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Abstract – We study the 2d phase transition of a driven-dissipative system of exciton-polaritons
under non-resonant pumping. Stochastic calculations are used to investigate the Berezinskii-
Kosterlitz-Thouless-like phase diagram for experimentally realistic parameters, with a special
attention to the non-equilibrium features.

Phase transitions are ubiquitous in nature, both within1

the classical and quantum realms. Dimensionality and2

symmetry are crucial ingredients for the determination3

of the types of phase transition (PT) that a given sys-4

tem may undergo. In a 3d system at thermal equilib-5

rium, Bose particles can exhibit off-diagonal long range6

order (ODLRO) when driven by a control parameter be-7

low a specific critical temperature. This phenomenon is8

associated with the appearance of a Bose-Einstein Con-9

densate (BEC), predicted to occur in both uniform and10

confined systems [1]. In 2d systems, instead, the pres-11

ence of thermal fluctuations destroys ODLRO, compro-12

mising the existence of a possible PT to an ordered state13

at any finite temperature [2]. Nevertheless, it has been14

shown that a different kind of PT to a quasi-condensate15

state may still occur, with the decay of correlation func-16

tions going from an exponential to a much slower algebraic17

law [3, 4]. This Berezinskii-Kosterlitz-Thouless (BKT)18

transition can be pictorially understood in terms of the19

thermally activated vortices, which change their spatial20

distribution when crossing the critical temperature: at21

high-temperature they proliferate and are freely moving,22

at low temperatures they are much less numerous and are23

bound in pairs, so their detrimental impact on the coher-24

ence gets dramatically suppressed.25

The physics becomes even more intriguing when one26

moves away from isolated systems to driven-dissipative 27

ones [5–7], whose stationary state is no longer determined 28

by thermal equilibrium, but by a non-equilibrium balance 29

of driving and dissipation. A most celebrated platform 30

to study this physics is based on exciton-polaritons in 31

semiconductor microcavities, namely bosonic quasiparti- 32

cles that arise from the strong coupling between light and 33

matter excitations. These quasiparticles have a finite life- 34

time, which calls for some external pumping to continu- 35

ously compensate for losses [5]. As in standard equilibrium 36

BEC, for sufficiently high densities a macroscopic fraction 37

of the polariton gas condenses into a single momentum 38

state and order develops across the whole finite sample 39

[8]. In spite of this apparent simplicity, the full character- 40

ization of the PT and of its critical fluctuations in terms 41

of universality classes is still at the centre of an intense 42

debate, in particular given their intrinsically 2d nature. 43

A strong attention has been devoted, both experimentally 44

[1,7,9–11] and theoretically [3,12–14] to assess up to what 45

point this PT can be described in terms of the standard 46

BKT theory of equilibrium systems. From the early days 47

of this field, dramatic consequences of non-equilibrium ef- 48

fects have been highlighted in polariton systems, from the 49

non-trivial shape of the condensate in real and momentum 50

spaces [15,16] to the diffusive Goldstone mode in the col- 51

lective excitation spectrum of polariton condensates with 52
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small polariton lifetime [5, 17]. Furthermore, the possi-53

bility of breaking BKT algebraic decay of coherence in54

the quasi-ordered phase at very large distances has also55

been pointed out in [18]. Except for specific cases [19],56

this occurs however on length scales well beyond the ex-57

perimental possibilities. Still, it has been argued that for58

realistic system sizes the non-equilibrium character is re-59

sponsible for an algebraic decay of the spatial coherence60

with an exponent exceeding the upper bound of 0.25 of61

equilibrium BKT theory [19,20] and for the ratio between62

spatial and temporal correlation exponents being equal to63

2 [17,21] instead of 1 as in the case of an equilibrium-like64

system [9].65

These theoretical predictions suggest that measure-66

ments of temporal coherence are a key ingredient to char-67

acterize the nature of the PT: while early works measured68

exponential or Gaussian decays of temporal coherence, not69

compatible with a BKT transition [9, 20, 22–25], and pos-70

sibly related to single-mode physics [26], power-law de-71

cay of temporal correlations have been reported in recent72

works with improved samples [9]. Since the long polari-73

ton lifetime in Ref. [9] exceeds other characteristic time74

scales, one can reasonably assume the system to be in an75

equilibrium-like regime [9,11]. On the other hand, to date76

there is no direct numerical or experimental measurement77

of a really non-equilibrium regime where the temporal and78

spatial algebraic exponents are different.79

Motivated by these open questions, in this work we un-80

dertake a detailed numerical study of the PT exhibited by81

an incoherently pumped (IP) 2d polariton fluid under real-82

istic experimental parameters. We numerically investigate83

the non-equilibrium steady-state (NESS) phase diagram84

as a function of the pump power and we characterize it in85

terms of the spatial and temporal correlations, the spec-86

trum of the collective excitation modes and the spatial87

distribution of topological defects. Our predictions shine88

new light on fundamental properties of the PT and on its89

non-equilibrium nature.90

Theoretical modelling. – We describe the collec-
tive dynamics of the polariton fluid through a general-
ized stochastic Gross-Pitaevskii equation for the 2d po-
lariton field as a function of the position r = (x, y) and
time t, restricting our investigation here to the simplest
case of a spatially homogeneous system with periodic
boundary conditions. The equation describes the effec-
tive dynamics of the incoherently-pumped lower polariton
field ψ = ψ(r, t) [5, 27] and includes the complex relax-
ation processes by means of a frequency-selective pump-
ing source [28–30]. The model, which can be derived
from both truncated Wigner (TW) and Keldysh field the-
ory [5, 17] reads (h̄ = 1):

idψ =

[
−∇

2

2m
+g|ψ|2−+

i

2

(
P

1 +
|ψ|2−
ns

−γ
)

+
1

2

P

Ω

∂

∂t

]
ψ dt+dW

(1)

where m is the polariton mass, g is the polariton-polariton91

interaction strength, γ is the polariton loss rate (inverse 92

of the polariton lifetime), P the strength of the incoher- 93

ent pumping providing the gain, ns is the saturation den- 94

sity, and Ω sets the characteristic scale of the frequency- 95

dependence of gain. The renormalized density |ψ|2− ≡ 96(
|ψ|2 − 1/(2dV )

)
includes the subtraction of the Wigner 97

commutator contribution (where dV = a2 is the volume 98

element of our 2d grid of spacing a). The zero-mean 99

white Wiener noise dW fulfils 〈dW (r, t)dW (r′, t)〉 = 0, 100

〈dW ∗(r, t)dW (r′, t)〉 = [(P + γ)/2]δr,r′dt, where the non- 101

linear density term is neglected since |ψ|2/ns � 1. To 102

describe the physics of the model we start by consider- 103

ing Eq. (1) at a mean-field (MF) level, i.e. in the ab- 104

sence of the Wiener noise.As widely discussed in the litera- 105

ture [27,31], for the case of a frequency-independent pump 106

(Ω =∞), a condensate with density |ψSS|2 = ns (P/γ − 1) 107

is expected to appear for pump strengths above threshold 108

P > PMF = γ and to grow linearly in P with a slope 109

determined by the saturation density ns. For a frequency- 110

selective pump (Ω 6=∞), the NESS density loses its linear 111

dependence on P , and takes the slightly more complicated 112

form |ψSS|2 = ns

[
P/
(
Pg|ψSS|2/Ω + γ

)
− 1
]

[31]. 113

The effect of small excitations around the bare conden-
sate steady-state solution can be described by means of the
linearized Bogoliubov approximation [1,5]. By linearizing
the deterministic part of Eq. (1) around the steady state
solution ψ(r, t) = ψSS + δψ(r, t)e−iωt we obtain a pair of
coupled Bogoliubov equations for the field δψ(r, t) and its
complex conjugate δψ∗(r, t). Thanks to translational in-
variance, the different k-modes are decoupled, so we can
move to Fourier space and define a k-dependent Bogoli-
ubov matrix Lk [29, 31],

Lk =

(
Λ(εk + µ− iΓ) Λ(µ− iΓ)
Λ∗(−µ− iΓ) Λ∗(−εk − µ− iΓ)

)
(2)

with Γ = γ (P − γ) /2P , the free-particle dispersion
εk = k2/2m, the interaction energy µ = g|ψSS|2 and

Λ = (γa + iγb) with γa = 1/[1 + (P/(2Ω))
2
] and γb =

−Pγa/2Ω. The diagonalization of Lk eventually leads to
the double-branched excitation spectrum

ω±k = −i [γaΓ− γb(εk + µ)]±√
Γ2γa2 + γb2µ2 − 2Γγaγb (εk + µ)− γa2εk (εk + 2µ).

(3)

At high momenta k this spectrum recovers a single- 114

particle behaviour with parabolic dispersion, while the 115

frequency-dependence of pumping results in an increas- 116

ing linewidth for growing k. For small k → 0, the Gold- 117

stone mode describing long-wavelength twists of the con- 118

densate phase and associated to the spontaneously broken 119

U(1) symmetry exhibits the diffusive behaviour typical of 120

driven-dissipative systems [5], rather than the sonic one 121

characteristic of their equilibrium counterpart [1].122
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Fig. 1: Real part (blue) and imaginary part (red) of the Bo-
goliubov excitation spectrum (3) calculated for the parameters
of the case IPΩ=50 (whose density is plotted in Fig. 2 as a blue
curve), but where the relative pump strength takes now the val-
ues P/PMF = 2, 6, 10, 14, 18, 22, increased as indicated by the
colour gradients. Corresponding real part for P/PMF = 1.06
is shown in Fig. 5(iv) as a blue curve.

This physics is illustrated in Fig. 1, where the prediction
of Eq. (3) is plotted for increasing values of the pump
strength P . The value of the critical momentum

kc =

√√√√2m

[
−Γγb
γa
− µ+

√
(Γ2 + µ2) (γa2 + γb2)

γa

]
(4)

separating the diffusive behaviour from the sonic one at123

higher k increases as the system moves away from the124

threshold point PMF.125

The non-equilibrium Berezinskii-Kosterlitz-126

Thouless Phase diagram. – We simulate the system127

dynamics by numerically integrating in time the stochas-128

tic differential equations for the polariton field shown129

in (1); numerical details are reported in [32]. In Fig. 2 we130

show the typical driven-dissipative BKT PT-diagram of131

an incoherently-pumped polariton condensate, in which132

the different observables are shown as a function of the133

pump strength P . This is characterized by two distinct134

phases: a) a disordered phase displaying a low density of135

polaritons, an exponential decay of spatial correlations136

and a plasma of unbound free vortices; b) a superfluid137

phase displaying a significant density of polaritons,138

an algebraic decay of spatial correlations and a low139

density of vortices, mostly bound in vortex-antivortex140

pairs [9, 19,30].141

Our first step in the investigation of the IP polariton142

PT was to clarify the impact of fluctuations introduced143

by the stochastic noise on the average density. The mean-144

field (stochastic) density |ψ|2 =
∫
|ψ(r)|2dr/LxLy [|ψ|2 =145

|ψ|2−] is calculated by evolving Eq. (1) without (with) the146

contribution of the Wiener noise. These two curves are147

plotted in the inset of Fig. 2 as dashed black and solid 148

blue curves, respectively. Contrary to the mean-field case 149

where |ψMF| = 0 in the disordered phase P < PMF, within 150

the stochastic framework the density field is always non- 151

zero, independently of the value of the pump P 1. 152

In contrast to the clear threshold shown by the MF 153

curve, the smooth increase of the density with pump 154

strength shown by the stochastic theory requires a more 155

involved determination of the critical point. As done in 156

previous works [19] – and discussed in subsequent sec- 157

tions – our procedure to precisely determine the critical 158

point involves the functional form of the decay of corre- 159

lation functions, the behaviour of vortices in the vicin- 160

ity of the criticality and the appearance of the diffusive 161

Goldstone mode in the spectrum. Interestingly, we note 162

in Fig. 2 that fluctuations are responsible for an upward 163

shift of the critical point PBKT (vertical blue line) with re- 164

spect to the MF value PMF (vertical gray line). In order to 165

unravel the dependence of PBKT on the physical param- 166

eters ns and Ω, this figure shows the phase diagram for 167

three different choices of parameters, listed in the caption 168

of the figure. For each case analysed, the critical point is 169

highlighted with a vertical coloured thick line. As general 170

trends, we find that stronger fluctuations in higher modes 171

(Ω → ∞) and smaller saturation densities (ns → 0) lead 172

to a larger shift of PBKT with respect to the mean-field 173

PMF. 174

This feature can be understood by fixing one of the two 175

parameters and focusing on the other. On the one hand, 176

for a frequency-independent pump (Ω = ∞, green and 177

violet lines), we note that increasing ns makes the BKT 178

threshold PBKT to shift closer to PMF: the slope of the 179

total density increases with ns, so the critical density is 180

reached at lower values of the pump strength. On the 181

other hand, for a fixed value of ns = 500µm−2 (blue and 182

violet curves), the presence of a frequency-selective pump 183

leads to an effective thermal population of less field modes. 184

As a consequence, a weaker pump is sufficient to concen- 185

trate a macroscopic population in the lowest modes, which 186

has the effect of shifting the threshold point back towards 187

the mean-field value PMF. 188

As expected in a BKT-like picture, the IP phase tran- 189

sition can be pictorially understood as being mediated by 190

the unbinding of vortex-anti-vortex pairs into a plasma of 191

free vortices [18, 19]. In Fig. 2 the NESS average num- 192

ber of topological defects 〈Nv〉 is plotted as a thick red 193

line for the parameters of the IPΩ=50 case. Details on the 194

procedure we adopt to extract Nv are reported in [32] as 195

well as the illustrations of three exemplary configurations 196

of vortices across the BKT phase diagram. The low-pump 197

disordered phase is characterized by a large number of free 198

1In the disordered phase, fluctuations are responsible for building
up a small but not negligible density of incoherent polaritons, the
only zero-density point coinciding with a vanishing pump strength
P = 0. In the quasi-ordered phase the density grows considerably
and asymptotically approaches the mean-field prediction.
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vortices which are free to proliferate. As the pump power 199

is increased and approaches the threshold point, the num-200

ber of vortices 〈Nv〉 ∝ ξ−1/2 starts to decay as expected201

for a continuum PT with diverging correlation length ξ, a202

detailed study of which is presented in Ref. [33]. At the203

critical point, around which the process of vortices pair-204

ing starts to take place, the average number of vortices205

is still non-zero but these are mostly grouped in vortex-206

antivortex pairs. Due to vortex binding and annihilation207

processes, 〈Nv(P )〉 shows a severe drop right above the208

critical point and rapidly decreases to zero. Deep in the209

quasi-condensed phase when P � PBKT, as the stochastic210

density grows and onset of coherence appears, the dynam-211

ical annihilation processes are severe and eventually leave212

the system free of defects.213

Spatial-temporal coherence and the critical re-214

gion. – In this section we investigate the long-distance,215

late-time decay of the spatial and temporal first-order cor-216

relation functions, g(1)(∆r) and g(1)(∆t) respectively. We217

focus here on the results for the IPΩ=50 case; the com-218

plementary study for the IPns=1500
Ω=∞ case with a frequency-219

independent pump is illustrated in [32]. Within our semi-220

classical model, the spatial and temporal two-point first221

order correlation functions are defined, respectively, as222

g(1)(∆r) =
〈ψ∗(r0 + ∆r, t)ψ(r0, t)〉√
〈|ψ(r0 + ∆r, t)|2〉〈|ψ(r0, t)|2〉

, (5)

g(1)(∆t) =
〈ψ∗(rc, t0)ψ(rc, t0 + ∆t)〉√
〈|ψ(rc, t0)|2〉〈|ψ(rc, t0 + ∆t)|2〉

, (6)

and are calculated at a sufficiently late time t = tSS223

at which the system has reached its NESS, and with224

rc = (Lx/2, Ly/2) being the central point of the spatial225

grid. The numerical results for the spatial and temporal226

correlations are illustrated in panels a) and b) of Fig. 3,227

respectively.228

Inspired by earlier works [19,34], we characterize the be-229

haviour of the steady-state correlation functions as func-230

tion of the pump strength P . In Fig. 3 we show the tran-231

sition from an exponential decay g(1) ∼ e−r/ξ in the dis-232

ordered phase, to a power-law decay g(1) ∼ r−α in the233

quasi-ordered phase, as expected for the spatial correla-234

tion function of an equilibrium BKT transition. The same235

behaviour is found for the temporal correlation function2.236

In order to identify whether a given correlation function is237

characterised by either exponential or algebraic decay, we238

have fitted each curve with both functions, paying partic-239

ular attention to ensure that all computational results are240

correctly converged within the spatial and temporal win-241

dows selected for the fitting procedure [32]. We have then242

calculated the Root-mean-square deviation (RMSD) of the243

residuals of the fits within the fitting window selected and244

2Note that in our simulations the accessible time duration are
not long enough to observe the finite-size-induced Schawlow-Townes
decay [26,35].
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Fig. 2: Non-equilibrium steady-state phase diagram show-
ing mean-field (MF) and averaged stochastic density (sGPE)
(dashed and solid coloured curves, respectively) in logarithmic-
linear scale. For each set of parameters, we associate a
colour. Blue (labelled as IPΩ=50): Ω = 50γ = 11.09ps−1 and
ns = 500µm−2. Green (labelled as IPns=1500

Ω=∞ ): Ω = ∞ and
ns = 1500µm−2. Violet (labelled as IPΩ=∞): Ω = ∞ and
ns = 500µm−2. For each set of parameters, the BKT thresh-
old is shown as a vertical coloured line. The vertical grey line
shows the mean-field threshold PMF = 1. The average number
of vortices 〈Nv〉 for the IPΩ=50 case is depicted as a red curve.
The inset shows comparison between the mean-field (dashed
black line) and the averaged stochastic density (blue solid line)
for the IP(Ω=50) case, plotted in linear-linear scale.

we have selected the fit that minimizes the RMSD [32]. In245

Fig. 3 we superimpose on top of each correlation function246

g(1), the most accurate fitting curve, represented by red 247

or blue dashed lines in the exponential or power-law cases, 248

respectively. 249

Fig. 4(a) shows how we characterise the critical region
by means of the RMSD ratios of the fits of the spatial (red
solid curve) and temporal (dashed blue curve) correlators,
namely

σs =
RMSDpow

s

RMSDexp
s

, σt =
RMSDpow

t

RMSDexp
t

. (7)

By visually comparing the residuals of the exponential 250

and power-law fits on this figure, one can infer the po- 251

sition of the critical point as the point where the two 252

curves go through 1. This point indicates the exponential- 253

to-power-law transition, which takes place for the same 254

PBKT ∼ 1.0325 (vertical red solid line in Fig. 4) for both 255

spatial and temporal correlation functions3. 256

3 In both Fig. 3 and Fig. 4(a), there exists an intermediate regime
in an interval of PBKT, where the curves are neither exactly fitted
by a power-law or an exponential form. Therefore, we refer to the
critical region as the portion of the phase diagram located in between
the last correlator showing “clear” exponential decay (lower bound)
and the first exhibiting “clear” power-law decay (upper bound). In
our case, these lower and upper bounds are located at P = 1.032 and
P = 1.0338, respectively. In both Figs. 2 and 4, the critical region
is highlighted with a blue shading.
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Fig. 3: Crossover from exponential to algebraic decay of the
spatial (a) and temporal (b) correlation functions, defined as
in Eqs. (5) and (6). Thick dashed red (blue) curves correspond
to exponential (power-law) fitting, from which the values of
the correlation length ξ and of the power-law exponents αs

and αt plotted in Fig. 4 were extracted. For each curve, we
superimpose only the best fitting option. Both fits are only
shown for the curves which lie in the critical region. The fits
are restricted to the chosen fitting window, indicated by the
gray shadow.

This analysis of the decay of the correlation functions 257

allows us to extract quantities which are strictly linked 258

to the physical nature of the PT. Namely, the correlation259

length ξ, extracted from the exponential fit in the disor-260

dered phase, and the algebraic exponents αs, αt which261

quantify the algebraic decay of space and time correlators262

in the quasi-ordered one. In equilibrium systems, the for-263

mer is known to be related to the superfluid density [4].264

These quantities are plotted in Fig. 4(c), as a function265

of the pump strength P and represented as solid green266

[ξ(P )], solid red [αs(P )] and blue thick [αt(P )] curves.267

Markers in Fig. 4 are coloured in a way to match the ones268

of Figs. 3. In the disordered phase [left part of Fig. 4(c)]269

the coherence length ξ(P ) diverges when approaching the270

critical region from the left, as expected for a continuum271

PT (in finite systems) undergoing critical slowing down4. 272

4While the dataset extracted is suitable for a qualitative descrip-
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Fig. 4: a) For the IPΩ=50 case, plot of the quantities σs (solid
red curve) and σt (dashed blue line) defined in Eqs. (7), which
identify the critical region (shaded blue region) and the critical
point PBKT (vertical red line). Squares, diamonds and circles
correspond to points which fall before, within and above the
critical region, respectively. b) Log-linear plot of the spatial
(αs, filled circles) and temporal (αt, empty circles) exponents,
extracted from the power-laws fits of Fig. 3 with error bars.
c) The correlation length ξ (green solid curve) diverges when
approaching PBKT from the disordered phase. Away from the
critical point into the quasi-ordered phase, the decay of the spa-
tial (temporal) algebraic exponent αs (αt) is shown as empty
(filled) circles and red (blue) solid line. The excitations spec-
trum for three characteristic values of the pump strength indi-
cated with i), ii) and iii) is shown in Fig. 5. The inset shows
a plot of ξ and αs for the IPΩ=50 and IPns=1500

Ω=∞ cases. In all
panels above, the colour of the markers corresponds to the one
of the different curves in Fig. 3.

In the quasi-ordered phase [right part of Fig. 4(b-c)], the 273

exponents αs and αt show a decreasing behaviour as the 274

control parameter P is increased, which is connected to 275

the expected onset of coherence. 276

In Fig. 5 we plot three exemplary cases of excita- 277

tion spectrum calculated from the spatio-temporal Fourier 278

Transform (FT) of |ψ(r, t)|2 across the PT. As expected, 279

the system moves from a free-particle quadratic dispersion 280

below the transition [Fig. 5(i)] to a non-equilibrium spec- 281

trum, as in (3), above the transition [Fig. 5(iii-iv)]. We 282

find the analytical Bogoliubov dispersion (3) to correctly 283

describe our numerics: the agreement between the peak 284

tion of the PT, a possible quantitative extraction of critical expo-
nents would require a more advanced scaling analysis with larger
sample sizes.
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Fig. 5: Panels i-iii) show colorplots of the spectra obtained numerically from the Fourier transform of |ψ(r, t)|2, for the three
points i) P = 1.03, ii) P = 1.0338 and iii) P = 1.06 highlighted in Fig. 4. Panel iv) shows a comparison with the real part of
the analytical dispersion in (3) (blue curves) for case iii). The inset shows a different numerical simulation with a (100×) larger
box and spatial discretization, able to capture the low-k region and the diffusive branch of the spectrum.

of the numerical spectrum (colour map) and the analyti- 285

cal prediction (blue curves) is explicitly illustrated for the 286

last case in Fig. 5(iv). For this case, we find that the crit-287

ical momentum kc(P = 1.06) = 1.26 × 10−2µm−1 is on288

the order of the momentum discretization ∆k = π/L =289

1.06 × 10−2µm−1 of the numerical simulation; as a con-290

sequence, in the main panels the diffusive branch is hid-291

den by the sonic behaviour of the dispersion at k > kc.292

The numerical value knum
c = 1.0(5) × 10−2µm−1 is ex-293

tracted by simulating a system with a (100×) smaller ∆k294

[32]: the low-k part of the spectrum, plotted as an inset295

of Fig. 5(iv), is now visible and in good agreement with296

the analytically predicted curve.297

Discussion on the nature of the phase transition.298

– Previous experimental [20] and theoretical [19] works299

showed that a spatial power-law exponent exceeding the300

αs = 0.25 upper bound of the equilibrium theory is a sig-301

nature of the non-equilibrium nature of the PT. While this302

is evidently the case for the IPns=1500
Ω=∞ simulations, the nu-303

merically obtained value of the exponent in the IPΩ=50304

case never exceeds the equilibrium upper bound. How-305

ever, by enlarging the system size we find that g(1)(∆r) is306

converged in space over all the quasi-ordered pump range307

except for the extreme point P = 1.0338. This is ex-308

pected, as in the very vicinity of criticality finite size309

effects can be most important. As shown in [32], by en-310

larging the box by 1.5 and 2 times, power-low exponents311

are found to lie within the interval 0.25 < αs < 0.35 [re-312

ported in Fig. 4(b,c) as a large errorbar for the brown313

point αs(P = 1.0338)]. This confirms the argument that314

for non-equilibrium driven-dissipative system αs can ex-315

ceed the upper equilibrium limit of α = 0.25 in the criti-316

cal region, for both frequency-independent and frequency-317

dependent pumping.318

A key difference between equilibrium and non-319

equilibrium PTs is encoded in the relation between the320

αs and αt exponents. In the equilibrium case, the sonic321

nature of the dispersion leads to αs = αt. For a non-322

equilibrium driven-dissipative condensate, the diffusive323

nature of the Goldstone mode suggests instead that αs ∼324

2αt [17]. At first sight, the prominent sonic branch visible 325

in the spectrum of Fig. 5(iii) could suggest that we are in 326

a similar equilibrium-like scenario as in Ref. [11], where al- 327

most equal values were measured for αs and αt, in strong 328

contrast to our numerics. Looking at the excitation spec- 329

trum in Refs. [9, 11] reveals that the critical momentum 330

kc(P = 1.06) is there 2.53 × 102 times smaller than the 331

one considered here, giving a characteristic length 2π/kc 332

that largely exceeds the system size. This is due to the 333

much longer lifetime displayed by polaritons in those ex- 334

periments and is responsible for the absence of an observ- 335

able diffusive region in the Goldstone mode. Our numeri- 336

cal study shows instead a power-law decay of both spatial 337

and temporal correlation function, with an exponent ratio 338

αs ∼ 2αt [Fig. 4(b)], suggesting a non-equilibrium nature 339

of the condensate. However, due to the inability to numer- 340

ically simulate a large enough box to clearly highlight the 341

diffusive Goldstone mode, we cannot determine whether 342

the different values measured for αs and αt is due to its 343

non-equilibrium nature or finite-size effects, or an inter- 344

play between the two. 345

Conclusions. – In this paper we have undertaken 346

a detailed numerical analysis to investigate the non- 347

equilibrium phase transition displayed by a polariton sys- 348

tem under incoherent pumping. We have characterized 349

the non-equilibrium phase diagram within both mean-field 350

and stochastic pictures, confirming for realistic system 351

sizes a BKT-like scenario for non-equilibrium condensates 352

featuring a crossover between binding/unbinding of vor- 353

tices and between an exponential/power-law decay of cor- 354

relations. Particular attention was given to the role of 355

fluctuations in the shift of the critical point with respect 356

to the mean-field picture and to the long-distance and 357

late-time decay of the spatial and temporal correlation 358

functions. Our findings show that the non-equilibrium 359

driven-dissipative phase transition exhibits an algebraic 360
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exponent exceeding the upper-bound equilibrium limit of 361

1/4 in agreement with previous experimental [20] and the- 362

oretical [19] works. A non-equilibrium nature of the con-363

densate is also suggested by the ratio αs/αt ∼ 2 of the364

algebraic decay exponents of space and time correlators,365

extracted by our numerical simulations and suggested by366

analytical calculations within a Keldysh framework [17].367

We note however that such an effect could be also due to368

a possible interplay with finite-size effects. It would be369

of a great interest to explore the interplay between non-370

equilibrium and finite-size effects in spatial correlations in371

future works. Our results suggest that a complete char-372

acterization of the non-equilibrium Berezinskii-Kosterlitz-373

Thouless phase transition is within current experimental374

reach using polariton fluids.375
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Szymańska M. H., (Eds.) Quantum Gases: Finite Tem- 418

perature and Non-Equilibrium Dynamics Vol. 1 (World 419

Scientific) 2013. 420

[13] Gladilin V. N. and Wouters M., Phys. Rev. B, 100 421

(2019) 214506. 422

[14] Mei Q., Ji K. and Wouters M., arxiv:2002.01806, 423

(2019) . 424

[15] Richard M., Kasprzak J., Romestain R., André R. 425
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