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Introduction

An estimated 30 to 40 million people are blind
worldwide from preventable or treatable conditions
because the system into which they were born failed
to detect and/or treat their disease.1,2 The reasons for
this are complex. Geographic inequalities are observed
both between and within countries. On the macro
level, the majority of blind people in the world live in
low-income countries; on the micro level, geographic

inequalities are often observed, with higher rates
of blindness in rural and underserved regions, even
in high-income countries.1,2 Further, the relationship
between economic development and blindness is more
complicated than simply access to health care because
some diseases, such as trachoma and onchocerciasis,
are directly related to poverty and have become less
common with economic development. Other diseases
become more common with economic development,
such as diabetic retinopathy, and with longer lifes-
pan, such as age-relatedmacular degeneration (AMD),
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glaucoma, and cataract. However, in each of these
conditions, inequitable access to eye care contributes
to a higher prevalence of blindness in low income,
medically underserved, and rural communities around
the world.

The emergence of artificial intelligence (AI) in
medicine has raised hopes that this technology, which
has demonstrated the ability tomakemedical diagnoses
from images, might reduce inequalities in access
to ophthalmologic diagnosis and ultimately care.3
Although the applications of AI in ophthalmology
are myriad, the motivating use case here would be for
secondary prevention of blindness as a force multi-
plier to enable ophthalmologist-level diagnosis to reach
places where health systems cannot meet the clini-
cal need using existing resources. A secondary goal
might be to improve the efficiency of care delivery
in both high- and low-income regions. One method
to achieve this would be to distribute the physical
location of imaging systems in a spoke-and-hub model
to primary health clinics or local optometric clinics,
with only positive exams being referred for in-person
care. By reducing the screening burden on clinicians
for patients not requiring treatment, resources in both
low- and high-income regions might be better utilized
to maximize the population level impact of existing
clinicians. Additionally, in the COVID-19 era, there
has been renewed attention on modes of care delivery
that utilize telehealth to minimize unnecessary visits to
healthcare facilities.3,4

The hypothesis that AI might lead to improved
population-level outcomes is predicated on the
assumption that the limiting factor is detection, rather
than treatment, of disease. However, screening for
conditions such as blinding cataract can be done easily
by community health workers without deployment of
AI. In regions where systems exist to transport patients
efficiently to providers (or vice versa) for treatment,
this model of primary health worker-driven remote
screening can work as part of a comprehensive care
delivery model with a population-level impact on
blindness reduction. In India, for example, a national
focus on cataract blindness and the implementation of
multiple innovative care-delivery models have resulted
in an improved cataract surgical rate (number of
cataract surgeries per population) and dramatically
reduced the prevalence of blindness over the last
30 years.5 In other cases, identification of diseases
such as diabetic retinopathy requires more than the
skill-set of a community health worker; thus, diagnosis
of the retinal disease remains a key limiting step. This
is one area where telemedicine has had a beneficial
effect using remote interpretation of digital fundus
images. There are a number of examples of successful

implementation of telemedicine programs for diabetic
retinopathy that have led to reduced incidence of
blindness at the population level.6–8

The fact that both cataract and diabetic retinopa-
thy remain leading causes of blindness should there-
fore lend some humility to any predictions regard-
ing the ability of technological solutions, such as
telemedicine or AI, to measurably impact the problem
of global blindness. This is reflective of a more
general truth at the intersection of clinical and public
health ophthalmology—that is, the low-hanging fruit
of blindness prevention and treatment is the implemen-
tation of existing knowledge.2 We know how to treat
cataracts and improve vision, we know how to screen
for diabetic retinopathy and reduce the incidence of
blindness, and we know how to minimize vision loss
from neovascular AMDwith consistent treatment; yet,
in each case we have failed to deliver the best possi-
ble care to the greatest number of people, even in well-
developed health systems, and especially in medically
underserved populations worldwide.

This is the realm of dissemination and imple-
mentation science,9–11 which focuses on the barriers
that prevent proven interventions from widespread
utilization and maximal population impact. In this
paper, we outline a framework from implementation
science to consider the potential impact of AI on
addressing unmet needs in the challenge to reduce
health disparities and reduce blindness worldwide. In
doing so, it is worth considering the potential added
value of AI compared to existing solutions, such as
telemedicine, to overcome practical implementation
challenges that have prevented existing solutions from
achieving impact at scale.

Implementation Science

Implementation science is the study of how, when,
why, and to what extent evidence-based healthcare
interventions are incorporated in a population.9–11
It provides evidence on whether and how interven-
tions are not just effective but also usable, useful, cost
efficient, and scalable. Whereas the gold standard for
a therapeutic intervention is a randomized controlled
trial, the field of dissemination and implementation
science evaluates the translation of “bench to bedside,”
or, in the case of AI, “from code to clinic.”For AI to be
adopted and used, digital tools must fit seamlessly into
people’s lives—both members of the public and health
professionals. The adoption of any new tool requires
a change in practices. The necessary changes must be
planned and be acceptable to the relevant user groups.
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Figure. Conceptual model for implementation science. This model simplifies and summarizes one way to look at the steps involved to
translate the potential promise of AI into the eventual outcome of reducing human disease.

A further consideration is whether an intervention is
scalable. This typically involves consideration of local
adaptations across care delivery settings, economies
of scale, and sustainability over time. To optimize
future implementations of AI devices, it will be impor-
tant to understand factors and processes that influ-
ence this implementation. It has been estimated that it
takes an average of 17 years from research evidence of
benefit to change clinical practice, and that is assum-
ing the healthcare infrastructure supports the interven-
tion.12 In that sense, the question before us is perhaps
the most challenging application of implementation
science: the implementation of novel innovations in the
most medically underserved populations where basic
healthcare infrastructure may not exist.11–13

The paradigm that we will consider in evaluating the
potential of AI devices to impact eye care at scale is
that clinical and/or technological innovations, whether
a new drug or an AI algorithm, cannot impact public
health if they are not adopted by the community and
thus available to patients. There have been numer-
ous papers published demonstrating the efficacy of
AI to perform a diverse array of image-recognition
tasks as well as clinicians perform those tasks, such
as the detection of referable diabetic retinopathy, and
even some things that clinicians cannot do, such as
predict age, gender, and smoking status.14 However, to
understand what it will take for AI to really impact
the problem of preventable blindness, validation needs
to reach beyond efficacy in research studies, to effec-
tiveness in real-world populations in specific use-case
settings, and finally to understanding the environmen-
tal factors necessary for the technology to bemaximally
impactful in a population. And, it has to add some
value compared to existing systems. Simply, we need
to consider not just the technology but also how the
technology is implemented.

One conceptual model we find helpful is the follow-
ing: efficacy (performance in a controlled clinical
setting) → effectiveness (performance and outcomes

in intended population) → implementation (overcom-
ing obstacles to use) → environment (ensuring success
through developing sustainable systems), as seen in
the Figure.14,15 That is, when a technology has demon-
strated efficacy in the preclinical or clinical trial setting,
it must demonstrate effectiveness in clinical practice,
barriers to adoption must be overcome, and, finally,
sustainable systems must be developed to ensure long-
term adoption of the innovation. Because evaluation
of the efficacy of AI systems is beyond the scope of this
paper, we direct the reader to one of several excellent
references on this topic.3,14,16 In this paper, we focus
on the rest of the implementation science framework.

Effective Innovations

There is a general principle in clinical science
that performance in a controlled clinical experiment
does not always translate to similar performance or
improved outcomes in practice. The loss of perfor-
mance increases as the target population becomesmore
heterogeneous. In the case of AI, datasets used to
develop algorithms often differ from datasets in the real
world in ways that can substantially affect outcomes,
including image quality; patient age, ethnicity, and
other demographic factors; prevalence of disease; and
image acquisition techniques or cameras.17 Moreover,
in the same way that clinicians can be biased by factors
such as gender or race, AI algorithms can develop
biased models, as well, based on pattern association
in the training data.17 In the spirit of implementing
technology to reduce health disparities and follow the
principles of justice and nonmaleficence, this will be
a key area to explore and address ways to minimize
potential harms.

The problem of lower effectiveness is a key poten-
tial implementation barrier to the use of AI systems in
low-income countries, where many of these variables
differ from the original population used for AI train-
ing.19 We need to encourage further evaluation of AI
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systems in these populations and not just assume the
performance in a clinical research setting will trans-
late to improved outcomes in these new populations.
Furthermore, because AI algorithms may miss cases
differently than clinicians (for example, only in certain
subsets), careful attention must be paid to the pattern
of error. In addition, it is critical to pay attention
to the sensitivity and specificity of various operating
thresholds and the resultant implications of positive
and negative tests on the cost-effectiveness of the care.
For example, low specificity may result in many false
positives, which may lead to added expense, burden
to the health system, and potential morbidity. In cases
where the effectiveness is less than optimal, one option
is to develop de novo algorithms in each population;
however, this is often not practically achievable. Alter-
natively, transfer learning can be utilized to fine-tune an
existing model using a smaller subset of data from the
intended population. Whereas AI performance is often
evaluated in terms of the area under the receiver operat-
ing characteristic curve, or overall accuracy,muchmore
is important when evaluating the effectiveness of an
AI device.19,20 In a well-known example, computer-
aided detection of breast cancer via mammograms
worked well in controlled experiments compared to
radiologists but led to more biopsies, higher cost, and
no increase in detection rates of cancer in clinical
practice.19,21

Effective Implementation

When acceptable clinical performance has been
demonstrated in the intended population, specific
barriers to clinical adoption must be identified and
strategies to overcome those barriers must be evalu-
ated. This may involve qualitative research methods
(patient preferences, practitioner preferences, and
identification of available technical infrastructure,
including hardware and internet access, as well as needs
assessment of the training gap, human–computer
interaction assessment, risk acceptance, medicolegal
framework, and liability). For AI, there are very few
technologies that have made it to clinical adoption and
demonstrated effectiveness; therefore, the implementa-
tion barriers remain largely theoretical.18 Nonetheless,
the implementation of telemedicine, or lack thereof
(pre-COVID-19), for eye care services reminds us of the
challenge of taking concepts and technologies that are
useful in silico and changing practice. Detailed investi-
gation into the challenges of telemedicine implementa-
tion (i.e., whether it was the lack of patient or provider
adoption, the lack of favorable financial environment,
or the capital expenses required, or all of the above) is
beyond the scope of this paper. Nonetheless, it is useful

to consider if and how AI devices may add value in a
way that traditional telemedicine services did not.

Sustainable Environment (Scalability)

Even after effectiveness has been demonstrated and
the community wants to adopt the technology, there
should be a sustainable strategy for the technology to
be put into practice, scaled to need, and maintained
and updated long-term. This requires more than a
compelling cost-effectiveness argument; it requires the
incentives of the innovators, manufacturers, payers,
and recipients of the technology to be aligned. In
the case of autonomous AI for diabetic retinopathy
screening, for example, the technology preceded the
financial model for successful implementation in the
United States, and it remains to be seen whether the
business model will change the existing paradigm for
screening on a large scale or reduce population preva-
lence of blindness from diabetes. Complicating matters
in LMIC, both the implementation barriers and the
environmental factors to ensure financial sustainabil-
ity will vary by region and regulatory authority, requir-
ing some combination of “out of the box” technology
development with local customizable problem solving
to overcome regulatory, infrastructure, and healthcare
system barriers.

High-Value Targets in Ophthalmology
for AI-Based Screening

As discussed above, the main potential uses for
AI would be detection of disease that requires (1)
some clinical expertise and or technology to diagnose,
(2) a predictable disease course where the disease
can be identified early, and (3) treatment is available
and improves outcomes. In terms of the ophthalmic
diseases that are highly prevalent worldwide, several
potential target diseases seem attractive for AI device
innovation.

Refractive Error

In blindness surveys, refractive error is often the
most common causes of vision impairment and blind-
ness around the world, and so “easily” treatable
that ophthalmologists forget its day-to-day practical
impact formillions.1,22 But, refractive error provides an
excellent case in point for the importance of implemen-
tation research, as its diagnosis requires some techni-
cal skill, the patient must be able to afford the treat-
ment, and the supply chain and market must support
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distributors of eyeglasses. In terms of diagnosis, several
low-cost autorefractors are available but not widely
used in the United States for regulatory reasons.
Recently, a number of groups have demonstrated proof
of principle that refractive error, like diabetic retinopa-
thy, can be diagnosed from fundus photographs using
deep learning, providing onemore way to automate the
detection of this disease.23–25

As myopia continues to be a leading and growing
cause of visual impairment globally, it remains to be
seen how this proof of efficacy might translate into
effective and scalable systems of care and how AI
might play a role in the care pathway.26 One partic-
ularly intriguing case of rapidly scaling technology
is the smartphone-based mobile refractometer avail-
able via GoCheck Kids.27,28 This cloud-base service
provides point-of-care diagnosis of refractive error for
use in the primary care setting and has created a data-
rich environment that has now used AI to improve
end-user actions to capture the best image possible to
improve the diagnostic accuracy. That is, data are being
used to improve not only the accuracy of algorithms
but also the quality of end-user input. This highlights
two potential advantages of AI or otherwise effica-
cious low-cost mobile health devices over telemedicine:
the potentially low-cost barrier to entry (no expensive
capital equipment) and real-time diagnosis (no oppor-
tunity cost for the eye-care provider and no delay in
feedback to the screener or patient).

Diabetic Retinopathy

Diabetic retinopathy (DR) is one of the leading
causes of permanent blindness in the working-age
population, affecting roughly a quarter of the more
than 400 million people with diabetes worldwide.29
The epidemiology of DR has changed over time, with
the highest worldwide prevalence now in the Western
Pacific Islands and the highest increase in Sub-Saharan
Africa. Even though screening and early detection have
been proven to prevent blindness from DR, the preva-
lence has been increasing due to changes in the under-
lying populations at risk and inadequate screening. The
DR screening model is a quintessential use case for AI
in that it has traditionally required anyone at risk to
be seen by an eye-care provider (ophthalmologist or
optometrist) for a dilated ophthalmoscopic examina-
tion. Ignoring, for the moment, the fact that the sensi-
tivity and specificity of an eye exam are far from ideal,
this system is inefficient and expensive for both the
patient and the provider, especially because the vast
majority of patients do not have clinically significant
disease, and those with the worst disease often do not
present for screening.30

There have been multiple efficacy studies for the
use of non-mydriatic fundus cameras for AI-based
DR screening,6,8,30 and there are now two US Food
and Drug Administration (FDA)-approved devices for
autonomous AI-based screening.31 Further, there have
been a number of exploratory real-world effectiveness
studies in low- and middle-income countries.19,32,33
Nonetheless, translation of this success into real life
screening may be a challenge, especially in regions
where blindness from DR is increasing, such as in
Africa, as it remains to be seen how an AI device (when
it has shown effectiveness in the target population
and on a device that is available) might be integrated
into fragile health systems. Telemedicine has not been
widely successful in poorer countries, in part due to
the cost of cameras and high-speed data connections.
Autonomous AI devices still require trained person-
nel to operate them, and these people would have to
be recruited, trained, and paid. One practical example
is that some regions may not have provider capacity
to meet the treatment burden generated by screening
the entire at-risk population. It is promising that these
devices are becoming less expensive and more readily
available, as are offline AI solutions. Increased access
to cameras will mean greater availability of a diver-
sity of image data from all world regions to further
refine AI models, which are often trained with more
homogeneous data and which may not perform as
well in more diverse populations. Finally, one other
barrier to the success of AI implementation for DR
screening that must be tackled is patient education.
Unfortunately, many patients within the “population
at risk” are unaware of their diagnosis or unaware of
the need for and importance of screening.30 Systems
that integrate AI-based screening approaches must be
cognizant of the fact that it is often the poorest and
least served who will be missed. If the goal of the
intervention is to affordably, equitably, and effectively
reduce blindness, then we have to focus on all of these
factors beyond the performance of an algorithm. In the
digital age, this may require out-of-the-box solutions to
identify patients who may benefit from screening, raise
their awareness of the benefits, and develop systems
that are incentivized to maximize population benefit,
not just profit.

Glaucoma

Glaucoma is similar to DR in that it is age related
and increasing in prevalence due to population dynam-
ics, it generally has a lengthy and asymptomatic preclin-
ical stage, and there is efficacious treatment that can
slow vision loss, essentially preventing functional blind-
ness in a patient’s lifetime.30,34 Unlike DR, there
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continues to be debate as to the best way to diagnose
glaucoma and establish gold standards for the devel-
opment and validation of AI models. Thus, a relatively
simplistic model of implementing a population-based
screening using non-mydriatic photographs presents
a more complex task for glaucoma than for DR.35
Moreover, the population at risk is not as specific;
thus, implementing an effective screening program has
presented the field with a public health challenge.36
Finally, treatment depends much more on patient
adherence than some other diseases and is prohibitively
expensive for patients in many parts of the world, and
it is difficult to predict which patients might benefit the
most from treatment.37

This raises a more existential question about the
nature of disease diagnosis in general and the role of
AI. Because a key limitation of the training of AI
algorithms under the current model is using super-
vised learning with “gold standard” labels provided,
in cases where the gold standard is imperfect we
should think beyond AI for image-based diagnosis
and focus on AI-based prediction of outcomes.35,37
That is, rather than have the AI tool make a disease
diagnosis at a point in time, perhaps the better long-
term approach is to have the AI tool, in concert
with available clinical, demographic, electronic health
record, and potentially genetic information, make
an outcome prediction. AI-based biomarkers, defined
based on outcome rather than expert diagnosis could
improve the ability to predict structural or functional
progression. Moreover, informed by data from multi-
ple randomized trials, AI algorithms that predict
disease course could theoretically identify patient-
specific IOP treatment goals and even incorporate big
data elements such as genomic data.35,37,38 Funda-
mentally, considering the role that AI might play in
the prevention of glaucomatous vision loss, perhaps
even more so than the other diseases described in this
paper, reminds us of the myriad roles AI might play
in care pathways, beyond image-based detection of
disease.

Age-Related Macular Degeneration

Age-related macular degeneration is the world’s
most prevalent age-related blinding disorder.35,37–39
Fueled by an aging population, it has been estimated
that the number of people living with AMD globally in
2020 was 196 million, rising to 288 million by 2040.39
It is increasingly affecting both high- and low-income
countries. A significant pressure point for healthcare
systems relates to the high proportion of unneces-
sary referrals for the vast majority of AMD cases
that are non-exudative and for which no treatment is

necessary or available, beyond that which the general
eye care provider can recommend.39,40 To date, the
diagnosis of exudative AMD has required specialist
imaging assessments that rely on expensive technolo-
gies such as optical coherence tomography (OCT). Of
relevance to low- and middle-income countries are two
elements: the availability of costly imaging technolo-
gies such as OCT and the burden on specialist exper-
tise for the interpretation of imaging tests to exclude
neovascular AMD. For the latter, AI offers the poten-
tial for automation of the diagnostic process and refer-
ral refinement to minimize unnecessary referrals with
suspicion of neovascular AMD.40 AI decision support
systems have recently been developed and shown to
have good diagnostic accuracy against human experts
in interpreting ocular imaging tests, such as OCT
for the diagnosis of urgent maculopathies, such as
neovascular AMD.40,41 In theory, systems could be
developed that triage the specialist referral process,
improving the effectiveness of screening and improv-
ing the efficiency of specialty clinics to prioritize
those patients who truly need referral. Implementa-
tion science can evaluate the cost-effectiveness, patient
and practitioner acceptability, usability, and technical
integration gap of such AI-enabled referral refinement
pathways to allow real-life deployment in healthcare
systems.

Such prospective implementation science clinical
trial design requires multi-disciplinary expertise from
clinicians, health economists, human-computer inter-
action experts and AI software engineers. Study
designs need to be tailored to address the context-
specific technical, economic, cultural and logisti-
cal barriers to implementation. In the case of low
and medium income countries, the wide availabil-
ity of expensive imaging technologies such as OCT
becomes of particular relevance in this use-case.42
For those settings, emerging proof-of-concept data for
automated AI-enabled neovascular AMD detection
based on the interpretation of much more widely avail-
able and inexpensive imaging technologies, such as
color fundus images, offer potential for driving down
costs and increasing the implementation potential of
such AI-enabled referral refinement pathways.40,41,43
Such AI tools still require additional evidence of
diagnostic performance from external and prospective
validation studies. The training of AI algorithms for
detection of neovascular AMD on the basis of color
fundus images involves cross-labeling such images
using labels derived from OCT interpretation. This use
case highlights the transformative potential of AI to
enhance the diagnostic performance of more inexpen-
sive technologies that had hitherto been insufficient to
support an essential care pathway.
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Retinopathy of Prematurity

Approximately 50,000 babies develop severe visual
impairment or blindness annually, many cases of which
could be prevented with appropriate screening and
timely treatment.44 The disease is emerging in many
low- and middle-income countries where premature
babies are surviving but the number of at risk babies
outstrips the ability of the healthcare system to provide
adequate retinopathy of prematurity (ROP) screen-
ing with indirect ophthalmoscopy.44,45 Telemedicine
for ROP has emerged as an alternative to serial physi-
cian examinations, and there are a number of success-
ful programs.44–46 In most cases, these have been slow
to replicate or difficult to sustain due to the high
capital cost of acquiring cameras and the person-
nel required to take the images. Additionally, these
programs are time intensive for physicians who review
the images, most of which are normal. Emerging proof-
of-concept data in real-world populations indicate that
AI-assistedROP image screeningmay be effective, such
as the i-ROP DL algorithm; however, there are no
commercially available products.47 Moreover, most of
the papers evaluating AI in ROP have used images
from a camera that costs more than US$100,000.
Future work must be done to validate the efficacy
and effectiveness of using lower cost cameras in
populations of babies from low- and middle-income
countries. Such potential use of AI highlights one
additional concept, in that the effectiveness of an
AI intervention on the population level depends in
large part on factors related to whether the interven-
tion can get to the population at risk. The advan-
tage to ROP is that the entire at-risk population
is defined and captive within neonatal care units.
In theory, systems of care could be developed that
deploy low-cost cameras to every neonatal care unit
to provide ROP screening to every at-risk baby in the
world.

Future Directions

In this paper, we have tried to lay out a frame-
work for how to think about the practical steps
that must be taken to realize the potential of AI to
improve outcomes and reduce preventable blindness.
Like many innovative technologies, AI has the poten-
tial to widen the technology gap between the rich and
the poor if it ends up embedded only in cameras
that are prohibitively expensive, employs limited train-
ing sets, or is unavailable to the majority of the
world’s population. On the other hand, unlike many
technologies that rely on expensive hardware to imple-

ment, AI algorithms could be implemented inexpen-
sively using mobile health technology such as cell
phones, and it is not unrealistic to consider that this
technology could have the ability to narrow the gap
between high- and low-income countries in the provi-
sion of services to screen for preventable or treatable
blindness.

In order to realize that potential, much more
research is needed. We need to develop AI algorithms
that work not only with high-quality datasets or images
from expensive cameras but also in real-world popula-
tions with all of their limitations. We need to encour-
age innovation in developing AI models that can be
used with technologies that are widely available at
low cost all around the world. We need to system-
atically and scientifically evaluate barriers to imple-
mentation not just for AI but to many technologies
that improve outcomes and demonstrate good value
to society. We need funding agencies to recognize
the value not just of innovative technology develop-
ment but also of practical real-world evaluation of
existing technologies. AI innovation in medicine has
been a success of convergence science, the result of
catalytic interactions among multiple domain experts
in computer science, engineering, and medicine. AI
implementation in medicine will similarly require
investment from not only clinicians and technology
developers but also key stakeholders invested in health
systems, regulatory agencies, and those responsible
for healthcare costs and reimbursement. Finally, we
need advocacy on behalf of our patients, and regula-
tory bodies and healthcare payers within each health-
care system should recognize the added value of
AI and develop a suitable and profitable environ-
ment to encourage not only innovation but also
implementation.
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