences and if they do, to
find a transformation that puts them into Goursat canonical form.

Theorem 8.2.1 (Goursat Congruences for the N-Trailer System). Consider the Pfaf-
fian system associated with the N- trailer system (8.9) with the 1-forms o' defined in
(8.3) and (8.8). There exist a change of basis of the 1-forms o' to &' which preserves
the adapted structure, and a 1-form m such that the Goursat congruences are satisfied

da' = —-a' A7 modal,....,a" i=1,...,n
da"™ #£0 mod I.

The 1-form which satisfies these congruences is given by m = cos(0™)dx"+sin(6™)dy"™ =
™, and it is equivalent to the velocity form of the nth trailer.

Proof. The outline for the proof is first to determine a suitable 1-form 7 from the first
Goursat congruence, da' = —a? A m. Then, we construct the new basis elements &*
one at a time such that satisfy the rest of the congruences. For this example, we find
that these new basis elements are multiples of the original basis elements, and since
the original basis is adapted to the derived flag, the new basis is also adapted.

We determine 7 by completing the basis of {a?, ..., ™!} with

"% = cos(0™)dx™ + sin(0™)dy"
"t = ae’.

Note that a2 = v, the velocity form of the last trailer. We then set 7 = A\ 2 +
A2a™t3 and solve A, Ay using

do'' = —a? A7 mod o'
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Calculating the exterior derivative of o'

dot = cos(6™)dO™ A dx™ + sin(6™)dO™ A dy™

40" A" (8.14)

and then examining o? A 7
AT = (Lpd0™ — tan(0™ — 0" Hu™) A (\o™ + Xodf®)
we see if we choose \; = 1, A, = 0, then
o&? A= Lndf" Nv" = Lyda’.
We note here that we could have chosen \; = —1/L,,, but instead we will define a
new basis element a? = —(1/L,)a?. Then the 1-form 7 = v™ will satisfy
da' = —a* A

We now continue this procedure to find the rest of the transformed basis. Taking the
exterior derivative of &2

1 1
da* = T sec? (0™ — 0" 1) (do™ — do" ) A v — I tan(0™ — 0" ) dv"

n n

and noting that

VP AdO" =0 mod &

dv™ =0 mod o'

it can be seen that

1
da® = - sec?(0™ — 0" 1)do" " Av™ mod o, a*.
Also, since
AP AT = Lp_1d0" 1 A"
a choice of )
@3 = m 8602(9" — 9"_1)043

will result in the congruence

da’ = —-a* A1 mod o, &%

Since the new basis we are defining is merely a scaled version of the original basis,
mod-ing out by o’ or & is equivalent.

In general, we assume that @’ has been defined as

, —1)1 , . 4 4 .
at = ( ) Secz—l(en—l_en) Secz—2(9n—2_9n—l) _._SeCQ(en—z+3_9n—z+2)az.
Ly--- Ln—i+2
Using the congruences
A" AdA" T =0 mod a't?, o3
A" AV =0 mod o'

dv""=0 modat, ..., a2
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we can show that

) 1)1 ) ) ) .
da'® = ( ) Seczfl(gnfl o 9”) sec’72(9"72 o gnfl) L 8662(0n71+3 _ 0n72+2)
Ln et Ln7i+2
sec? ("2 — gnT it hggn Tt Ay, i mod ot &%, ..., &

1)1 ) ) ) L )
EL ( )L Secz(onfl o Hn) Seczfl(0n72 o enfl) . 8603(9n71+3 _ 9n71+2)
n""in—i42

-sec? ("2 — gn—ithgpn Tt Ay mod o, &%, ..., &
2 i
., Al

=—a"™ Av" modal, @
All that remains now is to demonstrate that
da™™ #0 mod I.

From the above analysis, we know

_1)m
da" ! = 7}3( )L sec" (@ — ™) - sec? (02 — 61
I
-sec?(0' — 0°)d0° Av™ mod !, &%, ..., a" !

which is nonzero.

8.3 Conversion to Chained Form

In Chapter 4, we described a method for converting the N-trailer exterior differential
system into Goursat normal form. Recalling that the dual of Goursat normal form is
a chained form, we now show how a similar procedure can be used to transform the
nonholonomic control system corresponding to the N-trailer system into a chained
canonical form.

We note that an exterior differential system on R™ of codimension two, given by
I={a'(z),...,a" 2(x)}

is the dual to a two-input nonholonomic control system
Y z=g1(x)us + g2(x)ug (8.15)

where the vector fields g;(z) span a 2-dimensional distribution A which is annihilates
by the 1-forms o

ai(x) -g;(x) =0.

When we transform an exterior differential system into Goursat normal form, we only
perform a coordinate transformation z = f(z). There is no input per se to a formal
exterior differential system, although we can speak of the two degrees of freedom
of the system, given by the distribution A = I+. The procedure for transforming
a nonholonomic control system such as (8.15) into a chained form requires both a
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coordinate transformation and state feedback. Although for the most general case,
and a state feedback is given by

a=a(z)+ bx)u

for drift-less nonholonomic systems it is easily seen that a(x) = 0'. The purpose of
the state feedback @ = b(z)u is therefore to transform the basis of the distribution A
into chained form in the new coordinate system

B
giiz) = 0z1 28,23 nil@zn

_ 1o}
ga(2) = 67«2

(8.16)

Proposition 8.3.1. Consider an N -trailer system with n + 1 rolling constraints

al = sin(0™)dz™ — cos(6™)dy™ = 0
Q" = L 1df — tan(0T — 0t =0 fori=0,...,n—1,

where the v' are specified in (8.4). A basis for the distribution A which is annihilated

by these 1-forms {a*, ..., a"*1} is given by
[ cos(6™)
sin(6™) [0 ]
1
I tan(9" 1 — o") 8
g1 = : g2 =
1 & . .
I, iillsec(@“1 —0%) tan(0° — 0') _ (1) |
- 0 -

Proof. The proof of this proposition requires the constraints o’ to be written out in
coordinates (z™, y™, 6", ..., 6°), and then it can be checked that the two given vector
fields, g; and go, are in the null space of this set of constraints. Since a1 =
Liy1d0 —tan(0F! — 01)vi ) vt = sec(6™ — 0" 1) sec(f™ 1 — 772) - - - sec(fn i —
6"=)v™ and v™ = cos(6™)dz™ + sin(6™)dy", we know that

Q" = L df —tan(07T —6") H cos(0" 9 — "I | (cos(6™)dx" +sin(0™)dy").
=0
Then, is a tedious calculation check that o™~ (z) - g;(z) = 0.

a

Although there are many different choices of g1, go which will span A, the two which
we have picked are natural in the sense that when the nonholonomic control system
is written as

& = g1(x)ur + g2(x)us

LIf this were not the case, the state feedback would add a drift term to a drift-less system and
could not result in a chained form.
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the input functions have the physical meaning u; = v™ in the linear velocity of the
nth trailer, and us = w is the rotational velocity of the lead cab (i.e., the cab). From
a practical point of view, we have control only in the velocity v° of the lead car given
in terms of v™ by

v =sec(6™ — 0" Hsec(0" T — 0"72) - sec(0t — 62) sec(6° — 61 )"

This is merely an input transformation, and will not change any of the properties of
the chained-form system.

We will now derive the coordinate transformation and the changes of inputs required
to put the system into chained form, as was discussed in Chapter 4. Recall that a
system in chained canonical form is defined to be

ZT =1

3% = U2

733 = Zgﬂl
n+3 _
z = Zp42U7.

We note that the functions z;(t) and z,43(¢t) will completely define all the state
variables of a chained-form system. These functions are referred to by as flat outputs
since the other n + 1 states and the two inputs can be determined from the equations

i = 2!
Ty = 2° (8.17)

z; = Zi+1/’a1.

Consequently, a coordinate transformation into chained form is completely defined by
the first and last coordinates of the chain z; and z,49, as functions of the original
coordinates x, along with (8.17) 2. Tt does need to be checked that the transformation
which results from (8.17) is a valid diffeomorphism.

8.4 Coordinates from the Last Trailer

Now, we have to show that the 1-forms o do satisfy the Goursat congruences, we can
follow the steps of the proof of Goursat Normal Form Theorem to find the coordinate
transformation. First of all, applying Pfaff Theorem to the 1-form o', we look for
possibly nonunique functions f;, fo which satisfy (8.18), namely

da* Aol Adfy =0 al Adfy #0
and (8.18)
041/\df1 ANdfs =0 df1 N\ dfs # 0.

2The fact that such a transform exists follows from our having verified the Goursat congruences
for the ' in the previous subsection.
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Since a! = sin(0™)dz™ — cos(6™)dy™ and da' = —v™ A df", it follows that da! Aol =
—dx™ Ndy™ AdO™. Thus, f; may be chosen to be any function of ™, y™, 8™ exclusively.
We now proceed to explain the coordinates from the last trailer.

If we choose fi; =z, then the second equation of (8.18) becomes
cos(0™)dz™ A dy™ A dfs =0

with the proviso that df; A dfs # 0. A nonunique choice of fs is fo = y™. For the
change of coordinates, we have

21 = fi(z) =

Zny3 = fa()

xn

y"

The 1-form o' = 0 may be written by dividing through by cos(6") as
al =dy" — tan(0™)dz" = dzn13 — zZny2dzy

so that z,42 = tan(6™). By the proof of Engel’s theorem, we now need to find a, b
such that

a? = adznp+2 + bdz;  mod ol
= asec?(0™)df" + bdz™ mod o’
But o? = L,df" — tan(0™ — 6"~ 1)v". Hence, we have that

L, po = tan(6™ — 9"~ 1)
‘= sec2(fn)’ cos(6™)

and we may write
b
a? = dzpyo + gdzl.
Now, we define
b tan(6™ — 6" 1) cos(0™)
Zntl = —— = .
+ a L,

The remaining coordinates are found by solving the equations

o' =dzp_i14 — Zn—ir3dz; mod at, ., ot

for 1 > 2.

The corresponding input transformation is

i = ' = cos(0™)v"™
= cos(0™) cos(6™ "t — ™) cos(6"72 — ") - cos (60 — 61 ).

The other input @, = 42 is a complicated function of x, v°, w for the general case
with n trailers; however, it is easily verified that dus/0w # 0, implying that the input
transformation 4 = b(z)u is nonsingular. The remaining coordinates z = f(z) are

defined using (8.17). But in the proof of Theorem 8.2.1 we define the 1-form

) —1)-1 ) . ) ) .
O_él — L ( ‘2 Seczfl(enfl _ 0") SeC172(0n72 _ onfl) . Sec2(0n71+3 _ 9n72+2)az
n""in—i4+2
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as a rescaling of o’. Then, the coordinate z; is the coefficient of dz™ in am*+3~1,

After obtain z; we know from (8.17) that

ﬂlzz'l

iy = 32
Z; = 2Z+1/’EL1.

Since the functions 21 (¢) and z,43(t) define completely all the state variables, our flat
outputs are

y1 =2 Y2 = Zn43 (8.19)
because 21, ..., Z,+3 depends on 29, 23, . .., Znt2, U1 and ug. Using (8.17) we can find
22,...,2n+2 as functions of y;1, yo and their derivatives. So, the z variables depend

on the feedback laws and their derivatives like

2= 20" T for 2 < i <m 42,

but we cannot define a diffeomorphism yet. We must prolong the system adding n+1
new state variables defined as

di_l’[q (i
Entits = o = (™Y (8.20)

fori=1,...n+ 1, and two new control laws

dn+2

U1 TR Vo = U2. (821)

:W?h:% ,

Now, our system is written as

Z.l - Zn+4
?;“2 = U1
Z3 = Z2Znt4
z = Zn42%n4+4
.n+3 n+2<n+ (822)
Zn+4 = Zn+5
Z.f'n+5 - Zn+6
Zonts =  Zoni4
Zonta = V.

It should be noted that this coordinate transformation is only defined locally. Since
its definition requires a division by @1, if any of the factors in @ are zero, the transfor-
mation is undefined for that configuration. For example, if 8" = 7/2, corresponding
to the last trailer being at right-angles with the coordinate frame, this coordinate
transformation is no longer valid. In addition, if the ith trailer is jack-knifed, that is
to say, for some 1 < i < n, §° — #°~! = +7/2, the coordinate transformation is also
singular.

Notice that if we define ¢ = 6° — ', the system of the N-trailer is equivalent to a
system of (N — 1)-trailers pulled by a car, where ¢ is the angle of the directional
wheels of the car. So, we will consider this configuration because it is useful for future
implementations.
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8.4.1 The 2-Trailer

=

Consider the system of the 2-trailer, defined by the variables (22,92, 602,0,0°) € R®
and the 1-forms

o' = tan(h?)dz? — dy?
o = —tan(9' — 0?) cos(6?)dz* — tan(0* — 6?)sin(0?)dy* + Lodb?
3 tan(6° — 6') cos(6?) , ,  tan(8° — 6')sin(0?) | , 1
= — d d L,do".
« cos(f' — 62) v cos(f' — 6?) vt
Defining the &° as
Al — ol
1
2 _ _ L 2
= o o
1
~3 _ 2002 _ gly .3
= oL sec” (6 — 0" )«

we obtain that

a' = tan(h?)dz? — dy?
tan(0! — 02) sin(6?)

5, tan(0! — 6%)cos(0?) , , 9 9
_ dy? — do
o I, dz= + T, y© —d
&% — tan(0° — 01) COS(QQ)de N tan(0° — 01) Sin(92)dy2 B 1 ao
Lo Ly cos3(6' — 02) L1 Ly cos3(6' — 02) Lo cos?(6! — 62)

Taking z; = 22, 25 = y? and using that z; is the da? coefficient of &°~% for 1 = 2,3, 4,

we have that
2

21 =T

_ tan(0° — 6') cos(6?)
2= LoLy cos3(6' — 02)

tan(0! — 62) cos(6?)
zZ3 =
Lo

24 = tan(6?)
25 = y2.

Using (8.17) and (8.19), we take as flat outputs y; = 21 and y, = z5. Since we cannot
define a diffeomorphism, we must prolong the system adding 3 new state variables
defined in (8.20)

2 = U1, 27= ﬂﬁl), 28 = ﬂ§2)
and two feedback laws defined in (8.21)

d* B s
o =g = gt =

Vo =U2.
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Now, our system is written as (8.22)

2':1 = Z6
2':2 = V2
733 = Z2%¢
Z4 = 2326
2':5 — Z4%6
2:’6 = Z7
Zr =28
28 = V1.

The diffeomorphism between z variables and the flat outputs is given by

Y1 = =1
W =
o ==
y§3) = 28
Y2 = 25
yél) = Z4%6
y§2) = 2323 + 227
ygg) = zgzg’ + 3232627 + 2428-

The feedback is of the form

w1 =01

Wa :6222327 + 32323 + 4232628 + z4v1 + Zg'l}g,
and it implies that

V1 =Wy
wo — 6,222'32'7 — 3,23,2? — dz32628 — Z4Wq

3
%6

V2

Let t = 0 and ¢ty = 1 be the initial and final time, and impose the initial and final
conditions

*T’(O) = (xQ(O),y2(O),92(0),01(0),90(0)) = (17 170’0’0)

2(1) = (@*(1),y%(1),6%(1). 0" (1),6°(1) = (0,0. 7.5, 5)

Then, the trajectories of the 2-trailer are shown in the following figures.
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Trajectaries of the 2-Trailer
3 T T T T T T T T T

25+ .

151 .

05 B

Figure 8.3: The trajectories of the 2-trailer, where the blue curve is the trajectory of
the rear wheels of the trailer, the green curve the rear wheels of the cab and the red
curve the trajectories of directional wheels.

Trajectories of 2 Trajectories of y2

L L L L L L L L L
01 02 03 04 0a 06 07 08 08 1
t t

Figure 8.4: Trajectories of the state variables #2(t) and y?(t) respectively.

8.4.2 The 3-Trailer

Consider the system of the 3-trailer, defined by the variables (23,43, 03, 62,0%,0°) € RS
and the 1-forms
o' = tan(0®)d2® — dy?
o? = tan(0? — 63) cos(03)dx® + tan(6? — 03) sin(0%)dy® — L3d6?
1 02 cos(03 1 02\ cin(p3
o — tan(6' — 64) cos(6 )dx3 n tan(6' — 6%) sin(6?)
cos(6? — 63) cos(0? — 63)
4 tan(0° — 01) cos(93) tan(0° — 01) sin(6?)

— 3
~ cos(# — 62) cos(62 — 63) da” + cos(f1 — 62) cos(6? — 63)

dy® — Lodf?

dy® — Lidf*.
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Defining the &° as

2ol
1
6&2 = —L—2a2
1
3 _ L 2092 o1y 3
a’ = oL sec” (6 — 0" )«
3002 _ p3Y aac2(nl _ p2
Gt = 5e¢ (0% — 6%) sec*(0* — 0 )a4.
Lalal,
we obtain that
a' = tan(0®)d2® — dy?
a2 tan(6? — 03) COS(GB)dx?’ N tan(6? — 63) sin(93)dy3 e
L3 L3
&3 — tan(ft — 62) 005(93)dx3 n tan(0! — 62) sin(93)dy3 B 1 40>
L3 Lo cos?(62 — 63) L3 Ly cos?(02 — 63) L3 cos?(0? — 63)
_y tan(0° — 1) cos(6?) 4 + tan(0° — 01) sin(6?) P
o =
L3LoL1cos*(62 — 63) cos® (01 — 62) L3LyLy cos(0? — 03) cos3 (0! — 62) Y
- ! do’.
L3 Ly cos?(6%2 — 63) cos?(01 — 62)
Taking z; = 3, 25 = y> and using that z; is the dz? coefficient of a5~ % fori = 2,...,5,
we have that
zZ1 = .733
tan(6° — 61) cos(6?)
2

T LsloL, cos*(62 — 03) cos? (01 — 62)
 tan(@' — 62) cos(6?)

%= L3Lycos3(62 — 63)
tan(0? — 63) cos(6?)
zZ4 =
Ls
25 = tan(6?)
26 = y3.

Using (8.17) and (8.19), we take as flat outputs y; = 21 and y2 = zg. Since we cannot
define a diffeomorphism, we must prolong the system adding 4 new state variables
defined in (8.20)

(1) =(2) —(3)
1

27 =1U1, 28=1Uj’, 29=1Uj , Z10=1U
and two feedback laws defined in (8.21)
d° oW
Pt = gt =
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Now, our system is written as (8.22)

21 = Z7
2’2 = V3
23 = 2227
Z4 = 2327
25 = Z427
Z6 = 2527
Z7 = 28
Z8 = 29
Z9 = 210
210 = 1.

The diffeomorphism between z variables and the flat outputs is given by

Y1 =z
W=z
o=
o =
u" =2
Y2 = 26
v = 220
yéQ) = 22,2$ + 2528
yé?’) = 2325 + 3242728 + 2529
y§4) = zQz‘% + 6232228 + 32425 + 4242729 + 25

The feedback is of the form

w1 =1

Wa leZ2z§z8 + 15232’72’5 + 10232?29 + 10242829 + 52427210 + 25v1 + z?vg,
and it implies that

V1 =wWq

v _wa — 10222?28 + 1523Z7Z§ + 1023z329 + 10242829 + 952427210 — Z5W1

2 — Z% .
Let t = 0 and ¢t = 1 be the initial and final time, and impose the initial and final
conditions

z(0) = (z*(0),5°(0),6%(0),6%(0),6"(0),6°(0)) = (1,1,0,0,0,0)
2(1) = (@*(1),y*(1),6°(1), 6°(1), 6" (1),6°(1)) = (0.0, 7, 7. 7.7 )

Then, the trajectories of the 3-trailer are shown in the following pictures.
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Trajectaries of the 3-Trailer
5 T T T T T

Figure 8.5: The trajectories of the 3-trailer, where the blue curve is the trajectory
of the rear wheels of the second trailer, the green curve the rear wheels of the first
trailer, the red curve the rear wheels of the cab and the cyan curve the trajectories
of directional wheels.

Trajectories of 1> Trajectories of y°

Figure 8.6: Trajectories of the state variables z°(¢) and y3(t) respectively.
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The N-Trailer Pfaffian System




O
Conclusions

The work presents three robotics systems solved using differential flatness. The first
robotic system consists in a simplified planar space robot with two arms, which is
solved using Pfaff’s theorem and feedback linearization. After that, Engel’s theorem
has been applied to a mobile robot with a trailer to establish a feedback linearization.

Finally, we presented the N-Trailer system viewed from the last trailer. In order to
apply feedback linearization, we converted the system into Goursat normal form and
later into chained form. It has been proved that the N-Trailer system can always
be transformed into Goursat normal form and then, into chained form. Later on,
we introduced coordinates from the last trailer that allow us to find the new state
variables. Then, these new coordinates are used in the feedback linearization process.

We observe that differential flatness considerably simplifies the development of control
design via feedback linearization. It is a powerful tool when we work with systems
of m+2 state variables and two inputs, because that ensures us that we can apply
Goursat normal form, which cannot be applied always, and therefore, convert the
system into chained form.

However, we have to remark that the proposed method will find a path between any
start and goal points in chained form coordinates, but there is no guarantee that
this path, when transformed back into original variables, will avoid transformation
singularities. This must be checked for every path.
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