
Soft Error Rate Analysis in
Combinational Logic

Martí Anglada Sánchez

Facultat d’Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Advisor: Antonio González, Departament d’Arquitectura de Computadors
Co-Advisor: Ramon Canal, Departament d’Arquitectura de Computadors

This thesis is submitted for the degree of

Master in Innovation and Research in Informatics (MIRI-HPC)

July 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41794238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract

Soft errors, energetic-particle induced single event data upsets, have emerged as a key
reliability concern in sub-100 nanometre technologies. Low operating voltage, small node
capacitance and high packing density are primarily responsible for the soft error susceptibility.
State-of-the-art processors need to fulfill reliability standards and, therefore, processor
designers need powerful tools to estimate the vulnerability of their architecture.

Historically, studies in soft error analysis have been focused on SRAM because it occupies
the majority of the die area in system-on-chips and microprocessors. As a result, there have
been great improvements in the efficient protection of memory cells but techniques for
protecting combinational logic still remain at power-hungry levels. One of the reasons is
the complexity of analyzing soft error in logic, which results in inefficient solutions for the
problem of estimating reliability. This complexity in comparison to memories is consequence
of less regularity of designs and less susceptibility of soft errors due to masking effects.

We develop a model that computes the probability that a strike at the output of a gate has
an impact in any output by traversing the circuits backwards from the outputs and gaining
information about the logical masking using signal probabilities. The model can easily be
extended to take into account other masking effects such as electrical masking and latch-
window masking. To properly estimate signal probabilities, we combine a widely-adopted
algorithm from the literature called Possibilistic algorithm with fast, exhaustive simulation of
small reconvergent fanout cones. The model is validated with fault injection simulation on a
set of small circuits used in similar works from the literature and the ISCAS85 benchmarks.

Results show enormous speedup with respect to fault injection and errors of 4% on
small circuits and circuits with few dependencies. Larger errors appear on some circuits and
motivate further research.
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Chapter 1

Introduction

This chapter presents the problem of soft errors in computer architecture, motivates their
study for reliable processors and lists the objectives of the thesis.

1.1 Soft errors from a computer architecture perspective

Recent trends in semiconductor technology scaling have brought tremendous improvement
in performance and power consumption for microprocessors. Device scaling translates to a
reduction in the feature size and voltage levels, aimed at having smaller devices that require
less current to switch, and thus can be operated at higher frequencies. Today’s dies consist of
more than 1.5x109 transistors, with gate lengths of 22nm [25]. However, scaling in sub-100
nm lithographies has brought attention to reliability issues that were previously not as much
of a concern.

In particular, nanoscale integrated circuits (ICs) have become highly sensitive to dis-
turbances caused by ionizing radiation. Radiation-induced transients in ICs are primarily
caused by low-energy neutrons coming from cosmic rays and alpha particles coming from
packaging materials [4]. These particles collide with the silicon nuclei, leading to a chain of
secondary reactions that deposit a dense track of electron-hole pairs as they pass through a
p-n junction and causing a current pulse at the node that collects the charge (Fig. 1.1). This
phenomenon is referred to as single event transient (SET).

If a sufficient amount of charge is collected by the junction, the SET results in a fault by
flipping the logic state at the associated node. When a fault caused by a bit flip is captured
by a storage element such as a memory cell or a register, a single event upset (SEU) occurs.
In contrast with effects such as hot-carrier injection (HCI) [8], negative-bias temperature
instability (NBTI) [7] or electromigration [6] that cause permanent failures, SEU does not
damage the device and, because of that, are called soft errors.
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Fig. 1.1 Current pulse caused by a SET at the collection node

The rate at which soft errors occur is expressed in terms of failure in time (FIT), which
measures the number of failures per 109 hours of operation. Typically, hard failure rates add
up to 50-200 FIT, whereas the soft error rate (SER) can easily exceed 50000 FIT per chip
[3]. As a consequence, the characterization and mitigation of soft errors in nanoscale ICs has
become an important area of study.

1.2 Motivation

Traditionally, soft errors were tackled within the context of memory cells because a lot of the
area of the chip is devoted to caches (Fig. 1.2). However, due to a continued reduction in
both critical charge (the smallest charge that results in a soft error) and collection efficiency
of transistors, SRAM SER has stayed constant over several generations. On the other hand,
it was recently shown [38] that the SER in logic circuits has increased by five orders of
magnitude in 8 technology nodes (from 600 nm to 50 nm) and is now comparable to the SER
of unprotected memory.

Moreover, mechanisms such as error-correcting codes [32] or radiation-hardened latches
[5] to protect memory elements from SET are well understood and have minimal overheads,
so the probability of soft errors occurring in memory has lessened. In contrast, known
techniques to reduce the SER in combinational logic such as triple modular redundancy
[27] have substantial costs in term of performance and power consumption. Hence, it is
important to develop accurate methodologies to analyze and quantify the impact of soft error
in combinational logic in order to find efficient solutions to protect it. Furthermore, current
designers must work toward a system-level FIT goal. There is, therefore, a need for analysis
tools that can provide the designer the trade-off between the overheads of circuit mechanisms
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Fig. 1.2 Trend of memory and logic area on an SoC die [39]

for error resilience and the system-level FIT value of the circuit. These tools require not
only accuracy but also speed, since they will be used several times through the design of the
processor.

However, modeling and analyzing the SER in logic is more complex that in memory,
since there are several masking effects that reduce the overall likelihood of the pulse being
latched and causing an error:

1. Logical Masking
Transient faults are blocked across the propagation path by a controlling value on the
side-input of a gate. This effect can be seen in Fig. 1.3a: if a particle strikes at an input
of an OR gate but one of the other inputs is in the controlling state (1), the strike will
be completely masked and the output will not change.

2. Electrical Masking
The pulse is attenuated (amplitude is reduced or rise and time fall times are increased)
by the electrical properties of the gates throughout the logic chain and the resulting
magnitude is insufficient to be latched (see Fig. 1.3b).

3. Latch-Window Masking
Transient faults arrive at a state-holding element outside its latching time window (Fig.
1.4a) or when their pulse width is smaller than the setup time plus the hold time of the
latching element (Fig. 1.4b).
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(a) Logical masking (b) Electrical masking

Fig. 1.3

(a) Masking due to the pulse timing (b) Masking due to a short pulse

Fig. 1.4

The current trends in the improvement of technology, specially the increase of frequency,
have led to an important reduction of the electrical and latch-window masking. Even though
a significative amount of soft errors are masked due to these effects, the most important one
nowadays is logical masking.

Reliability analysis is a nontrivial task due to the large size of ICs. In addition, it is known
that the problem of determining whether the signal probability at a given node is nonzero
is equivalent to the Boolean satisfiability (SAT) problem, a problem of determining if there
exists an interpretation that satisfies a given Boolean formula. The SAT has been proven to be
an NP-complete problem [16]. The problem of computing all signal probabilities in a circuit
can be formulated as a random satisfiability problem, which is to determine the probability
that a random assignment of variables will satisfy a given Boolean formula. The random
satisfiability problem lies in a class of problems, called #P-complete, which is conjectured to
be even harder than NP-complete.

This thesis proposes a methodology to evaluate the SER of a circuit, given its netlist
and input distribution probabilities, considering the above masking effects. Most of the
work that can be found in the literature (see Chapter 3) computes physical properties like
critical charge and pulse propagation at the same time that the topology of the circuit is
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taken into account to compute the effect of logical masking. These approaches are either
too slow because they try to precisely model the pulses or too inaccurate because they want
to be fast. Other authors have also used signal probabilities to evaluate reliability in logic
circuits, but the algorithms used do not consider technology and only tackle logic masking.
In comparison to those approaches, this work introduces additional parameters on top of the
signal probabilities in order to accurately compute the effect of the technology on the circuit.
Additionally, the pulse and pulse propagation modelling is decoupled from the algorithm that
computes the vulnerability and stored in a library. This allows to have proper information
about the technology behavior without the overhead of having to dynamically estimate it.

1.3 Objectives

The main objectives of this thesis are to develop a methodology to evaluate reliability in
combinational circuits that:

• takes into account logical masking.

• can easily implement the effect of timing and electrical masking.

• is fast and accurate enough that can be used several times in the design of a micropro-
cessor.

• receives as few inputs as possible so as to be integrated in more general design tools.

In order to achieve these requirements, a fault injector will be also developed to validate
the accuracy and speed of the proposed method.

1.4 Organization

The thesis is organized as follows. Chapter 2 provides an overview of the physical mech-
anism of soft errors. Chapter 3 reviews the existing soft error modeling approaches for
combinational logic. Chapter 4 describes the proposed modeling technique for reliablity
and signal probability estimation. Chapter 5 details the methodology to validate the method.
Chapter 6 shows the results of the validation, characterizes the weak spots of the model and
how to improve it. Chapter 7 presents the conclusions of this dissertation and the future
work.





Chapter 2

Radiaton-Induced Failures

This chapter reviews the dominant radiation sources, explains how soft errors are generated
by the collection of radiation-induced charge and describes how latched errors can cause
user-visible errors.

Single-event effects indicate any measurable or observable change in state or performance
of a microelectronic component resulting from a single, energetic particle strike.

Soft errors are a particular subset of single-event effects that can affect digital circuits. A
soft error occurs when radiation, directly or indirectly, induces a localized ionization capable
of upsetting internal data states. The error is "soft" because the circuit or device itself is not
permanently damaged by the radiation – if new data is written to the bit, the device will store
it correctly. At a circuit level, a soft error corresponds to an erroneous output signal from a
latch or memory cell:

1. A soft error in a memory element occurs when sufficient electrical charge is generated
to invert the value stored in the memory element.

2. A soft error in logic occurs when the result of a malfunction due to radiation in a logic
gate propagates to a storage element and is latched.

2.1 Radiation sources

2.1.1 Alpha particles

An alpha particle is a double-ionized helium atom (4He2+), composed of two protons and
two neutrons. Packaging materials and solder contain traces of radioactive isotopes, which
can produce alphas when they decay to a lower energy state. When an alpha particle travels
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through a material, it loses its kinetic energy predominantly through interactions with the
electrons of that material and thus leaves a trail of ionization in its wake. The emitted alphas
have kinetic energies that are typically in the range of 4-9 MeV. For each electron-hole pair
that is created, on average 3.6 eV of kinetic energy is lost [19]. This implies that an alpha
can cause a burst of typically a million electron-hole pairs. As the alpha is losing kinetic
energy, its speed is lowered, which increases the available time to induce electron-hole pairs.
Therefore, the charge generation rate increases with the distance traveled by the alpha and
has a maximum near the end of the trajectory. The range of an alpha particle is a function of
its energy and the properties of the material in which is traveling. In silicon, the range for a
10-MeV alpha particle is less than 100 µm. Thus, alpha particles from outside the packaged
device are clearly not a concern–only alpha particles emitted by the device materials and
packaging materials need to be considered. Using Ultra-Low-Alpha prouduction materials,
manufacturers such as TSMC, ST or TI claim that alpha particle emission rates of packaged
devices nowadays are 0.001 α/cm2h, causing a 20% of the soft errors [30].

2.1.2 High-energy cosmic neutrons

Another cause of soft errors is cosmic rays, high-energy particles from outer space. When
they arrive at Earth, they collide with the nuclei of atoms in the upper atmosphere, creating
cascades of second and higher generation particles, as seen in Fig. 2.1.

Fig. 2.1 Cosmic ray desintegration, causing a cascade of nuclear reactions

Most charges from cosmic rays are trapped or deflected by the geo-magnetic field
of the Earth, and only 1% of the primary flux reaches the sea level [45]. At terrestrial
altitudes, the predominant particles with strong nuclear force are protons, neutrons, electrons,
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muons, and pions. Muons and pions are short-lived and protons and electrons are attenuated
by Coulombic interactions with the atmosphere. Therefore, neutrons are the dominant
cosmic particles producing soft errors, because of their relatively high flux and their stability.
The SER of devices due to cosmic rays can be estimated with sufficient accuracy by just
considering neutron interactions. Since neutrons are uncharged particles, they do not directly
generate ionization in silicon, and its flux alone does not define the cosmic component of
SER. Neutrons interact with chip materials elastically and inelastically. Inelastic reactions
typically end with the excited nucleus breaking into lighter fragments.

When the silicon nucleus fragments in these inelastic reactions, the resultant products
are a lighter ion with additional particles (neutrons, protons, and/or alpha particles). Kinetic
energy is shared among the particles and momentum is conserved, so the particles tend to be
emitted in opposing directions. As the energy of the incident neutron gets higher, the number
of reaction pathways increases. Because neutrons create ionizing particles indirectly, the
tracks of the created secondary ions can start anywhere and in any direction in the device, as
seen in Fig. 2.2. This is in contrast with alpha particles or other light charged particles with
sufficient ionizing power, which arrive from outside the device. This implies that in the case
of neutrons, the number of geometrical situations with respect to ion tracks and sensitive
regions of the devices is much larger. Furthermore, a collision of a neutron with a silicon
nucleus results in more than one ionizing particle. Also, unlike with alpha particles, most of
the neutrons entering a device pass through the silicon without interaction, and only a small
fraction gets involved in a nuclear reaction.

Fig. 2.2 Generation of electron-hole pairs in silicon by high-energy neutrons

In contrast with alpha particles, the cosmic neutron flux cannot be reduced significantly
at the chip level with high purity materials or shielding, since materials such as concrete
(that reduces cosmic radiation at a rate of approximately 3x per meter) cannot be applied
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in personal desktops or portable devices. Cosmic ray SER must therefore be dealt with by
reducing device sensitivity, either by design or process modifications.

2.2 Physical mechanism

After an ionizing particle strikes a semiconductor device, it creates a highly conductive,
neutral and localized column of electron-hole pairs. When the particle-induced charge track
traverses or comes close to a reverse-biased p-n junction, electron-hole pairs are rapidly
collected due to the high electric field of the depletion region of the junction [12]. The created
electrons drift to the higher potential of the n-diffusion while holes drift to the lower potential
of the p-substrate. The equipotential lines of the depletion layer rapidly spread down and
envelope the entire length of the track, as shown in Fig. 2.3. The electric field spreads down
along the track into regions that originally were field-free, distorting the depletion region into
a funnel shape. Within tens of picoseconds, the generated carrier density near the junction
is comparable to the substrate doping, and the disturbed field relaxes back to its original
position. Charge collection through diffusion [13] continues for several nanoseconds: while
the excess electrons and holes deeper in the substrate diffuse away, part of the electrons are
captured by the sensitive node.

Fig. 2.3 Charge generation and collection after a particle hit

In general, the farther away from the junction that the particle strikes, the smaller the
amount of charge that will be collected, and thus the less likely it is that the event will cause a
soft error. The magnitude of the collected charge (Qcoll) depends on a complex combination
of factors including the size of the device, substrate doping, the type of particle, its energy
and trajectory and the state of the device. Additionally, since in integrated circuits a node
is in close proximity with other nodes, charge sharing and parasitic bipolar action [2] can
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greatly influence the amount of charge collected. Qcoll does not result in a soft error unless it
exceeds the minimum charge required to cause a change in the data stated, named critical
charge (Qcrit) [11]. Qcrit is difficult to model because it is a function of the node capacitance,
operating voltage and strength of the restoring mechanisms connected to the node.





Chapter 3

Related work

This chapter covers the literature for soft error analysis and estimation in combinational
logic and the related work to this thesis’ approach. Simulation techniques and analytical
tools and models are reviewed, highlighting the trade-offs between accuracy and execution
time and the means to cope with the different masking mechanisms.

3.1 Fault-injection-based approaches

The industry standard tool for circuit simulation is HSPICE [40]. HSPICE can be used to
estimate the SER of a circuit by computing the critical charge (Qcrit) as a measure of the
circuit susceptibility to particle strikes. For a soft error to occur at a specific node in a circuit,
the collected charge at that particular node should be more than Qcrit . This value is obtained
from the circuit by injecting a series of current pulse and noting the minimum which upsets
the device. Since HSPICE is a device-level tool which models technology nodes, very precise
results can be achieved at the expense of long simulations. In practice, execution times are
infeasible for circuits exceeding a few gates and, as a result, is only used as a technique to
compare the accuracy of faster methods [38].

As in other areas of computing where analytical solutions are complicated to solve,
Monte Carlo methods are often used in reliability analysis. Monte Carlo is a widely known
simulation-based approach where experimental data are collected to characterize the behavior
of a circuit by randomly sampling its activity [20]. In the context of reliability estimation, the
samples correspond to a series of pulses to evaluate the behavior of transistors or to a series of
bit flips to evaluate the behavior of logic gates. Although not all the space has to be explored,
the big drawback is that numerous pseudorandom numbers need to be generated, and a large
number of simulation runs must be executed to reach a stable result. In process of achieving
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relatively stable results, certain statistical parameters such as coefficient of variance (σ/µ)
are usually used as the stopping criteria. According to [17], the number of MC runs varies
around 105-107 with acceptable coefficients of variance of 0.001 and it is empirically shown
that the result becomes relatively stable after 104 runs.

In [28] a tool based on Monte Carlo and integrated with the IBM chip design process is
presented. The program requires a number of different inputs (semiconductor description,
impurity concentration and depth, alpha particle pattern, wiring rules, critical charge at
the sensitive terminals, chip dimensions, geographic coordinates, number of bits in the
chip) to perform very accurate simulations of the effect of particle strikes. Alpha particle
emission from the chip is computed and Monte Carlo simulations are run to obtain different
radiation emissions. With them, nuclear collisions are simulated and energies and directions
of particles generated. In an iterative process, the carriers are moved through the transistor
area and the new coordinates are used to determine whether a junction has crossed and with
which charge, so as to determine if the bit is flipped. The SER of the whole chip without
taking into account masking effects can be very accurately computed at the cost of large
execution times.

Zhang et al. developed a methodology [44] based on graph theory, conditional probability
and fault simulation. The circuit is decomposed into a collection of nodes with a gate between
each pair of nodes, and each gate is modeled as an equivalent inverter. The circuit is simulated
to obtain a series of conditional probabilities (charge collection by the p-type or n-type drain,
collection by a node or by a flip-flop) to compute the likelihood of a pulse being latched.
Logical masking is emulated in the inverter chain by using logic functions in adjacent nodes.
A path-search algorithm is used to find all paths between primary outputs and internal circuit
nodes. The SER computation is repeated for a number of input vectors. Using inverter chains
may lead to inaccuracies in electrical and timing masking, and only using a subset of input
vectors can not show the variations for different input states. The results show great speedup
in execution time at the expense of only a 4% loss in accuracy, but the authors only provide
results for circuits of the order of 10 gates.

The approach in [18] finds what set of latches are affected by which logic gates, timesteps,
magnitudes of collected charges and input vectors. The circuit is first simulated to find the
logic states of all the gates. Then, the FIT rate of combinational nodes is estimated by
determining which charges and times of strikes can lead to an event of failure. This is
achieved by pre-characterizing the magnitudes of collected charges required to cause a flip



3.2 Pulse-based approaches 15

for each of the gates and finding sensitized paths from the gates to latches. Finally, an
additional step using statistical fault injection is used to determine the probability that a
system-level specification fails due to a strike in a combinational node. Their approach is
much faster at running thousands of input vectors than other techniques because the fault
injection is less present, but also needs an exponential number of runs to traverse repeatedly
the input space. The results presented only show great gains in execution time and not
accuracy for large ISCAS benchmark circuits.

3.2 Pulse-based approaches

Another set of techniques try to reduce execution time by not having to simulate the behavior
of the gates at runtime: instead, the response of the gates to the pulses is modelled. In [43],
the methodology presented uses a previously-characterized technology library to emulate the
effects of pulse generation and propagation. The error pulses are encoded and propagated
using binary decision diagrams (BDD) [9]. A strike modifies the BDD adding extra informa-
tion, such as the arrival time, pulse and voltage of the pulse. Logical masking is captured
by propagating the error only if the path from the site of the fault is sensitizable under the
assignment of the primary inputs. Determining the output of the BBD is done through logic
operation and look-up tables. The results present a great speedup in time (in the order of
minutes) with an average error of 12% in small circuits.

Rajamaran et al. also proposed in the same year to capture current-voltage characteristics
beforehand via HSPICE simulations and compile their results into a set of mathematical
equations that would provide accurate and quick information at dynamically. In their work,
more data, such as gate delays and time window for flip-flops is precomputed so as to lose
the least amount of precision possible. Time and accuracy results are given for small circuits:
with only one minute of execution, they achieve an average error of 6.5%. For bigger ISCAS
benchmark circuits, only time results are provided, and an average execution time of 6 hours
is reported.

The work presented in [10] is based on decomposing transient faults into two transitions
for analysis: rising edge and falling edge. Each edge is processed using an analytical
approach and statistical static timing analysis. By expressing timing quantities in closed form,
the arrival time and required arrival time can be propagated through a timing graph using a
linear-time block-based statistical timing algorithm. The SER of every gate is formulated
by integrating the products of particle-hit rate and the error probability over the range of
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charges. The error probability depends on the masking effects: electrical and timing masking
(computed with first order forms for the hit and propagation pulses) and logical masking
(computed with signal probabilities). Although this approach is not as fast as others, it still
achieves more than 250x speedup in relation with Monte Carlo with only 3% error and can
take into account process variations.

In order to reduce the computing effort to compute electrical masking, the authors in
[41] present a model based on two lookup tables per transistor: a drain current model and a
capacitance model. The motivation behind is that without accurately modeling large currents
at the linear region or the sensitivity of effective capacitances, an analytical model cannot
match SPICE simulations. With these two models, they can analyze combinational logic
considering electrical masking with a great speedup with respect to simulations using fault
injection. They provide results for an inverter chain and a two-input NAND gate chain of
lengths up to 6 and report errors of less than 6%.

The proposal introduced in [22] to avoid large computation times also relies in information
known statically. The authors bypass modeling technology properties by choosing adequate
critical charge values for each technology node. They first use the SER model for SRAM
circuits to account for the SER in logic without any masking, and then they use one reducing
factor for masking property. For electrical masking, they assume that pulses with a certain
charge will be able to propagate to any number of gates, and they extract that charge using
information of the particle flow and the technology node. For timing masking, they compute
the probability of a pulse with a certain charge has enough duration to be latched. Finally,
they set a value of 0.5 for the logical masking reducing factor based on the mean of several
empirical results. Since the values of these factors are known independently of the size of
the circuit, it is the fastest approach in the literature, requiring constant time. With regards
to accuracy, the model outputs a FIT rate in the same order of magnitude than much more
complex models if the few parameters used (collection efficiency, critical charge, latching
window, pulse duration and logical masking ratio for the input vector) are correct.

The most current soft error analysis technique was presented by Kwon et al. [26]. In
their work, the SER of a gate is computed by taking into account all paths from other gates
to it and multiplying the pulse generation probability by the probability of the masking
factors. The logic gate traversal starts from the nearest gates to the outputs and analyzes
each gate backwards from them. In order to calculate the logical propagation probabilities
without using static probability, each gate contains two types of look-up tables (an attenuated
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pulse with table that accumulates pulse sums and a validation table to compare technological
parameters) and node conditional probability. The authors provide results for all ISCAS85
benchmark circuits, with execution times of less than an hour and an average error of less
than 16%.

3.3 Probability-based approaches

The work presented in [14] uses signal probability as an indication of signal reliability. In
the case of a fault-prone logic signal, four possible states can be defined: correct 0, correct 1,
incorrect 0 and incorrect 1. This is represented in a 2x2 matrix. The reliability of a gate is
represented by two possible states: correct operation and failure in a probabilistic transfer
matrix (PTM). The output probabilities are computed by multiplying the input probabilities
and the gate’s PTM. The signal probability of the output node in a circuit corresponds
to the signal reliability of the circuit, and it is computed by propagating the input signal
probabilities through the gates of the circuit in topological order. With a straightforward
signal probability computation algorithm, the methodology allows the evaluation of the
logical masking capability of the studied circuit. The process of combining gate probability
matrices implicitly takes into account the single dependency between gates by considering
the underlying joint and conditional probabilities and, as a result, the calculation is exact.
However, the scalability is limited because it has an exponential space requirement for the
matrices. The results that the authors provide, while accurate, are only shown for circuits
with sizes around 50 gates.

Another way to use signal probability in reliability computation is with the probabilistic
gate model (PGM) [15]. Input signals of each gate are assumed to be independent. Under
this assumption, the output probability of each gate can be easily calculated using the
information of input signal probabilities and gate error rate. The output probability can
be used recursively as the input information at next level of gates. Circuit reliability is
analyzed by exhaustively evaluating each input combination. The obvious disadvantages are
the impossibility to enumerate all input combinations when the number of inputs is high and
the inaccuracy caused by signal independence assumption. Even if reconvergent fanouts are
studied independently to remove inaccuracies, since the number of fanouts is comparable
to the number of gates in the circuit, the complexity is still an exponential function of the
circuit size, making it infeasible in general for large circuits.
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The idea of PGM was adopted in [23] as a part of a two-pass algorithm. It starts from
the output and constructs error probability equations pushing the proper susceptibility gate
tables onto a stack. When the primary inputs are reached, another pass is applied to solve the
equations by using input vectors. This is repeated exhaustively for all input patterns. The
model does not take into account electrical or time masking, and accuracy results, while
good, are only provided for circuits of the size of a 2-bit full adder.

In order to achieve great scalability, Pagliarini et al. suggested a linear-complexity
solution in [31]. Each gate has associated the number of faults it generates and a finite-state
machine with the following states: waiting for the computation of the previous’ gates faults,
ready to send computation to the following gates and several that represent a failure in
one or more inputs and compute the generated faults accordingly. When a gate has all its
predecessors ready, it switches to the state corresponding to the number of faulty inputs and
computes the output number with quick, empirically-determined, gate-dependent shift right
operations. Even though this approach does not present great accuracy numbers and only
takes into account logical masking, it is fully synthesizable on an FPGA, which implies
extraordinary speed. Each transition in a finite-state machine can be done in a single clock
cycle and all gates that have their operands ready can operate in parallel.

A different manner of using signal probability in the reliability-estimation problem is
via Bayesian networks (BN) [21]. A BN is a form of graphical model which is having
fundamental components, nodes and links. These links combine and make directed acyclic
graphs by joining several nodes. The directed acyclic direction lines are representing the
joint probabilities among the nodes. Every node has its own conditional probability table
according to its gate type. In [34], the authors use BN to evaluate the reliability of the
circuit by comparing a circuit encoded as error-free with a circuit encoded with errors.
Even though the time complexity is exponential, it is much smaller than PTM, since is
proportional to the largest clique1 in the graph in comparison with the number of inputs
and gates. When comparing to fault simulation estimates of the order of 1000 samples in
ISCAS85 benchmarks, results show errors of less than 7% with execution times of less than
a minute.

The methodology presented in this thesis is also based in signal probabilities, eliminating
the use of fault injection or pulse modeling at runtime. Unlike other probability-based
approaches, it does not rely on complex mathematical models to evaluate masking effects.

1A subgraph in which every pair of distinct nodes are adjacent
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Instead, it uses basic Boolean algebra notions and a simple graph traversal technique from
the outputs of the circuit to the primary inputs to incrementally gain information about the
logical masking properties of the circuit. The graph is traversed in such a way that technology
information can be added as an input of the algorithm in order to compute electrical and
latch-window masking. The straightforwardness of the implementation and the simplicity to
obtain its inputs make our methodology an ideal candidate to be the reliability estimation
tool within a bigger design program.





Chapter 4

Methodology to evaluate masking effects

This chapter presents the details of a comprehensive model for the analysis of the soft
error rate in combinational logic as well as an example explaining how the model works.
Reconvergent fanouts and their importance in signal probability are addressed.

4.1 Description of the algorithm

The proposed algorithm takes three inputs: the netlist of a combinational circuit, a set of
input probabilities and a set of transition probabilities. The netlist of the circuit is a list of
gates and their connectivity, which corresponds to a directed acyclic graph defined by the
union of the list of gates G (vertices), the set of connections C (directed edges), the set I of
inputs of the circuit and the set Ω of outputs of the circuit.

• Each element of G is formed by a pair <ϕ , k>, where ϕ is a Boolean operation (such
as NOT or NAND) and k is the number of inputs of the gate.

• Each element of C is a connection among one output of a gate and one or more inputs
of succeeding gates. This is formally defined as a pair <gi, Γi>, where gi is the ith gate
of G and Γi is a set of gates {ga

j , gb
k , gc

l , . . . }, where subscripts j,k and l indicate a
particular gate from G and superscripts a, b and c indicate the input (0, 1, . . . , k-1) of
the gate that is connected to the output of gi.

• Each element of I is a pair <i, m>, where i designates the ith gate of G and m corresponds
to input number m (0≤ m < k) from gi.

• Each element of Ω is an index i, which indicates that gate gi produces an output of the
circuit.
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Every element m from I has associated an input probability, which corresponds to the
probability that the value of m is 0. Every element gi of G has associated two transition
probabilities T out

i [0→ 1] and T out
i [1→ 0] which correspond to the probability that, given a

strike, the output at gi transitions, respectively, from 0 to 1 and from 1 to 0. The algorithm
computes a set of vulnerability probabilities V which indicate, for every connection in C, the
probability that a strike in that connection will be propagated to one or more outputs in Ω.
Finally, it computes the vulnerability of the whole circuit based on the above probabilities.
In order to compute V , the graph is traversed starting at the outputs and visiting a gate only
when all its successors have already been visited.

To compute the probability that a strike in the connection at the output of a gate gi is
propagated, the probability that the strike is not masked by a succeeding gate is computed. To
do that, all the paths from this connection to any output of the circuit are taken into account.
A pseudo-code summarizing the procedure is shown below:

Algorithm 1 Algorithm to estimate the SER in a circuit
1: Compute input probabilities of all gates
2: Inititialize Queue with output gates
3: while Queue is not empty do
4: gate← first element of Queue
5: mark gate as visited
6: for each parent← {Gates in Predecessors(gate)} do
7: if all gates in Successors(parent) have been visited then
8: Queue← Queue∪ parent
9: end if

10: end for
11: vulnerability(connection(gate)) = 1
12: for each j← {Inputs in Successors(gate)} do
13: Prob j ← Compute vulnerability of any path from gate to a circuit output that

includes the connection from gate to input j
14: end for
15: Compute vulnerability of the connection at the output of gate with all Prob values
16: end while
17: Compute the vulnerability of the circuit based on the vulnerabilities of all connections

The first step of the algorithm (Line 1) computes the input probabilities of all the gates,
based on the input probabilities of the circuit. This is done by traversing all the gates of the
circuit from inputs to outputs and taking into account the function performed by every gate.
For instance, the probability PNAND that at the output of a 2-input NAND gate is a 0 knowing
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the probability Pi that there is a 0 at the input i is:

PNAND = (1−P0)∗ (1−P1) (4.1)

which is the probability that both inputs are 1.

The probability PAND that at the output of a 2-input AND gate is a 0 knowing the
probability Pi that there is a 0 at the input i is:

PAND = 1− ((1−P0)∗ (1−P1)) (4.2)

which is the probability that at least one input is 0.

The probability POR that at the output of a 2-input OR gate is a 0 knowing the probability
Pi that there is a 0 at the input i is:

POR = P0 ∗P1 (4.3)

which is the probability that both inputs are 0.

The algorithm uses a queue, created at Line 2, to store in the proper order the gates whose
connections at the output are ready to be visited. The queue is initialized to the gates that
produce the outputs of the circuit to ensure a traversal that visits all gates. The main loop
occurs in Lines 3 through 16: not until every gate has been visited (equivalent to the queue
not being empty), a gate is removed from the queue (Line 4) and it is marked as visited (Line
5). A new gate is enqueed to be examined later (Line 8) only if all their successors have been
visited (Line 7).

Output connections of the circuit do not logically mask any SET, so they have a vul-
nerability of 1. Every connection is set with this initial vulnerability (Line 11), and then
is changed according to its successors, as described below. In Line 12, every input from
all the successor gates of the gate being visited are considered. In line 15, we compute the
vulnerability of the connection at the output of the gate for all alternative paths to the output
of the circuit. For this purpose, we first compute the individual vulnerability for each set
of paths that include the connection from the output of the gate to a particular input of a
successor gate (Line 13). Then we compute the vulnerability of the connection at the output
of the gate as a combination of the individual vulnerabilities, assuming that the probability of
masking is independent for different paths.
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For instance, in the circuit of Figure 4.1, when we compute the vulnerability of the
connection at the output of gate 4, we need to first compute the vulnerability of all paths
going from gate 4 to the output of the circuit through input 0 of gate 1, and then the same
for input 0 of gate 2. Finally, we compute the vulnerability of the connection by combining
these two probabilities assuming that masking in each of them is independent.

The logical masking of each individual gate is computed by taking into account the
function that it performs and the previously computed input probabilities for the gate. As an
example of this, we use a 2-input NAND gate:

1. If both inputs are 0, a particle strike at any input does not affect the output.

2. If one input is 1 and the other is 0:

(a) If the input set to 1 suffers a transition from 1 to 0, the output is not affected.

(b) If the input set to 0 suffers a transition from 0 to 1, the output changes.

3. If both inputs are 1, a transition from 1 to 0 at any input changes the output.

This is summarized in Table 4.1:

Table 4.1 Logical masking of a 2-input NAND gate

Input 0 Input 1 NAND Output Output if Input 1 changes Output if Input 2 changes

0 0 1 1 1
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

So, the effect of not logically masking a SET for a 2-input NAND gate is:

NotMaskingNAND2 =

P0 ∗ (1−P1)∗T in
0 [0→ 1] (4.4a)

+(1−P0)∗P1 ∗T in
1 [0→ 1] (4.4b)

+(1−P0)∗ (1−P1)∗ (T in
0 [1→ 0]+T in

1 [1→ 0]) (4.4c)

where 4.4a and 4.4b correspond to the cases from 2b and 4.4c corresponds to the cases
from 3. T in

j [n→ m] indicates the probability of a transition from n to m at input j, which
corresponds to T out

i [n→ m] from the input specification, where i is the gate whose output is
connected to input j.
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In a similar fashion, we can formulate this effect for any gate, for instance:

Table 4.2 Logical masking of a 2-input OR gate

Input 0 Input 1 OR Output Output if Input 1 changes Output if Input 2 changes

0 0 0 1 1
0 1 1 1 0
1 0 1 0 1
1 1 1 1 1

NotMaskingOR2 = P0 ∗P1 ∗ (T in
0 [0→ 1]+T in

1 [0→ 1])+P0 ∗ (1−P1)∗T in
1 [1→ 0]

+(1−P0)∗P1T in
0 [1→ 0] (4.5)

Table 4.3 Logical masking of a NOT gate

Input NOT Output Output if Input changes

0 1 0
1 0 1

NotMaskingNOT = P0 ∗T in
0 [0→ 1]+ (1−P0)∗T in

0 [1→ 0] (4.6)

Table 4.4 Logical masking of a 2-input AND gate

Input 0 Input 1 AND Output Output if Input 1 changes Output if Input 2 changes

0 0 0 0 0
0 1 0 1 0
1 0 0 0 1
1 1 1 0 0

NotMaskingAND2 = P0 ∗ (1−P1)∗T in
0 [0→ 1]+ (1−P0)∗P1 ∗T in

1 [0→ 1]

+(1−P0)∗ (1−P1)∗ (T in
0 [1→ 0]+T in

1 [1→ 0]) (4.7)

Finally, in line 17, we compute the vulnerability of the whole circuit by combining the
vulnerabilities of all its connections. One way to do that is to assume that the strikes are
equiprobable in all connections. In this case, the vulnerability of the circuit is the arithmetic
mean of the vulnerabilities of all connections.
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4.1.1 Running example

Figure 4.1 shows an example circuit to illustrate how the algorithm works.

Fig. 4.1 Example circuit

An arbitrary input probability distribution of the circuit is listed in Table 4.5. In actual
processor design, these input distributions would be known by profiling on realistic setups.

Table 4.5 Example input probability distribution

Input name Probability of being 0

11 0.1
30 0.3
50 0.7
51 0.5
60 0.1
61 0.25

The probabilities that a strike causes a change in each connection are also needed. For
this example, we assume the probabilities listed in Table 4.6. The authentic probabilities are
obtained via SPICE simulations on the gates, testing for which inputs and which terminals
the gate is sensitive to a bit flip.
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Table 4.6 Example transition probability distribution

Input name T[0→1] T[1→0]

10 0.3 0.8
20 0.3 0.8
21 0.7 0.5
40 0.8 0.3
41 0.9 0.4

Figure 4.2 illustrates the first step of the algorithm, after which all the nodes have their
input probabilities computed using equations such as (4.1), (4.2) and (4.3).

Fig. 4.2 Circuit with input probabilities propagated

After the propagation of the input probabilities, the queue is initialized with the output
gates of the circuit:

Gates in Queue 1,2
Current Gate

And the main loop begins.
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Iteration 1

Gates in Queue 2
Current Gate 1

Gate 1 is popped out from the queue and it is marked as visited. Its predecessor (Gate
3) has two successors: Gate 1 and Gate 2. Gate 1 is being visited, but Gate 2 has not been
visited yet. Therefore, since all and its successors have not been visited, Gate 3 is not yet
added to the queue. The vulnerability at the output of Gate 1 is set to 1 and, since it does not
have any successors, it remains 1.

Vulnerability(Out putGate1) = 1

Iteration 2

Gates in Queue 3,4
Current Gate 2

Gate 2 is popped out from the queue and it is marked as visited. Its predecessors (Gate
3 and Gate 3) have all of their successors visited, so they are added to the queue. The
vulnerability at the output of Gate 2 is set to 1 and, since it does not have any successors, it
remains 1.

Vulnerability(Out putGate2) = 1

Iteration 3

Gates in Queue 4,5,6
Current Gate 3

Gate 3 is popped out from the queue and it is marked as visited. Its predecessors (Gates
5 and 6) are added to the queue because all of their successors have been visited. The
vulnerability at the output connection of the gate is first set to 1, but then it will be updated
because it has two successors. Its first successor is a NAND gate, so its effect on the logical
masking is given by equations (4.4a - 4.4c). Its second successor is an AND gate, so its effect
on the logical masking is given by equation (4.7).
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Both the input probabilities and the probability that the strike switches the proper input to
a particular value (i.e., the T in

0 [0→ 1], T in
0 [1→ 0], T in

1 [0→ 1] and T in
1 [1→ 0] equations (4.4a

- 4.4c) and (4.7)) are known, since they are inputs to this algorithm. With this information,
the vulnerability of each successor can be calculated:

NotMaskingNAND2 = P0 ∗ (1−P1)∗T in
0 [0→ 1]+ (1−P0)∗ (1−P1)∗T in

0 [1→ 0]

= 0.004875∗0.9∗0.3+0.995125∗0.9∗0.8 = 0.718

NotMaskingAND2 = P0 ∗ (1−P1)∗T in
0 [0→ 1]+ (1−P0)∗ (1−P1)∗T in

0 [1→ 0]

= 0.004875∗0.3∗0.3+0.995125∗0.3∗0.8 = 0.2

Once the probability of each successor is calculated, the vulnerability at the output of the
current gate can be computed.

Vulnerability(Out putGate3) = NotMaskingNAND2 ∗Vulnerability(Out putGate1)

+NotMaskingAND2 ∗Vulnerability(Out putGate2)

− [NotMaskingNAND2 ∗Vulnerability(Out putGate1)

∗NotMaskingAND2 ∗Vulnerability(Out putGate2)] = 0.78532

Iteration 4

Gates in Queue 5,6
Current Gate 4

Gate 4 is popped out from the queue and it is marked as visited. Since it has no
predecessors, nothing is added to the queue. The vulnerability at the output connection of
the gate is first set to 1, but then it will be updated because it has a successor. Its successor is
an AND gate, whose effect on the logical masking is given by equation (4.7).

NotMaskingAND2 = 0.995125∗0.7∗0.7+0.995125∗0.3∗0.5 = 0.63688

Then, the vulnerability at the output of the gate can be computed.

Vulnerability(Out putGate4) = NotMaskingAND2 ∗Vulnerability(Out putGate2) = 0.63688
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Iteration 5

Gates in Queue 6
Current Gate 5

Gate 5 is popped out from the queue and it is marked as visited. Since it has no
predecessors, nothing is added to the queue. The vulnerability at the output connection of
the gate is first set to 1, but then it will be updated because it has a successor. Its successor is
an OR gate, whose effect on the logical masking is given by equation (4.5).

NotMaskingOR2 = 0.015∗0.325∗0.8+0.985∗0.325∗0.3 = 0.0999375

Then, the vulnerability at the output of the gate can be computed.

Vulnerability(Out putGate5) = NotMaskingOR2 ∗Vulnerability(Out putGate3) = 0.078484

Iteration 6

Gates in Queue
Current Gate 6

Gate 6 is popped out from the queue and it is marked as visited. Since it has no
predecessors, nothing is added to the queue. The vulnerability at the output connection of
the gate is first set to 1, but then it will be updated because it has a successor. Its successor is
an OR gate, whose effect on the logical masking is given by equation (4.5).

NotMaskingOR2 = 0.015∗0.325∗0.9+0.015∗0.675∗0.4 = 0.008435 (4.8)

Then, the vulnerability at the output of the gate can be computed.

Vulnerability(Out putGate5) = NotMaskingOR2 ∗Vulnerability(Out putGate3) = 0.006626
(4.9)

After these six iterations, the algorithm terminates and every connection stores the
probability that, if there is a SET in it, the effect of the strike will be visible in one or more
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outputs. Finally, the vulnerability of the circuit is computed as the arithmetic mean of all
these probabilities. Figure 4.3 shows the results of the algorithm.

Fig. 4.3 Results of the algorithm for the example circuit

4.2 Reconvergent fanouts

When a logic signal splits into multiple branches (fanout) and later reconverges in two or
more inputs of a gate, the subnet thus formed is referred as reconvergent fanout. Reconvergent
fanouts are an important issue in areas dealing with signal probability such as testing [29] or
reliability, since they break the assumption that signal paths are independent. Moreover, it
has been documented that in current VLSI designs, about half the nodes in the circuit cause
reconvergence [33].

Computing signal probabilities using equations such as (4.5) or (4.6) is referred to as
0-Algorithm. In simple circuits without reconvergent fanout nodes (RFON), the computation
of the signal probabilities by the 0-Algorithm is exact. In Figure 4.4, the inaccuracies caused
by assuming independence are shown. Input 2 has a fanout of 2, and is divided into A1 and A2.
Both paths (B2 and C) reconverge at gate G2. Figure 4.4a shows the results of propagating
the input probabilities Pi using the 0-Algorithm. Using the same circuit, we conduct a Monte
Carlo experiment: thousands of input vectors are sampled from the input probabilities Pi

and the value at the output of each gate is recorded. Then, the 0-to-1 signal ratio is obtained
for the output of every gate. These probabilities are the ones provided in Figure 4.4b. It
can be seen that the probabilities that do not involve a reconvergent fanout (G1, G3 and
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(a) Probabilities computed by the 0-Algorithm

(b) Observed probabilities

Fig. 4.4 Error caused by reconvergent fanouts

G4) are correctly computed by the 0-Algorithm, while the probability at the output of the
reconvergence (G2) is not.

Within the literature, there are a few widely-adopted, polynomial-time algorithms that
try to reduce the lack of precision induced by the 0-Algorithm [24], [35], [1]. While each
approach tackles the problem differently, they are based under the observation that the signal
probability p( j) of a node j can be expressed by:

p( j) = p( j| f = 0)∗ p( f = 0)+ p( j| f = 1)∗ p( f = 1) (4.10)

where f is a RFON of the fanin cone in j. If f were the only RFON in the circuit, p( j) could
be exactly calculated by using equations such as (4.6) or (4.7) and applying three times the
0-Algorithm: first to evaluate p( f ), then, forcing the logical value of f to 0 and 1 to calculate
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the conditional probabilities. The approaches in [24] and [1] use these expressions in the
circuit’s primary inputs, while the algorithm in [35] estimates the effect that each RFON
in the circuit has in every signal. As detailed in Section 6.1.1, the use of these algorithms
improves the precision of the computation in comparison with the 0-Algorithm, but it still is
insufficient if we want them to be applied in a signal-probability based reliability algorithm.

We propose to use the heuristics in [1] (the ones, described in Appendix A, that in our
implementation had the best results) as a first step and then exhaustively simulate a critical
subset of reconvergent subnets. Our research shows that, within the benchmark circuits, more
than 80% of the subnets have 30 or less gates. Even though the error introduced by larger
subnets is not negligible, correcting a large amount of relatively small subnets provided
good results in terms of accuracy with little overhead in execution time (simulating the few
million combinations of all subnets of size≤ 30 can be done in milliseconds. Comprehensive
numbers are given in Section 6.1.2). In order to perform these simulations, a static search of
all RFON is performed using Roberts’ algorithm to detect reconvergent fanouts [36], detailed
in Appendix B.

Our approach to compute signal probabilities, which corresponds to Line 1 in Algorithm
1 is summarized in Figure 4.5.
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Fig. 4.5 Methodology to compute signal probabilities



Chapter 5

Validation methodology

This chapter explains the fault injection algorithm used to validate our reliability estimation
methodology and describes the benchmarks used

In order to test our algorithm, we compare the output of the algorithm with the results of
fault injection experiments. The experiments consist of three variables: the input probability
distribution, the circuit upon which the injection is performed and number of iterations. The
input distribution consists of a random number between 0 and 1 for each primary input of
the circuit. The circuits can be divided in two sets: one set of small circuits compiled from
similar works in the literature (described in Table 5.1) and the ISCAS85 benchmarks, ten
widely-accepted combinational circuits provided at the 1985 International Symposium on
Circuits And Systems1 (described in Table 5.2).

Table 5.1 Small benchmark circuits

Circuit Total gates Primary inputs Primary outputs
c17 (Fig. 5.1) 6 5 2

Full adder 5 3 2
2x4 decoder 6 2 4

Logic chain (Fig. 5.2) 7 5 1
4-bit ripple carry adder 20 9 5

The fault injection consists in changing the bit at the output of a gate. To perform an
experiment, a particular input vector from an input distribution is generated and the circuit
is simulated. Then, faults are injected iteratively to all gates and outputs are sampled for
changes with respect to the original simulation. If there are no differences among the original

1Even though the benchmarks are 30 years old, these circuits are widely used for testing and reliability
purposes, since they contain parts of the processor, such as adders or ECCs, that are still valid nowadays.
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Fig. 5.1 Small circuit c17

Fig. 5.2 Small logic chain

Table 5.2 ISCAS85 benchmark circuits

Circuit name Circuit function Total gates Primary inputs Primary outputs
c432 Priority decoder 160 36 7
c499 32-bit SEC circuit 202 41 32
c880 8-bit ALU 383 60 26

c1355 32-bit SEC circuit 546 41 32
c1908 16-bit SEC/DED circuit 880 33 25
c2670 12-bit ALU 1193 233 140
c3540 8-bit ALU 1669 50 22
c5315 9-bit ALU 2307 178 123
c6288 16-bit multiplier 2406 32 32
c7552 32-bit adder and comparator 3512 207 108
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outputs and the fault-injected ones, the fault was masked. If one or more outputs have been
changed, the fault was not masked and a counter, representing vulnerability, for the gate is
incremented. This process is repeated for a number of iterations, inside which new input
vectors are sampled from the input distribution. When a sufficiently large number of input
vectors have been simulated, the vulnerability counter at each of the gates is divided by the
number of iterations, thus computing the ratio of experiments in which a fault in the gate
was not masked, i.e., its vulnerability. These actions are repeated for 100 different input
probability distributions. The procedure is formalized in Algorithm 2.

The variable GAT ES in Line 3 and in Line 17 corresponds to the number of gates in
the circuit, while the variable EXPERIMENT S in Line 6 and in Line 18 corresponds to the
number of iterations of the experiment. The number of samples in a Montecarlo experiment
is defined by equation (5.1) [37].

n =
z2

α/2 ∗S2
n

ε2 (5.1)

where:

• n is the number of iterations needed.

• zα/2 is the critical value of the normal distribution for α/2, the z value such that the
area of the right-hand tail is α/2.

• Sn is the estimated standard deviation of the output.

• ε is the desired margin of error.

For our experiments, we choose a interval of confidence of 95%, so zα/2 = 1.96. Since
the output of the experiment are probability numbers representing vulnerability, we choose
a margin of error of 1%. Even though we do not know the standard deviation of our
population, it can be estimated by a large number (such as 107 [42]) of beforehand preliminary
simulations. These simulations yield an estimated standard deviation of 0.32. Therefore,
according to Equation 5.1, the number of Monte Carlo trials is 3934. We round this number
to 4000 iterations.

Since technology information is not yet available to us, we assume all transition probabil-
ities T out

gate[0→ 1] and T out
gate[1→ 0] described in Algorithm 1 of Section 4.1 to be 1. This will

overestimate the vulnerability of the circuits because not all strikes cause a bit-flip 2, but it
2For example, a strike in a 2-input NAND gate collected by a n-type drain while the both inputs are 0 does

not cause the output to change



38 Validation methodology

Algorithm 2 Fault injection experiments
1: for i← 1 to 100 do
2: inputDistribution← Generate random numbers between 0 and 1
3: for j← 1 to GAT ES do
4: Vulnerability[ j]← 0
5: end for
6: for i← 1 to EXPERIMENT S do
7: inputValues← Generate random values from inputDistribution
8: originalOut puts← evaluateCircuit(inputValues)
9: for j← 1 to GAT ES do

10: Change output of gate j
11: f aultIn jectionOut puts← evaluateCircuitWithStrike( j, inputValues)
12: if f aultIn jectionOut puts ̸= originalOut puts then
13: Vulnerability[ j]← Vulnerability[ j] + 1
14: end if
15: end for
16: end for
17: for j← 1 to GAT ES do
18: Vulnerability[ j]← Vulnerability[ j]/EXPERIMENT S
19: end for
20: end for

does not affect the validation since it is only a scaling factor that behaves identically in the
fault injector and in the model.
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Results

This chapter contains the results of the validation experiments between the model and fault
injection approaches, as well as a comparison among the literature algorithms and our
method to compute signal probability.

6.1 Signal probability computation

In the presented algorithm, signal probabilities are used to evaluate logical masking because
it is straightforward to compute the logical masking of a gate knowing the ratio of 0 and 1
signals in its input vectors. Therefore, to properly measure the effect of logical masking, we
must properly calculate signal probabilities. The complexity of computing signal probabilities
is a #P-complete problem, so heuristics have to be used.

6.1.1 Literature algorithms

Using the 0-Algorithm, i.e., estimating probabilities assuming signal independence, has to be
discarded due to the large number of RFON in current circuits. We reviewed the literature
for solutions for this problem and found three widely-adopted algorithms:

• Weighted Averaging Algorithm (WAA): Corrects the effects of RFON at the primary
inputs by forcing zero and one to the inputs, and averaging the resulting probabilities
by an heuristic weight.

• Dynamic WAA: Computes the signal probability of each node taking into account the
effect of all RFON by iterating through them and forcing zeros and ones.



40 Results

• Possibilistic Algorithm: Computes several possible signal probabilities for each node
and then heuristically chooses one depending on the distance of each number to the
0-Algorithm probability.

Since, to the best of our knowledge, numbers comparing the methods are not provided,
we implemented all of them and compared their effectiveness. To do so, random input vectors
were sampled from an input distribution and the value at each node was noted. After 107

simulation runs, the reference ratio between 0 and 1 (the probability that there is a 0 at that
node) at each node is obtained. Then, the different algorithms, whose outputs are signal
probabilities per node, are executed. Finally, the difference between the reference probability
and the algorithm probability is measured.

We used circuits from the ISCAS85 benchmarks to conducts these experiments. 100
different input distributions were tested to extract conclusions. For brevity purposes, there
are only 4 input distributions shown per circuit. In the following tables, the mean of the
absolute difference between the simulated probabilities and the computed probabilities for
each algorithm is reported. Adjacent to each table is a graph plotting the results.

0 Alg. WAA Possibilistic Alg. Dynamic WAA
Input distribution 1 0,030 0,030 0,010 0,031
Input distribution 2 0,051 0,049 0,021 0,051
Input distribution 3 0,048 0,048 0,031 0,048
Input distribution 4 0,059 0,056 0,036 0,058

Fig. 6.1 Signal probability difference comparison for c432
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0 Alg. WAA Possibilistic Alg. Dynamic WAA
Input distribution 1 0,002 0,002 0,001 0,002
Input distribution 2 0,002 0,002 0,001 0,002
Input distribution 3 0,002 0,002 0,001 0,002
Input distribution 4 0,005 0,005 0,005 0,002

Fig. 6.2 Signal probability difference comparison for c499

0 Algorithm WAA Possibilistic Algorithm Dynamic WAA
Input distribution 1 0,010 0,008 0,008 0,009
Input distribution 2 0,008 0,008 0,008 0,007
Input distribution 3 0,014 0,013 0,010 0,012
Input distribution 4 0,012 0,011 0,010 0,013

Fig. 6.3 Signal probability difference comparison for c880
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0 Algorithm WAA Possibilistic Algorithm Dynamic WAA
Input distribution 1 0,065 0,047 0,039 0,064
Input distribution 2 0,057 0,044 0,037 0,055
Input distribution 3 0,063 0,046 0,036 0,060
Input distribution 4 0,059 0,044 0,037 0,050

Fig. 6.4 Signal probability difference comparison for c1355

0 Algorithm WAA Possibilistic Algorithm Dynamic WAA
Input distribution 1 0,017 0,048 0,012 0,017
Input distribution 2 0,020 0,054 0,015 0,020
Input distribution 3 0,023 0,048 0,017 0,022
Input distribution 4 0,022 0,046 0,019 0,021

Fig. 6.5 Signal probability difference comparison for c1908
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0 Algorithm WAA Possibilistic Algorithm Dynamic WAA
Input distribution 1 0,043 0,073 0,030 0,041
Input distribution 2 0,040 0,076 0,032 0,038
Input distribution 3 0,043 0,084 0,034 0,042
Input distribution 4 0,039 0,066 0,031 0,038

Fig. 6.6 Signal probability difference comparison for c2670

0 Algorithm WAA Possibilistic Algorithm Dynamic WAA
Input distribution 1 0,045 0,085 0,040 0,043
Input distribution 2 0,042 0,077 0,026 0,041
Input distribution 3 0,046 0,094 0,028 0,045
Input distribution 4 0,043 0,080 0,037 0,043

Fig. 6.7 Signal probability difference comparison for c3540
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0 Algorithm WAA Possibilistic Algorithm Dynamic WAA
Input distribution 1 0,059 0,076 0,044 0,056
Input distribution 2 0,045 0,071 0,032 0,043
Input distribution 3 0,040 0,074 0,040 0,059
Input distribution 4 0,068 0,084 0,038 0,065

Fig. 6.8 Signal probability difference comparison for c7552

Results show that, in the majority of cases, the Possibilistic algorithm yields significantly
better results than the 0-Algorithm (average of 50%) and the other two algorithms found
in the literature (average of 30%). Of the 1000 cases tested, in only 6 the Possibilistic
algorithm performed worse than any of the other three. A couple of examples are depicted:
for circuit c499 (Fig. 6.2, fourth input distribution) and for circuit c880 (Fig.6.3, second
input distribution).

The use of the Possibilistic algorithm reduces greatly the signal probability computation
error but, in average, it still differs from the correct probabilities by 0.021. Although it is not
a large number, we consider that it is not an acceptable error because of the important role
that signal probabilities have in our reliability estimation algorithm.

6.1.2 Proposed approach

For a given fanout cone, we define its inputs as the leads reaching the cone and coming from
nodes not contained in the cone. We propose to generate the 2n inputs, simulate the circuit 2n

times and average the 0-to-1 ratios of the nodes by the likelihood of each input vector. The
simulation time for a particular cone could be high since it depends on the number of inputs
reaching the cone. We have checked the ISCAS85 benchmarks and found that:

• Of 10000 fanout cones within the circuits, more than 80% have 30 nodes or less.
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• The average number of inputs in fanout cones of at most size 30 is 21.

• Each circuit has an average of 950 islands.

• Simulating 221 inputs is a matter of a few milisecons.

Figure 6.9 shows a trade-off between signal probability and exectution time depending
on the maximum cone size studied. Within large cones, gates with big fanin counts (5 or
more) are more present, and the number of inputs reaching the cone increases dramatically
with the cone size. Moreover, despite the extra computation effort, the differences between
the simulated probabilities and the computed probabilities are not reduced significantly.

We conclude that simulating the small cones is feasible in terms of execution time
(negligible amount of seconds) and it provides significant improvement in the computation
of signal probabilities. Therefore, to compute signal probabilities, we first execute the
Possibilistic algorithm and then we exhaustively simulate all fanout cones that have 30 nodes
or less. This results in an average error of 0.001, 21 times less than the error of just executing
the Possibilistic algorithm. We consider that an error of 0.1% in the computation of signal
probabilities is good enough to build our vulnerability estimation upon.

Fig. 6.9 Trade-off between exhaustively simulating cones up to a particular size and execution
time
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6.2 Vulnerability computation

In this section, we compare our model (Algorithm 1 of Section 4.1) using the method
proposed in Section 6.1.2 for computing signal probabilities with the Monte Carlo fault
injection approach described in Algorithm 2 of Chapter 5. 100 different input distributions
were tested to extract conclusions. For brevity purposes, there are only 4 input distributions
shown per circuit. In the following tables, the mean of the vulnerability of all nodes is shown
for the fault injection experiments and model executions (Vulnerability). Additionally, the
table shows, as a figure of absolute error, the mean of absolute value of the difference between
the fault injection experiment and the model execution of each node (Gate mean difference)
and the relative error between the model and the fault injection experiment. Adjacent to each
table is a graph plotting the results: the left axis shows the vulnerability of the fault injection
and the model and the relative error is measured in the right axis.

Vulnerability =

nodes
∑

i=1
vulnerability(i)

nodes
(6.1)

GateMeanDi f f erence =

nodes
∑

i=1

∣∣vulnerabilityModel(i)− vulnerabilityFaultIn jection(i)
∣∣

nodes
(6.2)

In Section 6.2.1, we present the results for the set of small circuits compiled from similar
works in the literature. In Section 6.2.2, we present the results for the ISCAS85 benchmarks.
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6.2.1 Small benchmarks from the literature

c17 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,864

0,003 3,2
Model 0,892

Input distribution 2
Fault Injection 0,825

0,027 3,3
Model 0,853

Input distribution 3
Fault Injection 0,811

0,003 0,2
Model 0,812

Input distribution 4
Fault Injection 0,742

0,033 4,3
Model 0,774

Fig. 6.10 Fault injection and Model comparison for c17

Logic chain Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,154

0,001 0,3
Model 0,154

Input distribution 2
Fault Injection 0,222

0,004 1,8
Model 0,226

Input distribution 3
Fault Injection 0,165

0,001 0,9
Model 0,167

Input distribution 4
Fault Injection 0,395

0,015 2,5
Model 0,385

Fig. 6.11 Fault injection and Model comparison for a small logic chain
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Decoder Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 1

0,048 1,8
Model 0,982

Input distribution 2
Fault Injection 1

0,082 1,8
Model 0,982

Input distribution 3
Fault Injection 1

0,024 1,4
Model 0,986

Input distribution 4
Fault Injection 1

0,049 1,9
Model 0,981

Fig. 6.12 Fault injection and Model comparison for a 2x4 decoder

Full adder Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,907

0,005 1,8
Model 0,905

Input distribution 2
Fault Injection 0,973

0,014 1,3
Model 0,960

Input distribution 3
Fault Injection 0,811

0,047 1,4
Model 0,799

Input distribution 4
Fault Injection 0,899

0,026 1,6
Model 0,875

Fig. 6.13 Fault injection and Model comparison for a full adder
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4-bit adder Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,931

0,090 5,1
Model 0,883

Input distribution 2
Fault Injection 0,930

0,079 5,2
Model 0,881

Input distribution 3
Fault Injection 0,861

0,068 1,7
Model 0,847

Input distribution 4
Fault Injection 0,860

0,079 2,3
Model 0,840

Fig. 6.14 Fault injection and Model comparison for a 4-bit adder

Results for the circuits presented show an average error of 2% between the fault injection
experiments and the model execution. The effect that the input values have in logical masking
can be clearly observed in Figure 6.11, where different inputs can almost triple vulnerability.
In the rest of the circuits the effect is not as clearly seen due to high vulnerability values.
That is because circuits as the Decoder (Fig. 6.12) that have almost all its gates connected to
the output have high vulnerability since the majority of the strikes are not logically masked,
whereas circuits with several levels such as the Logic chain (Fig. 6.11) are more likely to
mask strikes near the primary inputs.

Fault injection experiments in small experiments like these had an average execution time
of 11 seconds, while the average execution time of the model was 183 miliseconds.
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6.2.2 ISCAS85 benchmarks

c432 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,241

0,032 4,7
Model 0,230

Input distribution 2
Fault Injection 0,253

0,031 1,6
Model 0,257

Input distribution 3
Fault Injection 0,334

0,003 0,8
Model 0,331

Input distribution 4
Fault Injection 0,255

0,033 5,1
Model 0,268

Fig. 6.15 Fault injection and Model comparison for c432

c499 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,4675

0,023 0,004
Model 0,4675

Input distribution 2
Fault Injection 0,4670

0,022 0,004
Model 0,4670

Input distribution 3
Fault Injection 0,4660

0,020 0,009
Model 0,4660

Input distribution 4
Fault Injection 0,4674

0,019 0,011
Model 0,4674

Fig. 6.16 Fault injection and Model comparison for c499
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c880 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,556

0,099 16,2
Model 0,466

Input distribution 2
Fault Injection 0,531

0,085 14,3
Model 0,455

Input distribution 3
Fault Injection 0,472

0,088 16,0
Model 0,396

Input distribution 4
Fault Injection 0,591

0,103 15,5
Model 0,499

Fig. 6.17 Fault injection and Model comparison for c880

c1355 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,384

0,049 8,8
Model 0,351

Input distribution 2
Fault Injection 0,381

0,044 9,0
Model 0,350

Input distribution 3
Fault Injection 0,380

0,046 8,2
Model 0,353

Input distribution 4
Fault Injection 0,3857

0,043 7,3
Model 0,3566

Fig. 6.18 Fault injection and Model comparison for c1355
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c1908 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,398

0,14 32,5
Model 0,267

Input distribution 2
Fault Injection 0,462

0,17 26,5
Model 0,292

Input distribution 3
Fault Injection 0,450

0,17 29,9
Model 0,279

Input distribution 4
Fault Injection 0,387

0,14 37,2
Model 0,250

Fig. 6.19 Fault injection and Model comparison for c1908

c2670 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,361

0,11 27,0
Model 0,263

Input distribution 2
Fault Injection 0,341

0,10 31,1
Model 0,249

Input distribution 3
Fault Injection 0,305

0,07 31,4
Model 0,237

Input distribution 4
Fault Injection 0,410

0,14 22,0
Model 0,281

Fig. 6.20 Fault injection and Model comparison for c2670
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c3540 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,275

0,13 40,8
Model 0,162

Input distribution 2
Fault Injection 0,280

0,14 47,6
Model 0,144

Input distribution 3
Fault Injection 0,298

0,14 41,2
Model 0,162

Input distribution 4
Fault Injection 0,275

0,12 41,5
Model 0,161

Fig. 6.21 Fault injection and Model comparison for c3540

c7552 Vulnerability Gate mean diff. Relative Error (%)

Input distribution 1
Fault Injection 0,385

0,176 42,6
Model 0,221

Input distribution 2
Fault Injection 0,374

0,177 44,7
Model 0,207

Input distribution 3
Fault Injection 0,375

0,174 42,9
Model 0,214

Input distribution 4
Fault Injection 0,385

0,172 41,7
Model 0,224

Fig. 6.22 Fault injection and Model comparison for c7552
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There are two sets of results: the first half of the benchmarks, circuits c432 through
c1355, and the second half of the benchmarks.

Within the first half (Figures 6.15, 6.16, 6.17, 6.18), the average relative error is 4% while
the maximum is 16%. In circuits c432 and c499, the absolute error is 1%; in circuit c880 is
8% and, in circuit c1355 is 4%. These results are good, considering that the execution time
with respect to the fault injection approach is reduced from hours to seconds, as shown in
Table 6.1.

Within the second half of the benchmarks (Figures 6.19, 6.20, 6.21, 6.22) the results
are not that optimistic: while execution time is reduced from days to seconds, the average
relative error is 31%. Moreover, the mean differences per gate between the fault injection
experiment and the model are as high as 0.2.

It is clear that those errors are not related to the size of the circuit. In fact, there is less
error in c499 than in c432, there is less error in c1355 than in c880 and there is less error in
c7552 than in c5315. We believe that the assumption of independence when combining the
vulnerabilities of succeeding gates (Line 15 in Algorithm 1) is what causes that error.

Table 6.1 Execution time comparison between fault injection and our model in ISCAS85
benchmarks

Circuit Fault injection execution time Model execution time
c432 1 hour 3 seconds
c499 1.5 hours 5 seconds
c880 4.7 hours 8 seconds

c1355 10 hours 16 seconds
c1908 22 hours 26 seconds
c2670 40 hours 30 seconds
c3540 3 hours 41 seconds
c5315 7.5 days 59 seconds
c7552 1.5 weeks 2 minutes
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Conclusions and Future Work

This chapter summarizes the contributions and achievements of this research and outlines
the future research directions from this work.

7.1 Conclusions

With continuously shrinking transistor dimensions but constant cosmic neutron flux at the
ground level, the soft error vulnerability of semiconductor devices is increasing. Hardening
mechanisms for combinational logic are expensive in terms of performance loss, power
consumption and area and, therefore, they must be used sparsely and only in critical parts of
the circuit. Processor designers need tools that can accurately compute what components
demand protection from soft errors, but these tools are required to be fast in order to be
integrated inside the architectural design flow. Techniques that accomplish these objectives
are not easy to develop because of the difficulty of the problem and the large size of today’s
integrated circuits.

We have proposed a reliability estimation model based on signal probabilities. Because
it is an analytical model, it does not need to use time consuming fault injection or simulate
multiple input vectors because the effect of the signal values is inherently taken into account,
unlike most existing models. The algorithm presented computes the effect of logical masking
and can easily be extended to also consider electrical masking and latch-window masking
without significant loss in execution time. Because of its low use in input parameters and
straightforward implementation, it could be combined with other architectural tools.

The results on small circuits are comparable to the ones found in the literature in terms of
accuracy (average error of 2%) and speed (average execution time of 50 ms). The results
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on the subset of ISCAS85 benchmarks that have a low RFON count can also be positively
matched against the literature, with an average error of 4%, a maximum error of 8% and
an average execution time of 10 seconds. We are producing reliability estimations as good
as other works with greater speedup and a much simpler methodology. For ISCAS85
benchmarks with a large number of RFON, our algorithm, while fast, has an average error
of 31%. We believe the cause is combining the masking effects and vulnerabilities of the
successors of a node assuming the successors will have different paths towards the outputs.

The errors caused by the independence assumption have been solved in this thesis for the
problem of computing signal probability. We have combined a widely-accepted algorithm in
the literature called Possibilistic algorithm with exhaustive circuit simulation on the most
common fanout cones. A large fraction of the fanout cones of a circuit are small, which
allows for a fast, in-depth simulation in order to obtain the real probabilities for every node in
the cone. Our experiments show that with a few million cone simulations, corresponding to
less than 3 seconds, the error of the signal probability computation is reduced to 0.1%. This
translates to an estimation more than 20 times better than the one the Possibilistic algorithm
provides.

7.2 Future work

7.2.1 Error reduction

Our algorithm is fast and has good accuracy in circuits with a small number of dependencies.
If we want to be able to introduce the model within an architectural tool, we must reduce the
large error produced by that circuits with lots of dependencies. We will begin by describing
the different scenarios in which there is a dependence and perform several simulations to
analyze them. With the conclusions we extract from the analysis, we will derive useful
heuristics to use in our model.

7.2.2 Electrical masking and latch-window masking

The algorithm shown in this thesis computes the probability that a strike in a connection has
an impact in any output by traversing the circuit in such way that information about logical
masking can be incrementally gained. Using the same structure, electrical and window-
latching masking effects can be included. The gates should have additional information
relevant to these effects, such as delay or size analogously to the masking equations the
algorithm currently uses at each gate to compute the logical masking effect. Regarding
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latch-window masking, a strike in a connection will only cause a soft error if the duration
of the pulse is sufficiently long and it arrives at a time during the clock cycle that allows it
to reach a latch at the output of the circuit during its latching window. With information
about delay in each gate, the latching-window masking probability can be computed for
every gate. Regarding electrical masking, a strike in a connection will only cause a soft error
if the amplitude of the pulse is enough to be latched, taking into account the degradation
suffered until it reaches an output. With information about degradation of the amplitude, the
electrical masking probability can be computed for every gate.

For the addition of the other masking effects, physical characteristics of the pulses, such
as amplitude and duration, are needed to perform the calculations. There is, therefore, a
need to design a technology library that contains such information. Since we already defined
the use of some technology-level data in the transition probabilities and we have still not
included them in our model, the characterization needed for the electrical and latch-window
masking is along the lines of our research.

7.2.3 Multiple particle strikes

Complexity can be added to the functions such as the ones described in equations 4.5, 4.6
or 4.7, to include the event of more than one particle striking. For example, following the
2-input NAND gate example of Section 4.1:

1. If both inputs are 0, the output will be affected only if both inputs are changed by
strikes.

2. If one input is 1 and the other is 0:

(a) If the input set to 1 suffers a transition from 1 to 0, the output is not affected.

(b) If the input set to 0 suffers a transition from 0 to 1, the output changes only if the
other input does not change.

3. If both inputs are 1, a transition from 1 to 0 at one or both inputs changes the output.
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Appendix A

Possibilistic algorithm to estimate signal
probability

Step 1: Execute 0-Algorithm to estimate the signal probability S at the output node of each
gate.

Step 2: For each primary input Ii, perform the following:

1. Execute 0-Algorithm setting Ii to 0, obtaining a signal probability 0Alg(Ii = 0) at the
output of each gate.

2. Execute 0-Algorithm setting Ii to 1, obtaining a signal probability 0Alg(Ii = 1) at the
output of each gate.

3. Compute the estimate pi at the output node of each gate by averaging 0Alg(Ii = 0) and
0Alg(Ii = 1) by the signal input probability pi of input Ii:

pi = pIi ∗0Alg(Ii = 0)∗ (1− pIi)∗0Alg(Ii = 1)

Every gate now has a probability tuple (P-tuple), containing estimates from each primary
input.
Step 3: Calculate the level of every gate in the network and sort the gates in non-decreasing
order according to their levels.
Step 4: Proceeding from the inputs to the outputs of each gate, perform the following steps
from the gates with the lowest level:

1. Compute the expected tuple (E-tuple) of each output gate using the P-tuples of its
inputs and independent equations such as (4.5) or (4.6).
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2. For every component pi in the P-tuple, compare it with S. If they are equal, mark it
with 0. If they are not, then compare with its expected value ei from the E-tuple and
mark it with 1 if they are equal and with 2 otherwise. By doing this, a mark tuple
(M-tuple) is created.

3. Count the number of 1s and 2s in the M-tuple, denoted by ctr1 and ctr2, respectively.

4. Count the no-dependent (ND) value by using independent equations and the estimated
signal probabilities P of the previous level.

5. Apply the following inference rules to compute the probability P at the output of each
gate:

if (ctr1 = 0 and ctr2 = 0) then P = S
if (ctr1 ̸= 0 and ctr2 = 0) then P = ND
if (ctr1 = 0 and ctr2 ̸= 0) then{

if (ctr2 = 1) then P = pi

else{
e f f ect2 = ∑

mi=2
(pi− ei)

†

P = ND+ e f f ect2 + sign(e f f ect2)∗ e f f ect2
ctr2

‡

}
}
if (ctr1 ̸= 0 and ctr2 ̸= 0) then{

e f f ect2 = ∑
mi=2

(pi− ei)

P = ND+ e f f ect2 + sign(e f f ect2)∗ (S−ND)∗ e f f ect2
ctr2

}

†mi = 2 corresponds to all components that are marked with a 2 in the M-tuple.
‡sign corresponds to a function that returns the sign of its argument.



Appendix B

Algorithm to detect reconvergent fanouts
in logic circuits

Every node N of the circuit has associated a fanout list (FOL). The FOL contains a list of
entries for every fanout node that, directly or indirectly, feeds N. Each entry consists of
two components: a unique identifier for the fanout node and a path count which holds the
number of pats between the fanout node and N. In addition, each node in the circuit has a
reconvergent fanout list (RFOL). The RFOL of a node contains an entry for every fanout that
reconverges at that node.

Algortithm to detect reconvergent fanouts

Step 1: Read the circuit description file
Step 2: For each node N in the circuit:

reached(N)← number of input lines feeding N
Step 3:

1. NL← list of primary inputs —Next List
2. CL← NL —Current List
3. NL←∅

Step 4: For each node N1 in CL:
For each node N2 fed by N1:

reached(N2)← reached(N2)-1
if (reached(N2) = 0) then NL← NL+N2

Step 5: For every node N in CL:
buildFols(N) —detailed below
reduceRFOL(N) —detailed below
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Step 6: For each node N in CL which is a fanout node:
Generate a unique identifier for the fanout
Place identifier (with a path count of 1) in the FOL of node N

Step 7: if (NL = ∅) then go to Step 3.2
Step 8: Output RFOLs of the nodes

buildFOLs(node N)

Step 1: RFOL(N)←∅
Step 2: FOL(N)← FOL(Input1(N))

Step 3: For all inputs Inputx(N) of N except Input1(N):
RFOL(N)← RFOL(N)∪ (FOL(N)∩FOL(Inputx(N)))

FOL(N)← FOL(Z)∪FOL(Inputx(N))

reduceRFOL(node N)

Step 1: newRFOL(N)←∅
Step 2: while RFOL(N) ̸=∅ do

Y ← fanout with largest identifier in RFOL(N)

newRFOL(N)← newRFOL(N)∪Y
k← path count for fanout Y
RFOL(N)← RFOL(N)− k ∗FOL(Y )
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