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Abstract: Linear molecules usually represent a special case in rotational-vibrational calculations
due to a singularity of the kinetic energy operator that arises from the rotation about the a (the
principal axis of least moment of inertia, becoming the molecular axis at the linear equilibrium
geometry) being undefined. Assuming the standard ro-vibrational basis functions, in the 3N − 6
approach, of the form

∣∣∣ν1, ν2, ν`3
3 ; J, k, m

〉
, tackling the unique difficulties of linear molecules involves

constraining the vibrational and rotational functions with k = `3, which are the projections, in units
of h̄, of the corresponding angular momenta onto the molecular axis. These basis functions are
assigned to irreducible representations (irreps) of the C2v(M) molecular symmetry group. This, in
turn, necessitates purpose-built codes that specifically deal with linear molecules. In the present
work, we describe an alternative scheme and introduce an (artificial) group that ensures that the
condition `3 = k is automatically applied solely through symmetry group algebra. The advantage of
such an approach is that the application of symmetry group algebra in ro-vibrational calculations is
ubiquitous, and so this method can be used to enable ro-vibrational calculations of linear molecules in
polyatomic codes with fairly minimal modifications. To this end, we construct a—formally infinite—
artificial molecular symmetry group D∞h(AEM), which consists of one-dimensional (non-degenerate)
irreducible representations and use it to classify vibrational and rotational basis functions according
to ` and k. This extension to non-rigorous, artificial symmetry groups is based on cyclic groups
of prime-order. Opposite to the usual scenario, where the form of symmetry adapted basis sets
is dictated by the symmetry group the molecule belongs to, here the symmetry group D∞h(AEM)
is built to satisfy properties for the convenience of the basis set construction and matrix elements
calculations. We believe that the idea of purpose-built artificial symmetry groups can be useful in
other applications.

Keywords: ro-vibrational; point groups; molecular symmetry groups; CO2

1. Introduction

To describe the rotation and vibration of a well-bent triatomic molecule, such as
H2S, with a large, non-accessible barrier to linearity (of 24,423 ± 75 cm−1 [1]), a molecu-
lar kinetic energy operator (KEO) in terms of the 3 vibrational (e.g., two stretching and
one bending) and three rotational coordinates (usually Euler angles) [2] is constructed.
The three vibrational modes correspond to the standard bent-molecule methodology that
is based on the 3N − 6 vibrational modes. We traditionally start from selecting a zero-
order Hamiltonian Ĥ(0)

bent = Ĥ(0)
vib,bent + Ĥ(0)

rot,bent appropriate for a simplified molecule with

the rotation-vibration interaction neglected. Ĥ(0)
vib,bent is the Hamiltonian for the vibra-

tional motion, obtained by entirely neglecting rotation in the complete Hamiltonian, while
Ĥ(0)

rot,bent is the Hamiltonian for the molecule rotating rigidly in its equilibrium configuration.

The eigenfunctions of Ĥ(0)
bent are products ψ

(0)
vib,bent × ψ

(0)
rot,bent of an eigenfunction ψ

(0)
vib,bent
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of Ĥ(0)
vib,bent and an eigenfunction ψ

(0)
rot,bent of Ĥ(0)

rot,bent, and these products are used as basis
functions for solving the Schrödinger problem for the complete rotating and vibrating
molecule, which is done either by perturbation theory or in a variational approach.

For the description of a linear triatomic molecule, for example CO2 (and actually
also H2O), whose potential energy surface would allow for the linear configuration to
become feasible during (typical) vibration, we cannot proceed as described for H2S above,
as the corresponding KEO becomes singular at linear molecular geometries. The reason is
that, in the linear equilibrium configuration, the molecule cannot rotate about its own axis
(systematically called a, the axis of least moment of inertia [2]). The corresponding rotation
is undefined and, thus, leads to a singularity in the KEO. Another way of expressing this is
to say that, for a linear molecule, we cannot initially neglect the interaction between the
bending motion and the rotation about the a axis, since this rotation only takes place when
the molecule bends out of the linear equilibrium configuration, as discussed extensively
in Ref. [3]. Therefore, in considering a simplified molecule with the rotation-vibration
interaction neglected with the Hamiltonian Ĥ(0)

lin = Ĥ(0)
vib,lin + Ĥ(0)

rot,lin, we cannot practically

include the rotation about the a axis in Ĥ(0)
rot,lin, and this operator now only describes the

so-called end-over-end rotation about the b and c axes [2] in the equilibrium configuration.
The b and c axes [2] are both perpendicular to the molecular axis a.

In the literature, there are two main approaches for resolving the singularity issue.
The traditional textbook approach is to treat linear molecules as systems with 3N − 5
vibrational modes (four in the case of triatomics) with only two rotational degrees of
freedom. This approach is usually associated with the normal coordinates as vibrational
degrees of freedom. The kinetic energy operator is not singular in such a representation,
which is the main point of the, so-called, “(3N − 5)” methodology [4]. This method is very
popular in quantum-chemistry calculations and it has also been used in ro-vibrational,
variational calculations (for example, by Carter and Handy [5], Mátyus et al. [6], Bowman
et al. [7], Schroeder and Sebald [8]). The main disadvantages of the 3N − 5 approach are
(i) the normal coordinates are not very chemically intuitive when describing molecular
potential energy surfaces (PES), so that, consequently, (ii) the convergence of the calculations
that correspond to higher vibrational excitations is slow and, finally, (iii) this approach is not
well defined for quasi-linear molecules (molecules with a bent equilibrium structure and a
low, penetrable barrier to linearity), which is, when the linear configuration is accessible on
the time scale of a typical experiment). A neat feature of the “(3N − 5)” approach, which
is relevant to this work, is that the corresponding vibrational basis functions, as well as
the rotational (rigid-rotor) basis functions, transform according to the infinite symmetry
groups C∞v or D∞h, which are not only an appropriate choice for linear molecules, but also
give access to powerful symmetry group (or representation-theory) methods. As far as
the ro-vibrational calculations are concerned, the more appropriate symmetry groups for
description of the zero-order solutions of Ĥ(0)

vib,lin and Ĥ(0)
rot,lin, (i.e., for the classification of

the physically correct nuclear-rotation-vibrational states) are the finite groups C∞v(M) or
D∞h(M). Ref. [2] describes the extensions to the infinitely large extended molecular groups
C∞v (EM) and D∞h (EM) [9] isomorphic to the point groups C∞v and D∞h [2], respectively,
which we discuss further below. The symmetry group methods have proved to be important
when solving the corresponding nuclear motion problems, see e.g., Chubb et al. [10].

The disadvantages of the linear 3N − 5 approach motivated the development of
an alternative treatment for all chain molecules (linear, quasi-linear, and bent) 50 years
ago [11] (also see Refs. [12–15]), based on 3N− 6 vibrational coordinates and three rotational
(Euler) angles, which is more typical for bent systems. The KEO is singular at the linear
configuration (as well as the zero-order Hamiltonians) and, therefore, requires specially
designed basis functions to resolve this singularity. The 3N − 6 vibrational coordinates
have the advantage of being chemically intuitive when describing the molecular PES.

The main trick to resolve the singularity in the KEO is to construct the corresponding
bending basis functions to have the correct asymptotic behaviour when the molecule ap-
proaches the linear configuration; see, for example, the discussion by Jensen [13]. This is



Symmetry 2021, 13, 548 3 of 16

achieved by including the rotation about the a axis in Ĥ(0)
vib,lin for a linear molecule. The cor-

responding ro-vibrational basis set becomes dependent on the projections of the vibrational
and rotational angular momenta (in units of h̄) onto the molecular axis a (k and `, respec-
tively), subject to the constraint k = ` [4,16–18]. Among the popular choices of the bending
basis functions with correct behaviour are the associated Legendre polynomials [12,19] L`

v,
with v and ` as the corresponding vibrational (bending) quantum numbers.

The vibrational basis functions are effectively wavefunctions of a bent molecule
and, therefore, they do not reflect the symmetry properties of a linear molecule, C∞v or
D∞h. Indeed, for a centrosymmetric molecule, such as CO2 they transform as D∞h(M)
(isomorphic to C2v) and only span four irreducible representations (irreps), Σ+

g , Σ−g , Σ+
u ,

and Σ−u . For a non-centrosymmetric linear molecule, such as HCN, they transform as
C∞v(M) (isomorphic to Cs) and they span two irreducible representations, Σ+ and Σ−.
The vibrational basis set is orthogonal in ` due to the constraint k = `.

This should be compared to the infinitely versatile symmetries that were obtained
when the same molecule is treated as linear via D∞h (EM) or C∞v (EM) [9] with their much
more detailed options for classification of the rotational and vibrational wavefunctions.
In these groups, the vibrational and rotational basis functions span irreducible represen-
tations of C∞v or D∞h and transform as Σ, Π, ∆, Φ, . . . for ` = 0, 1, 2, 3, . . . and k = 0, 1, 2,
3, respectively. Moreover, their intrinsic properties offer efficient tools of associated irre-
ducible representations of molecular symmetry groups when constructing the Hamiltonian
matrix elements or building symmetry adapted ro-vibrational basis functions, which are
not available for the bent molecule approaches.

These rich properties of the infinite symmetry groups have motivated us to extend the
molecular symmetry D∞h(M) to an infinite group with the group structure that is similar
to D∞h (or, analogously, extend C∞v(M) to an infinite group with a group structure that is
similar to C∞v for a non-centro-symmetric linear molecule). The corresponding irreducible
representations Π, ∆, Φ, . . . (` > 0, or k > 0, respectively) are doubly degenerate and,
therefore, are not directly suitable for this purpose. Therefore, the aim of these extensions is
to obtain a more flexible classification of the rotational and vibrational wavefunctions than
that provided by D∞h(M) and C∞v(M), allowing for non-degenerate irreps, as required
for bent molecules. The corresponding extended symmetries do not necessarily have to
have any physical meaning or to be connected with energy conservation, as in the case of
traditional "true” molecular symmetry groups. Instead, a group is constructed in such a
way, so that the irreps have properties that are formalised from the outset, rather than the
behaviour of the irreps being a result of the symmetry of the molecule itself. Thus, any
"artificial” group, constructed in this way, which satisfies the standard group theorems
and fulfills the purpose of being directly associated with the ` = k classification will do.
The approach described here, then, is, in effect, a reversal of the standard procedure where
the properties of the basis set are based on the symmetry group of the molecule. Here,
we design the symmetry group to fulfill the required structure of the ro-vibrational basis
functions and the matrix elements of the Hamiltonian.

To this end, in the present work we introduce a formally infinite molecular symmetry
(MS) group by extending D∞h(M) [C∞v(M)] with some artificial irreps with the four [two]
‘physical’ irreps Σ+

g , Σ−g , Σ+
u and Σ−u [Σ+ and Σ−] retained. The group is referred to as

D∞h(AEM) [C∞v(AEM)], where AEM stands for ’artificial extended molecular’ (group).
We will also introduce a finite analogy Dnh(AEM) [Cnv(AEM)], where n is depends on the
value of `max, and use it to classify the vibrational and rotational basis functions of the
bent (3N − 6 approach) similar to the classification used for linear, D∞h[C∞v] (EM)-based
3N − 5 systems.

The new symmetry group Dnh(AEM) [Cnv(AEM)] has been implemented in the vari-
ational program TROVE (Theoretical ROVibrational Energies) [20,21], with the aim to
facilitate the computation of vibrational energies and wavefunctions for linear molecules.
TROVE is a general, efficient computer program for simulating, by variational methods,
hot rotation-vibration spectra of small- to medium-sized polyatomic molecules of arbitrary
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structure. It has been applied to a large number of polyatomic species [21–41] with various
symmetry types [2], such as C2v, C2h, C3v(M), Dnh(M), Td(M), G36 etc. TROVE is one of the
main tools of the ExoMol project [42,43]. Updates of TROVE have been recently reported in
Refs. [19,43,44], with the most recent extension [19] being the implementation in TROVE of
the 3N − 6 methodology with a singularity resolution based on the inclusion of interaction
between the bending motions and the rotation about the a axis. Additionally, the adaptation
of linear-molecule symmetry that was described in Ref. [10] was implemented. The theory
and programming work reported in Ref. [19] and in the present work have already been
employed for generating hot molecular line lists for SiO2 [45] and CO2 [46] as well as to
produce a quadrupole spectrum of H2O [47]. TROVE uses an automatic approach for
constructing a symmetry-adapted basis set to be used in setting up a matrix representation
of the molecular rotation-vibration Hamiltonian [48], in the present case for Dnh(AEM)
[Cnv(AEM)].

1.1. Symmetry Properties of the Linear Molecule (3N − 5) Basis Functions: D∞h(EM)

In order to compute the vibrational energies for a linear molecule, we solve the
Schrödinger equation for the Hamiltonian Ĥ(0)

vib,lin, which involves the bending and stretch-
ing motions and, as explained in Introduction, the rotational motion about the a axis.
In general, an N-atomic chain molecule has N − 1 stretching vibrations, one for each
bond, and N − 2 bending vibrations, one at each “inner” nucleus; there is no bending
motion at the two “terminal” nuclei. It is well known (see, for example, Ref. [2]) that, if
we transform Ĥ(0)

vib,lin to depend on normal coordinates Qi for non-degenerate vibrations
and (Qja, Qjb) for doubly degenerate vibrations, and we express the Born–Oppenheimer

potential energy function in Ĥ(0)
vib,lin in the harmonic approximation, i.e., as a second-order

polynomial in the normal coordinates Q, the eigenfunctions of Ĥ(0)
vib,lin are products of

harmonic oscillator functions

|v1, v2, . . . , vN−1; v`N
N , v`N+1

N+1 , v`N+2
N+2 , . . . , v`2N−3

2N−3〉 =
N−1

∏
i=1

Φvi (Qi)
2N−3

∏
j=N

Φvj ,`j
(Qja, Qjb). (1)

Each of the N − 1 stretching vibrations is described by a one-dimensional harmonic oscilla-
tor eigenfunction Φvi (Qi) (i = 1, 2, 3, . . . , N − 1), and each of the N − 2 bending vibrations
is described by a two-dimensional harmonic oscillator eigenfunction Φvj ,`j

(Qja, Qjb) (j
= N, N + 1, . . . , 2N − 3). Here, `j is the corresponding vibrational angular momentum
quantum number and Qa and Qb are the degenerate vibrational modes that are often repre-
sented by polar coordinates Q3 and χ via (Q3a, Q3b) = (Q3 cos χ, Q3 sin χ) (see Chapter
11.3 of Ref. [2]). These two-dimensional (2D) bending functions Φvj ,`j

(Qja, Qjb) transform
according to the irreps of the MS group D∞h (EM) [9] (see Table 1), with `j identifying
the corresponding irrep Σ, Π, ∆, . . . , for `j = 0, 1, 2, . . . , respectively, and `j spanning
vj, vj − 2, vj − 4, . . . ,−vj. When combined with the rotational, rigid-rotor, basis function
|J, k, m〉, the constraint k = ` = ∑j `j is used, where ` is the total vibrational angular
momentum (in units of h̄) of the product-type vibrational basis. Here, J is the total angular
momentum, k h̄ is the projection of the angular momentum on the molecular z (= a) axis
and m h̄ is the projection on the laboratory-fixed Z axis. The rotational basis functions
|J, k, m〉 transform according to the operations of D∞h (EM), with the similar mapping
between the irreps and the rotational quantum number k, as found for `: Σ (k = 0), Π
(k = 1), ∆ (k = 2), etc. The correlation between the D∞h (EM) [9] irreps and the quantum
numbers `, k is very useful, as it enables the use of powerful group symmetry tools for
classifying and even constructing the ro-vibrational (bending) basis functions, with the
vibrational basis function in Equation (1) now given by:∣∣∣v1, v2, v`3

3

〉
= Φv1(Q1)Φv2(Q2)Φv3,`3(Q3a, Q3b). (2)
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The two bending modes ν3a and ν3b have identical harmonic vibrational wavenumbers,
ω3a = ω3b. As discussed above, both the vibrational

∣∣∣v1, v2, v`3
3

〉
and rotational |J, k, m〉

basis functions of the linear molecule CO2 are described by the irreps of D∞h (EM), and
they are fully defined by the corresponding values of ` ≡ `3 and k shown in Table 1.
The `-dependent vibrational basis functions span the g-type and u-type representations,
while the k-dependent rotational functions can only be of g (i.e., do not change upon the
σh transformation). These functions are linked via the condition ` = k. The ro-vibrational
eigenfunctions of a linear XY2 type molecule can only transform as one of the four irreps
of D∞h(M) that are listed in Table 2 (in fact, due to the zero-nuclear spins of C and O,
the ro-vibrational wavefunctions of CO2 can only span two representations, Σ+

g and Σ−u ) .

Therefore, physically meaningful combinations of
∣∣∣v1, v2, v`3

3

〉
and rotational |J, k, m〉 from

their direct products can only span these four irreps. These properties can be efficiently
explored by the efficient symmetry group algebra via projection and symmetry reduction
techniques, as was shown, e.g., in Chubb et al. [10].

Table 1. The irreducible representation Γ of D∞h (EM) spanned by the rotational |J, k, m〉 or vibrational
|v3, `3〉 wavefunction of a linear molecule in the absence of external electric and magnetic fields.
The irrep depends on k or `.

k/` Γvib Γrot

0 Σg
+ Σg

+ (J even)
0 Σg

− (J odd)

±1 Πu Πg
±2 ∆g ∆g
±3 Φu Φg

...
...

Table 2. Character table for the molecular symmetry (MS) group D∞h(M) a. The last four columns
show the group operations, with two labels for each operation.

Γ E (p) (p)∗ E∗

E C2(z) σ(xz) σh(xy)

Σg
+ 1 1 1 1

Σg
− 1 −1 1 −1

Σu
− 1 1 −1 −1

Σu
+ 1 −1 −1 1

a g and u stand for the German gerade (even) and ungerade (odd), related to the permutation-inversion opera-
tion (p)∗.

1.2. Symmetry Properties of the Bent 3N − 6 Basis Functions

In the 3N − 6 (bent molecule) framework applied to a linear molecule, the initial
treatment is based on the ‘zero-order’ Hamiltonian

Ĥ(0)
lin = Ĥ(0)

vib,lin + Ĥ(0)
rot,lin,

where, now, Ĥ(0)
rot,lin describes the end-over-end rotation only while the rotation about

the a axis is included in Ĥ(0)
vib,lin, since a-axis rotation only takes place when the molecule

bends out of the linear equilibrium configuration. For a linear centrosymmetric triatomic
molecule, a vibrational basis function is given by∣∣∣v1, v2, v`3

〉
= ϕv1(r1) ϕv2(r2) ϕv3,`(ρ), (3)
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where ρ measures the bending displacement from the linear equilibrium configuration and
the stretching vibrations are described by the bond lengths r1 and r2. The bending function
ϕv3,`(ρ) shown in Equation (3) plays the central role in the 3N − 6 formalism via two main
properties: (i) it is constructed to possess the correct dependence at ρ→ 0 to resolve the
singularity of the KEO [13,19]:

ϕv3,`(ρ) ∼
√

ρ2`+1

and (ii) it is linked to the rotational basis functions |J, k, m〉 via ` = k as a general property of
the basis sets of linear polyatomic molecules with the Sayvetz condition k = `= ∑2N−3

j=N `j [16]
(also see Ref. [10]).

The harmonic-oscillator basis functions Φv3,`3(Q3a, Q3b) in Equation (2), used in the
3N− 5 approach, are orthogonal because they are eigenfunctions for the vibrational angular
momentum operator L̂a with different eigenvalues `3h̄. In the calculations described here
for triatomic molecules, the bending basis functions ϕv3,`3(ρ) in Equation (3) (which only
depend on Q3 and not on χ) are typically generated by Numerov–Cooley numerical
integration [49–51], for example, Section 6 of Jensen [13]) with the value of k = `3 entering
as a parameter. Two such functions with different values of v3, but the same values of `3
are orthogonal, the orthogonality resulting from integration over ρ. In order to generate
basis functions for the 3N − 6 calculation, we multiply the vibrational basis functions
of Equation (3) by the χ-dependent functions |J, k = `3, m〉 and the resulting complete
basis functions∣∣∣v1, v2, v`3

3 ; J, k = `3, m
〉
= ϕv1(r1) ϕv2(r2) ϕv3,`3(ρ) |J, k = `3, m〉 (4)

are generally orthogonal, the orthogonality being manifested by the integration over χ for
functions with different values of `3 and over ρ for functions with the same value of `3,
but different values of v3. On a practical level, it is discussed for a triatomic molecule in
Section 6 of Jensen [13] that

|J, k, m〉 = 1√
2π

exp(i k χ)SJkm(θ, φ) (5)

and it is recognised that the factor exp(i k χ) is also contained in Φv3,`3(Q3a, Q3b), where
it is written as exp(i `3 χ). This identity is taken into account when forming a harmonic-
oscillator/rigid-rotor basis set for diagonalizing Ĥ(0)

vib,lin; the harmonic-oscillator functions
in Equation (2) are not multiplied by the complete |J, k, m〉, but only by the (θ, φ)-dependent
functions SJkm(θ, φ) from Equation (5).

The purely vibrational part of the linear-molecule Hamiltonian, Ĥ(0)
vib,lin, commutes

with L̂a and, so, `3 (in general `) is a good quantum number for its eigenfunctions; they can
be labelled by `3 (`). The part of the kinetic energy operator that describes end-over-end
rotation about the b and c axes, however, mixes basis functions with different `-values; it
gives rise to non-vanishing off-diagonal matrix elements with |∆`| ≤ 2. It is interesting to
note that, in the case of the 3N− 5 linear molecule approach (Section 1.1), the orthogonality
between basis functions with different ` values is automatically satisfied due to different
symmetries (irreps) that correspond to different values of `. The symmetry properties
of the wavefunctions of linear molecules under the 3N − 6 (bent) approach are much
less informative than those under the 3N − 5 approach. In the case of a centrosymmetric
triatomic, the 3N − 6 approach employs D∞h(M) with four irreps (see Table 2) in contrast
to the irreps of the infinite group D∞h (EM). Moreover, the bending wavefunctions ϕv3,k(ρ)
can only be of Σ+

g symmetry of D∞h(M). Yet, the property of orthogonality between
basis functions with different `-values is very similar to the orthogonality that arises
from different irreps being generated by the wavefunctions in Equation (2) in the 3N − 5
treatment.



Symmetry 2021, 13, 548 7 of 16

In the present work, we investigate whether the D∞h(M) symmetry description of the
basis functions in Equation (3), naturally arising for the 3N − 6 case, can be extended in
such a manner that it becomes similar to the much more detailed description, in terms
of D∞h (EM), obtained for the 3N − 5 case. In particular, we would like a description in
which basis functions with different `-values span different irreps so that we can take
advantage of the specific properties of the linear-molecule basis set functions. For example,
the vibrational Hamiltonian matrix, constructed in an extended-symmetry-adapted basis
set, will automatically be block diagonal in ` and thus its construction and diagonalization
can be optimally cost-effective. There exists no “true” molecular symmetry group, based
on permutation-inversion symmetry, with `-dependent irreps. Thus, our theory does not
automatically yield such irreps. However, in the following, we show that is possible to
introduce an “artificial” symmetry group that is based on the property of cyclic groups
of prime-order that produces the desired `-dependent irreps. By analogy to the extended
group D∞h (EM), the new artificially extended group will be referenced as D∞h(AEM),
where AEM stands for ‘artificial extended molecular’.

1.3. “Artificial” Molecular Group Symmetry D∞h(AEM) for Centrosymmetric Triatomic Molecules

We define the finite artificial extended MS group Dnh(AEM), as follows

Dnh(AEM) = Z2⊗ . . .⊗︸ ︷︷ ︸
n−1

Z2 (6)

where Z2 is the cyclic group of order 2 and, therefore, it consists of the set {0, 1} with
addition modulo 2. The integer n depends on the value of `max. Taking the limit n → ∞
defines the infinite D∞h(AEM) group. Note that this is a countable infinity, as opposed to
the group D∞h (EM). The vibrational

∣∣∣v1, v2, v`3
〉

and rotational |J, k, m〉 basis set functions
of differing ` (or k) values are assigned to different irreps of this group.

The group Dnh(AEM) must fulfil certain conditions necessary for our purposes. First,
all irreps should be one-dimensional and, for simplicity, real. The former condition is so that
each irrep of Dnh(AEM) is correlated with one irrep of D∞h(M). The irreps of Dnh(AEM) will
be labelled as Γ3 = C2v irreps with an extra superscript (see Table 2), e.g., A4

1. The bending
function ψν3,`(ρ) or rotational function |J, k, m〉, if they transform as irrep Γ in C2v, would
be assigned to Γ` or Γk, respectively. For example, a vibrational function with ` = 4 and
transforming as A1 in C2v would be assigned the symmetry A4

1 in the Dnh(AEM).
From D∞h(AEM) and Dnh(AEM), we select four elements and match each with a C2v

element. Subsequently, the characters of those elements for each 0-superscripted irrep
should be the same as the corresponding C2v irrep. When combining a bending function
that transforms as Γ`

1 with a rotational function which transforms as Γk
2, their product

should transform as Γ`
1 × Γk

2 = (Γ1 × Γ2)
m for some m 6= 0 if ` 6= k. If ` = k, then they

should transform as Γ`
1 × Γ`

2 = (Γ1 × Γ2)
0. For example, A4

2 × B4
1 should be B0

2.
We illustrate these rules with the group D4h(AEM) in Table 3 for the characters and

Table 4 for the multiplication table of the irreps.
These properties are intended to allow us to assign each vibrational basis function to

an irrep, which depends on `, as discussed above. It will also combine k and ` basis set
functions correctly, so that the condition of k = ` can be imposed by giving an irrep with
superscript 6= 0 a statistical weight factor of 0.

In variational calculations utilising finite basis sets, it is practical to use the finite anal-
ogy Dnh(AEM) of the infinite group D∞h, see Chubb et al. [10]. Accordingly, the practical
procedure introduced and developed here involves Dnh(AEM), rather than D∞h(AEM).
Here n is some integer value defined to cover the highest excitations of k = ` in the bending
ϕv3,`(ρ) and rotational |J, k, m〉 functions.
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Table 3. Character table for the D4h(AEM) group. The operations of the group that are 0-superscripted
correspond to the C2v group. Note that the characters of the 0-superscripted irreps for these operations
are the same as those of the corresponding irreps for the C2v group.

D4h(AEM) E0 C0
2 σ0 σ0

v E1 C1
2 σ1 σ1

v E2 C2
2 σ2 σ2

v E3 C3
2 σ3 σ3

v

A0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B0
1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

A0
2 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

B0
2 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

A1
1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

B1
1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

A1
2 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 1

B1
2 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

A2
1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

B2
1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

A2
2 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

B2
2 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1 −1 1 1 −1

A3
1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

B3
1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

A3
2 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

B3
2 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

Table 4. Multiplication table for the irreps of the D4h(AEM) group. The vertical and horizontal
lines demarcate the blocks of different superscript values. Note that the diagonal blocks are all
0-superscripted, while off diagonal ones are non-0-superscripted.

⊗ A0
1 B0

1 A0
2 B0

2 A1
1 B1

1 A1
2 B1

2 A2
1 B2

1 A2
2 B2

2 A3
1 B3

1 A3
2 B3

2
A0

1 A0
1 B0

1 A0
2 B0

2 A1
1 B1

1 A1
2 B1

2 A2
1 B2

1 A2
2 B2

2 A3
1 B3

1 A3
2 B3

2
B0

1 B0
1 A0

1 B0
2 A0

2 B1
1 A1

1 B1
2 A1

2 B2
1 A2

1 B2
2 A2

2 B3
1 A3

1 B3
2 A3

2
A0

2 A0
2 B0

2 A0
1 B0

1 A1
2 B1

2 A1
1 B1

1 A2
2 B2

2 A2
1 B2

1 A3
2 B3

2 A3
1 B3

1
B0

2 B0
2 A0

2 B0
1 A0

1 B1
2 A1

2 B1
1 A1

1 B2
2 A2

2 B2
1 A2

1 B3
2 A3

2 B3
1 A3

1
A1

1 A1
1 B1

1 A1
2 B1

2 A0
1 B0

1 A0
2 B0

2 A3
1 B3

1 A3
2 B3

2 A2
1 B2

1 A2
2 B2

2
B1

1 B1
1 A1

1 B1
2 A1

2 B0
1 A0

1 B0
2 A0

2 B3
1 A3

1 B3
2 A3

2 B2
1 A2

1 B2
2 A2

2
A1

2 A1
2 B1

2 A1
1 B1

1 A0
2 B0

2 A0
1 B0

1 A3
2 B3

2 A3
1 B3

1 A2
2 B2

2 A2
1 B2

1
B1

2 B1
2 A1

2 B1
1 A1

1 B0
2 A0

2 B0
1 A0

1 B3
2 A3

2 B3
1 A3

1 B2
2 A2

2 B2
1 A2

1
A2

1 A2
1 B2

1 A2
2 B2

2 A3
1 B3

1 A3
2 B3

2 A0
1 B0

1 A0
2 B0

2 A1
1 B1

1 A1
2 B1

2
B2

1 B2
1 A2

1 B2
2 A2

2 B3
1 A3

1 B3
2 A3

2 B0
1 A0

1 B0
2 A0

2 B1
1 A1

1 B1
2 A1

2
A2

2 A2
2 B2

2 A2
1 B2

1 A3
2 B3

2 A3
1 B3

1 A0
2 B0

2 A0
1 B0

1 A1
2 B1

2 A1
1 B1

1
B2

2 B2
2 A2

2 B2
1 A2

1 B3
2 A3

2 B3
1 A3

1 B0
2 A0

2 B0
1 A0

1 B1
2 A1

2 B1
1 A1

1
A3

1 A3
1 B3

1 A3
2 B3

2 A2
1 B2

1 A2
2 B2

2 A1
1 B1

1 A1
2 B1

2 A0
1 B0

1 A0
2 B0

2
B3

1 B3
1 A3

1 B3
2 A3

2 B2
1 A2

1 B2
2 A2

2 B1
1 A1

1 B1
2 A1

2 B0
1 A0

1 B0
2 A0

2
A3

2 A3
2 B3

2 A3
1 B3

1 A2
2 B2

2 A2
1 B2

1 A1
2 B1

2 A1
1 B1

1 A0
2 B0

2 A0
1 B0

1
B3

2 B3
2 A3

2 B3
1 A3

1 B2
2 A2

2 B2
1 A2

1 B1
2 A1

2 B1
1 A1

1 B0
2 A0

2 B0
1 A0

1

To show that Dnh(AEM) has the required properties, and it is effectively the only
group that does, first note that, since the irreps are one-dimensional, the group is abelian,
and, thus, by the fundamental theorem of finite abelian groups [52], can be expressed as a
direct product of cyclic groups of prime order, i.e.,

Zm1 ⊗ . . .⊗ Zmn (7)
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where mi is prime and the Zmi consists of the set {0, 1, . . . , mi − 1} with addition modulo
mi for i ∈ {0, . . . , n}. However, the cyclic group Zm has a representation where element i is
associated with e2πi/m, which is only real for all i if m = 2, thus our group can only be of
the form

Dnh(AEM) = Z2⊗ . . .⊗︸ ︷︷ ︸
n−1

Z2 (8)

for some n. For a given `max (or the same kmax), we must have at least 4(`max + 1) repre-
sentations (four for each ` including ` = 0). Dnh(AEM) has 2n representations, hence

n = dlog2 4(lmax + 1)e (9)

where de rounds up to the nearest integer. In order to show that the irrep product properties
hold, first consider Z2. It has character table shown in Table 5.

Table 5. Character table for the Z2 group.

Z2 0 1

A 1 1
B 1 −1

In the following, we omit labelling the elements and the irreps, and simply write the
character table as a matrix. Then Z2 is written(

1 1
1 −1

)
. (10)

The character table of a direct product of two groups can then be found by taking an outer
product of a matrix. This is defined by a11 . . . a1n

...
...

am1 . . . amn

⊗
b11 . . . b1s

...
...

br1 . . . brs

 = (11)



a11b11 . . . a1nb11 . . . a11b1s . . . a1nb1s
...

...
...

...
am1b11 . . . amnb11 . . . am1b1s . . . amnb1s

...
...

...
...

a11br1 . . . a1nbr1 . . . a11brs . . . a1nbrs
...

...
...

...
am1br1 . . . amnbr1 . . . am1brs . . . amnbrs


. (12)

Now, C2v = Z2 ⊗ Z2. Hence, D2h(AEM) works for kmax = 0, where we label the 0-
superscripted irreps of D2h(AEM) in the same order as Table 3. We call the D2h(AEM)
character table matrix G, i.e.,

G =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (13)

and say that this has the property that G× G = G in that for any irreps of Γ1 and Γ2 of
D2h(AEM), the result of Γ1 × Γ2 is another irrep in D2h(AEM). If we now consider the case
`max = 4, we have the character matrix
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
G G G G
G −G G −G
G G −G −G
G −G −G G

. (14)

This is a more succinct way to write Table 3. The first row containing four irreps is 0-
superscripted, labelled as in Table 3. The next four are 1-superscripted, in the same order
as the corresponding 0-superscripted irreps, and so on. With this construction, for any two
irreps of Γ1 and Γ2 of D4h(AEM), if they have the same superscript, Γ1 × Γ2 will cancel the
−s of the Gs and the result will be an irrep of the 0-superscripted block. Moreover, this will
be the same irrep one would obtain had one used the C2v group. If the irreps do not have
the same superscript, then we will have −G× G = −G type multiplication whose result
will be an irrep not in the 0-superscripted block. We can see that this easily generalises to
any `max. This concludes the definition of Dnh(AEM). Table 6 describes how the characters
for Dnh(AEM) are defined for an arbitrary n, although, in practice, one would use the outer
product formulation to build the character table.

Table 6. The character table for the Dnh(AEM) group for some n. The character corresponding to
the ith row and jth column is given by f (i, j) = f (j, i). Here, k is given by k = 2n−2 − 1. Starting
the row and column number from zero, the output of the function f is as follows: first, i and j are
converted into binary numbers and their bitwise sum is calculated. If the number of 1s in the result is
odd, character is −1; if it is even, the character is 1. For example, 7 and 4 would be 111&100 = 100,
so the number of 1s is 1 (odd) and, thus, the character is −1.

Dnh (AEM) E0 C0
2 σ0 σ0

v . . . σk
v

A0
1 1 1 1 1 f (4k + 3, 0)

B0
1 1 −1 1 −1 f (4k + 3, 1)

A0
2 1 1 −1 −1 f (4k + 3, 2)

B0
2 1 −1 −1 1 f (4k + 3, 3)
...

Bk
2 f (4k + 3, 4k + 3)

The introduced structure is similar to that of Extended molecular symmetry groups
G(EM), which are used in the ro-vibrational problems of non-rigid molecules, such as
hydrogen peroxide (H2O2) [34] and ethane (C2H6) [53].

In these cases, the group structure is

G(EM) = G(M)⊗ {E, E′} ∼= G(M)⊗ Z2 (15)

while Dnh(AEM) is given by

Z2⊗ . . .⊗︸ ︷︷ ︸
n−1

Z2 = C2v ⊗ Z2⊗ . . .⊗︸ ︷︷ ︸
n−3

Z2 (16)

which clarifies how this sort of construction would work for any arbitrary group G:

G⊗ Z2 ⊗ . . .⊗ Z2. (17)

The basis functions for these types of molecules also contain artificial, unphysical
irreps. For example, the rotational or vibrational wavefunctions of G36(EM), the MS group
of ethane C2H6, can transform as odd or even under E′, labelled as s and d, respectively.
Likewise, the full rotation-vibrational wavefunction can only be of s type and the artificial
d types must be eliminated [53].

The artificial symmetry group that has been introduced here has been implemented in
the existing structure of the TROVE program, as illustrated below.
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2. Example of Dnh(AEM) in Ro-Vibrational Calculations of CO2 Energies with TROVE

Let us consider a ro-vibrational basis set of a centrosymmetric linear triatomic (CO2)
in a symmetry adapted form (compare to Equation (3)) and a bisecting embedding [19]:

ΦΓ =
{
[φi1(r1, r2)]

Γ1 [φi2,`(ρ)]
Γ2 |J, K, m, Γrot〉

}Γtot
,

where Γs are the irreps, K = |k|, is are function labels, r1 and r2 are the equivalent stretches,
and ρ = 180◦ − α with α as an inter-bond angle.

Assuming a small rotational problem with Jmax = 4, we need kmax = 4, and, hence,
n = dlog2 20e = 5 (Equation (9)). There are 25 = 32 irreps in the group D5h(AEM), but our
basis functions can be only one of (for kmax = 4) 4(4 + 1) = 20 irreps, and the remainder
is not utilised. However, they are still necessary when combining basis functions, as was
illustrated in Table 4.

The procedure works as follows: initially, the reduced Hamiltonian matrix (see
Appendix A for details) for the bending motion is manually made block diagonal in `
and the whole matrix is diagonalized. In principle, TROVE could treat these blocks sep-
arately and diagonalize each individually. However, in practice, the dimension is small
enough that diagonalizing the entire matrix is computationally acceptable.

In order to obtain symmetrized (in D5h(AEM)) eigenfunctions for both the bending
and stretching Hamiltonians, the standard TROVE symmetrisation procedure is applied,
as described in [48]. The resulting irreps are the 0-superscripted ones of D5h(AEM) and
they correspond to the C2v(M) ones. To correctly symmetrise this way, the operation Om,
using the notation of Table 3, has the same behaviour on the coordinates as operation O0.

Once 0-superscripted irreps are obtained, the rotational and bending wavefunctions
are reassigned to the appropriate k- or `-superscripted irrep.

In our example, Pmax = 2. The same polyad value is used for the symmetrized
basis set.

Table 7 lists a few vibrational energies with their symmetry assignment in D5h(AEM).
The irreps that are generated by the bending basis functions can only be A1, and they are
assigned to A`

1 for a given `. In this case, ` ≤ 4. The stretching functions are all assigned
as a 0-superscripted irrep. This ensures that, when they are combined with the bending
function, the ”base” irrep obtained (i.e., the letter and subscript of the irrep label) would
have been the same if we had used the C2v group. The only 0-superscripted irrep is the one
where ` = k, as expected, and only this would be retained from this set.

Table 8 shows the A0
1 and A0

2 states for the J = 2 case. Here, we see that k ranges from
0 to 2, and the rotational irreps are superscripted accordingly. The combined stretching
and bending irreps are the same as their corresponding rotational irrep and, thus, the full
functions are of type A0

1 or A0
2. It should be noted that our assignment in Tables 7 and 8 of

K, v1, v2, `, and v3 is based on the largest basis set contribution approach and, therefore, can
deviate from the experimental assignment of these states as formed from the corresponding
analysis using effective Hamiltonian solutions.
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Table 7. The J = 0 vibrational states, including the symmetry Γ in D∞h(AEM) of the full state. v1, v2,
` and v3 are the linear molecule quantum numbers of CO2.

Γ E (cm−1) v1 v2 ` v3

A0
1 0.00 0 0 0 0

A1
1 667.75 0 1 1 0

A0
1 1285.40 0 2 0 0

A2
1 1336.67 0 2 2 0

A0
1 1388.21 1 0 0 0

A1
1 1932.82 0 3 1 0

A3
1 2006.73 0 3 3 0

A1
1 2077.23 1 1 1 0

B0
2 2349.17 0 0 0 1

A0
1 2548.34 1 2 0 0

A2
1 2586.55 0 4 2 0

A0
1 2671.14 2 0 0 0

A4
1 2677.94 0 4 4 0

A2
1 2762.27 1 2 2 0

A0
1 2797.16 1 2 0 0

B1
2 3004.45 0 1 1 1

A1
1 3181.79 1 3 1 0

Table 8. The J = 2 ro-vibrational states including the symmetry of the full state and the symmetry of
the rotational, stretching, and bending parts. The assignment of v1, v2, `, v3 and K is approximate and
based on the largest contribution to the eigenfunction. Only states with non-zero nuclear statistical
weights are shown.

Γtot E (cm−1) Γrot K Γstretch Γbend v1 v2 ` v3

A0
1 2.34 A0

1 0 A0
1 A0

1 0 0 0 0
A0

2 669.71 A1
2 1 A0

1 A1
1 0 1 1 0

A0
1 1287.75 A0

1 0 A0
1 A0

1 0 2 0 0
A0

1 1337.46 A2
1 2 A0

1 A2
1 0 2 2 0

A0
1 1390.55 A0

1 0 A0
1 A0

1 1 0 0 0
A0

2 1934.78 A1
2 1 A0

1 A1
1 0 3 1 0

A0
2 2079.19 A1

2 1 A0
1 A1

1 1 1 1 0
A0

1 2550.69 A0
1 0 A0

1 A0
1 1 2 0 0

A0
1 2587.33 A2

1 2 A0
1 A2

1 0 4 2 0
A0

1 2673.48 A0
1 0 A0

1 A0
1 2 0 0 0

A0
1 2763.06 A2

1 2 A0
1 A2

1 1 2 2 0
A0

1 2799.50 A0
1 0 A0

1 A0
1 1 2 0 0

A0
1 3006.39 B1

2 1 B0
2 A1

1 0 1 1 1
A0

2 3183.76 A1
2 1 A0

1 A1
1 1 3 1 0

3. Conclusions

The artificial symmetry group D∞h(AEM) introduced here was designed to take
advantage of the detailed symmetry information that is available in the linear-molecule
3N− 5 treatment, even when the bent-molecule 3N− 6 approach is used. The construction
of D∞h(AEM) is based on the cyclic group of order 2. D∞h(AEM) is shown to have all the
properties required: basis functions with different ` or k functions (vibrational or rotational,
respectively) generate different irreducible representations of D∞h(AEM). This is a natural
property for the linear molecule 3N − 5 treatment and we can now also employ it for
quasi-linear or bent molecules treated in the 3N − 6 approach, but using non-degenerate
irreps that are required for bent systems.
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In this work, we showed that it is possible to build a symmetry group to satisfy
a set of criteria required to simplify the basis set and Hamiltonian matrix elements for
variational calculations. This is opposite to the usual practice, where the symmetry group,
to a large extent, is dictated by the physics of the molecule itself, which, in turn, defines
the computational approach. Our main criterion here is to associate the projections `
and k with one-dimensional (1D) irreducible representations with the goal of applying
a general symmetry-adapted variational approach to the ro-vibrational calculations of
a linear triatomic molecule. Thus, the very specific k = ` constraints and associated k-
structured block-diagonal Hamiltonian matrix, which are typical for the 3N − 6 linear
molecule calculations, have been formulated in terms of irreducible representation algebra,
as implemented in TROVE.

The authors of this paper originally tried an alternative approach that would make
use of the Extended Molecular Symmetry (EMS) Groups C∞v (EMS) and D∞h(EMS) of
Chapter 17 of Ref. [2]. As discussed above, these groups are obtained by, among other
changes, extending the MS groups Cs(M) and C2v(M) [2] by artificial operations, such as
C∞

ε, a rotation of an arbitrary angle ε about the a axis. In the resulting EMS groups C∞v(EM)
and D∞h(EM) the vibrational basis function |v1, v2, . . . , vN−1; v`N

N , v`N+1
N+1 , v`N+2

N+2 , . . . , v`2N−3
2N−3〉

generates a Σ, Π, ∆, Φ . . . . Similarly, |J, k, m〉 generates a Σ, Π, ∆, Φ . . . symmetry for
k = 0, 1, 2, 3, . . . . See Tables 17-1 and 17-2 of Ref. [2]. The introduction of C∞v(EM) and
D∞h (EM) was, in principle, motivated by the same ideas that inspired the present work.
These groups are more closely related to actual symmetries than the results presented here,
since they utilise the near-symmetry of arbitrary rotations about the a axis; the ideas of the
present work are more abstract.

Despite those benefits, the present approach was taken, as it proved challenging to
practically utilize C∞v(EM) and D∞h(EM). Moreover, although more physically relevant,
the C∞v(EM) and D∞h(EM) have the disadvantage that they involve the degenerate
irreps Π, ∆, Φ . . . . The double degeneracy is a simple consequence of the fact that any
rotation about the a axis exists in two equivalent forms, which we can call clockwise
and anti-clockwise, respectively. The 2×2 transformation matrices of these irreps are
not uniquely determined and more complicated to apply than the characters of non-
degenerate representations.
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Appendix A. TROVE Calculation Details Used in the CO2 Example

To construct the full ro-vibrational basis functions , first J = 0 (vibrational) 1D Hamil-
tonians are formed for each vibrational mode by setting the other coordinates in the
Hamiltonian Ĥ at their equilibrium values. The eigenfunctions of these Hamiltonians are
obtained while using the Numerov–Cooley approach [49–51] for the stretches and using
an associated Legendre or Laguerre polynomial-based basis set L(`)

n for the bend, with the
number ` having the same role as the ` in Section 1.3. Thus, one obtains functions of
the form Φν1(r1), Φν2(r2), and Φ(`)

ν3 (ρ) for the two stretching and the bending functions,
respectively, and combinations of these are used as the primitive basis set. A detailed
explanation can be found in Yurchenko and Mellor [19].

Once we have the 1D basis set, we can use it to ’build up’ multi-mode basis sets.
For a triatomic molecule, we diagonalize the Hamiltonian for a simplified molecule that
only carries out stretching motion, described by the bond lengths r1 and r2, in a basis
of products Φν1(r1)Φν2(r2), producing the symmetry-adapted eigenfunctions ΨΓ1

i1
(r1, r2).

The Hamiltonian for a simplified molecule that bends and rotates about the a axis is
diagonalized in a basis of functions Φ(`=k)

ν3 (ρ) exp(i k χ), producing the symmetry-adapted
eigenfunctions ΨΓ2

i2
(ρ) exp(i k χ).

The full ro-vibrational basis functions are now of the form

ΨΓ1
i1
(r1, r2)Ψ

Γ2
i2
(ρ)|J, k, m,±〉

where |J, k, m,±〉 are rigid symmetric-top wavefunctions (that contain the factor exp(i k χ);
see Ref. [2] and the references therein), with k having the same role here as in Section 1.3.
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