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1 Introduction

Parton showers are ubiquitous tools in high-energy collider physics. In recent years, how-
ever, it has become clear that differences between parton showers are among the limiting
systematics in many collider physics applications. This has motivated multiple efforts to
better understand the consequences of the approximations contained within parton show-
ers, and to exploit that understanding to guide their further development.

The majority of today’s most commonly used showers, in particular those of the dipole
family [1], make use of the idea of approximating QCD as if it had a large number of colours
(Nc). Within this approximation one can view each event as a collection of independent
colour dipoles: each gluon in an event functions as the colour-triplet end of one dipole and
the colour anti-triplet end of another, while each (anti-)quark is the colour (anti-)triplet end
of a single dipole. Those dipoles then radiate independently (and incoherently) from each
other. This makes it relatively straightforward, at each stage of the showering, to generate
a radiation pattern that is correct across small and large angles in the large-Nc limit.

There are several ongoing efforts to include subleading-Nc corrections, for example
refs. [2–10]. Including subleading colour corrections in full generality turns out to be
computationally challenging, because as the parton multiplicity increases one should keep
track of a rapidly-growing number of possible colour configurations, with contributions from
higher-dimensional colour representations. Here we explore a complementary approach, one
which connects the questions of subleading colour and subleading logarithmic contributions.

To help make things concrete, let us recall the PanScales criteria [11, 12] for assessing
the logarithmic accuracy of a shower

1. We should identify the kinematic configurations for which a shower correctly repro-
duces tree-level squared matrix elements. Typically it is useful to discuss this as a
function of the separation between emissions in a Lund diagram [13]. We return to
this in more detail in section 2.

2. We should evaluate the logarithmic accuracy of the shower’s predictions for a range
of common observables. Suppose we calculate some property P (αs, L) of an event,
where αs is the strong coupling at a scale close to the hard scale, Q, of the event, and
L, which we take negative throughout this paper, is the logarithm of a ratio of scales.
For example this might be the cross section for events whose thrust is larger than
1− e−|L|, or it might be the number of subjets found when clustering the event with
resolution scale Q2e−2|L|. There are two ways of classifying logarithmic accuracy.

(a) For observables that exponentiate (typically event shapes and some jet rates),
one can organise logarithmically enhanced terms as follows [14]:

P (αs, L) = P (αs, 0) exp
(
α−1
s g1(αsL)︸ ︷︷ ︸

LL

+ g2(αsL)︸ ︷︷ ︸
NLL

+ αsg3(αsL)︸ ︷︷ ︸
NNLL

+ · · ·
)

+O
(
e−|L|

)
.

(1.1)
LL stands for leading-logarithmic accuracy, NLL for next-to-leading logarithmic,
and so forth. The NkLL functions, αk−1

s gk+1(αsL), resum terms αnsLn+1−k and
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may in some cases involve operators rather than numbers. The LL function,
α−1
s g1(αsL), starts off with a double logarithmic term αsL

2. Certain observ-
ables, such as fragmentation functions and energy flow into a limited angular
region, start only from the g2 function, (in much of the literature, the g2 func-
tion is then called LL; for consistency across the full set of observables, here we
still call it NLL).

(b) For other observables, for example subjet multiplicities and certain other jet
rates, there is no simple exponentiation of double logarithmic (DL) terms, and
one may instead write

P (αs, L) = P (αs, 0)
(
h1(αsL2)︸ ︷︷ ︸

DL

+ α1/2
s h2(αsL2)︸ ︷︷ ︸

NDL

+ αsh3(αsL2)︸ ︷︷ ︸
NNDL

+ · · ·
)

+O
(
e−|L|

)
,

(1.2)
where the NkDL function, i.e. αk/2s hk+1(αsL2), resums terms αnsL2n−k. In other
work, this classification is often called NkLL (or occasionally NkLLΣ). We adopt
the NkDL nomenclature here to avoid confusion with the NkLL of eq. (1.1).

For both the matrix element and observable-resummation logarithmic accuracy criteria,
one may keep track of powers of the number of colours. Making the number of colours
explicit, the leading-colour (LC) part of the LL function, LL-LC, involves terms αnsNn

cL
n+1,

while the next-to-leading colour (NLC) part, LL-NLC, involves terms αnsNn−2
c Ln+1 and so

forth. When needed, we will use the abbreviation FC to explicitly denote contributions
that include the full colour structure.

Standard dipole showers correctly capture the full set of LL-LC terms (or DL-LC
terms, as appropriate for the event property being measured). For exponentiating event
properties, it is natural to consider values of the logarithm down to L ∼ −1/αs where NLL
terms are of order 1 (cf. eq. (1.1)). Keeping in mind that, numerically, αs ∼ 1/N2

c ∼ 0.1,
one then concludes that LL-NLC and NLL-LC terms are of comparable importance.1 For
observables that do not exponentiate, one instead considers values of the logarithm down
to L ∼ −1/√αs, and with the same αs ∼ 1/N2

c equivalence, one may take DL-NLC terms
to be comparable to NNDL-LC terms.

Recently there has been significant progress in designing classes of showers that are
NLL and NDL (LC) accurate aside from spin correlations, and in numerically demonstrat-
ing that accuracy in practice [12] (refs. [15, 16] instead examine an analytical approach). An
approach that bears similarities to one of those shower classes was discussed in ref. [17]. At
this point, to consistently control all first subleading aspects beyond the LL-LC approxima-
tion, it becomes essential to identify approaches to construct showers that are correct not
just at NLL-LC, but also LL-NLC (such approaches tend also to bring DL-NLC accuracy).

In this paper, we present two related, simple approaches whose colour handling goes
beyond LL-LC/DL-LC accuracy. Both approaches are based on the observation that colour

1Strictly, the expansion parameters that should be compared in the large-Nc limit are αsNc/π, which
would be held constant under the operation of taking Nc → ∞, and 1/N2

c . However, for Nc = 3, the
numerical similarity between the two expansion parameters remains.
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coherence (or equivalently, angular ordering) provides an understanding of the colour struc-
ture for emissions in phase-space regions that involve disparate angles. Specifically, when
angles are disparate, one can use colour coherence to identify the colour factor for radia-
tion, either CF if all emissions at smaller angles form a net colour (anti-)triplet, or CA if
they form a net colour octet.2

The relevant information can be organised with the help of Lund diagrams. The
potential to use Lund diagrams and colour coherence to understand the structure of colour
assignment in dipole branching was pointed out long ago by Gustafson [24], with a concrete
scheme proposed in ref. [25] (section 4.2). However, subsequent dipole showers adopted
different schemes, which have since been found to generate spurious LL-NLC terms in some
cases [11] (cf. also refs. [26, 27]).

The two schemes that we develop, which are computationally efficient, will achieve
NDL-FC and NLL-FC accuracy for multiplicities and global event shapes respectively, thus
going beyond the accuracy of the scheme proposed in ref. [25]. For non-global logarithms
(which start at NLL in our counting), they are NLL-FC accurate only up to some fixed
order (O (αs) or O

(
α2
s

)
, depending on the scheme), however they are in good numerical

agreement with the full-colour all-order computation of Hatta and Ueda [28], to within the
latter’s few-percent accuracy. For many practical purposes, therefore, it seems that our
colour schemes have sufficient accuracy not just for NDL/NLL showers, but even as a basis
for use in potential future NNDL/NNLL showers (where the colour terms left out by our
schemes will be commensurate with N3LL leading-colour terms).

This article is structured as follows. In section 2 we will recall how Lund diagrams
can be used to understand the assignment of CF and CA colour factors and then, in
sections 3 and 4, introduce two concrete schemes that can be straightforwardly applied to
a range of 21st century dipole showers. For reference, in section 5 we will briefly review the
standard colour scheme in modern dipole showers. Then in section 6 we shall carry out a
set of numerical tests, comparing the effective tree-level matrix elements being generated
by our schemes to known exact results in energy-ordered limits. In section 7 we will
examine a range of observables, using both standard colour assignment schemes and our
new schemes, comparing the results to known DL-FC and NDL-FC, as well as LL-FC and
NLL-FC expectations.

2 Angular ordering and Lund diagrams

Let us start by elaborating on the first of our two criteria for logarithmic accuracy, i.e. the
reproduction of matrix elements in suitably ordered limits. It is convenient to use Lund
diagrams as a way of visualising the phase-space (see ref. [29] for a concrete prescription

2Angular ordering is a key feature of the Herwig family of showers [18–20], which should generate the
correct LL-FC terms by construction, as well as NLL-FC terms for global observables (though internal cuts
in phase-space can complicate the picture [21]). However, there are certain classes of NLL-LC terms, those
associated with non-global logarithms [22], that cannot be accounted for in angular-ordered showers [23],
and so angular ordered showers do not at this stage appear to provide the foundations needed for systematic
improvements beyond LL across all classes of logarithmically enhanced terms.
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to construct the Lund diagram from an event’s kinematics). At LL accuracy, the tree-level
matrix elements should be correct for any number of emissions that are well separated
in a Lund diagram in both the logarithm of transverse momentum (kt) and in rapidity
(η = − ln tan θ/2), which one might call double strong ordering; at NLL accuracy, the tree-
level matrix elements should be correct for any number of emissions that are well separated
in at least one direction in the Lund diagram. Well-separated means that the distance D
between points in the Lund diagram corresponding to any given pair of emissions should
satisfy e−D � 1. The correctness of the matrix element should hold no matter what that
direction is, e.g. some may be well separated in rapidity but have similar ln kt, while others
may be well separated in ln kt but have similar η values. In this article, the only respect in
which we will relax this requirement on (leading-colour) logarithmic accuracy concerns the
treatment of azimuthal correlations in collinear splittings, as induced by spin correlations,
a topic that we defer to future work.

Throughout this section and the next ones, we will discuss how we attribute the correct
colour factor for real emissions. The reader should keep in mind that virtual contributions
are also being implicitly corrected at the same time, a consequence of the unitary nature
of the showers that we consider in this paper.3

For subleading colour effects at LL accuracy, one only needs to obtain the correct tree-
level matrix element in regions where emissions are all well separated in rapidity. In this
limit, for radiation at an angle θ, the question of colour reduces to that of examining the
set of partons contained within a cone of aperture θ around the dipole end that is closer in
angle. If that cone contains a single net quark (or anti-quark), i.e. |nq − nq̄| = 1, then the
radiation is associated with a CF = (N2

c−1)/(2Nc) colour factor, while if the cone contains
zero net quarks, the radiation is associated with a CA = Nc colour factor.4 In the limit
where all emissions are well separated in rapidity, these are the only two possible situations,
and there will also never be any partons close to the edge of a given cone (because then
the radiation would end up close in rapidity to an existing parton, keeping in mind that
g → qq̄ splittings are implicitly collinear up to and including NLL accuracy).

Although it is informative to refer to angular cones, it is more practical, going forwards,
to use Lund diagrams. The angular-ordered colour-assignment prescription is illustrated
with Lund diagrams in figure 1 for two e+e− → q̄q events, each dressed with additional
radiation. Recall that the main large triangle corresponds to the phase-space associated
with the original e+e− → q̄q event (primary Lund plane), while each “leaf” that comes
away from the main plane represents the additional phase-space that becomes available
following emissions from that qq̄ system (for example radiation collinear to the gluon in
a q̄qg system). For concreteness we imagine a transverse momentum-ordered shower and

3The discussion of the relation between real and virtual corrections is simple until one has four or
more partons at commensurate angles; from that point onwards one should worry about amplitude-level
evolution [30], which is beyond the accuracy and scope of this article. Additionally, when considering
both initial and final-state emitters, non-trivial iπ terms enter at amplitude level, associated with Coulomb
gluons, and these are a source of super-leading logarithms and coherence violation [31, 32]. They have been
addressed in the case of initial-final showers in ref. [33], but are not relevant for the final-state showers
considered here.

4Recall that in dipole showers, the CA colour factor will be shared equally between two dipoles.
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ln kt

η
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CA/2

g1
g2

q̄ q
g2 g1

(a)

ln kt

η

CF

CA/2

g1

q′ q̄′

g2

g3

q̄ q
g2

g3 g1
q̄′

q′

(b)

Figure 1. Two example events and associated Lund diagrams. Points in the Lund diagram
represent branchings, the triangles represent the two-dimensional logarithmic phase-space, while
the coloured lines at the base of the diagram represent the phase-space for individual colour-dipoles
(at the corresponding kt value), with dashed and solid segments indicating the parts of the dipole
that should be associated respectively with a CF versus a CA/2 colour factor.

consider the state of the event at a value of the ordering variable kt corresponding to the
lower edge of the diagram (though our arguments apply to a range of shower ordering
choices). The phase-space for emission at that kt is given by the base of the Lund diagram.

Let us first consider figure 1a. In a normal leading-Nc picture, this event consists of
three colour dipoles: q̄g2, g2g1 and g1q, represented as red, blue and green solid/dashed
lines at the base of the Lund diagram. The dashed and solid styles indicate the colour
factor based on angular ordering, which we work through in the rest of this paragraph.
Along the dashed part of the (red) q̄g2 dipole, i.e. the part on the primary Lund plane, any
subsequent gluon emission is closer in angle to the q̄ than to g2 and a cone drawn around
the q̄ contains just the q̄, so the colour factor is CF . Along the solid part of the dipole,
i.e. the part on the leaf associated with g2, the cone should be drawn around the gluon g2,
since that is the dipole end that is closer in angle. The only particle contained within the
cone around g2 is the gluon g2 itself, and one should use a colour factor of CA/2.

Next, we consider the (blue) g2g1 dipole. In the solid blue region, along g2’s leaf, the
cone is to be drawn around g2 and the only particle that is contained is a gluon, so we
have a CA/2 colour factor; the situation is analogous for the solid blue region along g1’s
leaf. For the part of the dipole that is dashed, along the primary Lund plane, we need to
separately examine the parts to the left and the right of the vertical dotted line. To the
left, g2 is the end of the dipole that is closer in angle. Writing the angle of the radiation, r,
with respect to g2 as θrg2 , and keeping in mind that we are in a region of the Lund plane
were θrg2 � θq̄g2 , the cone of angle θrg2 that we draw around g2 automatically contains q̄
as well as g2, so the colour factor is CF . The situation is similar to the right of the vertical
dotted line, but with a cone containing g1 and q. Finally the (green) g1q dipole can be
understood in analogy with the (red) q̄g2 dipole.
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Based on the above reasoning it is relatively straightforward to see that if one has
an arbitrarily large number of gluon emissions (including secondary gluon emissions, but
no g → qq̄ splittings), then to determine the colour factor, one should identify whether an
emission is on the primary Lund plane and if it is assign a CF colour factor, otherwise assign
a CA/2 colour factor. That was the key observation made long ago by Gustafson [24]. A
specific scheme (based on boosts) for achieving this was incorporated [25] as a modification
of the Ariadne parton shower [13, 34].

The next question one may ask is what happens if one allows for g → q̄q splittings.
Whether one should consider this to be part of the LL terms is a matter that one may
debate: on one hand g → q̄q splittings can exist in double-strongly ordered configurations.
On the other hand if one integrates over their phase-space (as is relevant for thinking about
logarithmically enhanced contributions to common observables), each g → q̄q splitting
contributes only a single logarithm, i.e. an effect that is at most NLL in our counting.
Here, we take the view that we should favour the (slightly) more ambitious goal and so
aim to obtain the correct colour factors for double-strongly ordered configurations including
g → q̄q splittings. Such a configuration is shown in figure 1b and observing the (blue) g3q

′

dipole, one sees that it consists of a sequence of solid (CA/2) and dashed (CF ) segments,
with the final dashed segment along the q′ leaf, which is not part of the primary Lund
plane. In general the number of segments on a dipole can be anywhere between 1 (e.g. the
solid green g2g3 dipole) and infinity, though in practice the average number of segments
per dipole turns out to be of order 1 even in high-multiplicity events, a consequence of the
smaller number of quarks than gluons produced in the parton shower. This picture differs
from the standard approach within dipole showers of breaking every dipole into two parts,
each associated with one of the two ends. Note that in this paper we will apply our new
segmentation just for the purposes of colour assignment, retaining the default two-part
segmentation for the kinematic maps of each shower that we examine.5

3 A solution with segments and transition points

Based on the reasoning in section 2, here we propose the first of our concrete schemes for
achieving LL full-colour accuracy. We start by introducing the key ideas with the help of
a worked example, section 3.1. We then discuss choices we can make that affect aspects
beyond LL-FC accuracy, section 3.2, or that arise in occasional special cases, section 3.3
(some readers may prefer to skip these parts). In section 3.4 we give our full algorithm.
Finally in section 3.5 we show how it can be adapted to the Pythia 8 shower [36, 37].

3.1 A worked example

The key insight from section 2 is that to obtain LL full colour accuracy it is enough to
break every dipole into a suitable sequence of CF and CA colour segments. We label those

5One could also imagine constructing a shower with global recoil whose kinematic map follows the pattern
of the colour map. Indeed, we wonder whether this might be the most physical approach to constructing a
global recoil map, avoiding certain ugly features of existing global maps [12, 17, 35]. However we leave the
investigation of this question to future work.
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q̄ q

g1

q̄′
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Figure 2. Examples of colour segments and transition points for representative configurations: (a)
a q → qg splitting (i.e. the emission of a gluon from a quark segment), (b) a g → gg splitting (i.e.
a gluon emission from a gluon segment), and (c) a g → qq̄ splitting.

segments by their extremities in rapidity and the colour factor along the segment. For an
initial e+e− → q̄q event we start with a single dipole consisting of one segment stretching
from a rapidity of η = −∞ (q̄ end) to η = +∞ (q end), associated with a CF colour factor.
We denote this as

[−∞, CF ,∞]q̄q , (3.1)

where our notation consists of a sequence of segment boundaries (or, equivalently, transition
points) and segment colour factors. When a dipole emits a gluon g1, we define the gluon’s
rapidity within the dipole, ηg1 = ±| ln tan θ/2|, in terms of its angle θ with respect to the
dipole end that is closer in the event frame.6 We assign a positive (negative) rapidity if it
is closer to the triplet (anti-triplet) end. Since there is only a CF segment in the q̄q dipole,
the gluon is necessarily emitted with a CF colour factor.

When we radiate a gluon g1 from the q̄q dipole, we end up with two dipoles, q̄g1 and
g1q, each of which now has one CF and one CA region, cf. figure 2a. The segmentation for
the two dipoles is as follows

[−∞, CF , ηLg1 , CA,∞]q̄g1 + [−∞, CA, ηRg1 , CF ,∞]g1q , (3.2)

where we have highlighted in blue the extra segments that are a consequence of the gluon
emission and, for now, we take ηLg1 ≡ η

R
g1 ≡ ηg1 . We see here that both new dipoles have a

transition point at the rapidity of the emission itself (see figure 2a). Note that since gluons
are shared across two dipoles, the second segment should really have a colour factor CA/2.
For compactness, we suppress the explicit factor 1/2 in our notation.

Next, we consider a second emission, g2. It is sufficient to examine the situation where
it is emitted from the q̄g1 dipole. We use the same procedure to evaluate the rapidity
ηg2 of g2 as given above, but now with respect to the q̄g1 dipole, and we examine where
ηg2 lies in the q̄g1 sequence of segments. Since there are two segments, there are two
possible cases: (a) −∞ < ηg2 < ηLg1 , where radiation occurs with a CF colour factor and

6For LL accuracy, shifts of η by an amount of order 1 do not have an impact; below in section 3.2
we will discuss the constraints that arise for certain aspects of NLL accuracy, notably for parton and
jet multiplicities.
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(b) ηLg1 < ηg2 < ∞ where it occurs with a CA/2 colour factor. As well as differing in the
colour factor for emission, the two cases also differ in terms of the resulting set of new
segments. Case (a), emission from the CF region, gives the following segmentation of the
resulting three dipoles

[−∞, CF , ηLg2 , CA,∞]q̄g2 + [−∞, CA, ηRg2 , CF , η
L
g1 , CA,∞]g2g1 + [−∞, CA, ηRg1 , CF ,∞]g1q,

(3.3)
i.e. one splits the q̄g1 sequence of segments in eq. (3.2) into two separate sequences: one is
for the q̄g2 dipole, which keeps everything to the left of the CF segment where the radiation
occurred, plus a closing ηLg2 , CA,∞] right segment; and one for the g2g1 dipole, which keeps
everything to the right of the CF segment, plus a closing [−∞, CA, ηRg2 left segment. This
pattern corresponds exactly to what we see in figure 1a. Case (b), insertion into the CA
region, is shown in figure 2b and gives

[−∞, CF , ηLg1 , CA,∞]q̄g2 + [−∞, CA,∞]g2g1 + [−∞, CA, ηRg1 , CF ,∞]g1q . (3.4)

Again we have highlighted the new part in blue. Since we are inserting a gluon into a CA
region there are no additional CF−CA transition points.

The final case that we need to consider is the splitting of a gluon to q′q̄′, cf. figure 2c. In
a strong ordering (i.e. collinear) limit, as relevant for accuracies up to and including NLL,
the |η| associated with the g → q′q̄′ splitting will always be larger than the last non-infinite
η transition point in each dipole’s sequence, i.e. the splitting will always be associated with
a CA segment that is at the extreme left or right ends of a sequence. We consider a q̄g1q

event and the branching of g1 → q′q̄′ in the q̄g1 dipole, i.e. we have eq. (3.2) as our starting
point. Defining

ηLq′q̄′ = −ηRq′q̄′ = |ηq′q̄′ | , ηq′q̄′ ≡ − ln tan θq′q̄′/2 , (3.5)

where θq′q̄′ is the opening angle of the q′q̄′ pair in the event frame, we then obtain the
following segments

[−∞, CF , ηLg1 , CA, η
L
q′q̄′ , CF ,∞]q̄q′ + [−∞, CF , ηRq′q̄′ , CA, ηRg1 , CF ,∞]q̄′q, (3.6)

i.e. the q̄g1 and g1q dipoles have respectively become q̄q′ and q̄′q dipoles and each of
those dipoles has additional transition points to a CF colour factor at ηLq′q̄′ = |ηq′q̄′ | and
ηRq′q̄′ = −|ηq′q̄′ | respectively. The opposite signs for ηLq′q̄′ and ηRq′q̄′ arise because the transition
needs to be at angles close to the q′ for the q̄q′ dipole, i.e. positive rapidity, and at angles
close to the q̄′ end of the q̄′q dipole, i.e. negative rapidity.

Before formulating a full, concrete algorithm, some details need to be specified, related
to O (1) choices for the rapidity boundaries (section 3.2), and the handling of cases where
two emissions are close in rapidity, with resulting ambiguities in how to construct the
segments (section 3.3).

3.2 Specific rapidity definitions and NDL accuracy

There are two aspects to examine concerning the exact choices of rapidity transition points,
both relevant for configurations where two branchings occur at similar angles. One involves
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Figure 3. Illustration of the configuration that we consider to examine the equivalence between
exact angular ordering and our partitioning of dipoles, as relevant for NDL accuracy in particle
and jet multiplicities. We will consider the emission of a further soft gluon, g2, with respect to this
configuration, at an angle of at least θcut away from the q̄, q and g1. The dashed/solid coloured
lines indicate schematically where we use a CF v. CA/2 colour factor for each of the two dipoles
(blue: q̄g1, red g1q).

identifying a choice that can provide full-colour NDL (NDL-FC) accuracy for basic quan-
tities like jet and particle multiplicities, i.e. control of terms αnsL2n−1. The control of this
class of terms at NDL-FC accuracy has long been one of the strong arguments in favour
of angular ordered showers [38]. The other question is more practical: in the segment
algorithm we implicitly assume that all transition points are ordered, with a consistent
alternating set of CF and CA segments. Those properties are trivially maintained when all
branchings are at disparate angles, but that is no longer necessarily the case when two or
more branchings are at commensurate angles.

We first consider what is required for NDL-FC accuracy. We start with a system q̄g1q,
with θg1q � 1, and examine the emission of a second much softer gluon, g2, in a limited
range of energy, ∆lnE, and with the following angular constraints:

{θg2q, θg2q̄, θg2g1} > θcut . (3.7)

The angular limits for the emission of g2 are represented schematically in figure 3 and we
work in a limit where θcut � θg1q. The integrated full-colour rate of g2 emission in this
region is well known to be [39, 40]

IFC = 2αs ∆lnE
π

[
2CF ln 2

θcut
+ CA ln θg1q

θcut

]
, (3.8a)

= 2αs ∆lnE
π

[2CF ηcut + CA(ηcut − ηg1)] , (3.8b)

where ηg1 = − ln tan θg1q/2, ηcut = − ln tan θcut/2. The parton shower’s ability to reproduce
this result is a key requirement for NDL full-colour accuracy. In particular, if the evaluation
of this integrated emission rate for the shower has an extra O (1) constant in the square
bracket, NDL accuracy will not be achieved.

To provide a concrete demonstration of how to satisfy eq. (3.8), we consider the Pan-
Scales showers [12]. The kinematics for branching in these showers is parameterised in
terms of the shower ordering variable ln v, a longitudinal variable η̄ (linearly related to the
logarithm of a light-cone momentum component) and an azimuthal angle φ. The emission
density (working at fixed coupling for illustrative purposes) is

C
2αs
π
dη̄ d ln vdφ2π , (3.9)
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where C is the colour factor (CF or CA with CF = CA/2 in the large-Nc limit).7 To
integrate the shower over the region of eq. (3.7), one needs to relate η̄ to the actual rapidity
of a soft and collinear emission from a dipole ij with respect to the closer of i and j. The
following approximate formula (specific to the PanScales showers)

η(ij)
approx =

 η̄ − 1
2 ln

(
1−cos θij

2

)
, η̄ > 0 ,

η̄ + 1
2 ln

(
1−cos θij

2

)
, η̄ < 0 ,

(3.12)

provides the (signed) rapidity with respect to the closer of i and j (when the dipole for
which we evaluate ηapprox is obvious, we omit the (ij) superscript). It is approximate in
the following sense: for an emission k from an ij dipole, the true rapidity with respect to
the closer of i and j has additional O (1) corrections when the smaller of the θik and θjk
is commensurate with θij . For a soft emission, those corrections vanish when the ratio of
min(θik, θjk) to θij is small. This is the case notably close to the θcut limits in eq. (3.7).

For the configuration in figure 3, with θg1q � 1 (θq̄g1 ' π), we have

q̄g1 dipole: η(q̄g1)
approx = η̄ , (3.13a)

g1q dipole: η(g1q)
approx =

{
η̄ + ηg1 η̄ > 0 ,
η̄ − ηg1 η̄ < 0 . (3.13b)

Note that ηapprox depends linearly on η̄ except at η̄ = 0, where it is discontinuous for
the g1q (i.e. small-angle) dipole. With these results one can translate the constraints of
eq. (3.7) into constraints on η̄ for each of the two dipoles,

q̄g1 dipole: − ηcut < η̄ < ηcut , (3.14a)
g1q dipole: − ηcut + ηg1 < η̄ < ηcut − ηg1 . (3.14b)

For each of the dipoles, the procedure of section 3.1 splits the dipole’s rapidity range into
a CF piece and a CA/2 piece. The choice that we make for the transition points is η̄ = ηg1

for the q̄g1 dipole (using CF for η̄ < ηg1), and η̄ = 0 for the g1q dipole (using CF for η̄ > 0).
Together with the limits in eq. (3.14), one then finds that the CA/2 pieces from the two

7Recall, e.g., that the PanLocal family of mappings [12] for emission of pk from a dipole {p̃i, p̃j} is

pk = akp̃i + bkp̃j + k⊥ , pi = aip̃i + bip̃j − fk⊥ , pj = aj p̃i + bj p̃j − (1− f)k⊥ , (3.10)

where k⊥ = kt [n⊥,1 cosφ+ n⊥,2 sinφ], with n2
⊥,m = −1, n⊥,m · p̃i/j = 0 (m = 1, 2), n⊥,1 · n⊥,2 = 0 and

kt = ρveβ|η̄| , ρ =
(
sı̃s̃
Q2sı̃̃

) β
2

. (3.11)

Here the parameter β sets the choice of ordering variable, sı̃̃ = 2p̃i · p̃j , sı̃ = 2p̃i · Q, and Q is the total
event momentum. The light-cone components of pk are given by ak =

√
s̃
sı̃̃sı̃

kte
+η̄ and bk =

√
sı̃
sı̃̃s̃

kte
−η̄.

The quantity f in eq. (3.10) determines how transverse recoil is shared between pi and pj , cf. below. The
ai, bi, aj , bj are fully specified by the requirements p2

i/j = 0, (pi + pj + pk) = (p̃i + p̃j) and pi = p̃i for
kt → 0. These and the shower-dependent choices for f are given in the supplemental material to ref. [12].
The PanGlobal shower drops the −fk⊥ and −(1 − f)k⊥ terms in eq. (3.10), sets bi = aj = 0, and boosts
and rescales the event after each emission so as to conserve momentum.
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dipoles add up to give a total η̄ range of 2(ηcut − ηg1), while the CF pieces add up to give
2ηcut, giving a total result for the parton shower of

IPS = 2αs ∆lnE
π

[2CF ηcut + CA(ηcut − ηg1)] , (3.15)

in agreement with the full-colour result of eq. (3.8).
While the discussion in terms of η̄ is useful for locating an emission with respect to a

dipole with a single transition point, to handle more complicated events, it becomes simpler
to reason directly in terms of ηapprox. Thus the transition point for the q̄g1 dipole is at
ηapprox = ηg1 . For the g1q dipole, since ηapprox is discontinuous at η̄ = 0, any transition
between −ηg1 and +ηg1 is equivalent. One simple convention is to set the transition for the
g1q dipole to be at ηapprox = 0, i.e. along the dipole’s angular bisector in the event frame.

Together, these observations bring us to the following recipe for soft emission from a
configuration with an existing collinear branching. Working in the event centre-of-mass
frame, when inserting a gluon emission i into a CF segment, determine its angle θi to the
triplet (anti-triplet) end of the dipole if ηapprox,i > 0 (< 0) and define ηi = ∓ ln tan θi/2,
using a negative (positive) sign when the θi is determined with respect to the triplet (anti-
triplet) end. In constructing new transition points, e.g. as in eqs. (3.2) or (3.3), use

ηLi = max (0, ηi) , ηRi = min (0, ηi) . (3.16)

When considering the generation of a new emission k, determine its ηapprox,k from eq. (3.12)
and compare that ηapprox,k to the dipole’s existing transition points to determine the seg-
ment to which the emission belongs and the associated CF v. CA/2 colour factor.

Similar considerations about the total integral for soft gluon emission are relevant for
a g → q̄q splitting. One can demonstrate that the prescription given in eqs. (3.5) and (3.6)
already ensures the correct integral, an analogue of eq. (3.8).

3.3 Special cases

When inserting a gluon g into a CF segment, and that gluon’s angle with respect to
the dipole end is close to an existing transition point, it can sometimes happen that the
insertion ηLg or ηRg lies outside the segment range (recall that ηapprox and ηexact can differ
by an order 1 amount when the emission angle is commensurate with the dipole opening
angle). From a DL logarithmic point of view, e.g. for particle or jet multiplicities, such
a situation is beyond NDL. Specifically, to trigger it, one must have two energy-ordered
gluons at similar angles. In such a situation, any subleading-Nc issue induced by mis-
ordering of transition points only affects emission of a subsequent, third, soft gluon that is
once again at a similar angle (it also affects related virtual corrections). The requirement
of three energy-ordered gluons at commensurate angles corresponds to NNDL terms for
quantities such as multiplicities, because one loses a logarithm relative to DL for each of
the second and third gluons when requiring its angle to be similar to the first.

Still, we need a definite prescription to handle such cases. We choose to give priority
to the requirement that the transition points in the colour-segment sequence should always
remain ordered. Consider the configuration [. . . , CA, ηi−1, CF , ηi, CA . . .]ab and a situation
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where we have located a new emission, according to its ηapprox, as belonging to the central
CF segment. We would normally expect to split the sequence as

[. . . , CA, ηi−1, CF , ηi, CA . . .]ab → [. . . , CA, ηi−1, CF , η
L
g , CA,∞]ag+

+ [−∞, CA, ηRg , CF , ηi, CA, . . .]gb , (3.17a)

but if ηLg ≤ ηi−1, we discard the last two segments of the new ag sequence (ηi−1, CF , η
L
g

and ηLg , CA,∞) and extend the remaining rightmost CA segment to +∞,

[. . . , CA, ηi−1, CF , ηi, CA . . .]ab → [. . . , CA,∞]ag + [−∞, CA, ηRg , CF , ηi, CA, . . .]gb . (3.17b)

We use an analogous procedure when ηRg ≥ ηi, dropping the two first segments of the gb
sequence and extending its leftmost CA segment to −∞. Since ηLg ≥ ηRg , and since the
transition points are always ordered prior to insertion, this adaptation is needed at most
on one side, never both.

Similar considerations apply to g → qq̄ splittings, though the impact on accuracy is
now only expected to be N3DL, because g → qq̄ splittings start one logarithm down. Where
normally we would have

[. . . , CF , ηi, CA,∞]ag + [−∞, CA, ηj , CF , . . .]gb →
[. . . , CF , ηi, CA, ηLq′q̄′ , CF ,∞]aq′ + [−∞, CF , ηRq′q̄′ , CA, ηj , CF , . . .]q̄′b , (3.18a)

if ηLq′q̄′ ≤ ηi, then we remove the last two segments of the new aq′ sequence and extend its
remaining rightmost (CF ) segment to infinity,

[. . . , CF , ηi, CA,∞]ag + [−∞, CA, ηj , CF , . . .]gb →
[. . . , CF ,∞]aq′ + [−∞, CF , ηRq′q̄′ , CA, ηj , CF , . . .]q̄′b . (3.18b)

There is an analogous adaptation when ηRq′q̄′ ≥ ηj .
In practice, for physical αs values, these adaptations are used in at most a few percent

of gluon insertions in CF segments and for up to 10−20% of g → qq̄ splittings.

3.4 The algorithm

With the help of the above reasoning we are now ready to formulate a full segment-based
algorithm for the PanScales showers. The event should start with eq. (3.1) for an initial
e+e− → q̄q event and analogues with CA for the two dipoles of an initial H → gg event.
Splitting functions and their integrals for Sudakov factors should by default all be evaluated
with the replacement CF → CA/2 = Nc/2. Dipoles are always labelled by their anti-triplet
end followed by their triplet end.

For emission of a gluon g from an ab dipole, use the parent dipole momenta and
PanScales kinematic generation variable η̄ to determine η(ab)

approx for the gluon, according to
eq. (3.12). Identify the location of η(ab)

approx within the ab dipole’s sequence of segments. If
it is in a CF segment, reject the emission with probability (1− 2CF /CA) (or, alternatively,
multiply the event weight by (1 − 2CF /CA)). If it is rejected, continue by generating the
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next value for the shower ordering variable, starting from the value that was been rejected.
If the emission is accepted, and η(ab)

approx > 0 (< 0) evaluate ηg = − ln tan θgb/2 (ln tan θag/2).
Determine ηLg and ηRg from ηg according to eq. (3.16), and replace the ab dipole’s sequence
of segments with new sequences for the ag and gb dipoles as follows,

[. . . , CF , . . .]ab → [. . . , CF , ηLg , CA,∞]ag + [−∞, CA, ηRg , CF , . . .]gb . (3.19)

The left and right “. . .” represent the full sequences to the left and right ends of the original
CF factor. They are assigned respectively to the left and right ends of the ag and gb dipoles’
sequences. If ηLg is such that its insertion would create a disordered sequence of transition
rapidities, remove the last two segments in the ag dipole, i.e. use eq. (3.17b). Proceed
analogously for ηRg .

If the emitted gluon’s ηapprox,g is in a CA segment, do not apply any additional rejection
factor (i.e. generate the gluon with its original CA/2 colour factor) and replace the ab dipole
sequence of segments as follows.

[. . . , CA, . . .]ab → [. . . , CA,∞]ag + [−∞, CA, . . .]gb , (3.20)

where the CA on the left corresponds to the segment associated with ηapprox,g.
Finally we consider g → q′q̄′ splitting, where the gluon belongs to two dipoles ag

and gb. We assume the splitting to have been generated with a normal Pg→qq̄ splitting
function, so there is no rejection factor to apply. Using the opening angle θq′q̄′ between the
new quark and anti-quark, determine ηLq′q̄′ = −ηRq′q̄′ = | ln tan θq′q̄′/2|, i.e. eq. (3.5). The
g → q′q̄′ splitting then acts as follows on the segments:

[. . . , CA,∞]ag + [−∞, CA, . . .]gb → [. . . , CA, ηLq′q̄′ , CF ,∞]aq′ + [−∞, CF , ηRq′q̄′ , CA, . . .]q̄′b .
(3.21)

In a situation where the insertion of ηLq′q̄′ would lead to a disordered sequence of transition
points, remove the last two segments from the aq′ dipole, as in eq. (3.18b), and analogously
remove the first two segments from the q̄′b dipole if ηRq′q̄′ is disordered with respect to the
other transition points.

3.5 Use in other showers, e.g. Pythia 8

The technique outlined above can be applied to almost any dipole or antenna shower.
The one adaptation that is required is to identify a suitable expression for ηapprox, i.e. the
analogue of eq. (3.12), for that shower. For example in the Pythia 8 shower [36, 37], for
a dipole ab where the emitter has momentum p̃b and the spectator p̃a, the expression for
ηapprox is

η(ab)
approx =

 ηbapprox = ln 2p̃b.Q− 1
2 ln(Q2p2

⊥evol) + ln(1− z) , ηbapprox ≥ −ηaapprox ,

ηaapprox = − ln 2p̃a.Q
2p̃a.p̃b

− 1
2 ln p⊥evol2

Q2 + ln(1− z) , ηbapprox < −ηaapprox ,
(3.22)

where p⊥evol is the shower evolution variable (a transverse momentum), the event momen-
tum is Q, and 1 − z is the fraction of p̃b’s energy carried away by the gluon in the dipole
centre-of-mass frame. One can verify that when an emission is soft and collinear to one of
p̃b or p̃a, this gives the correct signed rapidity with respect to the closer of b or a in the
event centre-of-mass frame.
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4 A solution with nested ordered double-soft (NODS) corrections

The approach of section 3 had two elements: one was the determination of an effective
colour factor for each new emission; the other was to establish whether a new emission
should be attributed to a CF segment from the point of view of the colour-factor identifi-
cation for subsequent emissions.

In this section we consider an approach that retains the second of these elements,
but replaces the binary colour-factor choice (CF v. CA/2) with a local matrix-element
correction that reproduces the full-Nc radiation pattern for configurations involving a pair
of energy-ordered soft gluons that are close in rapidity in the Lund diagram, but with all
other emissions well separated in rapidity from them and from each other. The procedure
will actually give the correct full-Nc matrix element even when there are multiple such
pairs around, as long as each is well separated in rapidity from all others (in the same
sense as in our discussion at the beginning of section 2).

As in the previous section, we will start by explaining our general approach in the
case of a simple subset of event structures in section 4.1. Next, in section 4.2, we will
consider issues that arise for more general event structures. We will then give our complete
algorithm in section 4.3.

4.1 Angular-ordered primary-only events

To understand the NODS procedure, consider a situation with a single q̄q pair and gluons
g1 . . . gn, each of which is primary in the Lund-diagram sense and well separated in rapidity
from all the other gluons, with an ordering in Lund-diagram primary rapidity of η1 � η2 �
. . . � ηn. This configuration will dominantly be associated with a leading-colour dipole
structure q̄1, 12, 23, . . ., nq (up to corrections suppressed by powers of e−|ηi−ηj |), which
we can represent as

q̄ q

1
2 3

4

(4.1)

using n = 4 for concreteness. The corresponding leading-colour squared matrix element
for emission of a soft gluon with momentum k is8

|MLC|2 = CA
2 [(q̄1) + (12) + (23) + . . .+ (nq)] , (4.2)

where we have introduced the shorthand

(ab) ≡ 16παs
2pa.pb

(2pa.k)(2k.pb)
∝ 1− cos θab

(1− cos θak)(1− cos θkb)
, (4.3)

and assigned a CA/2 colour factor to each dipole. In the specific limit that we are consid-
ering, i.e. primary emissions that are all well separated in rapidity, the full-colour matrix

8Strictly, this is the ratio of the squared matrix element for production of q̄q plus n + 1 gluons, to the
squared matrix element for q̄q plus n gluons.
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element reduces to
|M |2 = |MLC|2 +

(
CF −

CA
2

)
(q̄q) . (4.4)

One simple approach to reproducing eq. (4.4) would be to introduce an acceptance proba-
bility for each emission of

paccept = |M |2

|MLC|2
. (4.5)

We will introduce a general shorthand for such expressions

paccept(q̄, 1, 2, . . . , n, q) ≡ 1 +
(2CF − CA

CA

) (q̄q)
(q̄1) + (12) + . . .+ (nq) . (4.6)

One approach along these lines was proposed in ref. [41]. A downside of any approach that
uses the full set of momenta in the acceptance is that for an N -particle event it would
involve evaluating O (N) dot products for each emission, leading to a contribution to the
total showering time that scales as N2. This is not necessarily prohibitive; for example
the implementation of the Pythia 8 showering algorithm scales as N2, and showers with
global recoil such as PanGlobal also scale as N2 in their current implementation. However
it turns out to be possible to formulate an expression for paccept that maintains the same
accuracy but can be evaluated in O (1) time.

To understand how this can be done, we consider a dipole in the middle of the chain,
say i, i+ 1, where both i and i+ 1 are gluons. Specifically for this dipole we are free to use

|MLC,i,i+1|2 = CA
2 [(i− 1, i) + (i, i+ 1) + (i+ 1, i+ 2)] , (4.7a)

|Mi,i+1|2 = |MLC,i,i+1|2 +
(
CF −

CA
2

)
(i− 1, i+ 2) , (4.7b)

paccepti,i+1 = |Mi,i+1|2

|MLC,i,i+1|2
≡ paccept(i− 1, i, i+ 1, i+ 2) , (4.7c)

rather than the full paccept(q̄, 1, 2, . . . , n, q). In |MLC|2 we are justified in dropping all
dipoles q̄1, . . . , (i− 2, i− 1), and (i+ 2, i+ 3), . . . , nq, because of the requirement that all
emissions are well separated in rapidity. To see this, imagine that i is at negative rapidity
(θq̄i � 1), i + 1 is at positive rapidity (θi+1,q � 1). Consider an emitted gluon k such
that θik ' θq̄i. Then, because of our requirement that all existing emissions should be well
separated in rapidity, we have θi−2,i−1 � θi−2,k ' θi−1,k. Examining eq. (4.3) one can then
see that the (i− 2, i− 1) term is negligible compared to the terms included in |MLC,i,i+1|2,
which is simply a consequence of the fact that a small-angle dipole does not substantially
emit at large angles. Similarly for the (i+ 2, i+ 3) term, as well as all the other terms that
we have neglected in eq. (4.7a). Now we turn to eq. (4.7b): here we have replaced a q̄q
with i− 1, i+ 2, which is justified since θi−1,k − θq̄,k � θq̄k and θk,i+2 − θk,q � θkq for any
momentum k that is likely to be radiated by the (i, i+ 1) dipole.

Note that with the truncation adopted in eq. (4.7a), it would not be sensible to use
the (q̄q) emission factor in the (CF −CA/2) term of eq. (4.7b), because such a term would
have a negative divergence for k exactly collinear to q̄ or q that would not be compensated
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for by any of the terms in the |MLC,i,i+1|2 contribution. In contrast, one can show that the
acceptance probability as written eq. (4.7) is bounded to be in the range

1− 3
(
CA − 2CF

CA

)
= 1− 3

N2
c
≤ paccepti,i+1 ≤ 1 , (4.8)

i.e. for the physical value of Nc it is always positive definite and so straightforward to use
in event generation.9

We have given the justification for writing eq. (4.7) in a specific frame, one in which
it is manifest that one can replace q̄ with i− 1 and q with i + 2. However the underlying
expressions are Lorentz invariant, and the validity of those replacements is ultimately
ensured by the condition that all existing emissions are on the primary Lund plane and
separated by large differences in rapidity.

We also need to consider dipoles at the end of the chain, for example the q̄1 dipole in
eq. (4.1). In such a case, we simply write

pacceptq̄,1 = paccept(q̄, 1, 2) , (4.9)

and analogously at the other extremity.
In what follows, when we write

paccepti,i+1 = paccept(i− 1; i, i+ 1; i+ 2) , (4.10)

it is useful to introduce the following terminology: i− 1 is the auxiliary momentum at the
colour-anti-triplet (i) end of the dipole, and i+2 is the auxiliary at the colour-triplet (i+1)
end of the dipole. We have emphasised that i−1 and i+2 are auxiliaries by separating their
indices from the others with semi-colons. One can then represent the event of eq. (4.1) as

q̄ q

1
2 3

4

2 q̄ 3 1 4 2 q 3

(4.11)

where the dotted line beneath each solid black dipole represents the −1/(2Nc) dipole that
we use in the matrix-element correction. It shows, for example, that the 23 dipole has
auxiliaries 1 and 4, leading to an acceptance factor paccept(1; 2, 3; 4).

4.2 Considerations for general events

Most events do not consist just of angular-ordered primary emissions discussed so far:
primary gluons can themselves emit secondary gluons, and any gluon may split to qq̄.

9Without loss of generality, for massless particles, one can always rotate and boost an event such that
i−1 and i+2 are along the negative and positive z axes and k is along the −x direction. The configuration
that gives the minimum is then one where i and i + 1 have their momenta along the (sin θ, 0,± cos θ)
directions with tan θ

2 = 1
2 .
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The first case that we consider is emission from a region that would be associated with
a CF colour factor in the segment approach, e.g. the emission of 5 from the 23 dipole,

q̄ q

1
2 3

4

2 q̄ 3 1 4 2 q 3

−→ q̄ q

1
2 3

45

2 q̄ 3 31 2 4 2 q 3

(4.12)
When 5 is well-separated in rapidity from both 2 and 3, the acceptance factor for emission
of 5 will reduce to 2CF /CA. The new 25 dipole retains the left-hand auxiliary (1) of the
parent dipole and acquires a new right-hand auxiliary (3), corresponding to the triplet
end of the parent dipole. Similarly, the new 53 dipole acquires a new left-hand auxiliary
(2), corresponding to the anti-triplet end of the parent dipole, and retains the parent’s
right-hand auxiliary (4).

Next, we consider a collinear g → gg splitting. Imagine that we have the configuration
in eq. (4.11) and that dipole 23 branches, with its 2 end splitting to gluons 5 and 6 in a
collinear configuration θ56 � θ15 ' θ16, illustrated as follows

q̄ q

1
2 3

4

2 q̄ 3 1 4 2 q 3

−→ q̄ q

1
5 6 3

4

2 q̄ 3 1 4 2 q 3

(4.13)
where the new 56 dipole is highlighted in red. The 15 dipole, which is the successor of the
12 dipole retains the 12 dipole’s auxiliaries. Similarly the 63 dipole retains the 23 dipole’s
auxiliaries. The new 56 dipole, since it is produced far in Lund-plane rapidity from any
region with a 2CF /CA correction, does not need any auxiliaries, in the same way that it
has no transitions points (and so no CF segments) in the approach of section 3.

For configurations that are not strongly ordered, e.g. emission of 5 from the 23 dipole
at an angle that is commensurate with θ21, the acceptance factor is unambiguous (and
correct) in our approach. However there is an ambiguity in the assignment of auxiliaries to
the child dipoles, which translates to an ambiguity in the acceptance for a subsequent third
emission at similar angles, a configuration where we do not aim for full-Nc accuracy. We
resolve that ambiguity as follows: as well as retaining information on auxiliaries, we also
retain information on segments and their transitions, as in the approach of section 3. If an
emission occurs in a CF segment then we assign new auxiliaries as in eq. (4.12). Instead,
if it occurs in a CA/2 segment, we do not introduce any new auxiliaries, as in eq. (4.13).

Finally, we consider a g → q′q̄′ splitting (for which we always assign a normal Pg→qq̄
splitting function and use a colour acceptance factor of 1). Consider 2→ q′q̄′,

q̄ q

1
2 3

4

2 q̄ 3 1 4 2 q 3

−→ q̄ q

1

q′ q̄′ 3
4

2 q̄ 3 1 4 2 q 3

q̄′ q′

(4.14)
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where we have highlighted the new q′q̄′ pair in red. To justify the choice for the new
auxiliary variables, we consider the radiation of a soft gluon after the 2→ q′q̄′ splitting. In
the segmented approach of section 3 we would have said that the q̄′3 dipole now has two
CF segments. In our NODS approach, we introduce an acceptance factor for each CF -like
segment in the dipole and determine the overall acceptance for the dipole as the product
of the individual acceptance factors. E.g. for the q̄′3 dipole we write

pacceptq̄′,3 = paccept(q̄′, 3; q′) paccept(1; q̄′, 3; 4) , (4.15)

where the first CF -like segment starting from the q̄′ is associated with a single auxiliary (q′),
at its right-hand end,10 while the second CF segment retains the auxiliaries of the parent
23 dipole. For strongly angular-ordered configurations, i.e. θq′q̄′ � θq′1, only one of the
two paccept(. . .) factors in eq. (4.15) will ever differ substantially from 1. For configurations
where strong angular ordering does not hold, for which we do not aim to achieve full-Nc
accuracy, there will be phase-space regions for a subsequent emission k where both factors
will be below 1.

4.3 Full algorithm

We are now ready to specify our full matrix-element-based NODS colour-handling algo-
rithm. It retains the core framework of the segmented approach, specified in section 3.4,
with the following augmentations:

1. Where the extremity of a segment has finite rapidity, it is associated with an auxiliary,
which we denote ā towards the anti-triplet end of the segment and a towards the
triplet end.

2. Emission acceptance:

(a) The acceptance for gluon emission from a dipole ij is the product of individ-
ual acceptance factors for each of the dipole’s CF segments. The individual
acceptance factor for a given CF segment is

pacceptsegment = paccept([ā]; i, j; [a]) , (4.16)

where paccept([ā]; i, j; [a]) is evaluated using eq. (4.6). The auxiliary momenta
are in square brackets to indicate that if the segment does not have the cor-
responding auxiliary, because its extremity stretches to infinite rapidity, paccept

10The correctness of the paccept(q̄′, 3; q′) factor can be seen using arguments similar to those of section 4.1.
In the event centre-of-mass frame, angular ordering implies θq′q̄′ � 1, i.e. we only need to consider collinear
g → q′q̄′ splitting. We imagine boosting the event to a frame in which θq′q̄′ is of order 1. In the angular-
ordered limit, all other particles will then be constricted along a single collinear direction, which is well
separated from the q′ and q̄′ directions. Next, we temporarily imagine that a CA/2 dipole stretches between
the q̄ and q, so as to avoid complications with their actual (quark-like) colour structure. Then, the full
acceptance factor correction associated with the q′q̄′ CF colour structure would be paccept(q̄′, 3, 4, q, q̄, 1, q′).
For emissions along the q̄′ end of the q̄′3 dipole, all terms (34), (4q), . . . , (q̄1), are irrelevant. Furthermore,
one can replace (1q′) with (3q′), since 1 and 3 are collinear and the (1q′) term is relevant only when the
emission is emission is far in angle from 1. Thus the acceptance factor can be reduced to paccept(q̄′, 3; q′).
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is to be evaluated without that auxiliary. For example, in the case with no
auxiliaries at either end, the acceptance reduces to paccept(i, j) ≡ 2CF /CA.

(b) For a g → q′q̄′ splitting, the colour acceptance factor is set to 1.

3. Auxiliaries update:

(a) If a gluon emission k from an ij dipole occurs in a CF segment with auxiliaries ā
and a, then the corresponding CF segment in the child ik dipole has auxiliaries
ā and j, while that in the child kj dipole has auxiliaries i and a. (Where an
auxiliary is absent in the parent dipole because the segment stretches to infinite
rapidity, it remains absent in the child dipole).

(b) If a gluon emission from an ij dipole occurs in a CA segment, the child dipoles’
CF segments retain the auxiliaries of the parent dipole.

(c) For g → q′q̄′ splitting, the new CF segment in the anti-triplet-q′ dipole acquires
the q̄′ as its anti-triplet (left) end auxiliary, while the new segment in the q̄′-
triplet dipole acquires q′ as its triplet (right-hand) end auxiliary.

(d) In those special cases of the algorithm of section 3.4 where two segments are
removed from the extremity of a sequence, the corresponding auxiliaries are also
to be removed.

When storing the auxiliary for a segment, there is some freedom: for example one can
choose the auxiliary’s momentum at the time that it is associated with the segment, or
its (possibly different) momentum at a later stage in the event when one is evaluating
eq. (4.16). In practice we make a third choice: when gluon emission causes a left-hand
auxiliary to be first added to a segment-sequence of an ij dipole, we store the difference in
direction between the auxiliary and the anti-triplet end of the dipole, δiā = dā − di, where
di is the 3-vector direction of i. For a right-hand auxiliary point, we store the difference
in direction between the auxiliary and the triplet end of the dipole δja = da − dj . When
we later come to need an auxiliary momentum to evaluate eq. (4.16) in an `m dipole that
descends from the original ij, we reconstruct auxiliary directions using differences with
respect to the ` and m directions at that stage of the event,

pacceptsegment = paccept(δiā + d`; `,m; δja + dm) . (4.17)

For a g → q′q̄′ splitting, in the CF segment on the anti-triplet-q′ dipole we store its left-
hand auxiliary (q̄′) direction difference relative to the q′ (i.e. triplet) direction, δq′q̄′ so that
when that segment is eventually evaluated in the context of emission from a descendent
`m dipole we use

pacceptsegment = paccept(δq′q̄′ + dm; `,m; [. . .]) , (4.18)

and analogously for the q̄′-triplet dipole. We are not aware of a reason for preferring one
of these approaches over any other, however that based on direction differences has the
advantage of being easiest to use for certain of our tests in section 7 and so it is our
main choice.

– 19 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
1

5 Colour-factor from emitter (CFFE) algorithms

When examining the numerical behaviour of our algorithms in the next sections, it will be
useful to have an illustration of the behaviour of existing algorithms for assigning colour,
in order to gauge the practical impact of our proposals.

In standard dipole showers (e.g. the Pythia 8 shower [36] or the Dire v1 shower [42]),
each dipole is split into two elements, according to which end of the dipole is deemed
the “emitter”. Roughly speaking, each element accounts for the rapidity phase-space that
extends from zero rapidity in the dipole centre-of-mass frame to the extremity of rapidity
phase-space at the emitter end. For gluon emission, each element acquires the full-colour
splitting function associated with the flavour of the emitter, i.e. yielding Pgq(z) = 2CF /z
(Pgg(z) = CA/z) for emission of a soft gluon with momentum fraction z � 1 if the emitter is
a quark (gluon). Accordingly, we refer to this approach as the “colour-factor from emitter”
(CFFE) approach. Ref. [11] showed that the CFFE approach yields wrong DL-NLC terms
starting from second order, α2

sL
4, for some observables, e.g. the thrust.

One can also examine the CFFE approach in PanScales-like showers, where the phase-
space is again divided between the two elements of the dipole, at an angle that is roughly
equidistant between the emitter and spectator ends of the dipole, in the event centre-of-
mass frame.11 Using the approach of ref. [11], one can show that the method still yields
incorrect DL-NLC terms starting from second order, α2

sL
4, for some observables.

One could fix the second-order issue by dividing the dipole in a way that mimics the
transition points that we have discussed in section 3. However, at third order, it becomes
impossible to obtain the correct answer for general double-logarithmic observables with a
single transition point for the dipole. One can see this by examining figure 1a, where the
(blue) g2g1 dipole requires two transition points, one from CA/2 to CF and another back
to CA/2.

6 Matrix element tests

In order to demonstrate how the methods presented above effectively incorporate
subleading-colour effects, we examine parton shower results at fixed order for 2 → 3 + g

and 2→ 4 + g final states (e+e− → X + g), where X ∈ {q̄g1q, q̄q
′q̄′q, q̄g1g2q} and g is an

additional soft gluon that is radiated from system X. We compare the parton-shower (PS)
result dσPS/dηdψ (σPS for brevity) to the exact ratio of full-colour squared matrix elements
dσFC/dηdψ = dΦg|MX+g|2/|MX |2. Here, η and ψ are the rapidity and azimuthal variables
as obtained from a Lund declustering procedure (see below). We do this for each of the
segment, NODS and CFFE parton-shower colour schemes.

In sections 6.1 and 6.2, we show differential results for soft-collinear configurations,
where all partons in X are strongly ordered in energy and rapidity, and the additional soft
gluon g can be at angles commensurate with any other particle (while still strongly ordered
in energy compared to them). To test NDL-FC accuracy, in section 6.3 we compare the
integrated soft-gluon emission rate IPS, determined numerically from dσPS/dηdψ, to the

11For soft and collinear emissions, this is similar to the colour assignment discussed in ref. [17].
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expected value IFC, see eq. (3.8). We do this for three different configurations in which
the gluon g1 is either soft and collinear, hard and collinear, or soft and large-angle with
respect to the initial qq̄ dipole.

Note that the approach that we develop below for matrix-element tests could also
be adapted to provide interesting measurements within Lund-diagram type jet substruc-
ture analyses.

6.1 Differential matrix element: 2 → 3 + g configuration

All differential plots shown below are produced with the PanGlobal shower, with β = 0
(see [12] and eq. (3.11)). To set up the event (e+e− → q̄g1q, see figures 2a and 3), we
let the parton shower split the initial q̄q dipole, which emits a gluon g1 with predefined
kinematics, corresponding in our soft-collinear case to

zg1 = 10−8, ηg1 = 5, ψg1 = π , (6.1)

in the event frame. The emission of the additional gluon, g, is then also performed by the
parton shower: we fix the value of the evolution variable ln v (≡ ln kt for the PanGlobal
β = 0 shower), while sampling over the two remaining shower degrees of freedom η̄ and φ.
We cluster the event with the Cambridge/Aachen algorithm [43, 44], and work backwards
through the clustering history to determine the effective Lund diagram [29] (we call this
Lund declustering). We then log the event weight in a histogram in variables (η, ψ) defined
with respect to the emission’s parent Lund leaf. We fill separate histograms for emission
on the primary and secondary Lund leaves. Starting from the same initial q̄g1q configura-
tion, we also sample the exact full-colour analytic tree-level matrix element, see eq. (4.4),
neglecting any recoil from the last emission (since the impact of the emitted soft gluon g is
negligible). Finally, we take the ratio of the parton shower and exact full-colour histograms.

The results are collected in figure 4 for the CFFE (section 5), segment (section 3) and
NODS (section 4) colour schemes. The labels on each panel, q and g1, refer to the parton
with which the gluon g is clustered by the C/A algorithm (i.e. the emitter according to the
Lund declustering sequence). At the top of each column, a diagram indicates the corre-
sponding part of the event that the Lund rapidity η refers to (primary Lund plane, along
the quark direction, or secondary plane along the gluon direction). Note that in the follow-
ing, we do not show differential results at the q̄-end since, in this collinear configuration, the
emission correctly gets an overall factor of CF for all colour schemes that we consider (to
within corrections suppressed by powers of e−|η−ηg1 |). To help see the effective colour factor
applied by the parton shower, for each method the upper row in figure 4 depicts ratios,
σPS/σLC, of the various parton-shower colour schemes to the leading-colour result σLC. For
the latter, we use a constant colour factor CF = CA/2 = 3/2 irrespective of the position of
the emission. The ratio σPS/σLC is 1 (yellow in figure 4) when the effective colour factor
is CA/2, while it is 8/9 = 2CF /CA (green) when the effective colour factor is CF . In
the lower row, we plot the relative deviation (σPS − σFC)/σFC between the parton-shower
weight and the analytic full-colour matrix element. Regions where the shower agrees with
the full-colour matrix element come out in white (to within statistical fluctuations).
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Figure 4. Tree-level fixed-order expansion of the parton shower density for emission of a soft
gluon from a q̄g1q system (as represented in figure 2a). The results are shown for the CFFE (top),
segment (middle) and NODS (bottom) colour schemes, as implemented for the PanGlobal shower
with β = 0. The first row in each pair of plots depicts the ratio σPS/σLC (green-yellow colour
bar). The second row shows the relative deviation (σPS − σFC)/σFC between the parton shower
and the analytic matrix element (blue-red colour bar). The left-hand panels corresponds to the
primary-emission phase-space region, while the right-hand panels corresponds to emission from g1,
as emphasised in the diagrams at the top.

The two collinear limits of interest, g ‖ q and g ‖ g1, are always mapped to the
large-η region of the corresponding panels, i.e. the q-leaf (left column) and g1-leaf (right
column). Rapidities cover the range ηp < η < ∞, where ηp corresponds to the opening
angle between the parent parton and the next particle in the declustering sequence (with
ηp = 0 for radiation on the primary plane). Holes correspond to the point where the
emission moves across leaves, from a primary to a secondary plane (from the q-leaf to the
g1-leaf, in our example).

Let us examine the three colour methods in turn:

• The CFFE method incorrectly assigns a colour factor CA/2 to the region 0 < η <

ηg1 = 5. The fact that it extends from zero up to ηg1 means that the wrong colour
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factor is being used for the emission of the soft gluon g in a double-logarithmically
enhanced region (for fixed kinematics of the soft gluon g, the double log arises from
the integration over the transverse momentum and rapidity of g1). This ultimately
will lead to incorrect subleading Nc contributions to LL and DL terms.

• Instead, with the segment method, colour factors are clearly separated into a CF
region for emissions belonging to the q-leaf, and a CA/2 region for those belonging to
the g1-leaf, as expected from figure 2a. A residual deviation from the exact matrix
element is present in a region of rapidity localised around ηg1 , and reaches the level
of +15% for ψ = 0, as shown in the lower row of plots (blue-red colour scale). If one
integrates over azimuthal angle and rapidity, the blue and red regions will compensate
each other. In section 6.3 below, we shall verify that compensation is exact for large
ηg1 , so that the method reproduces the correct total rate of soft emission, eq. (3.8),
as needed for NDL-FC accuracy in observables such as multiplicities.

• The NODS procedure reproduces the full squared tree-level matrix element (up to
statistical fluctuations associated with our Monte Carlo sampling), as it should, since
in this kinematic region the method is effectively using that full tree-level result to
correct the leading-colour shower matrix element.

6.2 Differential matrix element: 2 → 4 + g configurations

Next, we consider tests for 2→ 4+g configurations, first for e+e− → q̄q′q̄′q+g and then for
e+e− → q̄g1g2q + g. A first gluon g1 is emitted off the q̄q dipole with the same kinematics
as in eq. (6.1). The second splitting is performed with

q̄q′q̄′q configuration : zq̄′ = 1/4, ηq′q̄′ = 10, ψ = 0, (6.2a)
q̄g1g2q configuration : zg2 = 10−16, ηg2 = 10, ψ = 0 . (6.2b)

These configurations are such that the second splitting happens at a much smaller angle
than the first gluon emission. For the first configuration (g1 → q̄′q′), we choose a z fraction
reflecting the absence of soft enhancements. For the second configuration (emission of
g2 from the quark, well separated in rapidity from g1) we focus on a case where g2 is
much softer than g1, though the conclusions are unchanged if we take g1 and g2 to have
commensurate transverse momenta. Results are displayed in figure 5. They have features
similar to those of figure 4, albeit with a richer structure.

The q̄q′q̄′q case is shown in figure 5a. The Lund diagram for the corresponding phase
space, and expected colour assignments, was shown in figure 2c. There are several possible
ways for the additional gluon to cluster with the rest of the event. It is useful to organise
them from a Lund-plane viewpoint. The three different possibilities correspond to the
left, centre and right panels in each plot of figure 5a. First, primary emissions (left-
hand panel, labelled q) include cases where g2 clusters with either q̄, q, or the full g1(→
q′q̄′)q system, corresponding respectively to η < 0 (not shown), η & 5 and 0 < η . 5.
Next, secondary emissions (middle panel, labelled q′) include clusterings with either q′ (the
harder of q′ and q̄′) or the g1 → q′q̄′ system. These correspond to the regions η & 10
and 5 . η . 10 respectively. Finally, tertiary emissions (right-hand panel, labelled q̄′)
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(b) q̄g1g2q + g

Figure 5. Colour factor assignment and relative deviation to the squared tree-level matrix element,
as in figure 4, for the 2 → 4 + g configurations (a) q̄q′q̄′q + g and (b) q̄g1g2q + g, corresponding
respectively to the Lund diagrams in figures 2c and 1a (with g2 there moved to the right of g1).
The results have been obtained with the β = 0 PanGlobal shower algorithm.

correspond to clusterings of the soft gluon g with q̄′. The hole observed in the primary
(secondary) plane corresponds to the region where emissions are clustered in the secondary
(tertiary) plane. The correct colour assignment involves a factor CF everywhere except in
the region 5 . η . 10 of the q′-labelled plot, where the emission of g is sensitive to the net
colour-octet charge of the whole g1 → q′q̄′ system. The CFFE method tracks neither the
intermediate particles nor segments, and therefore blindly applies a factor CF across phase-
space. Our segment and NODS schemes, in contrast, display the correct behaviour along
the intermediate gluon segment. In the case of the segment method, azimuthal deviations
from the exact matrix element are observed to be of similar size as shown above in figure 4.
Note also the discontinuity in the segment-method q̄′ panel at η = 10. This is a consequence
of our choice to make discontinuous transitions in the segment approach. Similar features
are present in the other plots, but are less immediately visible because they coincide with
the phase-space boundaries between primary and secondary Lund planes.
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Next, we turn to the q̄g1g2q configuration (figure 5b), where the gluons g1 and g2 are
primary emissions, and the holes both appear on the (primary) q-leaf. The corresponding
Lund diagram would be figure 1a with g2 there moved to the right of g1. In this case, the
three panels correspond to primary emissions, emissions from the secondary g1 Lund leaf
and emissions from the secondary g2 leaf. In the CFFE scheme, the region on the q-leaf
extending from η = 0 to the gluon’s position η = ηg1 = 10, is assigned a wrong colour
factor of CA/2. For the segment and ME methods, the same region gets a correct factor of
CF . In all cases a factor of CA/2 is correctly applied to emissions on the g1- and g2-leaves.

Note that the discrepancies in the CFFE approach are log-enhanced, and therefore as
we discussed in section 6.1, can affect subleading-colour contributions to DL terms. For
the segment method, the discrepancies are localised around the rapidities of the emission
in the parent event and they are designed to integrate to zero. We will explicitly test (and
confirm) this below in section 6.3.

The results in this section demonstrate that even though our segment and NODS cor-
rections only ever consider the structure of double-emission matrix elements, their iteration
reproduces the full-colour soft matrix elements for higher multiplicities, in the appropriate
angular-ordered limits.

For a study of the NODS method for parent events that are not angular-ordered, see
appendix A, which shows that discrepancies do then arise relative to the correct full-colour
matrix element, as is to be expected. For some configurations they reach 15%.

6.3 Integrated results

As noted in section 3.2, for observables such as the multiplicity, a shower that gives the
correct full-colour rapidity and azimuth integral for the rate of soft emissions is expected
to be correct at NDL-FC accuracy. Here we evaluate such integrals explicitly. Keeping in
mind eqs. (3.8) and (3.15), we compute the parton shower’s integrated rate of emission,
IPS, for q̄g1q+g, with the collinear cut-off set to ηcut = 30 (i.e. we integrate over the whole
rapidity and azimuth phase-space, but exclude cones of half-angle corresponding to ηcut
around each parton). Figure 6 summarises the integral results for the CFFE, segment, and
NODS colour schemes, for each of three different kinematic regimes for g1: a soft-collinear
regime, a hard-collinear regime and a soft large-angle regime (cf. values of zg1 and ηg1 as
labelled on the plots). The known full-colour result is:

IFC = 2αs ∆lnE
π

[
2CF ηcut + CA

(
ηcut − ηg1 − ln

(
1 + e−2ηg1

))]
, (6.3)

which extends eq. (3.8) beyond the small-angle limit for g1 (i.e. eq. (6.3) is valid for any
ηg1). The plot shows the difference between the shower result and eq. (6.3), multiplied by

N = π

2αs
1

CA/2− CF
= π

αs
Nc . (6.4)

This normalisation is chosen so that N (IPS − IFC) is equivalent to the effective net extent
in rapidity over which there is a CA/2 versus CF discrepancy.

For soft- and hard-collinear configurations (left and middle columns), one observes a
deviation in the integral computed with the CFFE scheme due to the mis-assignment of a
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Figure 6. Normalised deviation of the integrated rate of parton-shower soft emission (from a q̄g1q

system), relative to analytic full-colour result, i.e. π
αs
Nc(IPS − IFC), with IFC as given in eq. (6.3).

The results are shown for several parton showers and colour schemes for emission from a q̄g1q

system. The kinematics of g1 are indicated in each column, and the integral bounds are set to
ηcut = 30. The results are colour-coded green and red, respectively, according to whether the result
is consistent with zero, or not.

factor CA/2 on the q-leaf, see figure 4. The difference between the PanScales shower family
and the Pythia 8 parton shower is explained by the different separation of dipole elements
mentioned in section 5. In comparison, the segment and NODS colour schemes reproduce
the expression expected from angular ordering for all the parton showers we considered.

The last configuration that we examine is when g1 is soft and at large angles (rightmost
column of figure 6). In the case of the CFFE scheme, there remains a disagreement for all
parton showers, although it is again smaller for the PanScales family than for Pythia 8.

Interestingly, the segment method also shows a residual deviation from the analytic
expression. This expected deviation stems from our use of the small-angle limit to deter-
mine transition points between segments also in the large-angle region. It can be calculated
explicitly for PanScales showers following the same procedure as in section 3.2 for arbitrary
values of θg1q:

I
(segment)
PS − IFC = αs

π
(CA − 2CF )

{
ηg1 + ln(1 + e−2ηg1 ), |ηg1 | < ηt,
3
2 ln(1 + e−2|ηg1|), |ηg1 | > ηt,

(6.5)

where ηt = 1
2 ln 1+

√
5

2 ' 0.241 solves ηt = 1
2 ln(1 + e−2ηt). The fact that eq. (6.5) is of order

αs/Nc for ηg1 close to zero, together with its exponential decrease as ηg1 increases, ensures
that its impact on observables such as the multiplicity is NNDL-NLC.

As expected, the NODS scheme reproduces the full-colour analytic integral even when
g1 is at large angles.
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7 Numerical tests for observables

In this section, we follow the approach proposed in ref. [12] for testing the logarithmic
structure of showers with specific observables in e+e− collisions. Such tests implicitly
probe virtual as well as real corrections and so provide a powerful verification of the cor-
rect overall assembly of the different shower elements. As the reader will recall from the
introduction, the tests can be separated into two broad classes, according to whether one
is probing a double-logarithmic structure (DL, NDL, etc.) or an exponentiated (LL, NLL,
etc.) structure. We start by outlining the structure of the tests, keeping in mind that we
will adjust the details for each specific observable.

For the double-logarithmic case, eq. (1.2), when we study some event variable V (αs, L),
we will fix

ξ = αsL
2 , (7.1)

and examine the behaviour of V (αs, L) in the limit αs → 0 (with L scaling as −1/√αs).
For example to test NkDL accuracy we will study a quantity such as12

δVNkDL = lim
αs→0

(
VPS(αs,−

√
ξ/αs)− VNkDL(αs,−

√
ξ/αs)

α
k/2
s

)
, (7.2)

where VNkDL is the known NkDL prediction from resummation and VPS is the result from
the parton shower. For a parton shower that is correct to NkDL accuracy, δVNkDL should
be zero. Values of ξ for different momentum ranges are shown in table 1. In practice we
will often use ξ = αsL

2 = 5, which is towards the upper end of the phenomenologically
relevant combinations of αs and L accessible at the LHC. We perform such studies for
multiplicities (section 7.1) and event shapes (section 7.2.1).

For observables whose logarithmic prediction exponentiates, eq. (1.1), we can study
ln V (αs, L), taking the limit of αs → 0 with fixed

λ = αsL . (7.3)

To test NkLL accuracy we can examine

δ ln VNkLL = lim
αs→0

( ln VPS(αs, λ/αs)− ln VNkLL(αs, λ/αs)
αk−1
s

)
, (7.4)

where VNkLL is the known NkLL prediction from resummation. For a shower that is correct
to NkLL accuracy, δ ln VNkLL should be zero. For a shower that is incorrect at LL accuracy,
the unnormalised difference between ln VPS and ln VLL diverges for αs → 0, hence eq. (7.4)
multiplies that difference by αs to give a finite, non-zero result.13 In practice we will often

12We could use a variant of (7.2) where the denominator is taken as VNkDL − VNk−1DL, except when
it vanishes. This has the advantage of providing a meaningful relative deviation at NkDL for situations
where δVNkDL does not converge to zero as αs → 0, and it is the choice that we will adopt for some of our
multiplicity tests below.

13Alternatively, we may examine the αs → 0 limit of [lnVPS(αs, λ/αs)]/[lnVLL(αs, λ/αs)]−1, which is of
interest in some cases with LL discrepancies, because it gives a direct measure of the relative discrepancy
in the logarithm of the Sudakov factor.
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Q [GeV] αs(Q) pt,min [GeV] ξ = αsL
2 λ = αsL τ

91.2 0.1181 1.0 2.4 −0.53 0.27
91.2 0.1181 3.0 1.4 −0.40 0.18
91.2 0.1181 5.0 1.0 −0.34 0.14
1000 0.0886 1.0 4.2 −0.61 0.36
1000 0.0886 3.0 3.0 −0.51 0.26
1000 0.0886 5.0 2.5 −0.47 0.22
4000 0.0777 1.0 5.3 −0.64 0.40
4000 0.0777 3.0 4.0 −0.56 0.30
4000 0.0777 5.0 3.5 −0.52 0.26
20000 0.0680 1.0 6.7 −0.67 0.45
20000 0.0680 3.0 5.3 −0.60 0.34
20000 0.0680 5.0 4.7 −0.56 0.30

Table 1. Values of ξ = αsL
2, λ = αsL and τ (defined in eq. (7.10)) for various upper (Q) and lower

(pt,min) momentum scales. The coupling itself is in a 5-loop variable flavour number scheme [45–48],
while τ is evaluated for 1-loop evolution with nf = 5.

use λ = αsL = −0.5. This corresponds to a slightly narrower range of logarithm than
our choice for ξ, in part to help mitigate some of the technical difficulties of the αs → 0
limit. We perform such studies for event shapes (section 7.2.2) and non-global logarithms
(section 7.3).

Generation with very small αs and fixed ξ or λ is often difficult. Many of the techniques
that we use were outlined in the supplemental material to ref. [12]. For the work presented
here we added three main new advances:

1. We implemented a weighted generation technique that is equivalent to evolving multi-
ple replicas of an event, discarding a replica when it emits into a region of phase-space
that we wish to veto, and then adjusting the number of replicas and their weights so
as to continue generating with the original effective number of replicas (cf. section 3
of ref. [49]). For the combinations of αs, shower and event-shape that were most
challenging in ref. [12], this enabled us to save about an order of magnitude in com-
puting time, associated with accessing regions with very strong Sudakov suppression.
It also enabled us to reach small αs values that were simply not feasible in ref. [12],
facilitating the extrapolation to αs = 0.

2. We adjusted the shower implementation so that it can track differences in directions
between neighbouring particles in the dipole chain. This works around issues that
arise in normal shower implementations where it becomes difficult to determine an-
gles between particles (and dot products, etc.) when those angles go below machine
precision ε. This, together with the next point, was especially useful in allowing for
smaller αs and larger values of the (absolute) logarithm in double-logarithmic tests,
though it also facilitated cutoff dependence tests in the NLL event-shape studies. It
has a small ∼ 30% speed penalty, and some implementation overhead, but avoids
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the need for the double-double and quad-double types [50] used, with substantially
larger speed penalties, in ref. [12].

3. To allow for momenta across such disparate scales that the logarithm of the ratio
of scales is truly large (|L| & 1

2 logµ ' 354 where µ ' 1.8 × 10308 is the maximum
number that can be represented in double precision), we implemented a new floating
type that supplements a normal double-precision number with a 64-bit integer to store
the exponent, replacing the usual 11 exponent bits in a double precision number. This
came with a speed penalty relative to double precision numbers of about ×4, but was
substantially faster than solutions we investigated based on the MPFR [51] or Boost
multiprecision libraries. It was particularly valuable for double-logarithmic tests and
useful also for tests of non-global observables.

Throughout we will run with the physical colour factors, Nc = 3, CF = (N2
c − 1)/(2Nc) =

4/3, CA = Nc and nf = 5 (except for leading-Nc comparison results, where we use CF =
1
2CA = 3

2).

7.1 Particle multiplicity

One of the most powerful tests of a parton shower is its prediction for the particle or subjet
multiplicity. To reproduce the NDL multiplicity requires correct modelling of a variety
of aspects of a parton shower, including nested g → gg and g → qq̄ splittings. Ref. [12]
demonstrated agreement between a range of dipole showers and NDL-LC predictions. We
expect the segment and NODS schemes of sections 3 and 4 to bring NDL-FC agreement. For
example, in the segment method, the general pattern of CF dipole segments associated with
the Born q̄q pair should guarantee DL-FC terms, while the specific choices of transition
points for the segments, together with the CF segments for g → q′q̄′ splittings, should
ensure NDL-FC accuracy.

Strictly speaking, the particle multiplicity is infrared and collinear (IRC) unsafe. A
closely related, but IRC-safe, quantity is the subjet multiplicity [52] in the kt jet algo-
rithm [53]. Ref. [12] directly computed that subjet multiplicity comparing to the results
of ref. [52]. Here we take a slightly different approach that avoids the need for jet clus-
tering, but can still be directly compared to the results of ref. [52]. We run the shower as
normal, but set the running coupling to zero below some threshold transverse momentum
kt,cut. At NDL accuracy, the multiplicity with such a procedure should be identical to that
with a clustering threshold for the subjets of ycut = k2

t,cut/Q
2. Only starting from NNDL

do we expect differences to arise between the multiplicity for a shower definition of a kt
cutoff and the kt algorithm definition.14 We have explicitly verified that this is the case at
leading colour.

14Those differences can for example arise because of details of the specific definition of transverse mo-
mentum in the collinear limit, and because of effects related to the jet algorithm’s clustering properties.
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PanGlobal( = 1/2)
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PanLocal(dip., = 1/2)
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PanGlobal( = 0)

NODS
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sL2 = 5, s = 5 × 10 12

Multiplicity DL tests
0.00 0.01 0.02 0.03
relative deviation from DL

Figure 7. DL shower multiplicity tests, showing results for the parton multiplicity at ξ = αsL
2 = 5

in various parton showers and colour schemes, for a sufficiently small value of αs that NDL terms
can be neglected. The DL expectation from eq. (7.5) is NDL ' 10.9008.

The analytic expression for the multiplicity in e+e− → qq̄ events, up to and including
NDL terms, can be straightforwardly extracted from ref. [52],

N = 2CF
CA

(
1 + b(2B − 1)

8π
√
αsξ

)
cosh

√2CA
π

ξ

+ 2
(

1− CF
CA

)(
1 + nfCF

16πCA
√
αsξ

)

+
√

αsξ

32πCA
2CF
CA

[
6CA +

(5
2 − 3B − CAξ

π

)
b

]
sinh

√2CA
π

ξ

 , (7.5)

in the approximation that |L| � 1, with b = 11CA−2nf
3 and B = 1 + 8nf (CA−CF )

3bCA . Figure 7
shows the multiplicity N for ξ = 5 at a value of αs = 5 × 10−12, which is sufficiently
tiny that one can neglect subleading corrections to within an accuracy of √αs ' 2.24 ×
10−6. The figure compares several shower algorithms (the main PanScales showers and our
implementation of the Pythia 8 shower), and three colour schemes, with the analytic DL
result. We see that the CFFE scheme, the default in many showers including Pythia 8,
differs by up to ∼ 3% from the analytic result. A 3% difference is not a huge effect, but
it remains a subleading-Nc DL difference and gives a measure of the practical impact of
such contributions, i.e. ∼ 1/(3N2

c). For comparison, the differential matrix element plots,
figures 4 and 5, showed ∼ 10% differences for the CFFE approach in extended phase-
space regions. Our new segment and NODS approaches coincide well with the DL analytic
multiplicity result for all showers, including when applied to the Pythia 8 shower.

To test the NDL multiplicity terms, we need to examine δNNDL, as defined in eq. (7.2).
For this comparison, we need αs to be large enough for √αs terms in the multiplicity to be
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(NPS NNDL)/(NNDL NDL) with s 0
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s
= 4.5335
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Figure 8. NDL shower multiplicity tests. (a) Results for NPS−NNDL
NNDL−NDL

, for a variety of parton showers
in the NODS colour scheme, as a function of √αs, showing that they vanish as αs → 0, as required
to achieve full-colour NDL accuracy. The curves depict a fit that is a polynomial in powers of √αs.
(b) Explicit extrapolation of NPS−NNDL

NNDL−NDL
to αs = 0, for a range of showers, with the segment and

NODS colour schemes. In both plots we also illustrate the NDL-level discrepancy that arises in a
scheme where quarks from g → qq̄ splittings erroneously continue to emit with a CA/2 colour factor.

visible after summing over a finite number of Monte Carlo events, while also small enough
that we can safely extrapolate away O (αs) terms. To this end, figure 8a shows

NPS −NNDL
NNDL −NDL

= NPS −NDL
NNDL −NDL

− 1, (7.6)

a quantity conceptually similar to δNNDL in eq. (7.2) (since NNDL − NDL ∝
√
αs), as a

function of √αs. It shows results for the NODS method for several showers and one sees
that most of the results go to zero as αs → 0, with the exception of the red curve, to which
we return below (the segment method, not shown, gives almost identical results). The
result of the actual αs → 0 extrapolation (using a cubic polynomial extrapolation based on
αs = {0.000005, 0.00032, 0.00128, 0.00512}) is shown in figure 8b for each shower and for
each of the segment and NODS methods. All results are consistent with the (full-colour)
NDL result, to within the small statistical errors.

Figure 8 also includes results (red points) obtained using a deliberately erroneous
prescription that omits the insertion of new CF segments following g → qq̄ branchings,
resulting in those quarks emitting with a CA/2 colour factor. While this prescription gives
the correct DL-FC result, one should expect it to fail to reproduce the NDL-FC results,
because g → qq̄ splittings start to contribute to the multiplicity from NDL terms onwards,
as can be verified by inspecting the nf terms in eq. (7.5).15 We see in figure 8a that

15The prescription bears similarities with that of ref. [25], which concentrated on corrections of the colour
factor for primary gluon emissions.
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with this incorrect treatment of g → qq̄ splittings, the limit √αs → 0 fails to converge to
the NDL expectation. Instead the extrapolated NDL coefficient is ∼ 3% larger than the
analytic expectation.

We have also carried out similar tests for the multiplicity in H → gg events for all
showers shown in figure 8 and found a similar level of agreement with the full-colour NDL
predictions for both the segment and NODS colour prescriptions.

7.2 Event shapes

The main event shapes that we consider here are obtained by considering all primary Lund
declusterings [29], and for each declustering evaluating,

uβobs
i ≡ ktie

−βobs|ηi|

Q
, (7.7)

where kti is the transverse momentum of the declustered subjet i with respect to its partner
direction, and ηi = ln tan θi/2, with θi the angle of the declustered subjet with respect to
the partner. The parameter βobs determines the relative weighting of different rapidities
and we will consider three values, βobs = 0, 1

2 , 1. We will study two combinations of the ui,

Mβobs ≡ max
i

{
uβobs
i

}
, Sβobs ≡

∑
i

uβobs
i . (7.8)

For each event shape, we define Σ(αs, L) to be the fraction of events for which that event
shape has a value smaller than a threshold defined to be e−|L|. Up to NLL accuracy,
Σ(αs, L) for Mβobs=0 coincides with that for the Cambridge √y23 resolution scale [43], and
Sβobs=1 with that for one minus the thrust (below, in section 7.2.2, we will consider those
explicitly as well).

Ref. [11] showed that the CFFE procedure led to spurious subleading-Nc terms starting
from order α2

sL
4 in standard dipole showers. With similar reasoning it is straightforward

to show that the issue is present also for the PanScales showers with the CFFE approach.
Those issues are caused by mis-attribution of a CA/2 colour factor to emissions that should
be seen as coming from the primary q̄q pair. Once that issue is fixed, one should obtain
NLL-FC accurate results for all PanScales showers that already give NLL-LC accuracy.

Given that the CFFE issue arises at order α2
sL

4, one expects to be able to observe it
numerically in both DL and LL-style tests. As we shall see below, numerical LL and NLL
tests require us to prune the shower branchings, so as to keep multiplicities under control
in the limit αs → 0 for fixed λ = αsL. That pruning can be delicate in situations with
DL discrepancies. Accordingly we first carry out DL tests, for which we can run complete,
unpruned showers.

When it helps to limit notational ambiguity with respect to βobs, in some cases below
we will write βPS instead of β for the parameter that determines the shower ordering
variable (cf. eq. (3.11)).

7.2.1 Double-logarithmic study

To enable us to study the subleading colour double-logarithmic contributions, figure 9
shows ΣPS/ΣDL as a function of ξ = αsL

2, in the limit of αs → 0, for Mβobs observables
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Figure 9. Double-logarithmic tests for event shapes, showing the ratio ΣPS/ΣDL in the limit
of αs → 0 for fixed ξ = αs ln2 Mβobs , as a function of ξ. The Mβobs observables are defined in
eq. (7.8), with M0 equivalent to the Cambridge y3 clustering scale, and M1 similar to the thrust at
DL accuracy. Each row shows a different parton-shower algorithm, each column a different colour
scheme, and each subplot shows results for three values of βobs. Showers that are DL-FC accurate
give a ratio of 1 for all ξ. The CFFE scheme shows DL discrepancies for at least some of the
observables for each shower. The segment and NODS schemes agree with the DL-FC expectation.

with three different values of βobs. It includes results for two PanScales showers and for
Pythia 8, for all three colour schemes. To understand the plots, it is useful to recall that the
PanScales showers are ordered in a variable ∼ kte−βPS|η| (we show PanGlobal with βPS = 0
and PanLocal with βPS = 1/2). We expect (and see) that double logarithmic discrepancies
are present in the CFFE scheme for any βobs > βPS.16 For Pythia 8, which is kt ordered,
we expect DL discrepancies to be present in the CFFE scheme for any βobs 6= 0, though our
tests only consider βobs ≥ 0. Discrepancies at DL accuracy are clearly visible as deviations
of the curves from 1. In the physically accessible region, ξ . 7, those discrepancies are
fairly modest, no more than 2−3 percent. The results for the segment and NODS colour
scheme are all consistent with 1. While shown only for a subset of showers and for the
Mβobs observables, the results for other PanScales showers are the same for any given βPS
and for the Sβobs observables.

In the case of the PanScales showers, one can also calculate the analytic form of
the CFFE discrepancies, cf. appendix B. The analytic results agree well with the observed
shower discrepancies. It is interesting to consider the large-ξ limit of the discrepancy, which

16For βobs ≤ βPS, a given contour of fixed Mβobs is traversed by the shower in order of increasing absolute
rapidity, which means that relevant emissions occur either on the primary q̄q dipole, or on a q̄g or gq dipole.
Taking the example of a gluon emitted at some rapidity yg > 0 and forming a gq dipole, emissions that are
closer to the quark than to the gluon, i.e. along the quark with rapidity y > yg, are emitted with the correct
CF colour factor. Since the only emissions that can increase the event shape value are those that occur at
rapidities larger than previous gluon emissions, one obtains the correct full-colour double logarithmic result.
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will be relevant also in understanding the results of the next subsection. For example, for
the thrust determined with any of the PanScales showers with βPS = 0, we find that

lim
ξ→∞

lim
αs→0

ln ΣβPS=0(αs,−
√
ξ/αs)

ln ΣDL(αs,−
√
ξ/αs)

= 1 + 1
2N2

c − 1 . (7.9)

However, the approach to this limit is very slow: for ξ = 5 the ratio is about 1.009, to be
compared to an asymptotic value of 1 + 1/17 ' 1.0588.

7.2.2 LL and NLL studies

Our next set of tests is to carry out LL and NLL studies for the same set of event shapes
discussed above, supplemented with the total and wide-jet broadenings (BT , BW ) [54],
the Cambridge y23 jet resolution parameter [43], thrust [55] and fractional energy-energy
correlation moments (FCx) [56]. We consider the limit αs → 0 for fixed λ = αsL.

A fundamental difficulty with these LL and NLL studies is that the logarithm of the
multiplicity, lnN , scales as

√
αsL2, cf. eq. (7.5), and when we fix λ = αsL and take the

limit αs → 0, the logarithm of the multiplicity blows up as
√

1/αs. Since generation time
and memory consumption scale at least in proportion to N , event generation becomes
prohibitively expensive with too small a value of αs.

To address this problem we adopt a strategy where, at each stage of the shower,
branchings that are guaranteed to be irrelevant to the observable are vetoed. Specifi-
cally, for a given βobs, we track the maximum value of Oapprox = kt,approxe

−βobs|ηapprox|

that has occurred so far in the showering of the event (using eq. (3.12) for ηapprox and
kt,approx equivalent to the kt in eq. (3.11)). We accept a given new branching only if it has
Oapprox > e−∆Oapprox,max, with ∆ a parameter to be chosen appropriately. The logarithm
of the multiplicity is then expected to scale roughly as

√
αs∆2 + ln |λ∆|. The value of

∆ should be small enough that the multiplicity remains under control, and large enough
that recursively IRC safe observables [56] are not affected by it, which is ensured by the
requirement e−∆ � 1.

For shower-observable combinations where there is a double-logarithmic subleading-Nc
effect, we also need to be aware that the mechanism generating that effect may only be
fully operational if αs∆2 � 1, which is in tension with the constraint on the multiplicity.
In practice it is difficult to ensure that the full DL discrepancy is captured in LL tests,
especially when considering the interplay between the αs → 0 and ∆ → ∞ limits. Our
approach will instead be to ensure that the combinations of αs and ∆ are such that the
presence of any DL issues is correctly diagnosed in our LL tests, even if we do not reproduce
the exact value of any discrepancy.

This is illustrated in figure 10, which shows LL tests for the CFFE colour approach,
using ∆ = 18 and a quadratic polynomial extrapolation to αs = 0 based on runs at αs =
{0.0025, 0.005, 0.01}. There, one clearly sees that the set of shower-observable combinations
that fails the LL test is consistent with the expectations from the DL tests in figure 9
and from appendix B. However, taking the example of the βobs = 1 observables, for the
PanGlobal shower with βPS = 0, one sees a discrepancy of 0.056, to be compared to the
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Figure 10. LL test of the CFFE scheme for event shapes, showing the expected pattern of
discrepancies for the PanScales and Pythia 8 showers. For further details, see text.

expectation of 0.068 in table 2 of appendix B, as obtained when one first takes the limit
∆→∞, and then αs → 0 (this 0.068 is the running coupling analogue of eq. (7.9)).

The LL tests for the segment and NODS colour schemes (not shown in figure 10) are
consistent with the analytic LL results for all observables and showers, including Pythia 8.
Accordingly in figure 11, where we show the full-colour NLL tests, i.e. examining δ ln ΣNLL,
eq. (7.4), we include results just for those two schemes.17 For all showers that were in
agreement with NLL predictions at NLL-LC in ref. [12], we now see that these two new
colour schemes ensure agreement with the NLL-FC predictions. This is to be expected,
because, beyond the recoil issues that were relevant for NLL-LC accuracy, NLL-FC requires
the correct treatment of the colour factor only for emissions that are widely separated in
rapidity, which the segment and NODS schemes both accomplish by design.

Note that we have only tested event-shape observables that vanish in the 2-jet limit.
One could also envisage testing event shapes such as the thrust minor and D-parameter,
which vanish in the limit of 3 narrow jets, and whose NLL-FC resummations have long
been known [57, 58] for planar events. Our expectation is that the NODS scheme (but not
the segment scheme) will yield the correct NLL-FC results also for these observables, as
long as the appropriate matching is included for the 3-jet matrix element, and the segment
variables and auxiliary momenta are properly initialised.

7.3 Energy flow in a rapidity slice

The final observable that we consider is the probability, Σ(αs, L), for the energy in a given
central slice of rapidity to be less than e−|L|Q. Such an observable is of interest because its
resummation involves non-global logarithms, single-logarithmic terms αnsLn that involve

17One can also carry out NLL tests for observable-shower combinations that have the correct LL-FC
result in the CFFE approach. For the PanScales showers, where LL-FC results were correct for βobs ≥ βPS,
one finds that most observables are correct at NLL-FC only for βobs > βPS, with the exception of those in
the max-type class, which remain correct for βobs ≥ βPS.
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Figure 11. NLL global event-shape tests of the segment and NODS colour schemes, showing NLL
agreement for β = 1/2 PanScales showers and for the β = 0 PanGlobal shower. In contrast to the
NLL-LC tests of ref. [12], the Pythia 8 βobs > 0 results here are coloured green rather than amber,
because our colour code does not incorporate the information about failure of exponentiation in
fixed-order tests, tests that we have not explicitly repeated for this paper.

configurations with an arbitrary number of (soft, large-angle) gluons in the neighbourhood
of the slice [22, 59] (see also ref. [60]). The full-colour resummation for such observables is
sensitive to arbitrarily complex colour correlators, both in the real emissions and the virtual
corrections, which need to be evaluated at amplitude level. The resulting subleading-
colour single-logarithmic corrections go far beyond the scope of the colour schemes that we
introduced in sections 3 and 4. In particular, we expect the segment scheme to be correct
at full colour only up to order αsL, and the NODS scheme to be correct at full colour up to
order α2

sL
2. Recall that leading-colour all-order single-logarithmic accuracy for PanScales

showers was demonstrated in ref. [12].
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The question we ask in this section is to what extent our schemes differ from a full-
colour computation. Such a calculation was performed for the energy flow in a slice for the
Z → q̄q process, by Hatta and Ueda [28]. Their approach was based on a refinement of a
proposal by Weigert [61], whereby the problem was reduced to the simulation of associated
Langevin dynamics in the space of Wilson lines, and solved on a two-dimensional angular
grid. It was also applied, with Hagiwara, to the calculation of a hemisphere observable [62]
and, very recently, to H → gg decays and a number of 2 → 2 scattering processes [63].
The approach was formulated in such a way that it included only the single logarithms,
αnsL

n. Accordingly, in using it as a reference to which to compare our αs → 0 limit, we
can be sure that any difference is exclusively associated with subleading colour effects.

Two other calculations are based on parton showers at finite αs and a truncation
of the 1/N2

c series: Nagy and Soper examined rapidity gaps between dijets at hadron
colliders [6, 33], while De Angelis, Forshaw and Plätzer examined the energy in a slice for
the Z → q̄q and H → gg processes [8]. Only the processes examined in that latter paper are
within the scope of our work here, but their simulation at finite αs precludes a meaningful
direct comparison, because it would be impossible to know whether any differences between
their results and ours are associated with subleading-colour effects or instead subleading
logarithmic (αnsLn−1) effects.

The specific definition of the energy in a rapidity slice is as follows: we cluster each
event with the e+e− Cambridge algorithm [43] with the ycut parameter set to 1 and then
undo one step of the resulting clustering sequence to obtain two back-to-back jets. Defining
rapidity with respect to those two jet axes, we examine the total energy contained in the
rapidity region |y| < − ln tan θcut/2, with θcut setting the boundary of the slice. We will
make the choice θcut = π/3, which coincides with that of Hatta and Ueda [28]. As in
section 7.2.2, if we carry out a full run of the shower in the αs → 0 limit for fixed αsL,
parton multiplicities will grow too large to handle. Here, we solve this problem by vetoing
emissions whose rapidity with respect to the closer end of the emitting dipole is larger
than ηmax, which by default we take to be 10 (we will verify that reducing it to 8 does not
modify the results).

It is commonplace in studies of non-global logarithms to show the results as a function
of

τ(αs, L) =
∫ Q

Qe−|L|

dkt
kt

αs(kt)
π

=
∫ 0

L

d`

π

αs(Q)
1 + 2b0αs(Q)` = − 1

2πb0
ln (1 + 2b0αs(Q)L) ,

(7.10)
with b0 = 11CA−2nf

12π and where the result on the right-hand side is given for a one-loop
running, which is the only contribution that survives in the limit αs → 0 at fixed λ = αsL.
Values of τ for various momentum ranges are shown in table 1 and, at the LHC, the largest
accessible value is τ ' 0.4.

Figure 12 (left) shows the fraction of events, Σ(τ(αs, L)), whose energy flow in the
slice is less than e−|L|Q. It includes several results: a leading-Nc result with CF =
1
2CA = 3/2, the Hatta-Ueda full-Nc prediction,18 and our predictions with the segment

18We are very grateful to Hatta and Ueda for rerunning their code with higher statistics than in their
original paper and providing us with the corresponding numerical results.
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Figure 12. NLL (single-logarithmic) tests for a non-global observable. (a) Fraction of events
whose energy flow in a central slice of rapidity is less than e−|L|Q, shown in the limit αs → 0
for fixed αsL, as a function of τ(αs, L), defined in eq. (7.10). Our results are shown for the
PanScales antenna shower with βPS = 1/2, with three different colour schemes: leading-Nc (with
CF = CA/2 = 3/2), segment and NODS. They are compared to the full-colour Hatta-Ueda (“finite-
Nc (exact)”) result [28]. (b) Ratio of the same set of results to the NODS result, illustrating apparent
consistency of the segment and NODS schemes with the Hatta-Ueda result, to within its statistical
uncertainty. The agreement is potentially surprising given that our schemes do not achieve NLL-FC
(αnsLn) accuracy for non-global observables. The thin band for our results represents the statistical
uncertainty added in quadrature to estimates of systematics obtained using the difference between
our default runs (ηmax = 10 and αs = 0.7 × 10−8) and runs with ηmax = 8 and αs = 1.4 × 10−8.
Our results for other showers with the same colour schemes are very similar, as is to be expected.

and NODS methods. Recall that those methods are not expected to work beyond order λ
and λ2 respectively. However in figure 12 (left) they are indistinguishable from the full-Nc
Hatta-Ueda result. To further probe this observation, the right hand plot shows ratios to
a reference, which we take to be the PanLocal-antenna β = 1/2 NODS (the specific choice
is largely immaterial, since our aim is to compare different predictions on this ratio plot).
One sees that the difference between the full-Nc Hatta-Ueda result and our leading-Nc
result is about 23% at τ = 0.4. Remarkably, both our segment and NODS methods seem
to be in good agreement with the Hatta-Ueda result across the full range of τ : the whole
range is within two standard deviations of the Hatta-Ueda result, and in much of the range
the agreement is within one standard deviation. Some caution is needed in interpreting
these results: firstly, they correspond to one specific choice of slice size. Secondly, when
using a finite-resolution angular grid (as in the Hatta-Ueda approach), there are inevitably
some residual systematic effects associated with that finite resolution, and in this case we
cannot exclude the possibility that they are comparable to the statistical error.19 A fur-

19We base this statement on a run of our PanScales showers, assigning each particle to a bin on an 80×60
grid in cos θ and ψ (for extremal cos θ bins, we choose to map all ψ values to a single bin). We then accept
emissions only if they are in a distinct bin of the grid from both the emitter and spectator of the parent
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ther observation is that the segment and NODS results come out largely identical, even
though the former (latter) is FC-accurate only to αsL (α2

sL
2). We attribute this to a par-

tial cancellation that arises after azimuthal integrations. In particular, in appendix C we
demonstrate that if one breaks the azimuthal symmetry by considering a patch in azimuth
and rapidity instead of a slice (which covers all azimuths), a difference between the segment
and NODS scheme does appear at the statistically significant level of a couple of percent.

A final comment concerns the same slice observable for H → gg events. For a given
value of τ , both our segment and NODS methods are identical to the leading-Nc (2CF =
CA = 3) result in the αs → 0, fixed τ limit, because g → qq̄ branchings only affect NNLL
terms, αnsLn−1. Subleading-Nc effects start for the slice only from order α3

sL
3 onwards,

because soft-gluon emission from a ggg system (i.e. α2
sL

2) is given exactly by the sum
of emission from three CA/2 dipoles. Therefore we have the same formal subleading-Nc
accuracy as the NODS method for Z → qq̄: exact up to α2

sL
2, and only leading-Nc for

terms α3
sL

3 onwards.
Very recently, Hatta and Ueda have shown that an FC calculation for the slice ob-

servable in H → gg is in good agreement with the large-Nc result, to within statistical
errors [63]. The findings of ref. [8] appear to be consistent with this conclusion.20 Accord-
ingly, the NODS and segment methods agree with the FC results for H → gg, to within
the precision of the predictions for the latter.

7.4 Timing assessment

One of the motivations behind this work is to provide a method to include logarithmically
relevant subleading colour effects in parton showers that is simple and computationally
efficient. In this section we show that the two methods highlighted in sections 3 and 4
bring only a modest time penalty.

To check this, we have run the PanLocal shower, in its antenna variant, setting β = 1
2 ,

using a fixed-coupling prescription, αs = 0.1, and varying the ordering variable (ln v) cut-
off scale between −24 and −10. At leading-Nc, the PanLocal antenna shower is currently
one of the fastest of our showers, and since the time penalty of the colour schemes is
largely independent of the shower, the choice of PanLocal-antenna provides a worst-case
estimate of the relative impact of the colour schemes. Following a similar logic, we use a
fixed coupling for these tests, because our running-coupling shower implementation is not
yet fully optimised, and so would produce a misleadingly high timing baseline to which to
compare the timing penalties of the new colour schemes.

Figure 13a shows the average event showering time divided by the average number of
emissions, for each value of the ln v cutoff, plotted as a function of the average multiplicity
N for that ln v. It includes results for four colour schemes. One sees that the timing per

dipole. Comparing this to our standard continuum-limit runs, we see effects of the same order of magnitude
as the Hatta-Ueda statistical uncertainty.

20Specifically, in its figure 7a, the subleading colour curve (“all, d = 2”) is in good agreement with the
leading-colour curve (“LCV+R”), after rescaling the latter by 8/9 to account for N2

c − 1 rather than N2
c in

the Born H → gg colour sum, notably in the region ρ ≡ e−|L| & 0.1, where statistical fluctuations seem to
be under control at the few percent level.
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Figure 13. (a) Time per emission plotted as a function of the average multiplicity, N , in the
event sample, for different colour schemes. To maximise the relative impact of the colour scheme
timing penalty, results are shown for one of the most optimised of our shower setups, the PanLocal
antenna shower with β = 1

2 , run with fixed coupling. Additional details are given in the text.
(b) The average number of transition points per dipole in the segment and NODS methods, as a
function of the average multiplicity.

emission for the CF = CA/2 = 3/2 and CFFE schemes is about 1µs, almost independently
of N . The penalty for the segment and NODS schemes is at most 0.2µs and 0.5µs respec-
tively.21 It decreases with increasing N , which is probably a consequence of the fact that
the number of segments per dipole decreases with increasing N , cf. figure 13b.

8 Conclusions

In this work on subleading-colour effects in final-state dipole and antenna showers, we
have paid particular attention to the interplay between colour and logarithmic accuracy.
Insofar as the accuracy of current parton showers is at best NLL, we argued that an
essential requirement is subleading-colour accuracy for LL terms, with potentially missing
subleading-Nc NLL contributions being on the same footing as leading-colour NNLL terms,
which are currently not available in parton showers.

In sections 3 and 4, we outlined two schemes that are simple and efficient to implement
in a range of parton showers (including, e.g. the Pythia 8 shower) and that provide full-
colour LL accuracy (LL-FC). One of them, the segment method, varies the colour factor
along a dipole, using a Lund-diagram type classification to identify regions that should
have either a CF or a CA/2 colour factor, according to whether an angular-ordered picture
implies emission from a quark or a gluon.22 The other method, dubbed NODS, nests full-

21The ratio on NODS versus shower timing is unexpectedly sensitive to the choice of CPU and system,
and in some cases we have found that the NODS penalty could reach 100% of the CFFE showering time,
though it was still of the order of a µs per emission.

22We note that a similar angular-ordered classification could be of interest for kinematic maps.
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colour energy-ordered double-soft matrix-element corrections for emissions from any dipole
that, according to the segment approach, contains at least one CF segment.

In practice it was possible to engineer our approaches so as to provide full colour
accuracy beyond the LL (or DL) approximation for a range of observables: all global
event-shape variables, as well as observables that examine particle or jet multiplicities. For
these, both of our schemes achieve NLL-FC or NDL-FC accuracy, as appropriate for the
specific observable (aside from spin correlations, which do not affect the observables studied
here at NLL-FC accuracy, and whose study we postpone to future work). This involved
care with g → qq̄ splittings and with the specific locations of CF to CA/2 transitions in
the segment method. Numerically demonstrating the resulting accuracy relied on a range
of techniques for taking the αs → 0 limit of our showers while maintaining fixed αsL or
αsL

2, techniques that we have improved relative to earlier work [12].
The one context in which we do not achieve NLL-FC accuracy is for non-global ob-

servables (in our definition, LL for these is zero, and they start at NLL, i.e. αnsLn). There
we achieve full-colour accuracy only for a finite set of n: for our segment method, n ≤ 1,
and for our NODS method, n ≤ 2. Remarkably, despite this limitation, our schemes still
give good numerical agreement with the full-colour NLL results for the energy in a slice,
as obtained by Hatta and Ueda [28], to within the 1−3% statistical error of the latter. In
future work, it would be interesting to gain a better understanding of why this is the case.

One of the important points related to the computational efficiency of our colour
schemes, is that it makes it straightforward to obtain high statistical accuracies. The time
penalty for the more sophisticated scheme, NODS, was below a microsecond per emission.
That has enabled us to draw robust conclusions about non-trivial sub-leading colour effects,
which were typically at the level of a few percent. This provides a target for future work
on subleading colour schemes, which should straightforwardly be able to provide the high
statistical precision needed to conclusively determine the size of any subleading colour
effects that exist beyond those accessible in simple schemes such as those developed here.
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A Matrix-element tests for non-angular ordered parent configurations

The NODS scheme is not expected to reproduce the full-colour tree-level matrix element
for the emission of a gluon g from configurations with two partons at commensurate angles.
In this appendix we study to what extent the NODS scheme fails in such configurations,
performing comparisons to the tree-level matrix element for q̄g1g2q + g.

We start by emitting the first gluon g1 from the q̄q dipole as in eq. (6.1):

zg1 = 10−8, ηg1 = 5, ψg1 = π . (A.1)

We emit a second gluon g2 close to the first gluon in rapidity, ηg2 ≈ ηg1 . Contrary to the
angular-ordered case presented in section 6.2, there are now two routes that contribute to
the total rate of emission, i.e. gluon g2 can be emitted from either of the dipoles (q̄g1) or
(g1q). The two routes have distinct Jacobians relating the g2 shower-generation phase-space
to the Lund-diagram phase-space and this must be accounted for.23

We solve numerically for the values of the generation variables (ln v2, η̄2, φ2)i, for each
dipole i ∈ {(q̄g1), (g1q)}, such that the gluon g2 is emitted at:

zg2 = 10−16, ηg2 = ηg1 + ∆ηg1g2 , ψg2 = 0 , (A.2)

in the event centre-of-mass frame. We evaluate the three-dimensional Jacobian determinant

Ji =
∣∣∣∣∣ ∂(ln v2, η̄2, φ2)i
∂(lnEg2 , ηg2 , ψg2)

∣∣∣∣∣ , (A.3)

numerically as well. Starting from the parent configuration q̄g1g2q, where g2 has been
emitted from dipole i, we compute the rate of emission σ(i)

PS of a further soft gluon g, and
combine the contributions from the two routes weighted by their relative Jacobian factors,

σPS =
∑

i∈{(q̄g1),(g1q)}

Ji
J(q̄g1) + J(g1q)

σ
(i)
PS . (A.4)

Results for the NODS scheme are shown in figure 14 for three values of the separation
of g1 and g2 in rapidity, ∆ηg1g2 = ηg2 − ηg1 = {0, 1, 2}. The disagreement between the
shower rate of emission, σPS, and the full-colour tree-level matrix element, σFC, is observed
to be relatively small for ∆ηg1g2 = 2, where the largest negative deviation is identified by a
black dot and reaches −4% at ψg = π/2 on the q-leaf. As the second gluon g2 moves to an
angle close to that of the first gluon g1, the discrepancy becomes larger, reaching a value
of −9% for ∆ηg1g2 = 1, and −14% for ∆ηg1g2 = 0. Note that the regions where the matrix
element is not reproduced are, as expected, localised around kinematic configurations for

23In the angular-ordered case ηg2 � ηg1 , the relative weight for the emission of g2 from (q̄g1) is suppressed
compared to that from (g1q), such that we only needed to consider one route when performing the matrix-
element tests for 2→ 4 + g configurations in section 6.2.

– 42 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
1

0

2

g
1
g
2
=
2

q q g1 g2

0

2

-0.04

0

2

g
1
g
2
=
1

q q g1 g2

0

2

-0.09

0

2

g
1
g
2
=
0

q q g1 g2

0 5 10
0

2

0 5 10

-0.14

5 10 5 10

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.3

0.2

0.1

0.0

0.1

0.2

0.3

PS

LC

PS FC

FC

Figure 14. Results from the NODS scheme for the PanGlobal (β = 0) shower, in an initial
configuration q̄qg1g2 + g where the two gluons g1 and g2 are not strongly angular-ordered. We
show three configurations with the gluon g2 brought increasingly closer to g1: for a fixed ηg1 = 5,
ψg1 = π, the second gluon g2 is placed at ηg2 = 7 (top), ηg2 = 6 (middle) and ηg2 = 5 (bottom) at
an azimuthal angle ψg2 = 0. Black dots convey the largest negative deviation between the NODS
scheme and the exact tree-level matrix element.

which the three emissions are at commensurate angles. These configurations are beyond
the scope of the accuracy we are aiming for.

The initial 4-parton q̄g1g2q configurations studied here differ from the hadron-collider
2→ 2 processes such as those studied in ref. [63], in that g1 and g2 are both soft. Still, our
observation that non-trivial subleading-colour effects decrease as g1 and g2 become more
separated (which is to be expected based on coherence arguments), may be relevant also
more widely. Specifically, they suggest that if one seeks to maximise subleading-colour
effects in hadron-collider processes, it may be of interest to consider 2→ 2 configurations
where the outgoing jets are both at the same rapidity.
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B Analytical results for CFFE subleading-Nc effects in event shapes

Here, we develop a (semi-)analytical approach to determining the expected DL and LL
deviations in event shapes for the CFFE colour scheme as applied to the PanScales family
of showers. The intent is to help provide an independent validation and understanding of
some of the numerical results shown in section 7.2. The analysis is common to all of the
PanLocal-dipole, PanLocal-antenna and PanGlobal showers. In contrast traditional dipole
showers such as Pythia 8 are, we believe, more complex to analyse and, as can be seen
from figure 9, they clearly yield different CFFE DL results.

Let us consider an observable with βobs > βPS and compute ΣPS(L). Whenever we
have an emission at a scale x = ln v and rapidity η, say with η > 0, s.t. x − βobsη < L,
subsequent emissions (real or virtual) at rapidities between 0 and η will have a factor CA/2
instead of CF . This gives the following expression

ΣPS
ΣFC

=

e−CF rout(L) +
∫ 1+βPS

1+βobs
L

L
dxCF r

′
out(x)e

−CF rout(x)−
(
CA
2 −CF

)
rin(x)

2

, (B.1)

where the rin and rout Sudakov exponents correspond to the light blue and pink regions in
figure 15, respectively. When writing this expression, the second term describes the case
where the first emission below the observable boundary is at a scale ln v = x. Compared
to the expected result, one gets a veto for emissions below the boundary with ln v > x

— the rout contribution — as well as a change CF → CA
2 in the region corresponding to

rin. (The r′out factor is minus the derivative of rout with respect to x.) The first term in
the square bracket describes the situation where there is no emission below the observable
boundary that affects the observable Sudakov. Finally, the overall square accounts for both
hemispheres.

The exponents rin and rout can be easily computed including one-loop running coupling
effects. Here we just give their fixed-coupling expressions:

rout(x) f.c.= αs
π

(1 + βobs)(1 + βPS)
βobs − βPS

(
x

1 + βPS
− L

1 + βobs

)2
, (B.2a)

rin(x) f.c.= αs
π

(L− x)2

βobs − βPS
. (B.2b)

From eq. (B.1), we can consider two interesting limits. The first one corresponds to the
study of DL in section 7.2.1, where we fixed ξ = αsL

2 and take the limit αs → 0. In this
case, running-coupling effects in rin and rout can be neglected as they only bring corrections
proportional to αsL = −

√
αsξ → 0. In this case, eq. (B.1) can be computed exactly and

one finds ΣPS
ΣFC

fixed ξ=
αs→0

Φ2, (B.3)

with

Φ = e
−CF

π

βobs−βPS
(1+βobs)(1+βPS) ξ+e

−CF
π

(c−1)(βobs−βPS)
(1+βobs)(βobs+(c−1)βPS+c) ξ (B.4)[

Ψ
(
−
√

(1+βPS)(βobs−βPS)(c−1)2

(βobs+(c−1)βPS+c)(1+βobs)2

)
−Ψ

(√
(βobs−βPS)

(1+βPS)(βobs+(c−1)βPS+c)

)]
,
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Figure 15. Primary Lund plane representation of the configuration represented in eq. (B.1), with
the solid line corresponding to a fixed limit e−|L| for the observable value and the dashed-line to
a fixed value of the shower ordering variable. The emission indicated with a red dot has no direct
impact on Σ(αs, L), but for PanScales showers with the CFFE scheme, it changes the colour factor
(from CF to CA/2) for all subsequent primary emissions at smaller (positive) rapidities and lower
values of the shower ordering variable. This effectively modifies the Sudakov for Σ(αs, L) in the
region shaded in blue.
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Figure 16. Demonstration that our analytical calculation of the DL discrepancy for the CFFE
colour scheme, eq. (B.3), agrees with the full shower runs in the αs → 0 limit, as a function of
ξ = αsL

2, showing the M1/2 (left) and M1 (right) observables.

c = CA/(2CF ), and

Ψ(z) = 1 + βobs
βobs + (c− 1)βPS + c

e−
CF
π
z2ξ− (c−1)

√
CF (βobs − βPS)(1 + βPS)ξ

(βobs + (c− 1)βPS + c)3/2 erf

√CF ξ

π
z

 .
(B.5)

Eq. (B.3) and the numerical results from section 7.2.1 are compared in figure 16, illustrating
the perfect agreement between the two.
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ln ΣPS/ ln ΣFC − 1
βPS βobs running coupling (λ = −0.5) fixed coupling
0 1/2 0.04749 0.03846
0 1 0.06832 0.05882

1/2 1 0.03590 0.02857

Table 2. Value of the LL discrepancy for αs → 0 with fixed λ = αsL = −0.5 for various shower-
observable combinations in the CFFE colour scheme.

The next limit we want to study is the one where we keep λ = αsL fixed and take αs →
0, corresponding to the studies presented in section 7.2.2. Here, running-coupling effects
can no longer be neglected. We first change the integration variable in (B.1) to ν = αsx,
which should be integrated over a finite range going between λ and 1+βPS

1+βobs
λ. For fixed λ,

the Sudakov exponents are proportional to 1/αs and so become exponentially suppressed
when αs is taken to 0. One can thus evaluate (B.1) in the saddle-point approximation
which becomes exact in the limit αs → 0. If one includes running-coupling effects, the
saddle-point equation can only be solved analytically for βPS = 0 and we have used a
numerical evaluation for βPS > 0. For simplicity, let us quote the analytic result obtained
in the fixed-coupling approximation, where we find

ln ΣPS
ln ΣFC

− 1 fixed λ=
αs→0

(CA − 2CF )(βobs − βPS)
(1 + βPS)CA + 2(βobs − βPS)CF

. (B.6)

We note that this result is equivalent to taking the limit ξ →∞ in (B.3). In particular, it
reproduces eq. (7.9). For completeness, we list in table 2 the values of ln ΣPS

ln ΣFC
− 1 with fixed

and running coupling.

C Segment versus NODS results for patches

When comparing our subleading-colour results in section 7.3 for the energy in a rapidity
slice to the full-colour ones obtained by Hatta and Ueda [28], the apparent agreement
between the segment and NODS methods might come as a surprise, given that the NODS
method reproduces the full-colour double real energy-ordered soft matrix element, while
the segment method does not. The difference between the methods is clearly visible in our
matrix-element tests, see e.g. figure 4. For the energy in a rapidity slice, this means that
the segment method should deviate from the full-Nc result from O(α2

sL
2) onwards, one

order earlier than the NODS method for which deviations are expected from O(α3
sL

3).
One possible explanation for the similarity between the segment and NODS methods

for the rapidity slice observable is that the O(α2
sL

2) deviation in the segment method
largely disappears when integrating over the azimuthal angle of the two emissions. To
test this hypothesis, we study the energy deposited in a rectangular patch of both finite
rapidity and azimuthal extent, |η| < ηcut = − ln tan θcut

2 and |ψ| < ψcut, thus breaking the
azimuthal symmetry of the slice.

Figure 17a shows the ratio between the segment and NODS methods for a patch of
the same rapidity width as used in section 7.3 and different azimuthal extent. We see that
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Figure 17. (a) Ratio between the segment and NODS methods for the energy deposited in a
square patch of finite rapidity and azimuthal extent, as a function of τ defined in eq. (7.10). The
bands correspond to the statistical uncertainty. (b) Same shown as a function of the azimuthal
extent of the patch for different rapidity widths and for τ = 0.4.

while the difference between the two methods is smaller than 0.5% for the rapidity slice
(0.2% at τ = 0.4), it can reach a few percent for a rectangular patch with finite ψ extent.
Among the patch extents we studied, |ψ| < π

2 showed the largest effect.
Finally, figure 17b shows the ratio between the segment and NODS schemes measured

at τ = 0.4 for different rapidity and azimuthal extents. We notice that the deviation from
1 increases as the rapidity width of the patch increases, reaching ∼ 5% for a patch with
|η| < 2 and |ψ| < π

2 . The results here suggest that for future comparisons of non-global
logarithms in methods implementing subleading-Nc effects, it could be desirable to study
not just slices but also patches.
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