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Phylogenetic reconstruction tries to recover the ancestral relationships among a group of

contemporary species and represent them in a phylogenetic tree. To do it, it is useful to

model evolution adopting a parametric statistic model. Using these models one is able to

deduce polynomial relationships between the observed probabilities, known as phylogenetic

invariants. Mathematicians have recently begun to be interested in the study of these poly-

nomials and have developed techniques from algebraic geometry that have already been used

in the study of phylogenetics. Nowadays there exist some phylogenetic reconstruction meth-

ods based in these phylogenetic invariants. In this project we study some theoretical results

on stochasticity conditions of the parameters of the model and we analyze whether they give

some new information to these reconstruction methods. We implement the conditions and

analyze the results comparing them with the results provided by the reconstruction method

Erik+2 ([FSC15]). Finally we propose a new reconstruction method based in the same ideas,

with di�erent implementation, and with very good results on simulated data.
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1
Introduction

Strong evidences suggest that all the living organisms share a common ancestor and

therefore, are related by evolutionary relationships. These relationships are usually

expressed in the form of a phylogenetic tree.

Nowadays there are more and more mathematicians and statisticians who collaborate

with biologists in order to solve the major problems of the phylogenetics. Many di�er-

ent areas of mathematics are involved in phylogenetic studies, for instance, statistics,

probability, algebra, combinatorics and numerical methods. Even more, recently de-

veloped techniques from algebraic geometry have already been used in the study of

phylogenetics.

The main goal of phylogenetic reconstruction is recovering the ancestral relationships

among a group of current species. Moreover it tries to identify which regions of the

DNA sequences of contemporary species contain analogous information and study the

evolutionary relationships between these species. Another important aim of Phyloge-

netics is to recover the evolutionary distance from di�erent species.

In order to reconstruct phylogenetic trees it is necessary to model evolution adopting

a parametric statistic model. Using these models one is able to deduce polynomial

relationships between the parameters of the model, known as phylogenetic invariants.

Mathematicians have recently begun to be interested in the study of these polynomials

and the geometry of the algebraic varieties that arise in this setting. Furthermore they

have started to use these phylogenetic invariants to reconstruct phylogenetic trees.

The framework of this project is to understand the relationship between phylogenetics

and these algebraic techniques to recover phylogenetic trees from real data. Our main

goal is to study and analyze the characterizations of stochasticity of the points in the

algebraic varieties mentioned above provided in [ART12], and use them to infer new

methods for phylogenetic inference.

This memoir is divided into 2 parts. In the �rst part, we recall the basic de�nitions

and results on phylogenetics and multilinear algebra that will be used throughout the

work. The second part contains our personal contribution and our suggestions for a

new method of phylogenetic reconstruction.

First of all we explain concepts that are already known. We explain what phyloge-

netic trees are from the mathematical standpoint and we present several evolutionary
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models for these trees. Once we have studied the models we will explain what phy-

logenetic invariants are. Moreover de�ne joint distributions and its representation

as a tensor. We will de�ne some operations among tensors that will be useful, and

their meaning in terms of phylogenetic trees. After that we will understand and prove

some results about the stochasticity of the parameters of the general Markov model

in a tree. One of these results (Theorem 3.2.4 of [ART12]) has been restated and

the proof rewritten since the original Theorem contains an error in the proof (see

Remark 3.2.5). In Corollary 3.2.9 we present a new equality (phylogenetic invariant)

that characterizes when data arises from some topology. This part is developed in

Chapter 2 and Chapter 3.

The main goal of the second part of the project is to implement the theoretical results

proved in Chapter 3 and see if these conditions of stochasticity of the parameters

give some useful information for phylogenetic inference. In Chapter 4 we explain this

implementation and we analyze the results and compare them with the reconstruction

method Erik+2 ([FSC15]). We will discuss if these results provide new information

to Erik+2.

Finally in Chapter 5, we take all this into account and propose a new reconstruction

method. It is based on the ideas exposed in Chapter 3 but with a di�erent implemen-

tation. This new method has been tested and has obtained very good results which

will be analyzed.



2
Preliminaries

2.1 Biological preliminaries

Phylogenetics is the study of relationships between di�erent species or biological en-

tities. It studies how species evolve and where contemporary species come from.

According to the theory of the biological evolution developed by Darwin (s.XIX),

all species of organisms evolve through the natural selection of small variations that

increase the individual's ability to compete, survive, and reproduce. We can model

these specialization processes with phylogenetic trees (see Fig.2.1). The nodes of this

tree represent di�erent species and every branch is an evolutionary process between

two species. The leaves of the tree are contemporary species and the root of the tree

is the common ancestor of all the species represented on the tree.

Figure 2.1: A phylogenetic tree.

Genetic information of each individual is encoded in the DNA of the nucleus of its

cells. DNA molecules are composed of simpler units called nucleotides and consist

of two anti-parallel strands of nucleotides coiled around each other to form a double

helix. Each nucleotide is composed of a phosphate, a sugar and a basis. According to

the bases, nucleotides are called adenine (A), cytosine (C), guanine (G) and thymine

(T). A base-pair is one of the pairs A− T or C− G. The nucleotides on a base-pair

are complementary in the sense that in the double helix adenine connects with the

thymine and the guanine with cytosine. According to this symmetry, we store a DNA

molecule as an ordered sequence of A, C, G and T (see Fig. 2.2).
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Figure 2.2: DNA molecule.

The heredity information in a genome is thought to be contained in the genes. But

the DNA sequences of a same gene may not be the same for di�erent species. They

contain similar parts but they can also contain some other parts that we can not

compare. For that reason the �rst problem is identifying which part of the DNA

sequences of di�erent species we can compare. This information is collected in an

alignment. A sequence alignment is a way of arranging the sequences of DNA to

identify regions of similarity that may be a consequence of functional, structural, or

evolutionary relationships between the sequences. We can represent the alignment

with a table whose rows are the species DNA sequences and whose columns cor-

respond to nucleotides that have evolved from the same nucleotide of the common

ancestor of all the species (see Table 2.1). Alignments are used in many contexts, in

phylogenetics among them, to see relationships between some species and to recon-

struct the phylogenetic tree that relates them. Changes in DNA sequences of di�erent

species are given by substitutions, insertions or deletions. In the two latter cases, a

nucleotide is inserted or deleted from a given position as compared with the other

sequence. In most commonly used evolutionary models, insertions and deletions are

not considered and incorporating them would highly increase the complexity of the

model. So in this work we will assume that mutations in di�erent alignments are just

substitutions. Therefore the alignments we will deal with have the same length and

contain no gaps.

Gorilla Gorilla AACTTCGAGGCTTACCGCTG

Homo Sapiens AACGTCTATGCTCACCGATG

Pan Troglodytes AAGGTCGATGCTCACCGATG

Table 2.1: A multiple sequence alignment of DNA sequences of Homo Sapiens (Hu-

man), Pan Troglodytes (Chimpanzee) and Gorilla Gorilla (Gorilla).
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2.2 Phylogenetic trees

The basic object in a phylogenetic model is a tree T that contains the evolutionary

relationships among a given set of species. In this section we introduce some concepts

that allow us to deal with these phylogenetic trees following the approach in [AR04],

[AR05] and [Cas12].

2.2.1 De�nition (Basic notions of trees) A tree T is a connected graph with no cy-

cles. The degree of a vertex is the number of edges incident to it. The vertices of

degree 1 are called leaves and the set of leaves is denoted by L(T ). All the other

vertices, which have degree at least 2, are the interior nodes of the tree and are des-

ignated by the set Int(T ). E(T ) is the set of the edges of the tree. If all nodes in

Int(T ) have degree 3, then T is called a trivalent tree.

2.2.2 De�nition (Rooted tree) A tree is called a rooted tree if one vertex has been

labelled as �root�, and the edges are oriented away from it.

2.2.3 De�nition (Phylogenetic tree) Let X denote a �nite set of labels. Then a

phylogenetic tree is a pair (T , φ) where T is a tree and φ : X → L(T ) is a one-to-one

correspondence.

In a phylogenetic tree, the set X represents a set of living species and the tree T
shows the ancestral relationships among them. Every edge represents an evolutionary

process between two species and if it is rooted, then the root represents the common

ancestor to the set of species X. For our purposes, usually X will be taken as the set

{1, 2, . . . , n}.

Another important concept in Phylogenetics is the length of the edges, called branch

length, that represents the evolutionary distance between di�erent species by the

number of nucleotide changes per position that have occurred along the evolutionary

process related to the edge.

Figure 2.3: At the left an unrooted 3-leaf tree. At the right a rooted phylogenetic

tree.

2.2.4 De�nition (Tree topology) The tree topology of a phylogenetic tree is the topol-

ogy of the tree as a labelled graph.
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That is, two phylogenetic trees T1 and T2, with the same set of labels X at the

leaves, have the same topology if there is a one-to-one correspondence ϕ between

their vertices that respects adjacency and their leaf labelling. If they are rooted trees

and r1, r2 are their roots respectively then we need to impose ϕ(r1) = (r2).

2.2.5 Remark For the remainder, we denote by Tn the set of all possible possible

unrooted trivalent tree topologies for n-leaf trees. Note that the n has to be greater

or equal than 3 and that | T3 |= 1, which corresponds to the tree represented in

Figure 2.3. We will denote the three possible topologies of T4 by T12|34, T13|24 and

T14|23, see Figure 2.5.

We �nish this section with an example that illustrates all these de�nitions.

2.2.6 Example In the Figure 2.3 we can see a rooted phylogenetic tree with the

root r placed at the top node. The 4 leaves of tree have been labeled with the set

X = {1, 2, 3, 4}.

Some trees topologically equivalent to the one represented above are pictured in Figure

2.4. If we consider the two trees on the left as unrooted trees then all of them have

the same topology

Figure 2.4: Some phylogenetic trees with the same topology as unrooted graphs.

Finally, in Figure 2.5 the three possible topologies of T4 are represented.

Figure 2.5: The three topologies of T4:T12|34, T13|24 and T14|23.

One major goal in Phylogenetics is, given an alignment of DNA sequences for n

di�erent species, infer which of the Tn topologies explains best the evolution of this

set of species. Another goal in Phylogenetics is to infer the branch lengths on this

tree (evolutionary distance), but we will not deal with this problem in this work.
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2.3 Evolutionary models

Evolution is usually modeled adopting a parametric statistical model. That is, evo-

lution is assumed to be a stochastic process, in which nucleotides mutate randomly

over time according to certain probabilities. In order to model an evolutionary process

between species we need to assume some hypothesis. We assume that,

Nucleotides in the DNA sequence are independent and identically distributed

(iid). This means that the states at each position in the sequence evolve inde-

pendently of the other positions and according to the same evolutionary process.

The DNA mutations occurs randomly.

Evolutionary processes in di�erent edges only relay in the common node so they

are independent.

Assuming these hypothesis we associate a discrete random variable Xi to each node

i of T such that Xi can take κ di�erent states. We denote by K this set of states.

Usually K is the set of the four nucleotides in DNA, which are denotes by their

�rst letter. Therefore K = {A, C, G, T} and κ = 4. Since DNA sequences of the

contemporary species are known, we say that the random variables at the leaves are

observed. However we do not have any information about the ancestral species, that

is why the random variables at the interior nodes are hidden. For a tree T with leaves

1, 2, . . . , n, X = (X1, X2, . . . , Xn) represents the joint distribution vector of the leaves.

Each column of an alignment is an observation of this vector of random variables.

We introduce now the parameters of a model in a rooted tree T . The vector π =

(π1, . . . , πκ) is the distribution of Xr, the random variable associated to the root r,

and satis�es that all entries are nonnegative and
∑
i πi = 1. If K = {A, C, G, T} we

interpret these entries as the probabilities that an arbitrary site in the DNA sequence

at the root is occupied by the corresponding base, or, equivalently, as the frequencies

with which we would expect to observe these bases in a sequence at the root. A second

set of parameters is associated to the evolutionary process that occurs in every edge.

For each edge e we associate a κ × κ matrix Me, called substitution or transition

matrix.

2.3.1 De�nition (Substitution or Transition Matrix) A transition matrix is a κ× κ
matrix Me associated to each edge of a phylogenetic tree. Every entry is the condi-

tional probability P (x|y, e) that the state y at the parent node of e being substituted

by the state x at its child, during the evolutionary process along the edge e. Since

each row contains the probabilities of the κ possible changes that can occur in an

evolutionary process, the rows of Me sum to 1. These matrices Me are also called

Markov matrices or row stochastic matrices.

2.3.2 Remark If κ = 4 and K = {A, C, G, T} then the (i, j)-entry of Me stands for the

conditional probability that if nucleotide i occurs at one site of the DNA sequence in

the parent vertex on the edge e, then nucleotide j occurs at the descendant vertex at

the same site. In this case, the transition matrices have the form



8 2. Preliminaries

sdhgjhcgskjadgjksA C G T

Me =

A

C

G

T


P (A|A, e) P (C|A, e) P (G|A, e) P (T|A, e)
P (A|C, e) P (C|C, e) P (G|C, e) P (T|C, e)
P (A|G, e) P (C|G, e) P (G|G, e) P (T|G, e)
P (A|T, e) P (C|T, e) P (G|T, e) P (T|T, e)

 .

The probabilistic model we have described is a Markov process in the following sense.

2.3.3 De�nition (Markov process) A Markov process is a random phenomenon that

complies the Markov property which says that �the process has no memory". This

means that the probability distribution of the future value of a variable depends on

its present value, but is independent from the history of the variable.

In other words, in a Markov process the probability that a change occurs in a par-

ticular state given that the system is in state i is the same as the probability of the

same change, given the entire history of states ending in state i.

The model we have explained above of molecular evolution occurring through random

nucleotides substitutions satis�es the Markov assumption, since the probabilities of

the possible state changes on any given edge depend only on the state at the ancestral

node. Besides, we only have observations of the random variables at the leaves so ours

is a hidden Markov process.

According to the shape of the transition matrices one has di�erent models.

2.3.4 De�nition (General Markov model) TheGeneral Markov model (GMM) is the

model with no restriction neither in π nor the transition matrices Me. Then π =

(πA, πC, πG, πT) such that
∑
i πi = 1, and

Me =


ae be ce de
ee fe ge he
je ke le me

ne oe pe qe

 , where


ae + be + ce + de = 1,

ee + fe + ge + he = 1,

je + ke + le +me = 1,

ne + oe + pe + qe = 1.

This model will be important in the next chapters. Now we present some other

models, which are more restrictive than the GMM.

2.3.5 De�nition (Jukes-Cantor model) This is the most restricted model since it

adds several additional assumptions. At the same time is really simple. First of

all it assumes that all bases occurs with equal probability in the ancestral sequence.

Therefore the root distribution vector is

π =

(
1

4
,

1

4
,

1

4
,

1

4

)
.

It assumes that the probability of any mutation during an evolutionary process is the

same, but di�erent to the probability of no mutation. Then the matrices are
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Me =


ae be be be
be ae be be
be be ae be
be be be ae

 , where be =
1− ae

3
. (2.1)

2.3.6 De�nition (Strand symmetric model) Another model that has a particular in-

terest is the Strand symmetric model that re�ects the double strand symmetry of DNA

molecules. As we have explained, in the DNA molecule nucleotides are linked in pairs

A− T and C− G, so Strand symmetric model contemplates this fact and assumes the

following restrictions je = he, ke = ge, le = fe, me = ee, ne = de, oe = ce, pe = be,

qe = ae (see De�nition 2.3.4), πA = πT and πC = πG. Therefore, the matrices are

Me =


ae be ce de
ee fe ge he
he ge fe ee
de ce be ae

 ,

with sum of rows equal to 1.

2.3.7 De�nition (Kimura models) Kimura 3-parameter is a model introduced by M.

Kimura in 1981 [Kim81].This model assumes that the base frequencies at the root are

equal. It is more general than Jukes Cantor model since it has three free parameters.

The transition matrices are

Me =


ae be ce de
be ae de ce
ce de ae be
de ce be ae

 ,

where ae = 1− be − ce − de and the root distribution is assumed to be uniform.

A more restricted model is the Kimura 2-parameter model, which adds another as-

sumption, be = de.

2.3.8 Example The following Figure 2.6 represents the modeled phylogenetic tree,

where the X ′is are random variables associated to the leaves, M ′is are the transition

matrices, and πr is the root distribution. Let K be the set of possible states for Xi.

As we have seen, the parameters of a statistical model in a phylogenetic tree depend

on the chosen model on the tree. For instance, if the model of this tree is the General

Markov model, we have 3 × 4 free parameters for each substitution matrix and 3

free parameters for the vector πr. Therefore, this model has 3 · 4 · 6 + 3 = 75 free

parameters.
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Figure 2.6: Statistical model on a rooted phylogenetic 4-leaved tree.

2.4 Joint distribution

We �x now an evolutionary model M on a n-leaf tree T rooted at a node r. Let K
(κ = |K|) be the set of states of the random variables Xi associated to the nodes. In

what follows we can describe how to compute the joint probability of observing states

x1, x2, . . . , xn at the leaves according to the Markov process we have described.

We denote by px1,...,xn the joint distribution at the leaves of a rooted phylogenetic tree

T , which means that px1,...,xn is the probability that the random variables X1, . . . , Xn

of the leaves take the states x1, . . . , xn:

px1,...,xn = Prob(X1 = x1, X2 = x2, . . . , Xn = xn).

We de�ne P as a κn-dimensional vector, whose entries are the joint probabilities

px1...xn ,

P = (px1,...,xn)x1,...,xn∈K.

Since the evolutionary processes follow a Markov process they are independent and

just depend on a common node we can express px1,...,xn in terms of the entries of the

substitution matrices.

px1,...,xn =
∑

xr,(xv)v∈Int(T )

∏
e∈E(T )

Me(xa(e), xd(e)), (2.2)

where xr ∈ K is a state of the root, xa(e) ∈ K is a state of the parent node of the

edge e, and xd(e) ∈ K is the state of the descendant node of the edge e. If e is a

terminal edge ending at the leaf i then xd(e) = xi. Every entry of P can be seen as a

polynomial with the parameters of the modelM as variables.

2.4.1 Example We compute now the joint distribution px1,x2,x3,x4 of the tree repre-

sented in Figure 2.3.8. Using equation (2.2) we get

px1,x2,x3,x4
=
∑
xr∈K

∑
x5∈K

∑
x6∈K

πxr ·M5(xr, x5) ·M1(x5, x1) ·M2(x5, x2)·

·M6(xr, x6) ·M3(x6, x3) ·M4(x6, x4).
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2.5 Phylogenetic invariants

It is known that there exists many algebraic relations among the entries of the joint

distribution P (see [Cas12], [CFS10], [Eri05] and [AR07]). To study these relations

from an algebraic point of view we regard P = (px1,...,xn)x1,...,xn as a vector in Cκn .

Let T be a rooted phylogenetic tree andM an evolutionary model. Let r be the root

of T and Xi the random variables associated to the n leaves that can take κ di�erent

states from K. Unless noted otherwise be kept notation throughout the work.

Since components of P are polynomials in the model parameters we can associate to

the tree a polynomial map ϕMT : Rd → Rκn that maps any d-tuple of parameters to

a distribution vector of the κn possible observations at the leaves.

More precisely, we de�ne the map

ϕMT : Cd −→ Cκn

(π, {Me}e∈E(T )) 7→ P = (px1,x1,...,x1
, px1,x1,...,x2

, px1,x1,...,x3
, . . . , pxκ,xκ,...,xκ),

(2.3)

where d is the number of free parameters of the model and each coordinate px1...xn is

expressed in terms of the root distribution π and the transition matricesMe according

to the expression (2.2).

2.5.1 Remark Notice that to read the parameters as probabilities, we should restrict

to nonnegative real numbers. Analogously, the points in the image of ϕMT represent

join distribution only if they lie in the standard (κn − 1)-simplex. However, in order

to use techniques from algebraic geometry, we abandon temporally these restrictions

and work over the complex �eld.

We will consider complex parameters and complex parametrization map in general,

but we will refer to stochastic parameters to the ones coming from the original prob-

abilistic model (that is, all the components of π and the entries of the transition

matrices Mi are ≥ 0).

2.5.2 Remark [AR03] It can be proved that if we root the tree T at a di�erent

node r′ (call this tree T ′) then, for any set of parameters π, {Me}e∈E(T ), there exist

parameters π′, {M ′e}e∈E(T ′) such that

ϕMT (π, {Me}e) = ϕMT ′ (π′, {M ′e}e).

This means that the root position cannot be inferred from the joint distribution

at the leaves. This phenomenon is usually known as the non-identi�ability of the

root position. For this reason, from now on, we will deal with unrooted trees when

addressing the problem of topology reconstruction.

We construct now an algebraic variety in Cκn that contains the set of image points

of ϕMT . But �rst, we recall some basic results from Algebraic Geometry.
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2.5.3 De�nition (Algebraic variety) An algebraic variety V in Cn is the set of solu-

tions to a system of polynomial equations: V = {p ∈ Cn | f1(p) = 0, . . . , fr(p) = 0}
for some polynomials f1, . . . , fr on n variables.

The set of algebraic varieties in Cn form the closed sets of the Zariski topology.

2.5.4 Lemma Given any subset S of in Cn the set of polynomials vanishing on all

the points in S forms an ideal I(S) in C [x1, . . . xn] called the ideal of S.

2.5.5 Theorem (Hilbert's Basis Theorem) Every ideal I ⊆ C[x1, ..., xn] can be gen-

erated by a �nite set of polynomials f1, . . . , fm.

We return to phylogenetic trees. Let T be a phylogenetic tree with n leaves and let

T be its topology with the notation kept as in (2.3).

2.5.6 De�nition (Phylogenetic variety) The phylogenetic variety associated to a tree

T and a model M, denoted by VM(T ), is the smallest algebraic variety containing

the image ImϕMT . Equivalently VM(T ) is the Zariski closure of ImϕMT .

2.5.7 Remark The image set ImϕMT , itself, is not, in general, an algebraic variety.

But it de�nes a dense open subset in the smallest algebraic variety VM(T ) containing

it, in the Zariski topology. The ideal I(ImϕMT ) coincides with the ideal of the variety

VM(T ). We will denote it by IM(T ). As pointed out in Remark 2.5.2, this variety is

independent of the node chosen as root in T .

2.5.8 De�nition (Invariants, phylogenetic invariants) Given a tree topology T with

n leaves and an evolutionary modelM, the polynomials in IM(T ) are called invariants

of T . If f is a polynomial in IM(T ) which does not belong to IM(T ′) for some other

tree topology T ′ on n leaves, then f is called a phylogenetic invariant of T .

Figure 2.7: 3-leaf rooted tree.

2.5.9 Example Let T be the 3-leaf tree of Figure 2.7. Suppose K = {A, C, G, T} and
every transition matrix Me associated to the edges is a Jukes cantor matrix. Let

π = (
1

4
,

1

4
,

1

4
,

1

4
) and Me =


be ae ae ae
ae be ae ae
ae ae be ae
ae ae ae be

 .

We compute now the joint distribution at the leaves. Since the parametrization is

symmetric under renaming bases we can arrange these joint distributions in 5 groups.
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First of all suppose we observe the same state x ∈ K at the three leaves. Then

px,x,x =
1

4
b1 · (b4b2b3 + 3a4a2a3) +

3

4
a1 · (a4b2b3 + 2a4a2a3 + b4a2a3) .

If the observation at leaves 1 and 2 is x but the one at leaf 3 is y, with x 6= y, then

px,x,y =
1

4
b1 · (b4b2a3 + a4a2b3 + 2a4a2a3) +

1

4
a1 (a4b2a3 + b4a2b3 + 2a4a2a3) +

+
2

4
a1 (a4b2a3 + a4a2b3 + a4a2a3 + b4a2a3) .

Otherwise if the observations are equal in the second and third leaves (or in the �rst

and third) but di�erent from the �rst (or second) leaf, then the joint distributions

are.

px,y,y =
1

4
b1 · (b4a2a3 + a4b2b3 + 2a4a2a3) +

1

4
a1 (b4b2b3 + 3a4a2a3) +

+a1 (a4b2b3 + b4a2a3 + 2a4a2a3) ,

px,y,x =
1

4
b1 · (b4a2b3 + a4b2a3 + 2a4a2a3) +

1

4
a1 (a4a2b3 + b4b2a3 + 2a4a2a3) +

+
2

4
a1 (a4a2b3 + a4b2a3 + a4a2a3 + b4a2a3) .

Finally, if the three observed states are di�erent this joint probability can be computed

as

px,y,z =
1

4
b1 · (b4a2a3 + a4a2a3 + a4b2a3 + a4a2b3) +

1

4
a1 · (b4b2a3 + a4a2b3 + 2a4a2a3) +

+
1

4
a1 (b4a2b3 + a4b2a3 + 2a4a2a3) +

1

4
a1 (b4a2a3 + a4b2a3 + a4a2b3 + a4a2a3) .

Therefore we have seen that there are many linear relations among these joint distri-

butions, which are invariants of this model.

pAAA = pCCC = pGGG = pTTT,

pAAC = pAAG = · · · = pTTC = pTTG,

pCAA = pGAA = · · · = pCTT = pGTT,

pACA = pAGA = · · · = pTCT = pTGT,

pACG = pACT = · · · = pTAC = pTCG.

In the next section we will see how to produce phylogenetic invariants for the GMM.
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2.6 Flattening

In this section we explain how we can see the joint distribution vector P as a matrix

which depends on P and a bipartition of the leaves. We also describe the phylogenetic

invariants that we obtain from this matrix.

2.6.1 De�nition Given a set X a bipartition A | B of X are two sets A and B, with

|A|, |B| ≥ 2 such that X = A ∪B and A ∩B = ∅.

2.6.2 De�nition (Flattening) Let A|B be a partition of the leaves of a tree T and let

X̃A and X̃B be the random variables associated to A and B. Then X̃A and X̃B can

take a := κ|A| and b := κ|B| states respectively. Given a vector P ∈ Cκn we de�ne the

�attening FlattA|B(P ) as the a× b matrix whose entries are the joint distributions of

the observations of X̃A and X̃B :

.gfytfytfytfytfffff States of X̃B

FlattA|B(P ) =
States of

X̃A


pu1v1 pu1v2 . . . pu1vb

pu2v1 pu2v2 . . . pu2vb
...

...
. . .

...

puav1 puav2 . . . puavb

 .

2.6.3 Example Let T be the 4-leaf tree presented at Figure 2.6. Then, the Flatt12|34(P )

is the 16× 16 matrix:

jhfsddddddsdtcfhgtt. States at leaves 3 and 4

Flatt12|34(P ) =

States at

leaves

1 and 2


pAAAA pAAAC pAAAG . . . pAATT
pACAA pACAC pACAG . . . pACTT
pAGAA pAGAC pAGAG . . . pAGTT
...

...
...

. . .
...

pTTAA pTTAC pTTAG . . . pTTTT

 .

2.6.4 Theorem [AR03] Let P = ϕT (π, {Me}e∈E(T )) where T = T12|34. Then the

(κ+ 1)× (κ+ 1) minors of Flatt12|34(P ) vanish, equivalently Flatt12|34(P ) has rank

≤ κ. Moreover Flatt13|24(P ) and Flatt14|23(P ) have rank κ2 for general P .

2.6.5 Remark Theorem 2.6.4 implies that (κ + 1) × (κ + 1) minors of Flatt12|34(P )

are phylogenetic invariants for the T12|34 tree.
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2.7 Tensors

There is a more algebraic way of viewing the joint distribution at the leaves of a

phylogenetic tree, which will be really useful in this work.

Let W := Cκ be a vector space. We identify the canonical basis of W with the

set K. Then the natural basis of W ⊗ n). . . ⊗ W is {x1 ⊗ . . . ⊗ xn}x1,...,xn∈K. For

instance if K = {A, C, G, T}, the natural basis of W⊗W ⊗W is {A⊗ A⊗ A, A⊗ A⊗ C,

. . . , T⊗ T⊗ T}.

The joint distribution P = (px1...xn)x1...xn∈K can be thought as a κ× n). . .×κ tensor in

W⊗ n). . .⊗W whose coordinates in the natural basis above are P = (px1...xn)x1...xn∈K.

P =
∑

x1...,xn∈K
px1,...,xnx1 ⊗ . . .⊗ xn.

For the remainder it will be convenient to write P (x1, . . . , xn) for the component

px1,...,xn .

Each factor of this tensor product corresponds to one leaf, so in order to make leaves

apparent in this tensor product we denote it as W1 ⊗W2 ⊗W3 ⊗W4 (Wi = W). If

we view the vector of joint distribution P as a tensor in W1 ⊗W2 ⊗W3 ⊗W4, then

the �attening Flatt12|34(P ) is the image of P via the isomorphism

W1 ⊗W2 ⊗W3 ⊗W4
∼= Hom(W1 ⊗W2,W3 ⊗W4) ∼= Mκ2×κ2(C)

P 7−→ Flatt12|34(P )

where Mκ2×κ2(C) is the space of all κ2 × κ2 matrices with complex entries.

2.7.1 Remark From now on, given a vector v ∈ Cκ, v(i) will be the i-th coordinate

of v, {e1, . . . , eκ} will be the canonical base of Cκ and 1 = (1, · · · , 1). Moreover we

will call an n-tensor to the tensors P ∈ Cκ ⊗ n). . .⊗ Cκ.

We will de�ne now the product of a tensor by a vector or a matrix.

2.7.2 De�nition (P ∗i v, l-th slice, i-th marginalization, P ∗i M ) Given an n-tensor

P , an integer i ∈ {1, . . . n} and a vector v ∈ Cκ, we de�ne a (n− 1)-tensor P ∗i v as

follows,

(P ∗i v)(j1, . . . , ji−1, ji+1, . . . , jn) =

κ∑
ji=1

v(ji)P (j1, . . . , ji, . . . , jn).

We de�ne also the l-th slice of P in the i-th index by

P···l··· = P ∗i el,

The i-th marginalization of P is de�ned as

P···+··· = P ∗i 1.
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Given a κ× κ matrix M , we de�ne the n-tensor P ∗iM by

(P ∗iM)(j1, . . . , jn) =

κ∑
l=1

P (j1, . . . , ji−1, l, ji+1, . . . , jn)M(l, ji). (2.4)

2.7.3 Remark From now on, we consider the 2-tensors as κ × κ matrices via the

isomorphism,

P =
∑

P (j1, j2)ej1 ⊗ ej2 ↔ (P (j1, j2))j1,j2 ,

where the rows of the matrix are indexed by the �rst component and columns by the

second.

We illustrate these de�nitions with an example.

2.7.4 Example Let P be a complex 3-tensor in C2⊗C2⊗C2 whose components are,

P (0, 0, 0) = 0.01, P (0, 0, 1) = 0.21, P (0, 1, 0) = 0.3, P (1, 0, 0) = 0.125,

P (1, 1, 0) = 0.09, P (1, 0, 1) = 0.13, P (0, 1, 1) = 0.11, P (1, 1, 1) = 0.25.

And let v = (
1

4
,

3

4
) ∈ C2. The entries of the 2-dimensional tensor P̄ = P ∗2 v are

P̄ (0, 0) =
1

4
· 0.01 +

3

4
· 0.3 = 0.2275,

P̄ (0, 1) =
1

4
· 0.21 +

3

4
· 0.11 = 0.135,

P̄ (1, 0) =
1

4
· 0.125 +

3

4
· 0.09 = 0.09875,

P̄ (1, 1) =
1

4
· 0.13 +

3

4
· 0.025 = 0.39875.

The 1-th slice of P in the third index is P̃ = P..1 = P ∗3 e1, and has components

P̃ (x, y) = (P ∗3 e1)(x, y) = P (x, y, 1), i.e.

P̃ (0, 0) = 0.01, P̃ (0, 1) = 0.3, P̃ (1, 0) = 0.125, P̃ (1, 1) = 0.09.

And the i-th marginalization P̂ = P+.. = P ∗1 1 has entries P̂ (x, y) = P (0, x, y) +

P (1, x, y), i.e.

P̂ (0, 0) = 0.126, P̂ (0, 1) = 0.34, P̂ (1, 0) = 0.39, P̂ (1, 1) = 0.135.

Finally, if M =

(
0.25 0.75

0.55 0.45

)
, the components of P̃ = P ∗2 M are

P (0, 0, 0) = 0.01 · 0.25 + 0.3 · 0.55 = 0.853,

P (0, 0, 1) = 0.21 · 0.25 + 0.11 · 0.55 = 0.113,

P (0, 1, 0) = 0.01 · 0.75 + 0.3 · 0.45 = 0.143,

P (1, 0, 0) = 0.125 · 0.25 + 0.09 · 0.55 = 0.08,

P (1, 1, 0) = 0.125 · 0.75 + 0.09 · 0.45 = 0.134,

P (1, 0, 1) = 0.13 · 0.25 + 0.25 · 0.55 = 0.17,

P (0, 1, 1) = 0.21 · 0.75 + 0.11 · 0.45 = 0.207,

P (1, 1, 1) = 0.13 · 0.75 + 0.25 · 0.45 = 0.21.



3
Theoretical results

3.1 Some operations with tensors

In this section we show some technical results related to marginalizations and slices

of tensors that arise from stochastic parameters of the general Markov model on a

tree T .

3.1.1 Lemma Let P be a 3-tensor in the image of parameters for the General Markov

model, P = ϕ(π, {M1,M2,M3}), where T is the 3-leaf tree of Figure 2.3. Then, the

three possible marginalization of P are given by

P..+ = P ∗3 1 = M t
1diag(π)M2,

P.+. = P ∗2 1 = M t
1diag(π)M3,

P+.. = P ∗1 1 = M t
2diag(π)M3.

(3.1)

Proof We compute the 3rd marginalization of P , P..+. By de�nition

P..+(j1, j2) = (P ∗3 1)(j1, j2) =

κ∑
j3=1

1 · P (j1, j2, j3). (3.2)

Since P = ψ(π, {M1,M2,M3}), we have

P (j1, j2, j3) =

κ∑
i=1

πiM1(i, j1)M2(i, j2)M3(i, j3). (3.3)

Substituting in (3.2) we obtain

P..+(j1, j2) =

κ∑
j3=1

1 · P (j1, j2, j3) =

κ∑
j3=1

κ∑
i=1

πiM1(i, j1)M2(i, j2)M3(i, j3) =

=

κ∑
i=1

πiM1(i, j1)M2(i, j2)

 k∑
j3=1

M3(i, j3)

 =

=

κ∑
i=1

πiM1(i, j1)M2(i, j2).
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The elements of this sum are written in terms of the vector π, the j1-th column ofM1

and the j2-th column of M2. Equivalently this is the product of the j1-th row of MT
1 ,

the diagonal matrix diag(π) and the j2-th column of M2. Therefore this expression

for all j1 and j2 becomes

P..+ = P ∗3 1 = MT
1 diag(π)M2. (3.4)

Similarly we can compute the expressions of P..+ and P+...

2

3.1.2 Lemma Under the same conditions of Lemma 3.1.1, the slices of P are

P..i = P ∗3 ei = MT
1 diag(M3ei)diag(π)M2,

P.i. = P ∗2 ei = MT
1 diag(M2ei)diag(π)M3,

Pi.. = P ∗1 ei = MT
2 diag(M1ei)diag(π)M3.

(3.5)

Proof We check the expression of P..i in a similar way to previous Lemma. Again

by de�nition, using (3.3) and taking into account that ei is the i-th canonical vector,

we have

P..i(j1, j2) = (P ∗3 ei)(j1, j2) =

κ∑
j3=1

ei(j3)P (j1, j2, j3) = P (j1, j2, i) =

=

κ∑
m=1

πmM1(m, j1)M2(m, j2)M3(m, i).

Similar arguments to those on Lemma 3.1.1 show that elements of this sum are the

vector π, the i-th column of M3 (i.e. the vector M3ei) and the j1-th column of M1

and j2-th column of M2. This is the same as the product of the j1-th row of MT
1 , the

matrices diag(π), diag(M3ei) and the j2-th column of M2. Finally for all pairs j1, j2
this expression becomes

P..i =


M1(1, 1) M1(2, 1) M1(3, 1) M1(4, 1)

M1(1, 2) M1(2, 2) M1(3, 2) M1(4, 2)

M1(1, 3) M1(2, 3) M1(3, 3) M1(4, 3)

M1(1, 4) M1(2, 4) M1(3, 4) M1(4, 4)

×

×


M3(1, i) · π1 0 0 0

0 M3(2, i) · π2 0 0

0 0 M3(3, i) · π3 0

0 0 0 M1(4, i) · π4

×

×


M2(1, 1) M2(1, 2) M3(1, 3) M4(1, 4)

M2(2, 1) M2(2, 2) M3(2, 3) M4(2, 4)

M2(3, 1) M2(3, 2) M3(3, 3) M4(3, 4)

M2(4, 1) M2(4, 2) M3(4, 3) M4(4, 4)

 =

=P ∗3 ei = MT
1 diag(M3ei)diag(π)M2.

Using the same arguments we �nd analogous expressions for P.i. and Pi...
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2

3.1.3 Example Consider the 3-leaf tree of Figure 2.3, K = {0, 1} and the Jukes Cantor

model, with matrices Me =

(
ae be
be ae

)
and π = (π0, π1) =

(
1

2
,

1

2

)
. Suppose

a1 = 0.61, a2 = 0.7, a3 = 0.58,

b1 = 0.39, b2 = 0.3, b3 = 0.42.

Then,
p111 = p000 = π0(a1a2a3) + π1(b1b2b3) = 0.1484,

p101 = p010 = π0(a1b2a3) + π1(b1a2b3) = 0.1104,

p110 = p001 = π0(a1a2b3) + π1(b1b2a3) = 0.1236,

p011 = p100 = π0(b1a2a3) + π1(a1b2b3) = 0.1176.

We de�ne the tensor P that comes from this modeled tree as P (i, j, k) = pi,j,k As an

example we compute now a marginalization and a slice of P .

P̃ = P..+ = P ∗1 1 has components

P̃ (0, 0) = 0.226, P̃ (0, 1) = 0.234,

P̃ (1, 0) = 0.234, P̃ (1, 1) = 0.266.

AndMT
2 diag(π)M3 =

(
0.7 0.3

0.3 0.7

)
·
(

0.5 0

0 0.5

)
·
(

0.58 0.42

0.42 0.58

)
=

(
0.266 0.234

0.234 0.266

)
,

which corresponds to the entries of tensor P̃ seen as a matrix, see Remark 2.7.3

Also P̂ = P.1. = P ∗2 e1 has coordinates,components

P̂ (0, 0) = 0.1484, P̂ (0, 1) = 0.1236,

P̂ (1, 0) = 0.1176, P̂ (1, 1) = 0.1104.

And �nally,

MT
1 diag(M2e1)diag(π)M3 =

(
0.61 0.39

0.39 0.61

)
·
(

0.7 0

0 0.3

)
·
(

0.5 0

0 0.5

)
·
(

0.58 0.42

0.42 0.58

)
=

=

(
0.1484 0.1236

0.1176 0.1104

)
,

which is also equal to the matrix associated to P̂ .

The above marginalizations extend naturally to tensors that come from 4-leaf trees.

Figure 3.1: Rooted 4-leaf tree T12|34.
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3.1.4 Corollary Let P be a tensor arising from parameters of the GM(κ) model on T
with tree topology T12|34, see Figure 3.1, P = ϕT12|34(π;M1,M2,M3,M4,M5). Then

the double marginalizations P+..+, P+.+., P.+.+ and P.++. can be computed in terms

of matrices as follows,
P+..+ = MT

2 diag(π)M5M3,

P+.+. = MT
2 diag(π)M5M4,

P.+.+ = MT
1 diag(π)M5M3,

P.++. = MT
1 diag(π)M5M4.

Proof In order to compute all these expressions we need to marginalize the tensor

over two di�erent positions. We do the case P+..+ and the others are analogous.

Firstly we compute P̄ = P...+ and then we compute P̄+...

P̄ = P...+(j1, j2, j3) =

κ∑
j4=1

1 · P (j1, j2, j3, j4) =

=

κ∑
j4=1

κ∑
i=1

κ∑
m=1

πiM1(i, j1)M2(i, j2)M5(i,m)M3(m, j3)M4(m, j4) =

=

κ∑
i=1

κ∑
m=1

πiM1(i, j1)M2(i, j2)M5(i,m)M3(m, j3)

 k∑
j4=1

M4(i, j4)

 =

=

κ∑
i=1

κ∑
m=1

πiM1(i, j1)M2(i, j2)M5(i,m)M3(m, j3) =

=

κ∑
i=1

πiM1(i, j1)M2(i, j2)(M5M3)(i, j3),

which is the tensor that arises from the 3-leaf tree presented in Figure 3.2 with matrices

M1, M2 and M5M3, i.e. P̄T3 = ϕT (π, {M1,M2,M5M3}). Then, by Lemma 3.1.1, we

have,

P+..+ = P̄+.. = MT
2 diag(π)M5M3. (3.6)

2

Figure 3.2: 3-leaf tree with transition matrices M1, M2 and M5M3.

In the following Lemma we will see how, given a tensor in the image of ϕT for a 4-leaf

tree T , we can produce a new tensor still in ImϕT . This is done by multiplying the

original tensor with a matrix (in the sense of (2.4)), which has the e�ect of changing

the transition matrix of an exterior edge of the tree.
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3.1.5 Remark Notice that, given two κ× κ matrices M and N we have

N(x, y) =

κ∑
l=1

M(x, l)(M−1N)(l, y), (3.7)

for any x, y if M is non singular.

3.1.6 Lemma Let P be a 4-tensor for the general Markov model, P = ϕT (π;M1, . . . ,M5).

If Mi is non singular for some i, then the tensor P̄ = P ∗i (M−1i M) is the image of

the same parameters as P except for Mi which has been replaced by M .

Proof Suppose the tensor P arises from T12|34. We can assume i = 1 without loss of

generality.

P ∗1 (M−11 M)(j1, j2, j3, j4) =

κ∑
l=1

P (l, j2, j3, j4)(M−11 M)(l, j1) =

=

κ∑
l=1

κ∑
m=1

κ∑
h=1

πmM1(m, l)M2(m, j2)M5(m,h)M3(h, j3)M4(h, j4)(M−11 M)(l, j1).

By the (3.7) this is equal to

κ∑
m=1

κ∑
h=1

πmM(m, j1)M2(m, j2)M5(m,h)M3(h, j3)M4(h, j4),

which is the expression for the position (j1, j2, j3, j4) of the tensor that arises from

T12|34 where M1 has been substituted by M . The computations for i = 2, 3, 4 are

equivalent.

2

3.2 Stochasticity Conditions

In this section we will discuss some theoretical results that will allow us to provide

some conditions to ensure that a tensor of a joint distribution comes from stochastic

parameters.

3.2.1 De�nition A set {π, {Me}e∈E(T )} of stochastic parameters for GM model on

a tree T with root r is called nonsingular if

(i) At every node j the distribution of the random variable Xj has no zero entry.

(ii) The matrix Me of every edge e is nonsingular.

3.2.2 Remark For stochastic parameters the condition (i) of the previous de�nition

is equivalent to requiring that the root distribution πr has no zero entry (assuming

(ii)).

The following result has been proved in [ART12]. As we do not use it speci�cally, we

do not include the proof here.
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3.2.3 Theorem [ART12] Let P be a (either real or complex) 3-tensor. P arises from

nonsingular parameters for the general Markov model with κ parameters on the 3-leaf

tree if and only if for some i ∈ {1, 2, 3} the following conditions hold:

(i) fi(P ;x) 6= 0 for an arbitrary vector x,

(iii) det(P ∗i 1) 6= 0 for i = 1, 2, 3,

where fi(P ;x) = detHx ((det(P ∗i x))) and Hx denotes the Hessian operator.

We want to �nd a similar characterization of P for stochastic parameters. That is,

we want to �nd some conditions that allow us to distinguish when a tensor P is the

image of positive real parameters.

3.2.4 Theorem (a) Let P = ϕT (π, {M1,M2,M3}) be a 3-tensor with π, {Mi}i with
real entries. P is the image of nonsingular stochastic parameters for the general

Markov model on the 3-leaf tree if and only if its entries are nonnegative and sum

to 1, conditions (i), (ii) and (iii) of Theorem 3.2.3 are satis�ed, and

(iii) the matrix

det(P..+)PT+..adj(P..+)P.+. (3.8)

is positive de�nite, and the following matrices are positive semide�nite

det(P..+)PTi..adj(P..+)P.+. for i = 1, . . . , κ,

det(P..+)PT+..adj(P..+)P.i. for i = 1, . . . , κ,

det(P+..)P.+.adj(P+..)P
T
..i for i = 1, . . . , κ.

(3.9)

(b) Moreover, P is the image of nonsingular real positive parameters if and only if its

entries are positive and sum to one, conditions (i), (ii), and (iii) are satis�ed and

(iii') all matrices in (3.8) and (3.9) are positive de�nite.

In both cases, the nonsingular parameters are unique up to label swapping.

Proof The proof of this Theorem is essentially the same as in [ART12]. Let P be

an arbitrary nonnegative 3-tensor whose components sum to 1. Assuming (i) and (ii)

and using Theorem 3.2.3, P is the image of nonsingular parameters. We want to see

that condition (iv) is equivalent to these parameters being nonnegative. To this aim

we are going to see what expressions in (3.8) and (3.9) means.

Let P̄ = P+..P
−1
..+P.+., using expressions proved in Lemma 3.1.1 we compute

P̄ = PT+..P
−1
..+P.+. = (MT

2 diag(π)M3)T (MT
1 diag(π)M2)−1(MT

1 diag(π)M3)

= MT
3 diag(π)M3.

(3.10)

This is a well de�ned symmetric matrix since P..+ is nonsingular. Since M3 is real,

P̄ is a positive de�nite matrix if and only if

xT P̄ x = xTMT
3 diag(π)M3x = (M3x)Tdiag(π)(M3x) > 0, ∀x 6= 0.
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Since M3 is nonsingular it can be understood as a change of basis and hence P̄ is

positive semide�nite if and only if the entries of diag(π) are all positive. We clear

denominators and obtain an algebraic expression multiplying this matrix by the square

of the appropriate nonzero determinant. It follows that (3.8) is positive de�nite if and

only if π is positive.

Using expressions of Lemma 3.1.1 and Lemma 3.5, we have

PTi..P
−1
..+P.+. = (MT

2 diag(M1ei)M3)T (MT
1 diag(π)M2)−1(M1diag(π)M3) =

= MT
3 diag(π)diag(M1ei)M3.

This matrix is also symmetric, and it is positive semide�nite if and only if the entries

of diag(π)diag(M1ei) are nonnegative. Since π is a positive vector we need the ith

column ofM1 being nonnegative. Using the matrices PT+..P
−1
..+P.i. and P

T
..+P

−1
+..P..i we

can also impose the conditions of the i-th column of M2 and M3 being nonnegative.

This proves (a).

If the matrices of (3.8) and (3.9) are positive de�nite, we can repeat this proof but

requiring positiveness of the parameters. This proves (b).

In order to clear denominators and obtain an algebraic expression we multiply all

these matrices by the square of the appropriate nonzero determinant which does not

change the sign and gives us the expressions (3.8) and (3.9).

2

3.2.5 Remark In the paper [ART12], Theorem 3.2.4 is announced for general tensors

P . They assume that P = ϕT (π, {M1,M2,M3}) where π,M1M2,M3 are complex.

But this is not true, we provide here a counterexample. If M3 is not real, diag(π)

being positive does not imply P̄ = MT diag(π)M (see 3.10) being positive de�nite.

For instance for κ = 2 if we consider the matrices

D =

 1

2
0

0
1

2

 , M =

 2 + i

4

2− i
4

2− i
4

2 + i

4

 ,

then

MTDM =
1

16

(
3 5

5 3

)
,

is not positive de�nite. Moreover the reverse implication is neither true. For instance

P̄ = MTDM =

(
8 0

0 8

)
,

where

D =

(
−1 0

0 4

)
, M =

(
2i −2i

1 1

)
.

In this case P̄ is positive de�nite but D is not positive.
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Assuming now that an n-tensor P arises from nonsingular parameters on a tree, we

would like to give some semialgebraic conditions that are satis�ed if and only if P

comes from stochastic parameters. If we consider marginalizations of P to three

variables and using Theorem 3.2.4, we can give conditions that hold when the root

distribution and the product of matrices associated to any path from an interior node

to a leaf are stochastic. Nevertheless we need some extra conditions to guarantee

matrices of the interior edges being stochastic.

The following result gives us a condition for all parameters of the 12|34 tree being

stochastic.

3.2.6 Theorem [ART12] Let P be a 4-tensor. Suppose P arises from nonsingular real

parameters for GM(κ) model on T12|34. If the marginalizations P+... and P...+ arise

from stochastic parameters and, moreover, the κ2 × κ2 matrix

det(P+..+)det(P.+.+)Flatt13|24
(
P ∗2 (adj(PT+..+)PT.+.+)) ∗3 (adj(P.+.+)P.++.)

)
(3.11)

is positive semide�nite, then P arises from stochastic parameters.

Proof The root r is placed at the interior node near leaves 1 and 2 as we can see

in Figure 3.1. Let Mi, i = 1, 2, 3, 4 be the complex matrix associated to the edges

leading to leaves, M5 the matrix on the internal edge and π the root distribution.

The rows of these matrices sum to 1. We de�ne the matrices

N32 = PT+..+ = MT
3 M

T
5 diag(π)M2,

N31 = PT.+.+ = MT
3 M

T
5 diag(π)M1,

N14 = P.++. = MT
1 diag(π)M5M2,

N13 = P.+.+ = MT
1 diag(π)M5M3.

(3.12)

We de�ne now a tensor P̄ that is arising from the same parameters as P except that

M2 has been replaced by M1 (see Lemma 3.1.6).

P̄ = P ∗2 N−132 N31 = P ∗2 M−12 M1.

Similarly we can de�ne

P̃ = P̄ ∗3 N−113 N14 = P̄ ∗3 M−13 M4, (3.13)

that is a tensor arising from the same parameters as P̄ except that M4 has been

replaced by M3 (by Lemma 3.1.6).

Figure 3.3: Left: 4-leaved tree Right: Split A={1,3}, B={2,4}.
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Let A = {1, 3} and B = {2, 4}be a bipartition of the leaves, and R = {r, f} the set of
the nodes that are shared by the induced subtrees. Since 13|24 is not a split of the

underlying tree, we can write the κ2 × κ2 �attening matrix of the tensor P as

Flatt13|24(P ) = MT
Adiag(π(R))MB

where π(R) is the distribution of R and MA and MB are the transition matrices from

R to A and B respectively. Therefore

MA = (P (A = (xi, xj)|R = (xu, xv))) (xi, xj) ∈ K2

(xu, xv) ∈ K2

=(P (X1 = xi, X3 = xj |r = xu, f = xv))xi,xj ,xu,xv∈K

Then P (A = (xi, xj)|R = (xu, xv)) = M1(xu, xi)M3(xv, xj) and we can deduce

MA = (M1 ⊗M3).

Therefore

Flat13|24(P ) = (M1 ⊗M3)TD(M2 ⊗M4), (3.14)

where D is the diagonal matrix that contains the κ2 entries of diag(π)M5. Since P̃

arises from the same parameters that P except thatM2 has been replaced byM1 and

M3 by M4 we can write

Flat13|24(P̃ ) = (M1 ⊗M4)TD(M1 ⊗M4).

Since the 3-marginalization arise from stochastic parameters, M1 and M4 are nonsin-

gular and π has positive entries. Thus M1⊗M4 is also nonsingular. All principal mi-

nors of Flat13|24(P̃ ) are nonnegative if and only if Flat13|24(P̃ ) is positive semide�nite.

Then we have to require that D has nonnegative entries and so, since π has positive

entries we can ensure thatM5 has nonnegative entries. If we multiply Flat13|24(P̃ ) by

the square of the appropriate nonzero determinant we clear denominators and obtain

the algebraic expressions stated in the Theorem.

2

3.2.7 Remark The theoretical results that we have proved in this chapter allow us

to provide the algebraic description of the model, given by phylogenetic invariants,

together with a semialgebraic description of the points with stochastic sense. In other

words, as well as �nding polynomials vanishing on the image of the parametrization

map, we have found polynomial inequalities su�cient to characterize the stochastic

image.

Recall that a subset of C is called semialgebraic set if it is generated by a �nite

sequence of polynomial equations of the form P (x1, ..., xn) = 0 and inequalities of the

form Q(x1, ..., xn) > 0, or any �nite union of such sets.

The conditions of matrices being positive de�nite/semide�nite can be expressed as

semialgebraic conditions using Sylvester's criterion, which claims that a real symmet-

ric matrix is positive de�nite (or positive semide�nite) if and only its leading principal

minors are positive (or nonnegative).

On the other hand, the replacements of inverses in (3.13) by adjoint matrices in (3.11)

is not only done in order to have semialgebraic conditions, but also to avoid dealing

with badly conditioned matrices.
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3.2.8 Remark Recall that the tensor P̃ constructed in (3.13) (in the proof of Theorem

3.2.6) arises from the same parameters that P except that M2 has been replaced by

M1 and M3 by M4. Then P̃ so it is the joint distribution of the tree presented in

Figure 3.4. Observe that this tree is symmetric with respect to the interior edge, then

we can state the following result.

Figure 3.4: 4-leaf tree with transition matrices M1, M1, M2, M2 and M5.

3.2.9 Corollary Let P be a 4-tensor whose components sum to 1. Suppose that

P = ϕT (π,M1,M2,M3,M4,M5) with T = T12|34. Let P̃ be constructed as in (3.13).

Then,

Flat13|24(P̃ ) = Flat14|23(P̃ ), (3.15)

and

Flatt12|34(P̃ ) 6= Flatt13|24(P̃ ). (3.16)

In particular

det(P+..+)det(P.+.+)Flatt13|24
(
P ∗2 (adj(PT+..+)PT.+.+)) ∗3 (adj(P.+.+)P.++.)

)
) =

=det(P+..+)det(P.+.+)Flatt14|23
(
P ∗2 (adj(PT+..+)PT.+.+)) ∗3 (adj(P.+.+)P.++.)

)
gives rise to 256 phylogenetic invariants of degree 17.

Proof Using (3.14), and the fact that in P̃ M2 has been replaced by M1, and M3 by

M4, we have

Flat13|24(P̃ ) = (M1 ⊗M4)TD(M1 ⊗M4) = Flat14|23(P̃ ). (3.17)

In contrast,

Flatt12|34(P̃ ) = M̄T
1 diag(π)M̄4,

where

M̄1(xi, (xj , xk)) = M1(xi, xj)M1(xi, xk),

M̃4(xi, (xj , xk)) =

κ∑
l=1

M5(xi, xl)M4(xl, xj)M4(xl, xk).

which is, in general, not equal to (3.17).

The matrix equality Flat13|24(P̃ ) = Flat14|23(P̃ ) provides 16× 16 equalities between

entries. By (3.11) these entries are algebraic expressions of the components of P .

Moreover, because of (3.16), they are phylogenetic invariants.
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Finally, regarding at (3.11), we infer the degree of these expressions in the components

of P the two determinants have degree 4 each, which makes degree 8. The components

of the tensors adj(PT+..+)PT.+.+ and adj(P.+.+)P.++. have degree 4. The ∗ operation
adds degrees, so we obtain a tensor of degree 1 + 4 + 4 = 9 before applying the

Flat13|24(·). All together gives a tensor with components of degree 8 + 9 = 17.

2
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4
Implementation and
results on simulated

data

4.1 Numerical and computational issues

Given a 4-tensor that arises from real nonsingular parameters for the general Markov

model it is theoretically enough to verify the conditions of the Theorem (3.2.6) to

ensure that this tensor comes from stochastic parameters. But, in practice, are these

conditions su�cient? And, do they provide new information to recover the topology

of a 4-leaf tree using these conditions? In this chapter we will try to answer these

questions proposing an equivalent set of su�cient conditions that are useful on ap-

proximated data. Since real data are not exactly the image of nonsingular stochastic

parameters for the GMM, instead of checking whether all the matrices that we have

obtained in Theorem 3.2.4 and Theorem 3.2.6 are symmetric and positive de�nite

(or positive semide�nite) we will determine how far these matrices are from being

symmetric positive de�nite (or positive semide�nite). To compute these distances we

will use the next Theorem (see [Hig88] for a complete proof). But �rst we need a

de�nition.

4.1.1 De�nition For any square matrix B its polar decomposition is the unique matrix

decomposition of the form B = UH where UTU = Id and H = HT is positive

semide�nite.

4.1.2 Theorem [Hig88] Let A ∈ Rn×n, and let B =
A+AT

2
be the symmetric part

of A and C =
A−AT

2
be the skew-symmetric part. If B = UH is the polar decom-

position of B, then X =
B +H

2
is the nearest (in the Frobenius norm) matrix to A

being positive semide�nite. Moreover, the Frobenius distance from X to A is given

by

δF (A) =

√ ∑
λi(B)<0

λi(B)2 + ‖C‖2F ,

where λi(B) are the eigenvalues of B, and ‖·‖F is the Frobenius norm.
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Our major goal is to �nd out if given a tensor P that comes from a 4-leaf tree we can

infer the tree topology and, at the same time, ensure that it comes from stochastic

parameters using the results that we have proved in Chapter 3.

Notation Given a tensor P , we denote by P̃ the tensor constructed in the proof of

Theorem 3.2.4.

4.1.3 Remark The conditions of P+... and P...+ in Theorem 3.2.6 coming from stochas-

tic parameters just guarantee π being stochastic. Since this is independent from the

tree topology (because the root can be placed in another interior node, see Remark

2.5.2) we will not use these conditions.

Recall that in Theorem 3.2.6, assuming a certain tree topology, we found a condition

on P̃ re�ecting the stochasticity of the the transition matrix associated to the interior

edge. This condition was given in terms of some matrix being symmetric positive

semide�nite. We claim that if we apply the same construction but assuming a di�erent

tree topology we will not obtain a symmetric positive semide�nite matrix.

4.1.4 Proposition Let T be a 4-leaf tree and let P be a distribution in the image by

ϕT of real stochastic parameters. The following conditions are satis�ed:

(i) If T has tree topology equal to T12|34, then the matrices Flatt13|24(P̃ ) and

Flatt14|23(P̃ ) are symmetric and positive semide�nite.

(ii) If T has tree topology equal to T13|24, then the matrices Flatt12|34(P̃ ) and

Flatt14|23(P̃ ) are not symmetric positive semide�nite.

(iii) If T has tree topology equal to T14|23, then the matrices Flatt12|34(P̃ ) and

Flatt13|24(P̃ ) are not symmetric positive semide�nite.

Figure 4.1: 4-leaf tree with tree topology T13|24.
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Proof

(i) Is a consequence of Corollary 3.2.9.

(ii) is shown by means of an example. (iii) will follow by symmetry. Let T be the tree

of Figure 4.1, and take the set of nucleotides as the space of possible states. Let

π = (0.22, 0.26, 0.24, 0.28) be the root distribution and take transition matrices:

M1 =


0.7 0.15 0.10 0.05

0.07 0.75 0.16 0.02

0.12 0.08 0.68 0.12

0.05 0.08 0.07 0.8

 , M2 =


0.82 0.05 0.12 0.01

0.11 0.6 0.07 0.22

0.07 0.14 0.75 0.04

0.12 0.14 0.10 0.64

 ,

M3 =


0.67 0.11 0.09 0.13

0.06 0.75 0.14 0.05

0.07 0.15 0.63 0.15

0.04 0.08 0.16 0.72

 , M4 =


0.71 0.13 0.1 0.06

0.13 0.63 0.14 0.10

0.12 0.06 0.80 0.02

0.03 0.09 0.11 0.77

 ,

M5 =


0.59 0.16 0.12 0.13

0.12 0.66 0.08 0.14

0.07 0.16 0.73 0.04

0.18 0.10 0.08 0.64

 .

Using (2.2) we can compute the vector of joint distributions at the leaves, which

is a 44-vector. As we have said, it can also be regarded as a 4 × 4 × 4 × 4 × 4

tensor P . With this tensor P we compute

N32 = PT+..+, N31 = PT.+.+,

N14 = P.++., N13 = P.+.+,

and the tensors

P̄ = P ∗2 N−132 N31,

P̃ = P̄ ∗3 N−113 N14.

In this case the two �attenings relative to the wrong topologies are Flatt12|34(P̃ )

and Flatt14|23(P̃ ). We have computed the distance of these matrices to the set

of symmetric positive semide�nite matrices, and we have obtained:

δF (Flatt12|34(P̃ )) = 5.77899× 10−10,

δF (Flatt14|23(P̃ )) = 7.13323× 10−10.

These numbers are close to zero and it might seem that we simply have obtained

them because of numerical errors. But if T = T12|34 the same computations gives

us

δF (Flatt13|24(P̃ )) = δF (Flatt14|23(P̃ )) = 5.53549× 10−17.

which has a really di�erent magnitude order. Therefore we conclude that Flatt12|34(P̃ )

and Flatt14|23(P̃ ) are not symmetric positive semide�nite.

4.1.5 Remark The small values obtained in the preceding proof suggest to take the

logarithm to design a reconstruction method.
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Computation of P̃

Given a tensor P , in (3.13) we have de�ned

P̃ =
(
P ∗2 N−132 N31

)
∗3 N−113 N14,

where
N32 = PT+..+, N31 = PT.+.+,

N14 = P.++., N13 = P.+.+.

If P is a distribution arising from some stochastic parameters on T12|34, then the same

tensor P̃ could also be constructed as a product of di�erent matrices:

P̃ = P ∗2 (N−132 N31)) ∗3 (N−113 N14) =

= (P ∗2 (N−142 N41)) ∗3 (N−113 N14) =

= (P ∗2 (N−132 N31)) ∗3 (N−123 N24) =

= (P ∗2 (N−142 N41)) ∗3 (N−123 N24),

where

Nij = Midiag(π)M5Mj for i < j and Nji = NT
ij .

In this case P̃ corresponds to the tree with M1 and M4 instead of M2 and M3 (see

�gure 3.4). But di�erent replacements could also have been considered and would

also work in the proof of Theorem 3.2.6. For instance,

P̃ = P ∗2 (N−132 N31)) ∗4 (N−114 N13),

corresponds to the tree where M2 has been replaced by M1, and M4 by M3. And this

tensor can also be obtained in 4 di�erent ways as long as P is a distribution from the

tree with topology T12|34.

Figure 4.2: 4-leaf trees symmetric with respect to the interior edge.

In summary, the tensor P̃ could be taken as the tensor arising from any of the trees

of Figure 4.2, and we have 4 di�erent ways of computing each of these tensors. In the

following table all these tensors P̃ are computed and grouped if they arise from the

same tree.
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Computations of P̃

(P ∗2 N−132 N31) ∗3 N−113 N14 (P ∗2 N−132 N31) ∗3 N−123 N24

(P ∗2 N−142 N41) ∗3 N−113 N14 (P ∗2 N−142 N41) ∗3 N−123 N24

(P ∗2 N−132 N31) ∗4 N−114 N13 (P ∗2 N−132 N31) ∗4 N−124 N23

(P ∗2 N−142 N41) ∗4 N−114 N13 (P ∗2 N−142 N41) ∗4 N−124 N23

(P ∗1 N−131 N32) ∗3 N−113 N14 (P ∗1 N−131 N32) ∗3 N−123 N24

(P ∗1 N−141 N42) ∗3 N−113 N14 (P ∗1 N−141 N42) ∗3 N−123 N24

(P ∗1 N−131 N32) ∗4 N−114 N13 (P ∗1 N−131 N32) ∗4 N−124 N23

(P ∗1 N−141 N42) ∗4 N−114 N13 (P ∗1 N−141 N42) ∗4 N−124 N23

(4.1)

N12 = P..++, N13 = P.+.+, N14 = P.++.,

N23 = P+..+, N24 = P+.+.. N34 = P++..,
and Nij = NT

ji if i > j. (4.2)

Moreover checking whether M5 has nonnegative entries in the proof of Theorem 3.2.4

could also be done verifying whether the matrix

Flatt13|24(P̃ ) = Flatt14|23(P̃ ), (4.3)

is positive semide�nite where P̃ is some of the 16 tensors corresponding to Figure 4.2.

When all this is applied to a tensor P obtained from real data, this tensor P is not

the image of stochastic parameters on T12|34 anymore, all the 16 tensors of the Table

above are di�erent, and the equality of 4.3 does not hold. In this case, there are up

to 32 di�erent ways of checking that M5 have nonnegative entries.

Implementation

We deal with multiple sequence alignments of DNA sequences of 4 species and we

try to reconstruct the tree topology of their phylogenetic tree. From each alignment

we compute a tensor P with the relative frequencies of any possible quadruples of

nucleotides as components.

For any tree topology we compute:

(i) The 16 tensors P̃ (For T = T12|34 see the Table (4.1)) and the two �attenings

matrices (Flatt13|24(P̃ ) and Flatt14|23(P̃ ) if T = T12|34) of incorrect bipartitions.

(ii) The distance δF of the previous 32 matrices to the space of symmetric positive

semide�nite matrices, and the mean of all these distances.

Then the output of this method will be three scores, one for each topology T12|34,

T13|24 and T14|23, that corresponds to the means of (ii). We will choose the topology

with the smaller score. This method will be called the M5-method.
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As an alternative method we will compute

(iii) For a given topology and for any tensor P̃ , the distance between the two �at-

tenings relative to the other two topologies, and the mean of these 16 distances.

For example, for T = T12|34, the score is given by the mean of the values

‖Flatt13|24(P̃ ) − Flatt14|23(P̃ )‖ where P̃ is one of the 16 possible tensors of

Table (4.1).

This gives us also three scores, one for each topology. The chosen topology will be

the one with minimal score. This method will be called the Flatt-method.

4.1.6 Remark To avoid numerical problems, in the computation of matrices in (4.2)

we will use adj(Nij) instead of N−1ij .

4.2 Analysis of the Results

We test these methods on simulated alignments that correspond to phylogenetic trees

of some tree space de�ned as follows. Take the tree presented in Figure 4.3, with tree

topology T12|34 and where the branch lengths are characterized in such a way that

the exterior edges going to the leaves 1 and 3 have length b and the other three edges

have length a. The values of a and b are taken from 0.01 to 1.5.

0.0 0.3 0.6 0.9 1.2 1.5

0.0

0.3

0.6

0.9

1.2

1.5

Figure 4.3: At the left, a phylogenetic tree with tree topology T12|34 and branch

lengths a and b. At the right the tree space with a, b ∈ [0, 1.5].

We compare the results of the methods with the reconstruction method Erik+2

[FSC15] developed by M. Casanellas and J. Fernández-Sánchez which is based in

Theorem 2.6.4. It computes the distance of some normalized version of the three

�attenings to the set of matrices of rank 4.

For a = 0.01, 0.05, 0.45, 1.05, 1.45 and b ∈ {0.01, 0.03, . . . , 1.49} we have tested these

methods on 100 alignments of length 1000 generated on the topology T12|34 with

transition matrices on the general Markov model. First of all we want to see how

often the means of (ii) and (iii) of Implementation for the right topology T12|34 are
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smaller than for the other topologies. The following graphics show the performance

of the methods Erik+2, M5 and Flatt.

Figure 4.4: On the top: From left to right, graphics with a = 0.01, 0.05. In the

middle: from left to right, a = 0.45, 1.05. At the bottom: a = 1.45.

From these graphics we can observe that both the mean M5 and the Flatt method

fails when b is much larger than a.

The area where these methods fail is called the Felsestein zone (Felsenstein 1978)

which corresponds to small values of a and big values of b; in this zone it is said that

occurs the phenomenon known as long branch attraction. If data has been obtained

from a tree with 2 very long exterior edges (compared to the other edges), then recon-

struction methods tend to join these edges. Felsenstein identi�ed this phenomenon

as a de�ciency of the Maximum Parsimony method of phylogenetic reconstruction.
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In order to study more closely what happens in the Felsenstein zone and what is the

behavior of these means we can observe the following graphics.

Figure 4.5: On the top: From left to right, graphics with a = 0.01, 0.05. In the

middle: from left to right a = 0.45, 1.05. At the bottom: a = 1.45.

The solid lines are the ones corresponding to the means of Flatt while broken lines

corresponds to M5. Di�erent colors correspond to di�erent topologies. We see from

the graphics that the values of these means are really small and really close for the

tree topologies. This explains why the method does not recover the right topology in

many cases. Moreover both methods have a similar comportment. Nevertheless when

b is small the distance between the three means is bigger than for bigger b's, and so

the method in these areas still works correctly (see Figure 5.3). When we increase b's

the lines becomes closer and it is more di�cult to know which is the right topology.

However, for a = 0.01 and a = 0.05 the red line corresponding to the topology T13|24
is lower that the other two (for b ≥ 0.60). This behavior corresponds to the long

branch attraction of the Felsenstein zone.

The next test compares the comportment of Erik+2 and the mean M5. Since the

outputs of these two methods have di�erent magnitude we can not produce a linear

graphic for a given a. The following �gures are computed for a �xed pair a, b. The

three colors correspond to the three topologies, the x-axis to the scores of Erik+2 and

the y-axis to the scores of M5. Any dot of the plane corresponds to one alignment.



4.2. Analysis of the Results 37

b = 0.05 b=0.45 b = 1.05

Table 4.1: On the top: a = 0.05. In the middle: a = 0.45. At the bottom: a = 1.05.

For a = 0.05 and b = 0.05 the red dots, which correspond to the T12|34 topology, are

far from the rest. That means that both Erik+2 and M5 give a smaller score for

this topology than for the remainder. When b increases the dots become closer and

they start to coalesce. The scores provided by Erik+2 for the di�erent topologies lie

in the same range and do not discriminate among the topologies. For b = 1.05 the

scores provided by M5 keep the dots separated vertically, but it is clear that the ones

corresponded to T13|24 reach smaller values. Therefore in these cases the M5-method

fails.

For all the other values of a, especially when b = 0.05, 0.45 the red dots are quite

separated from the others, in such a way that both Erik+2 and M5 recover the right

topology. For b = 1.45 although points are quite separated, red dots have a tendency

to move to the lower left corner of the plane. All these results con�rm that the method

is de�cient in the areas where b is much bigger than a.

We �nish with the analysis of this method with some di�erent graphics. We have

observed that for di�erent values of a and b the scores obtained from M5 take very

di�erent values. For that reason, for the three scores S12|34, S13|24 and S14|23 given by

M5 for one alignment we normalize them and compute

(
S12|34

S
,
S13|24

S
,
S14|23

S

)
where

S = S12|34+S13|24+S14|23. These new scores are the barycentric coordinates of points

lying on a triangle. The following graphics present 100 of these points corresponding

to 100 alignments for �xed a and b.
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b = 0.05 b=0.45 b = 1.05

Table 4.2: On the top: a = 0.05. In the middle: a = 0.45. At the bottom: a = 1.05.

Compare these graphics with Table 4.1.

For a reliable reconstruction method, the points represented in the triangle should

be pictured over one of the angle bisectors of the triangle, near the vertex, and away

from the perpendicular bisectors. In this way the method would distinguish well

one topology from the other two. In our case, this fact occurs when a is smaller

than b. On the other cases the dots are more dispersed on the triangle or near some

perpendicular bisection, for that reason the method fail in some cases. Notice the

right upper graphic (a = 0.05, b = 1.45), where all the points are over the right lower

vertex of the triangle. As we have seen in the last two types of graphics, the method

fails in this region of the parameters.

In conclusion, despite the good results obtained by the M5-method for values a ≥ b

the direct application of the conditions of theorem 3.2.6 does not seem to provide a

good reconstruction method, since it does not work in the Felsenstein zone. Recall

that, Theorem 3.2.6 is stated assuming a tree topology, and gives some conditions for

having stochastic parameters. For that reason our �rst idea was to use the scores of

M5 as a complementary information for a reconstruction method as Erik+2. However

the results of M5 do not give new information that allow us to improve the already

existing inference methods.
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A new method for

phylogenetic
reconstruction

In this chapter we propose a new reconstruction method based on the ideas discussed

in Chapter 4 but with a new implementation. Basically we will use again the distance

of matrices to the variety of symmetric positive de�nite matrices and some additional

information based in Corollary 3.2.9. We keep the notation of Chapter 3 and Chapter

4.

By Corollary 3.2.9, we have Flatt13|24(P̃ ) = Flatt14|23(P̃ ) if P̃ arises from a tree with

tree topology T12|34 and therefore

δF
(
Flatt13|24(P̃ )

)
= δF

(
Flatt14|23(P̃ )

)
.

Moreover in Proposition 4.1.4 we have seen that this equality is not satis�ed if we

compute the same but with the assumption that P̃ arises from some other topology.

On the other hand since distances of matrices of (4.1) are usually small numbers and in

many cases we can not compare them, we have decided to work with−ln
(
δF
(
Flatt13|24(P̃ )

))
instead of δF

(
Flatt13|24(P̃ )

)
, where ln(x) is the natural logarithm. Now, with these

new scores we will look for the highest one, which implies the minimum distance to

the set of symmetric positive semide�nite matrices. Therefore, for any tree topology

T (w.l.o.g. suppose T = T12|34) we compute the following scores:

(i) −ln
(
δF
(
Flatt13|24(P̃ )

))
, −ln

(
δF
(
Flatt14|23(P̃ )

))
with P̃ as in (4.1). We com-

pute the mean m1 of these 32 values. This gives information on how likely is P̃

to come from stochastic parameters.

(ii) For any P̃ (4.1) we compute | −ln
(
δF
(
Flatt13|24(P̃ )

))
+ln

(
δF
(
Flatt14|23(P̃ )

))
|

which gives us 16 values. Here we also compute the mean m2 of these 16 scores.

This value gives information on the tree topology.

The output of this method are three scores m1 and three m2, that is, a pair (m1,m2)

for each topology. As we have said we want the topology of maximum m1 and since
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theoretically |−ln
(
δF
(
Flatt13|24(P̃ )

))
+ ln

(
δF
(
Flatt14|23(P̃ )

))
| = 0, we also ask for

the minimum m2.

In general the highest m1 and the minimum m2 do not coincide in the same topology.

For that reason we will follow the next procedure.

Phylogenetic reconstruction method proposed:

1) Discard the tree topology with minimum m1.

2) Discard the tree topology with maximum m2.

3) If the two discarded topologies are di�erent the output topology will be the

only one that has not been rejected. Otherwise, if we discard just one topology

we will output the one with minimum m2, since this mean is a score for the

topology of the tree whereas m1 measures the stochasticity of the parameters.

Figure 5.1: On the top: From left to right. graphics with a = 0.01, 0.05. In the middle:

from left to right. a = 0.45, 0.85. At the bottom: from left to right. a = 1.05, 1.45.

This new method gives us really good results, as presented below. We have tested this

method with trees of the treespace as in Chapter 4. For any pair of branch lengths
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a, b we have used the same 100 simulated alignments of length 1000 as in Chapter

4. The following graphics show, for �xed a and every b, in how many of these 100

alignments Erik+2 or this new method recover the right tree topology.

From these graphics we observe that this new method recovers the correct topology

in more than 80 percent of the simulated alignments. Moreover we have really good

results in Felsestein zone, which is the most di�cult part of the treespace.

In order to justify the method we also present graphics that show the values m1 for

the three tree topologies T12|34, T13|24 and T14|23 for �xed a and every b.

Figure 5.2: Average value m1. On the top: from left to right, graphics with a = 0.01,

0.05 and a = 0.45. At the bottom: from left to right, 0.85 ,a = 1.05 and 1.45..

The only region where the value m1 for the tree topology T12|34 is not the greatest is

in the Felsenstein zone, i.e. when b is much larger than a. It seems that in the other

areas of the treespace we could recover the tree topology with only this score m1.

Figure 5.3: Average value m2. On the top: from left to right, graphics with a = 0.01,

0.05 and a = 0.45. At the bottom: from left to right, 0.85 ,a = 1.05 and 1.45.

In this case, for a ≥ 0.45 the least score of m2 is taken by the topology T12|34. Almost

everywhere the value of T13|24 is the highest, so we discard this topology and we avoid

the problems that would have only with m1 in the Felsenstein zone.
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Finally we compare the method with Erik+2 in the following table, computing the

percentage of times that these two methods coincide in a correct or wrong topology

and the times that they recover di�erent topologies.

a=0.01 a=0.05 a=0.45 a=0.85 a=1.05 a=1.45

Erik+2 and the new

method provide

the correct topology

72.13 76.17 92.47 85.35 87.4 80.68

Erik+2 and the new

method provide

the same topology,

but an incorrect one

0 0 0.15 1.41 0.8 2.23

Erik+2 and the new

method provide dif-

ferent incorrect topologies

0 0 0.05 0.01 0.01 0.08

Only Erik+2 recovers

the correct topology
0.04 0.04 1.08 3.07 5.04 5.63

Only the new method

recovers the

correct topology

27.83 23.79 6.25 10.16 6.75 11.38

Table 5.1: Values of the table are percentages.

If we consider both methods the percentage of success when both topologies coincide

is really high. Nevertheless, when both methods do not coincide, this new method

recovers the right topology in more cases.

In the following graphics we compare the success of Erik+2 and New method with the

success of the traditional reconstruction methods Maximum likelihood and Neighbor

joining.

The Maximum Likelihood method is a model dependent method, which means that

it needs an evolutionary model and the output of the algorithm can be di�erent

for di�erent models. This method provides a score of a particular tree, that is the

likelihood of the observed alignment having evolved according to the chosen tree

model. The optimal tree is the tree with the highest likelihood score. In other words,

ML �nds the tree and the parameters of the model that produce the observed data

with the highest probability. However �nding the maximum likelihood tree is a hard

problem requiring numerical methods, and limiting the size of the trees which can

be constructed. The maximum likelihood method was invented by Fisher [Fis22] and

later applied to phylogenetic inference by Felsenstein [Fel81].

The Neighbor joining method is based on the criterion of minimum evolution, in which

the best tree is one that minimizes the length of the inner branches. To do this, from

a star tree, the pair of nearest sequences is determined and the corresponding leaves

are joined at an internal node. This process is repeated with the rest of the leaves

until they are all linked by internal nodes that minimize the length of each of the

interior edges. It provides a tree topology and branch lengths. The NJ algorithm

is really fast and if the distance matrix (which entries are the distances among the

sequences of the alignment) is an exact description of the true tree, then neighbor
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joining is guaranteed to reconstruct the correct tree. However if this distance matrix

is close to be a tree metric then this method stills reconstruct the correct tree. This

method was originally developed by Naruya Saitou and Masatoshi Nei in 1987 [SN87].
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Figure 5.4: Percentage of exits of di�erent methods on simulated alignments on on

trees of Figure 4.3. On the top: from left to right Erik+2 and New method. At the

bottom: from left to right Maximum likelihood (ML) and Neighbor joining (NJ) on

trees of Figure 4.3.

In Figure 5.4 black is used to represent 100% of exits, white to represents 0% and

di�erent tones of gray the intermediate percentages. We can see that the graphic of

the New Method has a quite di�erently from the rest. Moreover the dark zone covers

much part of the graph, and then this method recovers the correct topology in most

cases in simulated alignments of this tree space.

Time of execution:

Given a pair a, b ∈ [0, 1.5] the time required to compute scores of Erik+2, m1 and m2

for 100 alignments is around 12s. For instance:

a = 0.01 and b = 0.01: 11.661s,

a = 0.01 and b = 1.01: 12.821s,

a = 0.51 and b = 0.51: 12.119s,

a = 1.45 and b = 1.45: 13.129s.
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For a a �xed and b ∈ [0, 1.5] the program takes 15 to 20 minutes to compute 100

alignments for each pair a, b:

a = 0.01: 15m59.760s,

a = 0.75: 16m10.177s,

a = 1.45: 19m46.410s.

All these computations have been done using c++ in a server with processor Intel(R)

Xeon(R) CPU E5-2430 a 2.20GHz.
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Conclusions

In this work, we have achieved all the proposed objectives. We have seen that con-

ditions of stochasticity of the parameters by itself did not give us much information

and the implementation of these conditions gave us very bad results in the Felsentein

zone. But this has allowed us to analyze the results and �nd a method of phylogenetic

reconstruction with very good results in all the treespace. Finally we can extract the

following conclusions:

We have understood the theoretical results of stochastic conditions of the param-

eters and we have provided a counterexample to an error in a proof of [ART12]

as well.

We have described how to compute the transformed tensor P̃ out of the joint

distribution P at the leaves and in how many ways it can be constructed.

We have �rst used all these computations of P̃ to study the stochasticity of

parameters and we have implemented them in c++. The results of this method

were not quite good according to simulations, which means that just the con-

ditions of the parameters being stochastic do not help us in the problem of

phylogenetic reconstruction.

By using the same ideas but with some modi�cations on the implementation

we have proposed a new method of phylogenetic reconstruction. We have also

implemented it in c++ and we have tested it in simulated data in the treespace.

The results has been compared with the method Erik+2. We conclude that this

new method has really good results in alignments of trees in the treespace.

This last item lead us to think that there are further research to do:

Test this new method in trees of random branch length.

Test this new method in real data.

Check whether the new phylogenetic invariants we found are su�cient to de-

scribe the phylogenetic algebraic variety.



46 6. Conclusions



References

[AR03] ES Allman and JA Rhodes. Phylogenetic invariants for the general Markov

model of sequence mutation. Math. Biosci., 186(2):113�144, 2003.

[AR04] ES Allman and JA Rhodes. Mathematical models in biology, an introduction.

Cambridge University Press, January 2004. ISBN 0-521-52586-1).

[AR05] ES Allman and JA Rhodes. The mathematics of phylogenetics. University

of Alaska Fairbanks, 2005.

[AR07] Elizabeth S. Allman and John A. Rhodes. Phylogenetic invariants. In

Reconstructing evolution, pages 108�146. Oxford Univ. Press, Oxford, 2007.

[AR08] ES Allman and JA Rhodes. Phylogenetic ideals and varieties for the general

Markov model. Advances in Applied Mathematics, 40:127�148, 2008.

[ART12] E. S. Allman, J. A. Rhodes, and A. Taylor. A semialgebraic description of

the general markov model on phylogenetic trees. ArXiv e-prints, dec 2012.

[Cas12] M Casanellas. Algebraic tools for evolutionary biology. La Gaceta de la

RSME, 15:521�536, 20012.

[CFS10] M. Casanellas and J. Fernandez-Sanchez. Reconstrucción �logenética us-

ando geometría algebraica. Arbor. Ciencia, pensamiento, cultura, 96:207�

229, 2010.

[CFS11] M Casanellas and J Fernandez-Sanchez. Relevant phylogenetic invariants

of evolutionary models. Journal de Mathématiques Pures et Appliquées,

96:207�229, 2011.

[CGS05] M Casanellas, LD Garcia, and S Sullivant. Catalog of small trees. In

L. Pachter and B. Sturmfels, editors, Algebraic Statistics for computational

biology, chapter 15. Cambridge University Press, 2005.

[Eri05] N Eriksson. Tree construction using singular value decomposition. In

L Pachter and B Sturmfels, editors, Algebraic Statistics for computational

biology, chapter 19, pages 347�358. Cambridge University Press, 2005.

[Fel81] J Felsenstein. Evolutionary trees from DNA sequences: a maximum likeli-

hood approach. J. Mol. Evol., 17:368�376, 1981.



48 REFERENCES

[Fis22] R A Fisher. On the mathematical foundation of theoretical statistics. Philo-

sophical Trnsactions of the Royal Society of London., 222:309�368, 1922.

[FSC15] J Férnandez-Sánched and M Casanellas. Invariant versus classical quartet

inference when evolution is heterogeneous across sites and lineages. 2015.

Submitted.

[Hig88] Nicholas J. Higham. Computing a nearest symmetric positive semide�nite

matrix. Linear Algebra and its Applications, 103:103�118, May 1988.

[Kim81] M Kimura. Estimation of evolutionary sequences between homologous nu-

cleotide sequences. Proc. Nat. Acad. Sci. , USA, 78:454�458, 1981.

[SN87] N Saitou and M Nei. The neighbor-joining method: A new method for recon-

structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406�425,

1987.


