
Verification of temporal properties of infinite
state systems

Author: Cristina Luengo Agulló
Director: Albert Rubio

Degree in Computer Science
Computing specialization

Universitat Politècnica de Catalunya
Facultat d’informàtica de Barcelona

29 June 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41794105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

It is no secret that computer software programs, computer hardware designs, and computer sys-
tems in general exhibit errors. Testing and simulation methods can identify many significant
problems, but for systems that have safety or economically critical requirements, exhaustive ver-
ification is indispensable. Such exhaustive analysis can be performed with the use of formal
verification methods.
One approach to formal verification is model checking, which is a fully automated process based
on the construction of abstract models to represent systems. These models are then checked
against desired properties defining a specification, usually expressed in some temporal logic, such
as linear temporal logic (LTL). Temporal properties can describe the ordering of events in time
without introducing time explicitly, thereby being useful when verifying the possible executions
of a system.
This project aims to implement model checking algorithms that determine whether an LTL formula
expressing a desired property is satisfied in a computing system.

Resumen

No es ningún secreto que tanto los sistemas software como hardware generalmente presentan
errores. Los métodos de testeo y simulación pueden identificar muchos problemas importantes,
pero para sistemas que tienen requerimientos de seguridad o que son económicamente críticos, es
indispensable llevar a cabo una verificación exhaustiva. Tal análisis se puede realizar utilizando
métodos de verificación formal.
Un enfoque de la verificación formal es la verificación de modelos, que es un proceso totalmente
automático basado en la construcción de modelos abstractos para representar sistemas. Poste-
riormente, sobre estos modelos se comprueban propiedades deseadas del sistema, normalmente
expresadas en alguna lógica temporal, como por ejemplo lógica linear temporal. Las propiedades
expresadas con fórmulas de lógica linear temporal pueden describir el orden de los eventos en el
tiempo sin describir el tiempo explícitamente. Por eso mismo, son útiles a la hora de verificar las
posibles ejecuciones de un sistema.
Este proyecto pretende implementar algoritmos de verificación de modelos que determinen si una
fórmula de lógica linear temporal que exprese una propiedad de un cierto sistema es satisfecha por
éste.

Resum

No és cap secret que tant els sistemes software com hardware generalment presenten errors. Els
mètodes de testeig i simulació poden identificar molts problemes importants, però per sistemes
que tenen requeriments de seguretat o que són econòmicament crítics, és indispensable realitzar
una verificació exhaustiva. Aquest anàlisi es pot fer utilitzant mètodes de verificació formal.
Un enfocament de la verificació formal és la verificació de models, que és un procés totalment
automàtic basat en la construcció de models abstractes per representar sistemes. Posteriorment,
sobre aquests models es comproven propietats desitjades del sistema, normalment expressades en
alguna lògica temporal, com per exemple la lògica lineal temporal. Les propietats expressades
amb fórmules de lògica lineal temporal poden descriure l’ordre dels esdeveniments en el temps
sense descriure el temps explícitament. Per això mateix, són útils a l’hora de verificar les possibles
execucions d’un sistema.
Aquest projecte pretén implementar algorismes de verificació de models que determinin si una
fórmula de lògica lineal temporal que expressi una propietat d’un cert sistema és satisfeta per
aquest.

Acknowledgements

First and foremost, I would like to thank my project director, Albert Rubio. Working alongside
with him has not only been an enriching experience, but also a fun time. His enthusiasm for
research and for the work that he does is truly inspiring, and this translated to motivation for me
throughout the project. I can say that I have learned many new things while doing this project,
and I always had full support from him when struggling with something.

I would also like to thank Alicia Villanueva and Laura Titolo for providing us with examples
to test.

Finally, I would specially like to thank Javi as well, who always supported me and helped me
with the design of this document.

1

Contents

Abstract . 1
Resumen . 1
Resum . 1

1 Introduction 6
1.1 Motivation . 6
1.2 Context . 7

1.2.1 Automated formal verification . 7
1.2.2 Automata theory . 7

1.3 State of the art . 8
1.3.1 LTL model checking for finite-state systems 8
1.3.2 LTL model checking for infinite-state systems 9

1.4 Project contribution . 10
1.5 Project outline . 10

2 Project management 11
2.1 Objectives . 11
2.2 Obstacles . 11
2.3 Scope . 12

2.3.1 Methodology . 13
2.4 Planning . 14

2.4.1 Description of tasks . 14
2.4.2 Temporal planning . 16
2.4.3 Deviations . 18
2.4.4 Resources . 18

2.5 Budget . 19
2.5.1 Direct costs . 19
2.5.2 Indirect costs . 20
2.5.3 Unforeseen costs . 21
2.5.4 Total budget . 21

2.6 Sustainability analysis . 22
2.6.1 Economic sustainability . 22
2.6.2 Environmental sustainability . 22
2.6.3 Social sustainability . 23

2

3 Preliminaries 24
3.1 Linear temporal logic . 24
3.2 Formal languages and automata . 26

3.2.1 Finite Automaton . 26
3.2.2 Büchi automaton . 27
3.2.3 Transition-based generalized Büchi automaton 28

3.3 Transition System . 28
3.3.1 Finite-state systems . 29
3.3.2 Infinite-state systems . 29

4 Satisfiability of LTL formulas 31
4.1 Parsing the formulas . 32
4.2 Automaton transformation . 32

4.2.1 Formula rewriting . 32
4.2.2 LTL to TGBA . 33
4.2.3 Degeneralization . 38

4.3 Emptiness test . 40
4.4 Experiments . 41

4.4.1 LTL over linear integer arithmetic expressions 41

5 Verification of LTL properties of computing systems 45
5.1 Büchi Automaton intersection . 46
5.2 Verification . 51

6 Conclusions 53

7 Future work 54

Bibliography 55

3

List of Tables

2.1 Identification of the requirements . 13
2.2 Tasks breakdown . 17
2.3 Tasks and hours assignment for each role . 19
2.4 Human resources budget . 20
2.5 Hardware resources costs . 20
2.6 Software resources costs . 20
2.7 Electricity and paper costs . 21
2.8 Unforeseen costs . 21
2.9 Total costs . 21
2.10 Sustainability matrix . 23

4.1 Definition of New and Next for non-literals . 36
4.2 Examples of formulas . 42

4

List of Figures

1.1 Automaton example . 8

2.1 System and property automatons that model the behavior of a switch. 12
2.2 Intermediate representation of ¬stop U (distance < threshold) 15
2.3 Büchi automaton for the formula ¬stop U (distance < threshold) 16
2.4 Gantt chart defining the project planning . 17

3.1 Automaton example . 26
3.2 Büchi automaton for the formula �(received→ ♦processed) 27
3.3 TGBA for the formula �(received→ ♦processed) 28
3.4 Transition System for counter system . 29
3.5 Transition system for program . 30

4.1 Node splitting . 36
4.2 Degeneralizer for a TGBA with one accepting set 39
4.3 Degeneralizer for a TGBA with two accepting sets 39
4.4 TGBA representing p U q . 40
4.5 Büchi automaton representing p U q . 40
4.6 Büchi automaton example . 41
4.7 Examples of Büchi automata . 43

5.1 Model checking outline . 46
5.2 Büchi automaton A1 (left) and A2 (right) . 47
5.3 Büchi automaton A representing A1 ∩ A2 (regular intersection) 47
5.4 Büchi automaton A representing A1 ∩ A2 . 48
5.5 Büchi automaton A representing A1 ∩ A′2 . 48
5.6 Computing system (left) and Büchi automaton for the formula (j > i) U (j = i)

(right) . 49
5.7 Transition system for the program . 50
5.8 Intersection between transition system and Büchi automaton 51
5.9 Transition System example . 52

5

Chapter 1

Introduction

1.1 Motivation

With the ubiquity and increasing complexity of hardware and software systems, the likelihood of
errors is high. Such errors can be sometimes hard to find, and its consequences can be catastrophic
in terms of time, money or even human life, depending on the systems. Therefore, it is extremely
important to find all possible errors and doing it as early in the design process as possible, since
every late-found errors may delay the whole production phase.

Different methods have been extensively used to help developers find errors in the systems they
design. Two of such methods are testing and simulation, which are useful in early phases of the
debugging process. Nevertheless, their effectiveness dramatically decreases when the system hides
only a small number of bugs. Moreover, these methods are not able to confirm that the design is
fully correct, since they explore only some of the possible behaviors of the system. Due to this,
there is a growing demand for methods that can increase confidence in correct system design and
construction. One of these methods is formal verification.
Formal verification techniques create a mathematical model of a system, using a language to spec-
ify desired properties of the system in a concise and unambiguous way, and applying a method
of proof to verify that the specified properties are satisfied by the model. The main advantage
shared by various formal verification techniques is the ability to ensure that the system is correct
(i.e. the system satisfies a certain specification), given that they explore all its possible behaviors.

In a concurrent system, different processes can be involved in the execution of a task, which means
that the order in which events occur in the execution of such systems is mostly unpredictable and
hence, correct behavior is harder to track. For this reason, formal verification techniques have
been extensively applied in the design of these kind of systems.
Concurrent systems are usually represented using finite-state machines which enumerate all the
state space. Apart from the fact that only finite-state systems can be considered, this has an
inherent disadvantage, commonly known as state-space explosion. In order to cope with that,
there exist different methods that either perform on-the-fly operations to save up memory and
computation time, or follow a different approach when modeling the system. The latter makes it
possible to deal with bigger and more complex models, and it is the approach that we are going
to follow in this project.

6

Therefore, we aim to implement formal verification methods for infinite-state systems in order
to allow automatic and rigorous verification of complex systems with an infinite (or huge) state
space, providing new robust and reliable tools for software developers.

1.2 Context

The context in which the project is defined covers different areas of interest. Our main focus will
be on automated formal verification and automata theory. The following sections describe the
concepts covered in each one.

1.2.1 Automated formal verification

Formal verification [1] is the act of proving or disproving the correctness of a system with respect
to a certain specification or property, using formal methods of mathematics. The verification of
these systems is done by providing a formal proof on an abstract mathematical model of the system.

One approach to formal verification is model checking [2], which consists of a systematically
exhaustive exploration of the abstract model. It aims to solve the following problem: Given a
model of a system and a specification, exhaustively and automatically check whether the specifi-
cation can be applied. The specification is usually given as a formula in a temporal logic, such as
linear temporal logic (LTL) [3], which relates elements of the system model in time.

Model checking was invented more than 30 years ago by Emerson & Clarke [4] and Queille &
Sifakis [5] independently. The first algorithms used are known as explicit model checking, which
represent all the possible states of a system and suffer from the state-space explosion problem.
Roughly speaking, the problem is that the number of global states of a system is very large in
contrast to the length of the system’s high level definition (e.g. its source code).

Later on, other methods arose to try to cope with that problem, and symbolic model checking [6]
became popular because of its non-explicit representation of the states of a system. This allowed
to verify bigger models where explicit model checking would be unfeasible.
Following that line, other approaches to try to avoid the infamous state-space explosion problem
started being used and studied. One of them was bounded model checking [7], where properties
are proven for computation paths of bounded length only.

Therefore, many years of research led to different methods and improvements, and nowadays
formal verification is still an active field of study in the research community.

1.2.2 Automata theory

Automata theory [8] is the study of abstract machines and automata, as well as the computational
problems that can be solved using them.
Automatons are abstract models of machines that perform computations on an input by moving
through a series of states. At each state of the computation, a transition function determines the

7

next state. Some of the states are accepting, which means that the input is accepted if there exists
a path in the automaton where one of those states is reached after reading all the input. Hence,
automatons can define languages by determining the words they accept.

Example 1. Figure 1.1 shows an automaton that accepts the words composed of any combination
of letters from the alphabet {a, b} that end in letter ’a’:

0start 0

a,b

a

Figure 1.1: Automaton example

Automatons can be used to model both a computing system and a property expressed in LTL.
Therefore, understanding concepts such as the language defined by an automaton and automata
intersection will be essential to carry out the verification task.

1.3 State of the art

Formal verification techniques such as model checking are aimed at validation of finite-state as
well as infinite-state systems. The motivation for verification of finite-state systems lies in the fact
that computing systems have finite memory, thereby having a finite number of possible states.
However, the number of states needed to model a finite-state system can be huge, so this is a good
reason to deal with verification techniques for infinite-state systems. Since they do not rely on a
given set of states, these techniques can be used for the verification of general or parameterized
systems. Moreover, infinite-state abstractions of large finite-state systems can be smaller and the
verification of such abstractions can be easier.

The following sections provide a brief overview of the state of the art on verification methods
for finite-state systems, and enumerate known techniques for infinite-state systems.

1.3.1 LTL model checking for finite-state systems

One of the most prominent instances of the model checking problem is the explicit model checking
problem, which aims to decide whether a given finite-state system satisfies specifications expressed
by an LTL formula. As already stated, a linear temporal logic formula can express the order of
events in time. So as an example, it could be used to express properties like mutual exclusion for
concurrent systems, among many others.

Example 1. Consider a concurrent system with two processes p1 and p2, which can access a
shared resource. The access to the resource is indicated by px.hasResource, where x ε {1, 2}. The
LTL formula �¬(p1.hasResource ∧ p2.hasResource) expresses that p1 and p2 can never access
the shared resource at the same time.

LTL model checking for finite-state systems deals with the problem: Given a modelM of a system,
and an LTL formula ϕ expressing a property of such system, check whether M satisfies ϕ. If ϕ is

8

satisfied, the model checking algorithm will return a positive answer. Otherwise, a counterexample
will be given in the shape of a trace in M (i.e. an example of the system execution) where the
property is violated.

The main approach to model checking is automata-based [3], which means that the system is
represented by a Transition System and the LTL property with an automaton that accepts infinite-
length words, namely a Büchi Automaton. Note that, Transition Systems can be viewed as au-
tomatons and, as explained in Section 1.2.2, automatons accept input words. Therefore, both the
system and the property models will accept words representing executions of the system.
Thus, considering M to be a Transition System, and Bϕ the automaton representation of ϕ, in-
tersecting M and Bϕ will result in another automaton that accepts the executions accepted by
both.

The key idea proposed in the literature [9–11], is to try to find a counterexample by perform-
ing the intersection between M and the negation of the property automaton B¬ϕ, rather than
Bϕ. If the resulting automaton accepts some word, this means that the system accepts an execu-
tion that is also accepted by ¬ϕ and hence, violates the property. In order to check whether the
intersection automaton accepts some word, an emptiness test is performed, which determines if
the language accepted by the automaton is empty.
There are many model checkers which apply explicit model checking tools, such as SPOT [12] or
LTL2Buchi [13].

Further detail on Transition Systems and Büchi Automata will be given in Section 3.

1.3.2 LTL model checking for infinite-state systems

The main technical challenge in the area of model checking is to come up with methods and struc-
tures that handle large state spaces. With the appearance of new model checking approaches, such
as symbolic model checking, the size of systems that can be handled has increased considerably.
For instance, Binary Decision Diagrams [14] (BDDs) have been used to represent transition re-
lations of the system efficiently. For the systems that are regular in some sense (e.g. hardware
systems), BDDs are much smaller than the representation by explicit enumeration. This fact and
the existence of fast algorithms for manipulation of BDDs have led to the development of recent
model checkers, such as NuSMV [15] or SAL [16](Symbolic Analysis Laboratory).

Another approach to cope with state-space explosion is based on reduction, which consists of re-
ducing the size of the state space that is explored. Partial order reduction [17] is such a technique,
which avoids the generation of all the paths formed by interleaving the same set of transitions .

Recent research in the area of program analysis [18, 19] has shown that program termination
methods can be used to adapt LTL model checking for finite-state systems to infinite-state sys-
tems. This project is concerned with such adaptation and with the satisfiability check of LTL
formulas.

9

1.4 Project contribution

We aimed to implement tools for handling linear temporal logic (LTL) formulas and checking their
validity as properties of computing systems.
Therefore, the contribution of this project can be divided in two parts:

• The development of a toolkit for checking satisfiability, which includes tools to process LTL
formulas, build models for them in the shape of Büchi automata and check their emptiness.
These tools have been applied to check LTL formulas modeling the behavior of concurrent
systems as described in [20].

• The use and adaptation of our LTL tools to combine LTL properties with infinite-state
computing systems by performing the intersection between Büchi automata and transition
systems. The transition system resulting of the combination of a Büchi automaton and a
transition system is sent to V eryMax [21], a program analysis tool which is intended to
apply termination analysis techniques to the resulting transition system.

Finally, this project provides a general survey on LTL, Büchi Automata and other ingredients and
techniques involved in LTL model checking.

1.5 Project outline

This document is organized as follows:

Chapter 2: Describes the project management in terms of its objectives, obstacles, temporal
planning, budget, and sustainability.

Chapter 3: Provides an overview on the formalisms used during this document and concep-
tually in the development of the project. It formally describes linear temporal logic, formal
languages, Büchi automata and transition systems.

Chapter 4: Summarizes how we carry out LTL satisfiability checking in order to check the
validity of LTL formulas coming from logic programs. It reviews the steps to follow and
gives experimental results.

Chapter 5: Reviews how we perform the combination of transition systems representing
computing systems with Büchi automata representing LTL formulas defined over such sys-
tems.

Chapter 6: Recapitulates the contents of this document and highlights the most important
results derived from the development of the project.

Chapter 7: Provides information about the most important topics for future work.

10

Chapter 2

Project management

The following sections describe all the concepts related to the management of the project. We
provide a description of the objectives and obstacles found, the temporal planning followed, a
budget estimation and a sustainability analysis.

2.1 Objectives

The main goals of these project are to implement tools for handling linear temporal logic formulas
and checking their validity as properties of computing systems. We aim to implement methods and
tools that can be easily introduced into the system development process, and are intuitive both to
specify LTL formulas and to interpret the results. Therefore, our objectives can be summarized
in the following:

• LTL satisfiability checking: Development of tools that perform LTL satisfiability checking
in order to determine if an LTL formula modeling a temporal property on a given concurrent
system is valid.

• Combination of computing systems and LTL formulas: Application and development
of tools that build models for both a given system and an LTL property, and combine them.
The results are intended to be applied to the program analysis tool V eryMax, but that is
out of the scope of this project.

Further sections describe the required elements to fulfill such objectives, and detail the method-
ology that was used during the development of the project.

2.2 Obstacles

The main obstacle found during the implementation of the project has been the fact that some of
the Büchi automata representing LTL formulas were untreatable due to their sizes. The sizes of
Büchi automata are exponential with respect to the sizes of the LTL formulas they model, so we
were not able to generate Büchi automata for some formulas.

Moreover, the conceptual complexity of the algorithm that translates LTL formulas to Büchi
automata also came out as an obstacle, since we had to spend more time fully understanding

11

the process and implementing it. Further detail on the actions taken to face or adapt to these
obstacles can be found in Section 2.4.3.

2.3 Scope

As explained in Section 1.3.1, LTL formulas specify properties that vary over time, so we can use
them to express the desired behavior of a system during its execution. Model checking consists in
the verification of those formulas on computing systems, and it requires the creation of abstract
models for both the systems and LTL formulas.

In order to build those models, we will base our implementation in the fact that transition systems
can be used to represent computing systems, and to model LTL properties we can use automata
on infinite words, namely Büchi automata. This type of automata has great expressive power,
and yet its emptiness can be checked fairly efficiently, which will be of great use when checking
the satisfiability of LTL formulas (see Sections 3 and 4 for more details).

Example 1. The transition system and Büchi automaton in Figure 2.1 are models of a system
representing a switch, and an LTL formula �(on → ♦off) which specifies that whenever the
switch is on, it will eventually go off.
An execution will be defined by a sequence of labels of the reachable transitions at each state (e.g.
sequence on→ off → on in the system model). Therefore, LTL models will represent executions
of the system with the desired behavior, and system models will express all possible executions.

start

on

off
start

on ∧ ¬off
¬on ∨ off

off

¬off

Figure 2.1: System and property automatons that model the behavior of a switch.

Once the models are obtained, we consider two possible approaches in order to apply model check-
ing methods to verify LTL properties on computing systems.

The first one is by trying to verify formulas directly created from computing systems (e.g. from
software programs). In such case, it would be enough to check whether the given LTL formulas
are valid, thereby confirming that the systems they represent meet the desired properties. Our
approach in this case will be to use LTL satisfiability in order to check the validity of the given
formulas (see Section 4 for more details).

On the other hand, the second approach consists in adapting the model checking method for
finite-state systems to infinite-state systems. In order to do so, given a model M for a system and
a Büchi automaton Bϕ modeling an LTL property ϕ over the system, it is necessary to perform
T = M ∩ B¬ϕ. Later on, the transition system T can be fed to a program analysis tool, which
will check whether M |= ϕ by analyzing T . However, this is beyond the scope of this project and
we will only be concerned with the generation of transition systems resulting from the intersection.

12

Considering the process described, the different functionalities we will implement are the following:

• Specification of LTL formulas: Users will be able to specify LTL formulas, either coming
from software programs or directly embedded in the parts of the computing system they want
to verify.

• Visual output of the models: In order to obtain more feedback about the verification
process, users will be able to see the system and property models, and if necessary, the
resulting automaton of their intersection.

• Satisfiability feedback: Our tools will provide results for the satisfiability of LTL formulas.

These functionalities are part of the functional objectives defined for our project, and are also an
important requirement. Table 2.1 shows the identification of the requirements in relation to the
life cycle of the project.

Life cycle

Project value Planning Implementation Experimentation Closing

Cost Human resources Hardware resources
costs costs

Time Start: End:
09-02-2015 29-06-2015

Functional objectives LTL formulas specification
Models visual output
Satisfiability feedback

Quality Possible
optimizations

Risks Non-scalable

Table 2.1: Identification of the requirements

2.3.1 Methodology

For the development of this project we followed a rigorous methodology which helped us carry out
the different tasks incrementally and more efficiently.
We started out by implementing the parts that worked as a basis for other parts, and did not
move on to a new task until the previous one was completed and validated.
The different stages we followed are listed below in order:

1. Parsing LTL formulas: We defined a method to read input LTL formulas and represent
them using an internal structure of the parsing algorithm, which helped us transform them
into a Büchi automaton later on.

2. LTL to Büchi automaton: Once the formulas could be parsed, we were able to build
models for them in the shape of Büchi automata.

13

3. Visualization methods: In order to check the automatons built and be confident about
their correctness, we implemented visualization methods using the dot library.

4. Emptiness test: To determine whether the language accepted by a Büchi automaton is
empty, we implemented an emptiness test. This allowed us to check the satisfiability of LTL
formulas (see Section 4).

5. Büchi automata intersection: We implemented a method to intersect transition systems
with Büchi automata. This allowed us to obtain results which later on would be fed to a
program analysis tool in order to verify LTL properties on computing systems (see Section 5).

The methodology was based on setting short cycles, where we aimed to achieve a certain goal
related to the stage we were in. Therefore, we had weekly meetings to discuss the goals that were
planned, and the outcome of the weeks compared to the initial planning. This is similar to the
SCRUM methodology. This methodology allowed us to have regular control over the different
phases of the project, and prevent or solve deviations at an early stage. Moreover, a version control
tool was used to keep track of all the different versions of the project that we implemented.

2.4 Planning

In this section, we summarize our temporal planning for the development of the project. This
project was carried out in a time frame of five months approximately, starting on the 2nd of Febru-
ary 2015 and finishing on the 29th of June 2015. The following sections describe the breakdown of
tasks, the general time planning, resources used, and the deviations that occurred while developing
the project.

2.4.1 Description of tasks

Some general tasks have been defined in order to sum up the different steps of the project regarding
the organization and implementation. Their definition and detailed explanations will be given in
the following sections.

Project definition

This comprises the definition of the subject for the project. An initial stage of research in the
LTL verification field was carried out in order to decide whether the project would be viable. And
indeed, after documenting ourselves we came to the conclusion that the project would be viable
and interesting to develop. Furthermore, we decided that we were going to use some already
working verification tools to model the computing systems.

Project management

It involves the project description, project planning, control meetings and bureaucratic tasks.

• Project description and planning: It constitutes all the GEP tasks. These include from
the description of the project, its scope and resources needed, to a state of the art research
and budget calculation. This stage helped us have a better overview of what was necessary
to develop the project and also, organize the tasks so it could be done in the stipulated time.

14

• Control meetings: As described in Section 2.3.1, we kept control of the evolution of the
project by regularly meeting to discuss the situation at each stage. This practice allowed us
to adapt our planning better and prevent critical deviations.

• Bureaucratic tasks: They comprise the project inscription, the GEP submission, the final
presentation inscription and the final submission of the project.

Environment set up

Before we could start implementing the project, we needed to install the required software. A list
of all the software needed is provided in Section 2.4.4.

Main development

The following tasks comprise the implementation of the project.

• Parsing of LTL formulas: LTL formulas will determine desired properties of a system, so
we needed a way to save and represent formulas provided by the user. Therefore, this task
involved programming in C++ and also using the Flex and Bison utilities, which generate
a scanner and a parser algorithm. These read the LTL formulas and build an intermediate
representation for them, respectively.

Example 1. Consider a system modeling the behavior of a robot. One possible property
to verify could be that the robot does not stop until the distance to an obstacle is less than
a given threshold. Such property would be modeled by the LTL formula

¬stop U (distance < threshold)

And the corresponding intermediate representation would be theAbstract Syntax Tree (AST)-
like structure shown in Figure 2.2.

U

¬

stop

<

distance threshold

Figure 2.2: Intermediate representation of ¬stop U (distance < threshold)

• Generation of Büchi automata: It comprises the implementation of algorithms that
build Büchi automata from LTL formulas, and adapt a system model to a Büchi automaton
representation. This involved C++ programming and looking for a visualization tool that
could show the results in a more readable way.

Example 2. Following Example 1, Figure 2.3 shows the Büchi automaton for the formula
¬ stop U (distance < threshold). This automaton accepts all executions where the robot
does not stop if it is far enough from an obstacle.

15

0start 1
distance < threshold

¬stop true

Figure 2.3: Büchi automaton for the formula ¬stop U (distance < threshold)

• Emptiness check: This test is performed on a Büchi automaton in order to determine if
the language it accepts is empty. If the automaton comes from an LTL formula ϕ modeling
a program, then checking the satisfiability of ¬ϕ will determine whether the formula is
satisfiable. If that is the case, the LTL property has been verified on the system.

• Intersection of Buchi automata: The intersection of Büchi automata is performed in
order to obtain a combined model from the computing system and LTL property models.
This resulting model could then be fed to a program analysis tool in order to check the
satisfiability of the LTL property on the system.

Development control

These tasks were carried out at the end of every development task.

• Validation: Our implementation was validated after each development task finished, thereby
avoiding the propagation of errors to subsequent stages.

• Technical documentation: Documentation was written as implementation tasks finished,
and it was extended once the implementation of the project was done.

Experimentation

A stage of experimentation was carried out in order to assess the performance of our tools with
different kinds of LTL formulas.

Final stage

This stage was used to gather everything up and finish the technical report, as well as preparing
the final presentation.

The following sections describe the temporal planning followed for the development of the project.

2.4.2 Temporal planning

In this section we describe how the temporal planning was organized, the deviations we had to
face during the implementation phase, and the resources needed when developing the project.

Timetable

Table 4.1 shows the breakdown of tasks along with the estimated hours spent in each task, their
dependencies, and the resources needed to carry them out. The dependencies between tasks are
finish to start, except for tasks 8, 9 and 10, which were performed once an implementation task

16

(i.e. tasks 4-7) was done. The hours allocated for those tasks are the total sum of hours spent at
each implementation stage.

Tasks Time (hours) Dependencies Resources
1 Project definition 5 — —
2 Project description and planning 70 1 —
3 Environment set up 5 2 H1
4 Parsing of LTL formulas 40 3 S1, S2, S3, S7, H1
5 Generation of Buchi automatons 90 4 S1, S2, S4, S6, S7, H1
6 Emptiness check 60 5 S1, S2, S4, S7, H1
7 Intersection of Buchi automatons 70 5 S1, S2, S4, S5, S7, H1
8 Experimentation 30 6, 7 S1, S2, S4, S7 H1
9 Validation 30 4, 5, 6, 7 1 S1, S2, S4, S7, H1
10 Technical documentation 70 4, 5, 6, 7, 8 S8, H1
11 Control meetings 20 — —
12 Final stage 30 8 S8, H1

Total 520

Table 2.2: Tasks breakdown

As can be seen, most of the hours are allocated to implementation tasks, since they comprise the
main part of the project.

Gantt chart

Figure 2.4 shows the final Gantt chart. Task 1 was omitted for better visualization, since it was
carried out a month earlier than all the other tasks.
Tasks 9 and 10 are broken down into smaller tasks for better understanding, since they were
performed right after the corresponding tasks they depended on finished.
The amount of hours dedicated to the project per day was of about five hours on average, and we
consider working days.

Figure 2.4: Gantt chart defining the project planning
1Validation and technical documentation was done at the end of each indicated task.

17

2.4.3 Deviations

We started performing the tasks according to the initial planning until the implementation of the
LTL to Büchi automaton transformation task. During this task, we had to face the following
problems:

• Conceptual complexity of the algorithm: The algorithm chosen had some parts that
were difficult to understand, so an extra effort was needed when developing those parts.

• The algorithm does not scale well: While for small formulas we could obtain correct and
fast results, for bigger formulas there was a blowup in the execution time of the algorithm.
This is due to the fact that the size of the automata generated is exponential in the size of
the LTL formula. Thus, the bigger the formula the more calculations need to be done.

On one hand, the first problem was solved by doing research on the topic and finding other sources
of information. Once we had a clear idea of how all the components worked and we fully under-
stood the algorithm, we finished the implementation.

On the other, the second problem was harder to tackle, since we could not avoid the fact that
bigger formulas involve more computations, thereby leading to larger execution times. Hence, we
contemplated two possible options: either trying to optimize the algorithm by reusing calculations,
or trying another algorithm with a different approach. But since we had already implemented the
algorithm, we decided to carry out the optimization. However, it did not show any improvement
in the execution times, so we proceeded to the next task and decided to leave the optimizations
for the final stage.

The next task we carried out after that task was the emptiness check, rather than the inter-
section of Büchi automatons. This alteration on the original planning was done because after
doing some research, we assumed that it could be done in less time than the stipulated. Thus, we
could have a better overview of the time we had left if we finished that task before expected.

2.4.4 Resources

We needed the following software and hardware resources to develop the project:

Software

S1. Ubuntu 14.04: Used in all tasks

S2. Emacs: Editor used to program in C++. Used in all tasks.

S3. Flex and Bison: Programs needed for the LTL formulas parsing.

S4. Visualization tool: We used the dot tool.

S5. VeryMax: Used for building transition systems.

S6. BarceLogic: Used when building Büchi automata.

S7. Subversion: Used in all tasks to keep track of the versions of the project.

S8. LATEX: Used for project documentation.

18

Hardware

H1. PC: Used in all tasks.

2.5 Budget

In this section we estimate the budget for the project considering the different tasks that were
carried out and the resources needed. Even though there were some deviations in the implementa-
tion phase, the estimation of costs is the same that we initially performed, since those deviations
did not affect the budget. We contemplate the direct, indirect and unforeseen costs associated to
the project.

2.5.1 Direct costs

These costs are directly related to the development of the tasks described in Section 2.4.2. There-
fore, they are computed considering the different resources needed to carry out the project, which
are introduced in the following sections.

Human resources

The different roles that participated in the development of the project were:

1. Project Manager: Responsible for establishing the project plan and coordinating resources
to complete the plan on time and budget.

2. Software designer: Helps creating software that meets the client’s needs, in an effective
and cost-efficient manner.

3. Software developer: Responsible for the technical implementation of the software.

Considering the tasks described in Section 2.4.1, the assignment of tasks for the different roles
and the budget allocated for them is shown in tables 2.3 and 2.4, respectively.

Tasks Hours Role 1 Role 2 Role 3
1 Project definition 5 5 — —
2 Project description and planning 70 70 — —
3 Environment set up 5 — — 5
4 Parsing of LTL formulas 40 — 10 30
5 Generation of Büchi automatons 90 — 30 60
6 Emptiness check 60 — 15 45
7 Intersection of Büchi automatons 70 — 25 45
8 Experimentation 30 — — 30
9 Validation 30 — 15 15
10 Technical documentation 70 — 35 35
11 Control meetings 202 20 20 20
12 Final stage 30 10 10 10

Total 520 105 160 295

Table 2.3: Tasks and hours assignment for each role

19

Role Hours Price per hour Cost
Project Manager 105 50 ¤ 5.250 ¤
Software designer 160 35 ¤ 5.600 ¤
Software developer 295 35 ¤ 10.325 ¤
Total 21.175 ¤

Table 2.4: Human resources budget

Hardware resources

The only hardware resource we needed was a computer, so the estimated cost for hardware is the
one associated to the depreciation, which is computed as follows:

4 years× 12 months/year × 20 days/month× 5 hours/day = 4800 hours
Depreciation = (1000 ¤/4800 hours)× 520 hours = 108, 33 ¤

The results are summarized in Table 2.5.

Product Price Useful life Usage Depreciation
Computer 1000 ¤ 4 years 520h 108,33 ¤
Total 108,33 ¤

Table 2.5: Hardware resources costs

Software resources

The cost for software resources is described in table 2.6. Since we will use open-source software,
no costs will be associated to it.

Product Price
Ubuntu 14.04 0 ¤
Emacs 0 ¤
Flex and Bison 0 ¤
Visualization tool 0 ¤
LATEX 0 ¤
Total 0 ¤

Table 2.6: Software resources costs

2.5.2 Indirect costs

Other resources unrelated to the project were also needed for its development and hence, must be
considered in the budget as well. Table 2.7 shows the indirect costs associated to electricity and
paper.

2Each role is assigned the total amount of hours dedicated to this task, since everyone will participate in the
meetings. Therefore, the total sum of hours allocated to the roles will be different than the total sum of hours
dedicated to the tasks.

20

On one hand, we assumed that the computer consumed in average 250 W per hour, so the total
energy that it consumed during the project (520 hours) was energy = 250W × 520h = 130 kWh.
The rest of the energy (32 kWh) was consumed by electricity.

Product Price Units Cost
Electricity 0.12 ¤/kWh 162kWh 19,44 ¤
Paper 4,5 ¤/pack ¤ 500 4,50 ¤
Total 23,94 ¤

Table 2.7: Electricity and paper costs

2.5.3 Unforeseen costs

This section includes the costs associated to unexpected events that might have increased the price
of the project. We consider them here because they were part of the initial budget estimation.
We contemplate one possible scenario which would have slightly deviated the budget.

1. The computer needing repair: Since the computer we will use was purchased a few
months before starting the project, we will assign a probability of 5% to this event.

Table 2.8 shows the resulting costs.

Event Probability Price Cost
1 5% 200 ¤ 10 ¤

Total 10 ¤

Table 2.8: Unforeseen costs

2.5.4 Total budget

The total estimated budget for the project is defined in table 2.9. A 5% level of contingency is
added in order to contemplate possible deviations not considered in unforeseen costs.

Type Cost
Human resources 21.175 ¤
Hardware resources 108,33¤
Software resources 0 ¤
Total direct costs 21.283,33 ¤
Paper & Electricity 23,94 ¤
Total indirect costs 23,94¤
Total unforeseen costs 10 ¤
Contingency 1.062,86 ¤
Total 22.383,13 ¤

Table 2.9: Total costs

21

2.6 Sustainability analysis

We introduce the economic, social and environmental sustainability of this project in the following
sections.

2.6.1 Economic sustainability

Previous sections show the costs associated to the development of the project. These are mainly
covered by the budget required to carry out the project, but they don not contemplate mainte-
nance or future updates. This will be something to consider in future versions since, as it has
been already stated, some optimizations might be needed. Therefore, once the development of the
project finishes, more research could be done in order to optimize even more. So, costs for future
updates should be considered after the project is done.

The price of the project can be considered viable, since most of the costs are covered by hu-
man resources, and given the complexity of the software they are implementing, a reasonable
budget has been destined for them. Thus, we believe that this price would be competitive if other
companies offered the same tools, given that human resources costs cannot vary significantly. Fur-
thermore, we consider that the estimated time to develop the project is rather compressed, so we
strongly think that this project cannot be developed in less time.

Also, all resources are essential and therefore none of them could be discarded. Specifically,
human resources have been assigned a number of hours according to the difficulty of the tasks
that need to be performed, so assigning less hours would result in a project of lesser quality.

Table 2.10 shows the points awarded to this project regarding its economic sustainability. These
have been given based on the fact that the price is viable considering the difficulty in the imple-
mentation of the project. Moreover, there are no unnecessary resources used and the budget did
not change with respect to the initial planning.

2.6.2 Environmental sustainability

The resources needed to develop this project are described in Section 2.4.4. The only resources
that could affect the environmental sustainability of this project are the computer, paper and
electricity used. These are used in every stage of the project, since the computer will always be
running during its development, and electricity and paper will be used by the human resources
working on it.

As explained in Section 2.5.2, the energy consumed will be of 162 kWh. This results in 62,37
kg of CO2, which is a big measure, but still significantly smaller than the average consumption of
energy per capita for a year, in comparison. Thus, even though it is a big measure, the resources
used are essential, and cannot be reduced. However, we will at least have environmental conscience
when using paper, which will be recycled.

Once the project can be used, our users will run our tools in the computers they already have.
Therefore, the energy used to apply our tools will be significantly smaller than the energy used to

22

develop the project and the software that uses the tool.

Finally, we would like to state that already implemented software and libraries have been used in
the implementation of our project, which means that less hours of development have been needed
to develop the project, thereby reducing the level of energy consumption.

Table 2.10 shows the points awarded to this project regarding its environmental sustainability.
These have been assigned based on the fact that its environmental impact is mostly due to the
energy spent on running the computer and light. So the total consumption is significantly smaller
than the average consumption per capita.

2.6.3 Social sustainability

Our tools will be used in developed countries, where people can have access to a computer, and
implement applications that need verification. These applications would need to be verified by
testing or by hand if it was not for the use of automated verification tools. Therefore, we consider
that our project would benefit many computer systems that need verification, avoiding tedious
checking processes and giving correct results. This means that people would be using more secure
and reliable systems, given that more properties could be easily checked on them.

Hence, software developers would considerably benefit from our tools, since verification would
become an easy and fast task that complements the development of their projects, and does not
take up as many hours of their implementation work.

We also consider that the development of this project cannot harm any collective, since the col-
lectives involved in systems verification need automated tools that ease their jobs.

Table 2.10 shows the points awarded to this project regarding its social sustainability. These
have been assigned considering the fact that it will make a part of the job of some software
developers easier.

Sustainable? Economically Environmentally Socially Total rows
Planning 9 8 8 25
Results 9 8 8 25
Risks 0 0 0 0
Total cols. 18 16 16 50

Table 2.10: Sustainability matrix

23

Chapter 3

Preliminaries

This chapter introduces the formalisms used in the project. We provide the definition of linear
temporal logic, including a comprehensive survey of the temporal operators and a brief introduc-
tion to formal languages and automata theory.

3.1 Linear temporal logic

Linear temporal logic reasons over linear sequences of instants, and extends propositional logic by
modal operators that refer to points in time. Hence, it is useful to specify correctness properties
about the executions of a system.
Given a set of propositions AP where p ε AP , the syntax of LTL formulas is defined as:

φ ::= true | p | ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ | φ↔ φ | �φ | ♦φ | φ U φ | φ R φ | X φ

Operators ¬, ∨, ∧, → and ↔ are boolean connectives, and �, ♦, U, R, X define the temporal
modalities of LTL formulae.
Intuitively, temporal operators are defined as follows:

• �φ : Called "always". States that φ is true at an instant of time and in all the following
ones.

• ♦φ : Called "eventually". It is the dual of � and states that φ is true either at a given
instant of time or in the future.

• ψ U φ : Called "until". Informally, ψ U φ means that ψ is true until φ first becomes true.
After that, ψ and φ can take any value.

24

• ψ R φ : Called "release". It is the dual of U , and it means that either φ is true until and
including the point where ψ first becomes true, or φ is always true. If ψ and φ are true at
an instant of time, they can take any value in the following ones.

• X φ : Called next. States that φ is true in the next instant of time.

Some of the operators can be derived from others as defined below:

�φ = false R φ

♦φ = true U φ

φ→ ψ = ¬φ ∨ ψ
φ U ψ = ¬(¬φ R ¬ψ)
φ R ψ = ¬(¬φ U ¬ψ)
�φ = ¬♦¬φ

An interpretation of an LTL formula is an infinite sequence σ = σ0σ1σ2... over the alphabet
Σ = 2AP . Thus, each σi defines the propositions that are true at a moment in time.
To determine whether σ satisfies an LTL formula (i.e. it is a model), the semantics are inductively
defined. We consider σ|k = σkσk+1σk+2... for the definition:

σ |= true

σ |= p iff p ε σ0

σ |= ¬φ iff σ 6|= φ

σ |= ψ ∨ φ iff σ |= ψ ∨ σ |= φ

σ |= ψ ∧ φ iff σ |= ψ ∧ σ |= φ

σ |= ψ → φ iff σ |= ¬ψ ∨ σ |= φ

σ |= �φ iff ∀k ≥ 0: σ|k |= φ

σ |= ♦φ iff ∃k ≥ 0: σ|k |= φ

σ |= ψ U φ iff ∃k ≥ 0: σ|k |= φ ∧ ∀0 ≤ i ≤ k: σi |= ψ

σ |= ψ R φ iff (∃k ≥ 0: ∀i ≤ k: σ|i |= φ ∧ σ|k |= ψ) ∨ (∀j ≥ 0 : σ|j |= φ)
σ |= X φ iff σ|1 |= φ

Example 1. Consider a system that receives and processes requests, which has the set of propo-
sitions AP = {received, processed}. One possible property to verify could be:

ϕ = �(received→ ♦processed)

25

Which states that every time a request is received, it is eventually processed. A model for this
property is:
received, processed, received, received, processed, processed, received, processed, ...

Note that in Example 1, AP contains propositions where a boolean value is assigned depending
on the activation of the actions they represent (i.e. when a request is received, received = true).
However, we could also have propositions where the boolean value is assigned depending on linear
integer arithmetic.

Example 2. Consider a system that manipulates integer variables x and y. An arbitrary LTL
formula using those variables and integer arithmetic could be:

ϕ = ((x+ 1 ≤ 0) U (y − 2 ≥ 2))

which states that x+ 1 has a value smaller or equal than zero until y−2 becomes greater or equal
than two.

3.2 Formal languages and automata

Regular languages are formal languages [22] that can be expressed using regular expressions and
are recognizable by a finite automaton.

Example 1. A regular language over the alphabet Σ={a, b} is L={ab∗}, which represents all the
words starting with an a and finishing with a finite sequence of b’s.

3.2.1 Finite Automaton

Formally, a finite automaton is a 5-tuple < Q,Σ, δ, q0, F >, where:

Q: A finite set of states

Σ: A finite set of input symbols

δ: A transition function, Q× Σ→ Q

q0: The initial state, q0 ε Q

F : A set of accepting states, F ⊆ Q

A finite word w over the alphabet Σ is accepted if and only if there exists a finite execution of the
automaton on w that ends in an accepting state.

Example 2. Following Example 1, the automaton that represents language L is shown in Figure
3.1.

0start 1

b

a

Figure 3.1: Automaton example

26

On the other hand, an w-regular language generalizes the definition of regular language to infinite-
length words, meaning that they can not be recognized by finite automata.

Example 3. Following Example 1, an w-regular language over Σ is L={abw}, which represents
all the words starting with an a an finishing with an infinite sequence of b’s.

The models of an LTL formula define an w-regular language, and they can be recognized by a
special type of automaton which accepts infinite inputs, called Büchi automaton.

3.2.2 Büchi automaton

Formally, a Büchi automaton is a 5-tuple BA = < Q,Σ,∆, q0, F >, where:

Q: A finite set of states

Σ: A finite set of labels

∆: A transition relation, Q× Σ→ Q

q0: The initial state, q0 ε Q

F : A set of accepting states, F ⊆ Q

An infinite word w over the alphabet Σ is accepted by a BA if and only if there exists an infinite
execution of BA on w that reaches states in F an infinite number of times.

Therefore, an LTL formula φ can be translated into a Büchi automaton such that an infinite
word w is accepted if and only if w |= φ.

Example 4. Following Example 1, Figure 3.2 shows a Büchi automaton that accepts all the words
that satisfy the formula �(received→ ♦processed). Note that an execution on the automaton is
accepted if and only if it goes through state 0 infinitely often.

0start q2

¬received ∨ processed

received ∧ ¬processed

¬processed

processed

Figure 3.2: Büchi automaton for the formula �(received→ ♦processed)

In order to translate an LTL formula into a Büchi automaton, our work relies on the use of another
type of w-automaton as an intermediate structure: a transition-based generalized Büchi automa-
ton. Such automaton is used to consider eventualities introduced by U formulae in the final Büchi
automaton. Further details are provided in Section 4.2.

27

3.2.3 Transition-based generalized Büchi automaton

Formally, a transition-based generalized Büchi automaton is a 5-tuple TGBA = < Q,Σ,∆, q0, F >,
where:

Q: A finite set of states

Σ: A finite set of labels

∆: A transition relation, Q× Σ→ Q

q0: The initial state, q0 ε Q

F : A set of sets of accepting transitions, F ⊆ 2∆

An infinite word w over the alphabet Σ is accepted by a TGBA if and only if there exists an
infinite execution of the TGBA on w that contains at least one transition from each accepting set
of the sets in F an infinite number of times.
If F = ∅ then a word w is accepted if and only if there exists and infinite execution of the TGBA
on w.

Example 5. Following Example 1, Figure 3.3 shows the TGBA that accepts all the words that
satisfy the formula �(received→ ♦processed).
Note that in this case, F = {{τ1, τ4}}, and for better visualization transitions labeled with a {0}
belong to the only set of F . Therefore, an execution on the automaton is accepted if and only if
it goes through at least one of the transitions labeled with {0} infinitely often.

q1start q2

τ1:¬received ∨ processed,{0}

τ3:received ∧ ¬processed

τ2:¬processed

τ4:processed,{0}

Figure 3.3: TGBA for the formula �(received→ ♦processed)

So far, we have introduced how LTL properties can be modeled. Next section describes how
computing systems can be modeled with the use of Transition Systems.

3.3 Transition System

A Transition System is a 3-tuple TS = < S,R, I > where:

S: A finite set of states

R: A transition relation, R ⊆ S × S

I: A finite set of initial states, I ⊆ S

Transition systems are used to describe dynamic processes with configurations representing states,
and transitions saying how to go from one state to another. Therefore, a transition system
generates a set of sequences of labels from its transitions, which describe all the possible execution
paths of the system it is modeling. They can be used to model either finite-state or infinite-state
systems, with slight variations.

28

3.3.1 Finite-state systems

Finite-state systems rely on bounded domains in order to represent computer systems. These
domains are obtained through finite abstractions, which apply a limit on the number of elements
the state space has. For instance, if a system had to deal with integer numbers, one possible
abstraction would be to use only a subset (e.g. 32-bit numbers).
Therefore, these systems provide an explicit representation of the state space, meaning that they
enumerate every possible state change the system could perform.

Example 1. Consider a system modeling a counter between 0 and N , which increments and
decrements. An explicit representation of such system for N = 3 is shown in Figure 3.4. As can
be seen, the domain is bounded to D = {0..N}, and there is a state for each increment/decrement
of the counter.

0start 1 2 3

inc inc inc

decdecdec

Figure 3.4: Transition System for counter system

Since transition systems can define infinite traces, they can be considered Büchi automata where
all states are accepting states. Intuitively, a transition system defines all the possible executions
of a system, so any infinite run in the transition system would be an accepted run. Moreover,
those transition systems that do not represent infinite paths can be turned into Büchi automata
by adding self-loops to ending states, which do not change to another state anymore.

3.3.2 Infinite-state systems

As seen in the previous section, finite-state systems need to bound their domain through finite
abstractions. This clearly imposes a limit on the power of representation transition systems can
provide when modeling computer systems. For instance, following Example 1, if we had to rep-
resent a system which performs an undefined number of increments/decrements, it would not be
possible to use the representation given. Moreover, if a system needed to perform a huge amount
of increments, the state space of the model would increase dramatically.
On the other hand, infinite-state systems do not impose a bound on their state space domain.
Hence, they allow one to represent more complex systems, such as software programs manipulat-
ing integer variables. Such systems require more general models which, for instance, admit the
representation of assignments between variables.

Example 2. Figure 3.5 shows an example of a program manipulating integer variables and a
transition system representing it.

29

int main()

{

int x=undet(),y=undet(),z=undet();

l1: while (y>=1) {

x--;

l2: while (y<z) {

x++; z--;

}

y=x+y;

}

}

Figure 3.5: Transition system for program

As can be seen, transitions of the transition system have two parts: conditions and assignments.
The former determine whether a transition can be activated, and the latter express the changes
variables x, y and z experiment once the transition is fired. Hence, primed variables indicate the
new values of x, y and z after the transition is activated, and unprimed ones represent their values
before the transition, as explained in [23].
Moreover, initial states have one or more associated entry transitions which are applied to the
initial values, before reaching the initial location. In example of Figure 3.5, the only initial location
is 11, which has a single entry transition with condition true and no assignments.

30

Chapter 4

Satisfiability of LTL formulas

In this section we introduce a method to check the validity of LTL formulas through LTL satisfi-
ability.

An LTL formula is valid if every possible interpretation is a model (i.e. satisfies the formula).
Formally, given an LTL formula ϕ defined over a set of propositions AP , the formula specifies a
language L(ϕ) = {σ | σ ε (2AP)w: σ |= ϕ} with all the traces that satisfy it. Thus, ϕ is valid if
and only if all possible interpretations of ϕ belong to L(ϕ), that is:

(2AP)w = L(ϕ)

Such condition implies checking that all the elements of (2AP)w are contained in L(ϕ).

To this end, we can check the satisfiability of ¬ϕ. Intuitively, if ¬ϕ has a model, this means
that there is an interpretation that does not satisfy ϕ (as it satisfies ¬ϕ), and thus ϕ is not valid.
This can be performed by checking whether the language defined by ¬ϕ is empty. If that is the
case, there will be no interpretations that satisfy ¬ϕ, and ϕ is proven to be valid. Formally:

ϕ ≡ true↔ L(¬ϕ) = ∅

One way to check whether L(¬ϕ) = ∅ is by using a Büchi automaton that accepts the words in
L(¬ϕ). Once the automaton is built, it is possible to perform an emptiness test in order to see
whether the language it accepts is empty or not.
Therefore, the steps to follow are:

1. Negate the formula

2. Translate from LTL to Büchi automaton

3. Perform an emptiness test

The following sections describe how we parse an LTL formula ϕ, translate ¬ϕ into a Büchi au-
tomaton and perform the emptiness test on the latter in order to check the satisfiability of ¬ϕ
(i.e. the validity of ϕ).

31

4.1 Parsing the formulas

The first step is to parse the LTL formulas specified by the user in the system code.
LTL properties will be specified as code statements among the system’s source code. Hence, they
will be evaluated in the point where they are inserted, rather than globally for the whole system.
We will use the Flex and Bison utilities to parse the formulas and will save and represent them
with an Abstract Syntax Tree (AST) structure.

Once the formulas are parsed, the Büchi automaton representing each formula will be built fol-
lowing the method introduced in the following section.

4.2 Automaton transformation

As stated in Section 3.2, given an LTL formula φ defined over a set of propositions AP , it is
possible to build a Büchi automaton representing such formula.
The transition labels of the automaton will be propositional formulas over AP , and they will
possibly represent multiple elements of 2AP .

Example 1. For AP = {a, b} and Σ = 2AP , the label true would correspond to any of the
elements of Σ (i.e: {a}, {b}, {a, b}), the label a would correspond to either {a} or {a, b}, and the
label ¬a ∧ b would correspond to {b}.

Therefore, transition labels on the Büchi automaton will determine the propositions that need to
be true for a transition to be activated, regardless of the value of the other propositions.
This means that a run in the Büchi automaton will be an infinite sequence of interpretations over
AP that will make the LTL formula satisfiable.

Note that the size of the generated Büchi automaton might be exponential in the size of the
LTL formula, as explained in [24]. Hence, Büchi automata can end up being huge, depending on
the formulas they are generated from.

For the translation, there are different approaches in the literature [25, 26], but the algorithm
used in this project is based in that of [13, 27], and it is carried out in the following steps:

1. Formula rewriting.

2. Transformation of the formula into a TGBA.

3. Degeneralization of the TGBA to obtain a Büchi automaton.

The first step is performed in order to obtain smaller automata and simplify the transformation
algorithm by using less temporal operators. The second one takes into consideration eventualities
introduced by U formulae, and the third generates the resulting Büchi automaton. Each step is
explained in the following sections.

4.2.1 Formula rewriting

Formulas will be rewritten into their Negation Normal Form (NNF), where the negation operator
¬ is only found in front of propositions.

32

Example 2. Let p and q be propositions. Examples of the Negation Normal Form of LTL formulas
are:

¬�p = ♦ ¬p ¬(X p) = X ¬p
¬♦p = � ¬p ¬(p ∧ q) = ¬p ∨ ¬q
¬(p U q) = ¬p R ¬q ¬(p ∨ q) = ¬p ∧ ¬q
¬(p R q) = ¬p U ¬q

Furthermore, the only operators that will be used are U, R, ∨ and ∧, since the other ones can be
derived from these (see Section 3.1).
In order to avoid an exponential blow up in the size of the formula rewritten, we will consider
both U and R, even though they can be derived from each other.
In addition to that, we have also implement a simplification step using the following rewriting
rules introduced in [13, 27]. Let φ, ψ and ϕ be LTL formulas. The rewriting rules applied are:

φ ∧ φ→ φ X true→ true

φ ∧ true→ φ φ U false→ false

φ ∧ false→ false (�♦ φ) ∨ (�♦ ψ)→ �♦(φ ∨ ψ)
φ ∧ ¬φ→ false ♦X φ→ X♦ φ

φ ∨ φ→ φ ��♦ φ→ �♦ φ

φ ∨ true→ true ♦�♦ φ→ �♦ φ

φ ∨ false→ φ X�♦ φ→ �♦ φ

φ ∨ ¬φ→ true ♦(φ ∧ (�♦ ψ))→ (� φ) ∧ (�♦ ψ)
(Xφ) U (Xψ)→ X(φ U ψ) �(φ ∨ (� ♦ ψ))→ (� φ) ∨ (�♦ ψ)
(φ R ψ) ∧ (φ R ϕ) → φ R (ψ ∧ ϕ) X(φ ∧�♦ ψ)→ (X φ) ∧ (�♦ ψ)
(φ R ψ) ∨ (ϕ R ψ)→ (φ ∧ ϕ) R ψ X(φ ∨�♦ ψ)→ (X φ) ∨ (�♦ ψ)
(Xφ) ∧ (Xψ)→ X(φ ∧ ψ) R ψ

4.2.2 LTL to TGBA

Given an LTL formula ϕ, the algorithm relies on the construction of an intermediate graph of
nodes that somehow contain subformulae of ϕ. Transitions and states of the TGBA come from
the nodes of such temporal graph, and the algorithm returns the TGBA generated.

Intuitively, a transition in the TGBA will determine the literals 1 that hold at a given moment in
time, and a state will represent formulae that hold on an execution starting from it. Therefore,
during the TGBA construction, a node will keep information about the formulas that must be
satisfied in the current step, and formulas that must be satisfied from the next step in time on.
So, in the end, all intermediate nodes are processed and some of them provide transitions and
states of the TGBA.

The algorithm will create and expand nodes by applying recursive rules that decompose sub-
formulae of ϕ. These are based on LTL semantics (see Section 3.1) and the expansion of temporal
operators U and R:

φ U ψ = ψ ∨ (φ∧ X(φ U ψ)) φ R ψ = ψ ∧ (φ∨ X(φ R ψ))

1Literal: A proposition or its negation.

33

This decomposition will define the temporal interpretations that satisfy ϕ by creating different
paths in the automaton. Therefore, nodes will expand by applying these rules on the formulas
that must hold on them in the current step of time.

The information that nodes will keep is the following:

• Id: A unique node identifier.

• Incoming: A set of identifiers of all the nodes that have an edge pointing to the current
node.

• New: A set of LTL formulae that must be satisfied immediately but that have not yet been
processed (proven to hold). This set is used during the construction and is empty for all
nodes of the final TGBA.

• Old: A set of literals that must be satisfied immediately and have already been processed.

• Next: A set of LTL formulae that must be satisfied in all successor nodes.

• Untils: Bitmap of size equal to the number of U subformulas in the formula being translated.
A bit is set if the corresponding subformula has been processed in this node.

• Right-of-untils: A bitmap that records, for each subformula φ U ψ, whether ψ has been
processed in this node.

Furthermore, states of the TGBA will hold the following information:

• Id: A state identifier.

• Transitions: A set containing the incoming transitions.

• Next: A set of LTL formulae that must hold in all the immediate successors of the state.

And transitions will keep the following records:

• Source: A set of Ids of the source states. These have a transition to the same state with
the same transition label.

• Label: The set of literals that must hold for the transition to be triggered.

• Accepting: A bitmap that records to which accepting sets the transition belongs.

Thus, New will only be used to expand a node until nodes where all formulae have been processed
are reached. These nodes will represent transitions of the TGBA labeled with the formulas in
their Old field. Furthermore, they will define the states where any temporal interpretation start-
ing from them satisfies formulae in their Next set.

Algorithm 4.3 shows how node expansion is performed. The line numbers in the following de-
scription refer to that algorithm.

As can be seen, there are two possible cases:

34

• There are no formulas left to process (lines 2 to 12): Which implies that New is empty.
In this case, if the node is equivalent to an existing state of the TGBA, they will merge.
This means that the state will receive all the information regarding the transition defined
on the node by its Old field. So, merging allows us to generate all the different transitions
that lead to the same state. Algorithm 4.1 shows how this step is performed.

Algorithm 4.1 Node and state merging. Function called from a state.
1: function merge(Node n)
2: acc = ∼(n.Untils) | (n.Right-of -Untils)
3: if ∃t ε Transitions s.t. (t.Label = n.Old) and (t.Accepting = acc) then
4: t.Source ∪ {n.Incoming}
5: else
6: Transitions = Transitions ∪ {new Transition nt with nt.Source = n.Incoming,
7: nt.Label = n.Old, nt.Accepting = acc}

On the other hand, if the node is not equivalent to any state, a new state and transition will
be created from its Next and Old fields, respectively. Moreover, a new node will be created
in order to process the formulas in the Next field.

• There are formulas left to process (lines 14 to 33): Formulas are processed one by
one, and if no contradictions or redundancies are found, the node is expanded according to
the rules. Both the test for contradiction and redundancy check are based on the ideas of
[13, 27]. Therefore, fields Old and Next of the current node are searched in order to find
possible conflicts or redundancies.

Example 3. Let ϕ = φ U ψ be a formula being processed by a node n during its expansion.
A contradiction would be found if ¬ϕ = ¬φ R ¬ψ had already been processed in the node,
meaning that either ¬ψ belongs to n.Old and (¬φ R ¬ψ) belongs to n.Next, or ¬φ and ¬ψ
belong to n.Old.
Furthermore, the formula would be redundant if either φ belonged to n.Old and (φ U ψ)
belonged to n.Next, or ψ belonged to n.Old.

Fields Right-of -Untils and Untils are updated as necessary (lines 15-17 and 22-24) in or-
der to keep track of the accepting sets to which the node belongs. Further explanation is
provided below in this section.

Once the formula is checked against contradictions and redundancies, the node is either
split or updated, depending on the type of formula that is being processed.

Therefore, if the formula is either a U, R or ∨ formula (lines 25 to 27), the node will be
split in order to create different paths that can satisfy the formula. This task is performed
as shown in Figure 4.1, and it is based in the decomposition provided in Table 4.1.

35

Algorithm 4.2 Node splitting. Function called from a node.
1: function split(Formula f)
2: Create new node node2 with new Id s.t.
3: (node2.Incoming = Incoming, node2.New = New ∪ (New2(f) \ Old),
4: node2.Old = Old ∪ {f}, node2.Next = Next, node2.Untils = Untils and
5: node2.Right-of -Untils = Right-of -Untils)
6: Modify this (current node) as follows:
7: New = New ∪ (New1(f) \ Old), Old = Old ∪ {f}, Next = Next ∪ Next1(f)
8: return node2

Formula New1 Next1 New2
ϕ U ψ {ϕ} {φ U ψ} {ψ}
φ R ψ {ψ,ϕ} {ψ, φ} {φ R ψ}
φ ∨ ψ {φ} ∅ {ψ}
φ ∧ ψ {ψ, φ} ∅ ∅

Table 4.1: Definition of New and Next for non-literals

Example 4. Consider the formula φ U ψ being processed in a node. Figure 4.1 shows how during
its expansion, the node is split in two different nodes. The new nodes will also expand until their
New set is empty.

Incoming = {0}
New = {φUψ}

Old = ∅
Next = ∅

Incoming = {0}
New = {ψ}
Old = ∅
Next = ∅

Incoming = {0}
New = {φ}
Old = ∅

Next = {φUψ}

Figure 4.1: Node splitting

On the other hand, if the formula is of the type φ ∧ ψ (lines 28 to 30) the node will not split,
since φ and ψ need to hold at the same time.

Finally, if the formula is a literal (lines 32 to 33) it can be directly added to the Old set, since it
has already been checked against contradictions and redundancies, .

Accepting sets

In the end, the TGBA will represent all the possible models of ϕ. Nevertheless, by construction
there will be paths where φ subformulae for φ U ψ is satisfied, but no node satisfies ψ along the
path. Such paths are not models of φ U ψ, which requires ψ to be true eventually.

36

Therefore, given that for the rest of operators any infinite path in the TGBA would be accepting,
an acceptance family is defined over U subformulae. This will allow us to discard those paths that
do not represent models of U formulas.

Hence, every different U subformula will define an acceptance set. These acceptance conditions
will be applied to nodes during the construction (lines 6 to 8), and finally defined over TGBA
transitions when merging nodes and states (see Algorithm 4.1).
A node will belong to an accepting set if either the U formula that defines that set does not hold
in that node, or the right side of the formula holds. Formally, given a node n, the acceptance
condition over a U formula is defined as: (φ U ψ processed in n) → (ψ processed in n), which is
equivalent to ¬(φ U ψ processed in n) ∨ (ψ processed in n).

Fields Untils and Right-of -untils are used in order to keep track of the U formulas being pro-
cessed in a node and their right subformulas, respectively. So, in order to obtain the accepting
sets to which a node belongs, the acceptance condition stated above has to be applied for all the
U formulas represented in the bitmaps. This can be done by carrying out the following bitwise
operation:

∼ (Untils) | (Right-of -Untils)

Where ∼ represents bitwise negation and | represents bitwise or.

Example 5. Let p, q and r be propositions and ϕ = p U (q U r). There will be an accepting set
defined for ϕ and another one for q U r. Therefore, n.Untils and n.Right-of -untils will have size
equal to 2 for all nodes and initially, all of their bits will be set to 0.
Each position of the bitmaps will reference the accepting set associated to that index, so every time
one node processes ϕ, the bit 0 of n.Untils will be set to 1, and bit 1 will remain the same. The
same applies to n.Right-of -untils when the right side of one of the U subformulas is processed.

Once the TGBA has been built, a degeneralization process will be applied in order to assure that
all the accepting conditions are met. The result will be a Büchi automaton which represents ϕ.

37

Algorithm 4.3 Node expansion. Function called from a node.
1: function expand(List states)
2: if New = ∅ then
3: if ∃s ε states s.t Next = s.Next then
4: s.merge(this)
5: return states
6: acc = ∼(n.Untils) | (n.Right-of -Untils)
7: create new state s with s.Id = Id, s.Transitions = {new Transition t with
8: t.Source = Incoming, t.Label = Old, t.Accepting = acc} and s.Next = Next

9: states = states ∪ s
10: create new node node with new Id, node.Old = ∅, node.Next = ∅,
11: node.Incoming = Id and node.New = Next

12: return node.expand(states)
13: else
14: let formula ε New and remove formula from New

15: if formula is the right side child of a U formula then
16: Set to 1 the bits in Right-of -Untils corresponding to the U formulas for which
17: formula is their right side.
18: if testForContradiction(formula) then
19: return states
20: if isRedundant(formula) then
21: return this.expand(states)

22: if formula is a U formula then
23: Set to 1 the bits in Untils corresponding to the U formula that formula represents.
24: if formula is not a literal then
25: if formula is a U , R or ∨ formula then
26: node2 = split(formula)
27: return node2.expand(expand(states)

28: if formula is a ϕ1 ∧ ϕ2 formula then
29: New = New ∪ ({ϕ1, ϕ2} \Old)
30: return expand(states)

31: else
32: Old = Old ∪ formula
33: return expand(states)

4.2.3 Degeneralization

The TGBA generated in the previous step is translated into a regular Büchi automaton by per-
forming a "Degeneralization" process. This process will deal with the accepting conditions defined
over the TGBA, and it will assure that the final Büchi automaton meets all of them.

This is performed by computing the synchronous product between the TGBA and what the
literature calls a degeneralizer [28].

38

A degeneralizer is a deterministic Büchi automaton that expresses the fact that a path can only
be accepting if it contains infinitely often at least one accepting transition from each of the ac-
cepting sets. Such automaton has |F |+ 1 states, where one of them is accepting.
Moreover, each transition is labeled with either numbers referring to the accepting sets, or an else.
This distinction defines priorities over transitions.

Example 6. Figures 4.2 and 4.5 show examples of degeneralizers for a different number of ac-
cepting sets. Thick lines denote the highest priority, whilst dashed lines define the lowest.

0start 10

0

else

else

Figure 4.2: Degeneralizer for a TGBA with one accepting set

0start 1

2

0 ∧ 1

0 ∧ 1

0

0

1

else else

else

Figure 4.3: Degeneralizer for a TGBA with two accepting sets

In order to perform the synchronized product, the TGBA is considered as a Büchi automaton where
all its states are accepting. This is done so the accepting states in the final Büchi automaton only
depend on the accepting state of the degeneralizer (see Section 5.1 for more details).
That way, the product is performed as a regular synchronous product between Büchi automata,
but having the following considerations:

• A joint transition (t1, t2), where t1 belongs to the degeneralizer and t2 belongs to the TGBA,
can only be fired if and only if t2 belongs to the accepting set or sets that the predicate on
t1 requires.

• Transitions on the degeneralizer are explored by priority, so transitions from the TGBA are
only combined with those that have the highest priority possible on the degeneralizer.

Therefore, the final Büchi automaton will have as accepting states the ones where a state from the
TGBA is combined with the accepting state from the degeneralizer. Furthermore, transitions will
be labeled with transition labels from the TGBA, where all accepting-related labels are removed.

39

Example 7. Let ϕ = p U q. Figure 4.4 shows the TGBA representing ϕ.

0start 1
q,{0}

true, {0}p

Figure 4.4: TGBA representing p U q

In order to obtain the final Büchi automaton we need to perform the synchronized product between
this TGBA and the degeneralizer in Figure 4.2. The result is the following:

0start

1

2

q
p q

p

true

q

Figure 4.5: Büchi automaton representing p U q

Finally, note that because of the deterministic behavior of the degeneralizer, an order is imposed
on the fulfillment of the accepting conditions. Nevertheless, since accepting transitions have to be
visited infinitely often, the order does not affect the language accepted by the final automaton.
This means that we could choose any order for the accepting conditions to be explored, but some
of the them might lead to bigger Büchi automata. In our case we chose to set an incremental
order starting from 0.

Once the Büchi automaton is built from the negation of the desired LTL formula, an emptiness
test is performed in order to check its satisfiability.

4.3 Emptiness test

The emptiness test checks whether a Büchi automaton defines an empty language or not. Recall
that a Büchi automaton accepts an infinite input if there exists a trace that visits an accepting
state infinitely often. Therefore, the algorithm used for the emptiness test must look for some
kind of cycles in the automaton which contain accepting states. These cycles ensure that the trace
found will be infinite, and the accepting states in them will be visited infinitely often. Thus, the
language is empty if and only if there are no such cycles.

Example 1. Figure 4.6 shows a Büchi automaton that accepts the language L = {a(ba)w} and,
as can be seen, there exists a cycle between states 1 and 2.

There are different methods proposed in the literature [29], but most of them are based on either
applying reachability methods or looking for Strongly Connected Components (SCC) [30] in the

40

0start 1 2a b

a

Figure 4.6: Büchi automaton example

Büchi automaton. The algorithm we implemented is based on the former, and it is described in
the following section.

Nested DFS

DFS stands for Depth First Search [31], which is a method for traversing the states of a graph.
The Nested DFS algorithm [32] traverses a Büchi automaton by doing a DFS starting from the
initial state. When it encounters an accepting state, it performs another DFS from that state in
order to see if there is a path that leads back to it (i.e. a cycle).
The first DFS procedure is called blue and the second one (i.e. the nested) is called red. While
each procedure traverses the Büchi automaton, it marks the states it visits as either blue or red.
This avoids visiting the same states repeatedly for any of the two DFS procedures.

Finally, if a path that leads to a cycle containing accepting states is found, this means that
the language the automaton recognizes is non-empty. Otherwise, the automaton does not accept
any word.

Example 2. Following Example 1, the Nested DFS would start by running a blue DFS from
state 0. The procedure would visit state 1 and state 2, and then from state 2 a red DFS would
start running. It would first visit 1 and then 2, realizing that there exists a path in the Büchi
automaton that holds a cycle which contains accepting states. The algorithm would then finish
and state that the language accepted by the Büchi automaton is not empty.

4.4 Experiments

We carried out a series of experiments in order to assess the performance of our tools with different
kinds of formulas. LTL formulas found in the literature were rather small, and did not allow us
to test our tools to the limit. Hence, we not only tried formulas found in the literature, but also
bigger examples provided by [20], which represented concurrent logic programs. In order to deal
with these formulas, we manipulated them keeping their semantics intact, but turning them into
formulas with linear integer arithmetic expressions in their propositions.

4.4.1 LTL over linear integer arithmetic expressions

In order to ease the description of concepts related to linear temporal logic, we have assumed that
LTL formulas only had boolean propositions. However, our LTL formulas can be built over atoms
in linear integer arithmetic as well, and all we have described in Section 3 applies in the same way
if the language is enriched in this manner. Moreover, a SAT Modulo Theory (SMT) [33] solver is
used to check that transitions in Büchi automata are feasible, meaning that every transition has
a satisfiable formula. The SMT solver used in our case is the Barcelogic [34] solver.

41

Table 4.2 shows the number of states and transitions for some of the formulas we used, as well as
their results after performing the emptiness test. The formulas are not negated throughout the
process, they are considered to be already negated when building Büchi automata. Moreover, all
the subformulas hold propositions.

As can be seen, even with small formulas one can get a sense of how big the Büchi automata
generated can be with respect to the size of the formula. For instance, take formula 20, for which
the size of the Büchi automaton generated is considerably bigger than the size of the formula.
Figure 4.7 provides examples of Büchi automata generated for some of the example formulas.

Formula # states # trans. Satis.?
1 p U (q U (r U s)) 4 10 yes
2 p U (r U q) 3 6 yes
3 p U q 2 3 yes
4 p U (q ∧ ¬q) 1 0 no
5 p U (r R q) 3 6 yes
6 (�♦p) U q 6 20 yes
7 p R q 2 3 yes
8 p R (q R (s R t)) 8 43 yes
9 �p 1 1 yes
10 �(q R s) 2 4 yes
11 �((p U q) ∧ (r U s)) 4 25 yes
12 �♦(p→ q) 2 8 yes
13 �(p U q) 2 5 yes
14 �(p→ Xq) 2 4 yes
17 �♦p↔ �♦q 15 54 yes
18 �♦p→ �(q → ♦r) 5 15 yes
16 ♦(p U q) 3 6 yes
19 ((�p) ∧ (�♦q)) ∨ ((�♦r) ∧ (�♦s)) 7 36 yes
15 ¬(�p↔ q) 4 7 yes
20 ¬(p1 U (p2 U (p3 U (p4 U (p5 U (p6 U (p7 U p8)))))))) 128 10923 yes

Table 4.2: Examples of formulas

42

(a) Büchi automaton for p U q (b) Büchi automaton for �(q R s)

(c) Büchi automaton for p U (r U q)

(d) Büchi automaton for p U (r U q)

(e) Büchi automaton for ¬(�p ↔ q)

(f) Büchi automaton for �((p U q) ∧ (r U s))

Figure 4.7: Examples of Büchi automata

One of the biggest formulas we have tested is:

ϕ = ((((((X(�(IError = n0 ∧ FError = FE3))) ∧ (X(�(IDoor = n1 ∧ FDoor = FD1)))) ∧
(X(�(IButton = n2∧FButton = FB2))))∧ (((�(IDoor = 2∧FDoor = FD1))∧ (�(IButton =
3∧FButton = FB2))∧((X(�(IE3 = 4∧FE3 = FE14)))∧(X(�(IB2 = 1∧FB2 = FB15)))))∨
((¬(�(IDoor = 2 ∧ FDoor = FD1)) ∧ (�(IButton = 3 ∧ FButton = FB2))) ∧ (X(�(IE3 =
0 ∧ FE3 = FE16)))))) ∧ (X(FB2 = 3 → ((X5FD1 = 2) ∨ FE3 = 4)))) ∧ ¬(FButton = 3 →
((X5FDoor = 2) ∨ FError = 4)))

43

This formula represents a logic program, and holds atoms over integer linear arithmetic. The
Büchi automaton generated from ϕ has 34 states and 55 transitions, and after running the empti-
ness test on it, we could confirm that ϕ is satisfiable.

For other formulas of this magnitude we were not able to generate a Büchi automaton, since
the algorithm did not provide a result in a reasonable amount of time (four hours) according to
[24]. Recall that the size of the corresponding Büchi automaton can be exponential with respect to
the size of the LTL formula. All formulas provided in this section were generated within seconds,
but for formulas with many nested temporal operators (specially R operators), the execution time
of the algorithm and the size of Büchi automata dramatically grew. One example of this fact is
formula 20 from Table 4.2. Even though it is much smaller in size than ϕ, the Büchi automaton
generated is significantly bigger, due to the fact that formula 20 has many nested R operators
(recall that ¬(ψ U φ) = ¬ψ R ¬φ)).

44

Chapter 5

Verification of LTL properties of
computing systems

In this section we provide an overview on the verification of properties of computing systems.
The inherent complexity of sequential and specially concurrent computing systems makes it unfea-
sible to deal with them directly. Therefore, such systems are generally modeled using abstractions
that build much simpler representations, while keeping the particular aspects of interest of the
system.

As introduced in Section 3.3, transition systems and Büchi automata can model complex sys-
tems. These provide a useful abstraction, which allows reasoning about the systems they model
by only focusing in the parts of interest. Therefore, given a computing system represented by
either a Büchi automaton or a transition system, and an LTL formula, it is possible to adapt the
model checking method for finite-state systems described in Section 1.3 to infinite-state systems.

Recall that model checking methods determine whether a system model M satisfies a given LTL
property ϕ of the system. If M |= ϕ, the model checking algorithm returns a positive answer.
Otherwise, a system execution path that violates ϕ is returned as a counterexample.

In order to determine whether M |= ϕ, it is necessary to ensure that all the executions of M
satisfy ϕ. As previously stated, M will be either a Büchi automaton or a transition system, so
it will define a language L(M) with the executions of the system it accepts. Moreover, ϕ can be
represented with a Büchi automaton, so it will also define a language L(ϕ) with the executions of
the system that have a correct behavior.

Hence, verifying that M satisfies ϕ is reduced to checking whether:

L(M) ⊆ L(ϕ)

To this end, another approach can be followed in order to check the language inclusion. Such
approach is based on the use of L(¬ϕ) rather than L(ϕ), and takes advantage of the fact that:

L(M) ⊆ L(ϕ)↔ L(M) ∩ L(¬ϕ) = ∅

45

Figure 5.1: Model checking outline

Hence, model checking of ϕ on M can be performed by first negating ϕ, then building a Büchi
automaton B¬ϕ from the latter and finally carrying out the intersection between M and B¬ϕ and
checking the emptiness of language defined by the result of the intersection. Figure 5.1 shows a
diagram with the steps of the model checking process. Note that the output of the model checker
will be either a ’Yes’ or a ’No’ along with a counterexample. Such counterexample will be helpful
when estimating the possible causes of the violation of the property checked.

For infinite-state systems however, there is a variation in the last step of the process, since the
described emptiness test cannot be applied. Given that infinite-state systems do not provide
an explicit representation of the system, the emptiness test on the intersection result would not
give correct results, since concatenations of several transitions might not be feasible. Thus, other
methods need to be used. Further information will be provided in the following sections, which
describe the steps followed to carry out the verification of properties of infinite-state computing
systems.

5.1 Büchi Automaton intersection

The natural way to intersect two automatons A1 and A2 is to construct an automaton A whose
state space is the cross product of the state spaces of A1 and A2, and let both automatons pro-
cess the input simultaneously in order to create the transitions of A. For finite words, the input
is accepted if each copy can generate a run which reaches an accepting state at the end of the word.

For infinite words it is not that straight forward, since the acceptance condition defined over Büchi
automata requires visiting accepting states infinitely often. Therefore, there is no guarantee that
runs on A1 and A2 will ever visit accepting states simultaneously, as seen in [35].

Example 1. Consider automatons A1 and A2 representing languages L1 = (a+ ba)w and
L2 = (a∗ba)w, respectively. Figure 5.2 shows such automatons and Figure 5.3 shows its intersection
as regular automata. As can be seen, state 11 is never reached, which leads to an incorrect
behavior, since states 1 are infinitely often visited in A1 and A2, and A should reflect that.

46

0start 1

a
a

b

0start 1

a
b

a

Figure 5.2: Büchi automaton A1 (left) and A2 (right)

00start 10

01 11

a

b

b

a

Figure 5.3: Büchi automaton A representing A1 ∩ A2 (regular intersection)

Therefore, in order to obtain an automaton that accepts runs accepted by both A1 and A2, it is
necessary to follow a different approach. Such approach will start by letting A1 process the input
until it reaches an accepting state. After that, it will focus the execution on A2 until it reaches
an accepting state, and if it does, it will change the focus to A1 again, and so on.
So, in order to visit infinitely often an accepting state in A2, it must visit infinitely often some
accepting state also in A1 and viceversa. This will make sure that the resulting automaton accepts
infinite runs accepted by both A1 and A2.

Formally, let A1 = < Q1,Σ,δ1,I1,F1 > and A2 = < Q2,Σ,δ2,I2,F2 >, then A = A1 ∩ A2 =
< Q,Σ,δ,F >, where:

Q = Q1 ×Q2 × {1, 2}

I = I1 × I2 × {1, 2}

F = F1 ×Q2 × {1}

Given states s1, s′1 from A1 and states s2, s′2 from A2, transitions in A are defined as follows:

< s1, s2, 1 >
a−−−−→ < s′1, s

′
2, 1 > iff s1

a−−−−→ s′1 and s2
a−−−−→ s′2 and s1 6 ε F1

< s1, s2, 1 >
a−−−−→ < s′1, s

′
2, 2 > iff s1

a−−−−→ s′1 and s2
a−−−−→ s′2 and s1 ε F1

< s1, s2, 2 >
a−−−−→ < s′1, s

′
2, 2 > iff s1

a−−−−→ s′1 and s2
a−−−−→ s′2 and s1 6 ε F2

< s1, s2, 2 >
a−−−−→ < s′1, s

′
2, 1 > iff s1

a−−−−→ s′1 and s2
a−−−−→ s′2 and s1 ε F2

Example 2. Following Example 1, the correct Büchi automaton representing the intersection
between A1 and A2 is shown in Figure 5.4. Unreachable states are left for better understanding
of the result.

47

00_1start 10_1 10_2 00_2

01_1 01_211_1 11_2

a a

a b

a
a

aa

Figure 5.4: Büchi automaton A representing A1 ∩ A2

Once the intersection has been defined for arbitrary automatons, we introduce the special case
of either F1 = Q1 or F2 = Q2 (i.e. one of the automatons only has accepting states). In this
case, we only need to make sure that the resulting automaton accepts infinite runs accepted by
the automaton which has some non-accepting states.

Intuitively, if an automaton only has accepting states, it will accept any infinite run. Therefore,
when intersecting such automaton with an arbitrary one, the former will restrict the acceptance
condition of the resulting automaton.
Thus, if F2 = Q2 for example, we will have:

Q = Q1 ×Q2

I = I1 × I2

F = F1 ×Q2

And transitions will be defined such that given states s1, s′1 from A1 and states s2, s′2 from A2:

< s1, s2 >
a−−−−→ < s′1, s

′
2 > iff s1

a−−−−→ s′1 and s2
a−−−−→ s′2

Example 3. Following Example 1, consider A′2 is A2 with only accepting states. Figure 5.5 shows
how the intersection between A1 and A′2 would be in that case.

00start 10

01 11

a

b

b

a

Figure 5.5: Büchi automaton A representing A1 ∩ A′2

For the intersection of a transition system with a Büchi automaton, the same approach is followed,
but transitions of the final model will have the assignments found in the transitions of the transition

48

system that were combined with those of the Büchi automaton. Therefore, the final result will be
neither a Büchi automaton nor a transition system, but a combination of both.

Example 4. Consider the computing system represented by the program shown below, and the
LTL property ϕ = (j > i) U (j = i), which we want to verify on the system. The negation of
the LTL property is ¬ϕ = (¬(j > i) R ¬(j = i)). Figure 5.6 shows the Büchi automaton for ¬ϕ,
and Figures 5.7 and 5.8 show the transition systems for the program and the intersection between
such transition system and the Büchi automaton, respectively. The results shown were obtained
with the use of our tools.

int main() {

int a;

int n,m;

assume(n<=m);

int j=m;

int i=0;

ltl_property((j > i) U (j = i));

while (j>=0){

j--;

i++;

}

}

Figure 5.6: Computing system (left) and Büchi automaton for the formula (j > i) U (j = i)
(right)

As can be seen in Figure 5.8, the resulting transition system has transitions holding both conditions
and assignments, and some of its states are accepting. This transition system represents all the
executions of the program that satisfy ¬ϕ, if any.

49

Figure 5.7: Transition system for the program

50

Figure 5.8: Intersection between transition system and Büchi automaton

Finally, once the intersection is performed, it will be necessary to check whether the result deter-
mines that the system verifies the property or not.

5.2 Verification

We aim to verify LTL properties on infinite state systems, hence the methods that we will use do
not rely on an explicit representation of the state space. Rather than that, we will exploit the
expressive power transition systems.
The use of such representations implies that methods previously described for the emptiness check

51

(see Section 4.3) cannot be applied, since they could lead to unfeasible accepting traces.

Example 1. Consider the transition system in Figure 5.9 obtained from the program shown.
If we considered location l1 as an accepting state, the Nested DFS algorithm would determine that
there always exists an infinite execution that can go through l1 infinitely often (i.e. an accepting
trace). Nevertheless, it can be seen that for instance, with values x < 0 and y ≥ 1, there are no
infinite traces and, in fact, this transition system does not have any infinite run.

int main()

{

int x=undet(),y=undet(),z=undet();

l1: while (y>=1) {

x--;

l2: while (y<z) {

x++; z--;

}

y=x+y;

}

}

Figure 5.9: Transition System example

Therefore, instead of performing the emptiness test, one possible adaptation for infinite-state
systems could be to use methods based on the notion of program termination [23, 36], which will
allow us to find feasible infinite traces in the model. However, the application of such methods is
out of the scope of this project, since we aimed to provide a result from which a program analysis
tool such as V eryMax could yield a final result .

52

Chapter 6

Conclusions

We have developed tools which allow us to check LTL satisfiability of formulas coming from logic
programs. Moreover, our tools also provide models which can be fed to program analysis methods
in order to check the satisfiability of LTL properties on infinite-state systems.
Therefore, our implementation provides models for LTL formulas in the shape of Büchi automata,
and allows the combination of such automatons with models representing computing systems.

The satisfiability check for logic programs is performed by analyzing the Büchi automatons ob-
tained from the formulas representing them. This method yields good results when dealing with
small formulas, but becomes impractical as the sizes of the formulas increase.
The same applies to the Büchi automatons obtained from the combination of a system model
and the Büchi automaton representing an LTL property. Since combining the models means per-
forming an automaton intersection, the size of the result dramatically increases as the models grow.

Hence, our tools efficiently generate models for many LTL formulas used in practice. However,
further research should be made in order to find methods that optimize the generation of Büchi
automata, thereby making some larger LTL formulas treatable.

53

Chapter 7

Future work

As the first step, we plan to test the performance of our tools on more examples coming from
[20] and compare the behaviour of our solver with the one developed by them, which is based on
tableaux, a completely different technique.

On a second step, another topic for future research is the application of program analysis methods
on the results obtained from our tools. These techniques will have to be adapted to the models
we provide, namely Büchi Automata. Hence, further work needs to be done in order to analyze
the Büchi automata and provide concluding results on the satisfiability of LTL properties on com-
puting systems.

Furthermore, given that the size of the generated Büchi automata can be exponential in the
size of the formula they represent, further research could be carried out in order to find methods
to optimize the size of the Büchi automata created.

54

Bibliography

[1] J. A. Abraham. Introduction to formal to verification. Lecture notes. URL http://www.

cerc.utexas.edu/~jaa/360r/lectures/22-1.pdf. Last visited 2015-03-19.

[2] Mordechai Ben-Ari. A primer on model checking. In ACM Inroads, pages 40–47, March 2010.

[3] Christel Baier and Joost Pieter Katoen. Principles of Model Checking. The MIT Press, April
2008.

[4] E A Emerson and E M Clarke. Using branching time temporal logic to synthesize synchro-
nization skeletons. Science of Computer programming, 2(3):241–266, 1982.

[5] J.P. Quielle and J. Sifakis. S. Specification and verification of concurrent systems in cesar.
Lecture Notes in Computer Science, 137, 1981.

[6] Edmund M. Clarke. Symbolic model checking with bdds. Lecture notes. URL http://www.

cs.cmu.edu/~emc/15-820A/reading/lecture_1.pdf. Last visited 2015-03-19.

[7] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking
using satisfiability solving. In Formal Methods in System Design, page 2001. Kluwer Academic
Publishers, 2001.

[8] Automata theory. Lecture notes. URL https://www.tu-braunschweig.de/Medien-DB/isf/

sse/08_temporalmc_vl.pdf. Last visited 2015-03-19.

[9] Stéphane Demri and Paul Gastin. Specification and verification using temporal logics, 2009.

[10] Ina Schaefer. Model checking with temporal logic. Lecture notes, . URL https://www.

tu-braunschweig.de/Medien-DB/isf/sse/08_temporalmc_vl.pdf. Last visited 2015-03-
14.

[11] M Vardi and P Wolper. An automata-theoretic approach to automatic program verification.
In 1st Symposium in Logic in Computer Science (LICS), 1986.

[12] Alexandre Duret-lutz and Denis Poitrenaud. SPOT: An Extensible Model Checking Library
Using Transition-Based Generalized Büchi Automata. In Modeling, Analysis, and Simulation
On Computer and Telecommunication Systems, pages 76–83, 2004. doi: 10.1109/MASCOT.
2004.1348184.

[13] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improving translation
of ltl formulae to büchi automata. In In Proc. FORTE’02., volume 2529 of LNCS, pages 308–
326. Springer, 2002.

55

http://www.cerc.utexas.edu/~jaa/360r/lectures/22-1.pdf
http://www.cerc.utexas.edu/~jaa/360r/lectures/22-1.pdf
http://www.cs.cmu.edu/~emc/15-820A/reading/lecture_1.pdf
http://www.cs.cmu.edu/~emc/15-820A/reading/lecture_1.pdf
https://www.tu-braunschweig.de/Medien-DB/isf/sse/08_temporalmc_vl.pdf
https://www.tu-braunschweig.de/Medien-DB/isf/sse/08_temporalmc_vl.pdf
https://www.tu-braunschweig.de/Medien-DB/isf/sse/08_temporalmc_vl.pdf
https://www.tu-braunschweig.de/Medien-DB/isf/sse/08_temporalmc_vl.pdf

[14] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at ltl model checking. In FORMAL
METHODS IN SYSTEM DESIGN, pages 415–427. Springer-Verlag, 1994.

[15] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. Nusmv: a new
symbolic model checker. International Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000. ISSN 1433-2779. doi: 10.1007/s100090050046. URL http://dx.doi.

org/10.1007/s100090050046.

[16] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Mu noz, Sam Owre, Harald Rueß,
John Rushby, Vlad Rusu, Hassen Saïdi, N. Shankar, Eli Singerman, and Ashish Tiwari. An
overview of SAL. In C. Michael Holloway, editor, LFM 2000: Fifth NASA Langley Formal
Methods Workshop, pages 187–196, Hampton, VA, jun 2000. NASA Langley Research Center.
URL http://www.csl.sri.com/papers/lfm2000/.

[17] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using partial
order techniques, 1998.

[18] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and Moshe Y.
Vardi. Proving that programs eventually do something good. SIGPLAN Not., 42(1):
265–276, January 2007. ISSN 0362-1340. doi: 10.1145/1190215.1190257. URL http:

//doi.acm.org/10.1145/1190215.1190257.

[19] Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld, and Andreas Podelski. Fairness
modulo theory: A new approach to ltl software model checking.

[20] Marco Comini, Laura Titolo, and Alicia Villanueva. Abstract diagnosis for tccp using a linear
temporal logic. Theory and Practice of Logic Programming, 14:787–801, 7 2014. ISSN 1475-
3081. doi: 10.1017/S1471068414000349. URL http://journals.cambridge.org/article_

S1471068414000349.

[21] Albert Oliveras Enric Rodríguez-Carbonell Marc Brockschmidt, Daniel Larraz and Albert
Rubio. Compositional safety verification with max-smt. URL http://www.cs.upc.edu/

~albert/VeryMax.html. Submitted.

[22] Keijo Ruohonen. Formal languages. Lecture notes. URL http://math.tut.fi/~ruohonen/

FL.pdf. Last visited 2015-06-21.

[23] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert
Rubio. Proving non-termination using max-smt. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 779–796, 2014. doi: 10.1007/
978-3-319-08867-9_52. URL http://dx.doi.org/10.1007/978-3-319-08867-9_52.

[24] Kristin Y. Rozier and Moshe Y. Vardi. Ltl satisfiability checking. In Proceedings of the 14th
International SPIN Conference on Model Checking Software, pages 149–167, Berlin, Heidel-
berg, 2007. Springer-Verlag. ISBN 978-3-540-73369-0. URL http://dl.acm.org/citation.

cfm?id=1770532.1770548.

[25] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In
Proceedings of 24 IEEE symposium on foundation of computer science, pages 185–194, 1983.

56

http://dx.doi.org/10.1007/s100090050046
http://dx.doi.org/10.1007/s100090050046
http://www.csl.sri.com/papers/lfm2000/
http://doi.acm.org/10.1145/1190215.1190257
http://doi.acm.org/10.1145/1190215.1190257
http://journals.cambridge.org/article_S1471068414000349
http://journals.cambridge.org/article_S1471068414000349
http://www.cs.upc.edu/ ~albert/VeryMax.html
http://www.cs.upc.edu/ ~albert/VeryMax.html
http://math.tut.fi/~ruohonen/FL.pdf
http://math.tut.fi/~ruohonen/FL.pdf
http://dx.doi.org/10.1007/978-3-319-08867-9_52
http://dl.acm.org/citation.cfm?id=1770532.1770548
http://dl.acm.org/citation.cfm?id=1770532.1770548

[26] Marco Daniele, Fausto Giunchiglia, and MosheY. Vardi. Improved automata generation
for linear temporal logic. In Nicolas Halbwachs and Doron Peled, editors, Computer Aided
Verification, volume 1633 of Lecture Notes in Computer Science, pages 249–260. Springer
Berlin Heidelberg, 1999. ISBN 978-3-540-66202-0. doi: 10.1007/3-540-48683-6_23. URL
http://dx.doi.org/10.1007/3-540-48683-6_23.

[27] Dimitra Giannakopoulou and Flavio Lerda. Efficient translation of ltl formulae into büchi
automata, 2001.

[28] Pierre Parutto. Improving degeneralization in spot. Technical report, 2011. URL https:

//www.lrde.epita.fr/dload/20110704-Seminar/parutto1111_degeneralization_

report.pdf. Last visited 2015-06-21.

[29] Stefan Schwoon and Javier Esparza. Comparison of algorithms for checking emptiness on
büchi automata. In Petr Hliněný, Václav Matyáš, and Tomáš Vojnar, editors, Proceedings of
the 5th Annual Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science (MEMICS’09), Znojmo, Czech Republic, November 2009.

[30] Andreas Gaiser and Stefan Schwoon. A note on on-the-fly verification algorithms. In Conf.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2005.

[31] Wikipedia. DFS. Depth first search. URL http://en.wikipedia.org/wiki/Depth-first_

search. Last visited 2015-03-14.

[32] G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In Proceedings of
the 2nd Spin Workshop, Rutgers University, New Jersey, USA, 1996.

[33] Albert Oliveras Enric Rodrıguez-Carbonell Albert Rubio, Daniel Larraz. Program analysis
using smt and max-smt. In LOPSTR, 2013. URL https://www.cs.upc.edu/~albert/

papers/LOPSTR-Slides.pdf. Last visited 2015-06-21.

[34] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert
Rubio. The barcelogic smt solver. In Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, volume 5123 of Lecture Notes in Computer Science, pages 294–298. Springer
Berlin Heidelberg, 2008. ISBN 978-3-540-70543-7. doi: 10.1007/978-3-540-70545-1_27. URL
http://dx.doi.org/10.1007/978-3-540-70545-1_27.

[35] Ina Schaefer. Formal modeling with linear temporal logic. Lecture notes, . URL https://www.

tu-braunschweig.de/Medien-DB/isf/sse/propositionalandtemporallogic_vl.pdf.
Last visited 2015-06-21.

[36] D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Proving termination of im-
perative programs using max-smt. In Proc. FMCAD, 2013.

57

http://dx.doi.org/10.1007/3-540-48683-6_23
https://www.lrde.epita.fr/dload/20110704-Seminar/parutto1111_degeneralization_report.pdf
https://www.lrde.epita.fr/dload/20110704-Seminar/parutto1111_degeneralization_report.pdf
https://www.lrde.epita.fr/dload/20110704-Seminar/parutto1111_degeneralization_report.pdf
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
https://www.cs.upc.edu/~albert/papers/LOPSTR-Slides.pdf
https://www.cs.upc.edu/~albert/papers/LOPSTR-Slides.pdf
http://dx.doi.org/10.1007/978-3-540-70545-1_27
https://www.tu-braunschweig.de/Medien-DB/isf/sse/propositionalandtemporallogic_vl.pdf
https://www.tu-braunschweig.de/Medien-DB/isf/sse/propositionalandtemporallogic_vl.pdf

	Abstract
	Resumen
	Resum
	Introduction
	Motivation
	Context
	Automated formal verification
	Automata theory

	State of the art
	LTL model checking for finite-state systems
	LTL model checking for infinite-state systems

	Project contribution
	Project outline

	Project management
	Objectives
	Obstacles
	Scope
	Methodology

	Planning
	Description of tasks
	Temporal planning
	Deviations
	Resources

	Budget
	Direct costs
	Indirect costs
	Unforeseen costs
	Total budget

	Sustainability analysis
	Economic sustainability
	Environmental sustainability
	Social sustainability

	Preliminaries
	Linear temporal logic
	Formal languages and automata
	Finite Automaton
	Büchi automaton
	Transition-based generalized Büchi automaton

	Transition System
	Finite-state systems
	Infinite-state systems

	Satisfiability of LTL formulas
	Parsing the formulas
	Automaton transformation
	Formula rewriting
	LTL to TGBA
	Degeneralization

	Emptiness test
	Experiments
	LTL over linear integer arithmetic expressions

	Verification of LTL properties of computing systems
	Büchi Automaton intersection
	Verification

	Conclusions
	Future work
	Bibliography

