
Universitat Politècnica de Catalunya (UPC)
– BarcelonaTech
Facultat d’Informàtica de Barcelona (FIB)
Edifici B6 del Campus Nord
C/Jordi Girona Salgado, 1-3
08034 Barcelona
SPAIN
http://www.fib.upc.edu/

Institut Supérieur d’Informatique
de Modélisation et de leurs Applications

Campus des Cézeaux - BP 10125
63173 Aubière CEDEX

FRANCE
http://www.isima.fr

MASTER IN INNOVATION AND RESEARCH IN INFORMATICS
Specialization Computer Network and Distributed Systems

Development of a performance measurement tool for

SDN

Marion MAUGENDRE

Supervisor : Pere Barlet Ros,
UPC-Computer Architecture Departement
Co-Supervisor : Patrice Laurençot, ISIMA

Date :07/10/2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41793655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknoledgement

I sincerely express my gratitude to ISIMA for providing me this opportunity
to do this exchange at the UPC which was very rich intellectually, culturally and
socially.

I would like to thank my project director M. Pere Barlet Ros for all his efforts in
helping and guiding me throughout the course of this project. And also Elavaz-
hagan Sethuraman for his help with the POX controller program.

A thought for my grandparents, Roger and Jeanine, who died respectively in
December 2014 and June 2015.

i

Abstract

Software-Defined Networking is becoming more and more present in network
due to the complexity and difficulty to manage traditional network. This new
paradigm aims to separate control plane and data plane for more network pro-
grammability, serviceability, heterogeneity and maintainability.

SDN is most of the time associated with OpenFlow protocols, especially for
cloud and enterprise infrastructures. But latest specification of this protocol does
not take care about the latency monitoring in the networks. Those delay measu-
rement are needed to make correct routing decisions or to efficiently apply QoS
policies.

The project proposed wants to develop a tool to measure link latency from a
OpenFlow controller. It uses Mininet, a software to emulate SDN computer net-
work. Emulation deals with the process of mimicking the internal entities to ob-
tain more knowledge on the real-time environment of the emulation. Also an
emulated network can be sure of implementing successfully in the real-time envi-
ronment. The controller chosen is POX, writing in python and easy to manage.

The delay is measured with a packet probe sending by the controller and retur-
ning by the switch once it achieved its goal. The times measure is compared to
those from the ping values.

ii

Summary

Acknoledgement i

Abstract ii

Summary iii

Figures v

Glossaire vi

Introduction 1

1 Software-Defined Networking 5
1.1 History . 5

1.1.1 Active Networking . 5
1.1.2 Separating control and data planes 6
1.1.3 OpenFLow . 6

1.2 Architecture of SDN . 7
1.3 OpenFlow . 9

1.3.1 Overview . 10
1.3.2 OpenFlow switches . 10
1.3.3 Flow tables . 11
1.3.4 Packet flow through an OpenSwitch 12

2 Tools used for this project 17
2.1 Mininet . 17

2.1.1 Command Line Interface 18
2.1.2 Basic topologies . 21
2.1.3 Custom topologies . 23

2.2 POX Controller . 26
2.3 OpenFlow messages . 27

2.3.1 Controller-to-switch . 27
2.3.2 Asynchronous . 27
2.3.3 Symmetric . 28

3 Measuring delay 31
3.1 Monitoring mechanism . 31
3.2 Implementation . 32

iii

3.3 Results . 33

Conclusion 37

Annexes I
Annexe A . II
Annexe B . VII

iv

Table des figures

1 Gantt diagram . 3
2 The SDN architecture . 8
3 OpenFlow deployment in the USA academic campus 9
4 OpenFlow components . 10
5 OpenFlow switch components . 11
6 Flow table entry in OpenFlow 1.0 11
7 Flow table entry in OpenFlow 1.5 12
8 OpenFlow papeline . 13
9 Simplified flowchart detailing packet flow through an OpenFlow

switch . 14
10 Example of Mininet Virtual Network 18
11 Command Line Interface . 19
12 Comparative bandwith between nodes 21
13 Topology minimal . 21
14 Linear topology . 22
15 Tree topology . 23
16 Example of script . 25
17 Simple flowcharts : hub, layer2 learning switch and layer3 lear-

ning switch . 26
18 Types of OpenFlow messages . 28
19 Monitoring mechanism . 32
20 POX and Mininet terminals . 33
21 Difference between the monitoring delays and the ping values

with initial delay of 10ms . 34
22 Difference between the monitoring delays and the ping values

without initial delay . 35
23 Time difference between monitoring and ping values 35

v

Glossaire

API : Application Programming Interface : a set of routines, protocols, and
tools for building software applications.

ICMP : Internet Control Message Protocol : used by network devices, like rou-
ters, to send error messages indicating.

Mininet : a linux based emulation software for rapid prototyping Software-Defined
Networks.

OpenFlow : most popular SDN technology. It proposes to standadize the communi-
cation between the switches and the software based controller.

Ping : a computer network administration software utility used to test the rea-
chability of a host on an Internet Protocol (IP) network and to measure the
round-trip time for messages sent from the originating host to a destina-
tion computer and back.

POX : an open source controller for developing SDN applications.

SDN : Software-Defined Networking : a new network architecture which sepa-
retes the control plane from the data plane for more network programma-
bility, serviceability, heterogeneity and maintainability.

Introduction

The traditional IP networks, based on distributed control and transport
network protocols running inside the routers and switches, are complex
and hard to manage. The network operators need to configure each indi-
vidual network device to express the desired high-level network policies.
Also, network environments have to endure the dynamics of faults and
adapt to load changes.

The current networks are vertically integrated which enforce the com-
plexity. The controle plane (decides how to handle the traffic) and the data
plane (forwards traffic according to the control plane) are bundled inside
the networking devices, reducing flexibility and hindering innovation and
evolution of the networking.

Software-Defined Networking (SDN) is an emerging networking pa-
radigm that gives hope to change the limitations of current network in-
frastructures. It breaks the vertical integration by separating the control
plane from the data plane. Thank to this, network switches become simple
forwarding devices and the policy enforcement and network configura-
tion are simplifying with the use of a logically centralized controller.

SDN is most of the time associated with OpenFlow protocol. But the
problem is that there are currently no ways to dynamically obtain the la-
tency in a OpenFlow network to efficiently apply QoS policies.

The topic of the master thesis is to develop a performance measurement
tool for SDN. In this report, I will present you what is SDN and the Open-
Flow protocol in a first part. Then the different tools used to develop the
tool. And finally, I will discuss about the results obtain by monitoring the
delay between switches and controllers.

The organisation of this work is describe with the Gantt diagram pre-
sented on the figure 1. The first weeks were dedicated to read papers

1

about traffic monitoring and analysis to define a topic. Next, my work
was to discover and understand SDN and OpenFlow and the different
tools used (Mininet, POX, python). And then, the scripts were difficult to
writing cause I had trouble to find how and where implement them.

2

Figure 1 – Gantt diagram

3

4

1 Software-Defined Networking

The traditional computer networks are complex, difficult to manage,
built from a large number of network devices. . . All of those drawbacks
show the needed to find a new way to facilitate network evolution. In this
context, it appeared the idea of “programmable network” [1]. Software-
Defined Networking is one of the solution developed. It separates the
control plane (which decides how to handle the traffic) from the data
plane (which forwards traffic according to decisions that the control plane
makes). This characteristic expects a more simplify network management,
but also enables innovation and evolution. But, SDN is not appeared sud-
denly, it is a part of a long way of efforts to make network more program-
mable.

1.1 History

Software-Defined Networking relies on past research on active networ-
king and work on separating the control plane and the data plane, as for
example in the telephony networks, where the separation is clearly used
to simplify network management and the deployment of new services [2].

1.1.1 Active Networking

The first work which contributed to the current SDN is the active net-
working (between the mid-1990s and the early 2000s). It introduced pro-
grammable functions in the network to enable innovation. Two program-
ming models have been proposed by the active networking community :
the capsule model and the programmable router/switch model. The in-
tellectual contribution of active networks to SDN are :

— programmable functions in the network to lower the barrier to inno-
vation ;

— network virtualization, and the ability to demultiplex to software
programs based on packet headers ;

— the vision of a unified architecture for middlebox orchestration.

5

1.1.2 Separating control and data planes

In the early 2000s, the idea to separate the control and data planes has
been developed, and two innovations appeared : an open interface bet-
ween the control and data planes, such as the ForCES (Forwarding and
Control Element Separation), and a logically centralized control of the
network. Those two innovations have an intellectual contribution to SDN
which is :

— logically centralized control using an open interface to the data plane ;

— distributed state management.

One of the project develop during this period was the 4D project [3]. It
describes an architecture in 4 layers :

— the data plane

— the discovery plane

— the dissemination plane

— the decision plane

Also, the Ethan [4] project defined a new architecture for enterprise net-
work. It is considered as the OpenFlow predecessor.

1.1.3 OpenFLow

In the mid-2000s, a group of researchers of Stanford created OpenFlow
switches [5]. To enable the creation of many new control application, the
design of controller platforms has quickly followed. The intellectual contri-
butions are :

— generalizing network devices and functions ;

— the vision of a network operating system ;

— distributed state management techniques.

OpenFlow will be more detail in the part 1.3.

6

The term “SDN” has been first used to describe Stanford’s OpenFlow
project, but now the definition is expanded to include a much wider array
of technologies.

All those innovations permitted the definition of a new paradigm for
network architecture, called Software-Defined Networking, which refers
to a network architecture where the forwarding state in the data plane is
managed by a remote control plane decoupled from the former [6].

1.2 Architecture of SDN

According to the Open Networking Foundation, SDN is defined as “an
emerging architecture that is dynamic, manageable, cost-effective, and
adaptable, making it ideal for the high-bandwidth, dynamic nature of to-
day’s applications” [7].

SDN can be defined as a network architecture with four pillars :

(a) the control plane and the date plane are decoupled,

(b) forwarding decisions are flow-based, instead of destination-based,

(c) control logic is moved to an external entity (SDN controller or Net-
work Operating System),

(d) the network is programmable through software applications running
on the top of the controller that interacts with the underlying data
planes devices.

This architecture consists of three layers, as illustrated in the figure 2.

7

Figure 2 – The SDN architecture

The data plane, also called infrastructure layer in the figure 2, comprises
the forwarding elements. This plane is programmed and managed by the
control plane (control layer). Finally, the application layer contains net-
work applications for the network features, such as network management
and traffic engineering, security and network access control, network tes-
ting, debugging and verification. . .

The application layer communicate with the control plane with the nor-
thbound interface. For that, it uses APIs. So network programming lan-
guage are needed to ease and automate the configuration and manage-
ment of the network. They have to respect three important aspects, accor-
ding to [8] :

— the network programming language has to provide the means for
querying the network state ;

— the language must be able to express network policies that define the
packet forwarding behavior ;

— the reconfiguration of the network is a difficult task, especially with
various network policies.

8

The southbound interface, which connect the control and date planes,
uses most of the time the OpenFlow protocol.

1.3 OpenFlow

OpenFlow is the most popular SDN technology, and it is now stan-
dardize ny the ONF [7]. It proposes to standardize the communication
between the switches and the software based controller [5]. Even if some
people consider SDN and OpenFlow as synonyms, there are different. In-
deed, SDN consists of decoupling the control and the data planes, while
OpenFlow describes how a software controller and a switch should com-
municate in a SDN architecture [9].

OpenFlow have been initially deployed in academic campus. The first
one was Standford, where it has been developed, and today, at least nine
university in the USA have deployed it, as show in the figure 3 [10]. But,
industry is also more and more interesting by this new technology, SDN
with OpenFlow, to increase the functionality of the network of the net-
work, and so reducing costs and hardware complexity.

Figure 3 – OpenFlow deployment in the USA academic campus

9

1.3.1 Overview

An OpenFlow architecture consists of three basic concept, see figure 4 :

— the network is built up by OpenFlow-compliant switches that com-
pose the data plane ;

— the control plane consists of one or more OpenFlow controllers ;

— a secure control channel connects the switches with the control plane

Figure 4 – OpenFlow components

1.3.2 OpenFlow switches

OpenFlow switches consists of one or more flow table, a group table
which perform packet lookups and forwarding, a meter table consists of
meter entries, defining per-flow meters, one or more OpenFlow channel to
an external controller, and port to forward flow entries. The components
of a OpenFlow switch are illustrated in the figure 5.

10

Figure 5 – OpenFlow switch components

1.3.3 Flow tables

Each flow table in the switch contains a set of flow entries. In the speci-
fication 1.0 [11], each of them consists of match fields, counters, and a set
of instructions to apply to matching packets as illustrated in figure 6. The
header fields describe to which packet this entry is applicable. The coun-
ters are reserved for collecting statistics about flow. The actions specify
how packet of that flow are handled.

Figure 6 – Flow table entry in OpenFlow 1.0

Other components have been added in the next specifications, until the
1.5 [12], the last one dated of March 2015. As show in the figure 7, the hea-
der fields have been replaced by match fields which consist of the ingress

11

port and packet headers,and optionally other pipeline fields such as meta-
data specified by a previous table. Priority is matching precedence of the
flow entry. Timeout is the maximum amount of time or idle time before
flow is expired by the switch. Cookies opaque data value chosen by the
controller. And flags alter the way flow entries are managed.

Figure 7 – Flow table entry in OpenFlow 1.5

1.3.4 Packet flow through an OpenSwitch

The figure 8 illustrates the packet processing in the OpenFlow pipeline.
This processes in two stages, ingress processing and egress processing,
which can be optional. The process always starts with the ingress proces-
sing at the first flow table. The packet is matched against the consecutive
flow table from each of which the highest-priority matching flow table en-
try is selected. If a flow entry is found, the set of instruction of that flow
entry os executed. Otherwise, if there is a table miss, its instruction are
executed, or the packet is dropped.

12

Figure 8 – OpenFlow papeline

The figure 9 summarizes the packet process through an OpenFlow switch.
The process following by the packet is :

(a) the switch starts by performing a table lookup in the first flow table,
and based on the pipeline processing, may perform table lookups in
other flow tables.

(b) packet header fields are extracted and packet pipeline fields are re-
trieved.

(c) packet matches a flow entry if all the match fields of the flow en-
try are matching the corresponding header fields and pipeline fields
from the packet.

13

Figure 9 – Simplified flowchart detailing packet flow through an OpenFlow switch

SDN is an architecture, combined with OpenFlow protocol, presents a
new network paradigm easy to manage. Before to explain the work rea-
lises in this project, introduce the tools which permit to develop the pro-

14

gram. To emulate a network, it exists softwares, to create virtual network
and test programs. The most famous is Mininet that can be associated
with a remote controller, as POX. Before to explain the work realised in
this project, the tools which permit to develop the program will be intro-
duced.

15

16

2 Tools used for this project

2.1 Mininet

Implementing a SDN network is the real life is a challenge because of
the risks that can be involved. The topology can behave in a different way
and it could be a great lost of time and costly. To avoid this, the better is to
emulate the network.

Mininet is a Linux based emulation software for rapid prototyping Software-
Defined Networks by using lightweight virtualization [13]. Some features
of Mininet are to :

— Provide a simple and cheap way for testing networks for OpenFlow
application development ;

— Allow multiple researchers independently work on the same net-
work topology ;

— Allow the testing of a large and complex topology, without even the
necessity of a physical network ;

— Include tools to debug and run tests across the network ;

— Support numerous topologies, and include a basic set of topologies ;

— Provide simple Python API’s for creating and testing network.

17

Figure 10 – Example of Mininet Virtual Network

The figure 10 shows an example of virtual network created by Mininet.
It places host processes in network namespace and connecting them with
virtual Ethernet pairs.

2.1.1 Command Line Interface

To control and manage the virtual network from a single console, Mi-
ninet includes a network-aware command line interface (CLI). To launch
the CLI, the command is sudo mn. The example of the figure 11, creates a
network with a single topology and 2 hosts.

18

Figure 11 – Command Line Interface

The basics commands and their functionalities of the mininet environ-
ment are :

— nodes : lists all the nodes of the currently active mininet topology.
Those nodes include controller, switches and hosts ;

— net : displays all the links between the nodes in the currently invoked
topology ;

— dump : this command dumps information about all the nodes invol-
ved in the active topology. This provides the user with information
such as IP address of the nodes and process identifier for each node ;

— sh : this command is used to overcome the inabilities of the program-
mer to use the shell commands from the mininet environment. For
instance, “clear” command cannot be interpreted by the mininet en-
vironment to clear the screen. It goes unrecognized as the command
is not a local one. In such situations, the commands can be prefixed
with “sh” to execute the command from the shell directly ;

— xterm : this command provides independent terminal for a separate
node in the topology. With this various tests can be done with the
topology ;

19

— ping : this command allows the nodes to ping between the nodes.
Ping command is basically used to test the reachability of the nodes
from one another. If we simply want to ping between nodes the follo-
wing command helps : host1 ping host2. Irrespective of the number
of packets ping command sends the packet one at a time. However
using ping command with a specific number of packets can also be
sent. This can be done by the command having the following syntax :
host1 ping –c number-of-packets host2 ;

— pingall : unlike the previous command which pings between two
nodes this command is used to ping between all the nodes in the
topology. Each node pings all the other nodes in the topology one by
one. This command is used to ensure the overall connectivity of the
nodes in the topology and allows the programmer to make sure if the
topology is configured in the intended way ;

— iperf : iperf is actually a tool that is used to measure the network
performance. It can measure both TCP and UDP bandwidth perfor-
mance, as show in the figure 12, which compares the bandwidth if the
nodes are used like hubs or like switch on a single topology which
one switch and three hosts. Using iperf, a client-server connection
can be created and the packets can be sent between them. In iperf,
various detailed information about the packet such as the type of
connection, bandwidth, port number, number of packets can be spe-
cified. Another advantageous possibility of iperf is that the time in-
terval between two consecutive packets can be specified. The client
node in iperf is connected to the iperf server by using the IP address
of the server ;

20

Figure 12 – Comparative bandwith between nodes

— info, debug, output : those commands are used to set the verbo-
sity level. The default verbosity level is “info”. This verbosity level
shows in the mininet window what is happening when the startup
and tear down of network. The verbosity level “debug” provides the
user with a detailed information. It displays all the packages invo-
ked during the mininet. This level is helpful when the programmer
wants to know what is happening when the mininet is invoked. For
those who are just concerned with the output in the terminal and
wants no additional information to be displayed there is a verbosity
level called “output”. All these levels are passed as arguments in the
commands with the following syntax : sudo mn –v verbosity-level.

2.1.2 Basic topologies

The default topology invoked when the command sudo mn or sudo
mn –topo minimal is launch from the terminal, the topology creating is
composed by one switch and two hosts, as shown with the figure 13.

Figure 13 – Topology minimal

21

The single topology is like the default one but the number of host can be
selected. For example, the command sudo mn –topo single,5 will create a
topology with one switch connected to 5 hosts.

The linear topology os launch with sudo mn –topo linear,4 and the net-
work created is presented on the figure 14. It can be noticed that, such a
command creates links between each switch to the nearest host. In addi-
tion to this the links are also created between the nearest switches among
them.

Figure 14 – Linear topology

But mininet command line topologies are not limited to simple linear
topologies. Tree topologies can also be created using mininet. The tree to-
pology command for mininet takes two arguments namely : depth and
fanout. sudo mn –topo tree, depth = 3, fanout = 2 will create the topology
of the figure 15.

22

Figure 15 – Tree topology

2.1.3 Custom topologies

The Python API allows to create custom topologies based on scritps.
Various packet can be imported from mininet and directly used in python.
The main important to create a new topology are :

— from mininet.net import Mininet

— from mininet.topo import Topo (or the type of topology that will be
used : linear, single, tree...)

To add hosts and switches to the topology, the functions are :
addHost(“host name”,mac = MAC Address, ip = IP Address, “inNames-
pace” :True)
addSwitch(“switch name”,switch id, protocol)
The options, like the MAC or IP addresses, are optional and will be gene-
rated according to the default configuration of mininet.

Once the nodes are created, they must be connected. The links can be
between hosts, switches and both. For that, the following command is
used :

23

addLink(node1, node2, port no. of 1st node, port no. of 2nd node, delay,
bandwidth)

There are two kinds of controller : local or remote. The remote control-
ler is programmed as a separate module that contains the definitions and
methods for how to control the entire network. To add a remote controller
there is two possibilities.
The first one is to import it with :
from pox import POX
addController(”controller name”, controller=POX)
where POX is the name of the module to launch the controller.
The second way, is to used the following command :
RemoteController(“controller name”, IP Address, port number)
addController(“Remote Controller name”)
where specifying the IP Address and port number of the controller inte-
grates the controller with the rest of the nodes of mininet.

Specifying the necessary topology with switches, hosts, controllers and
links does not mean that the custom topology has been deployed in mi-
ninet. So for deploying the topology several steps are to be followed. An
object, called net most of the time, is created for Mininet class as follo-
wing :
net = Mininet(topo, link, switch, autoSetMacs, build)
It contains the configuration of the topology. Once, the topology is built,
the deployment is started with the command net.start() and CLI(net) to
launch the Command Line Interface. net.stop() stops and deletes the to-
pology.

An example of script to create a topology with 2 switches, 2 hosts and a
remote controller, POX, is shown on the figure 16.

24

Figure 16 – Example of script

The controllers used can be anywhere on the real or simulated network.
But if Mininet runs on a virtual machine, the controller could run inside
the VM, natively on the host machine, or in the cloud.

25

2.2 POX Controller

The controller defines the nature of the SDN paradigm. It can be a lo-
cal or a remote controller and programmable in different platforms (C++,
Java, Python...). Some of the most popular are :

— NOX/POX

— OpenDayLight

— FloodLight

For this project, the more convenient is POX.

POX is an open source controller for developing SDN applications. It
is a python based SDN controller that is inherited form the NOX control-
ler [14] It comes with three network devices : hub, layer2 learning switch
and layer3 learning switch. The figure 17 shows simple flowcharts, from
Python code in POX, corresponding to the three network devices of POX.

Figure 17 – Simple flowcharts : hub, layer2 learning switch and layer3 learning
switch

POX allows to create your own network device. In a python file, save in
the folder home/pox/ext, it is possible to write how the controller must

26

work. For example it can send probe packets through the network for re-
trieving delay.

2.3 OpenFlow messages

The controller configures and manages switches, receives events from
them and sends packet out trough the OpenFlow channel, an interface
that connects OpenFlow switch and OpenFlow controller, as illustrated
in the figure 5. The OpenFlow switch protocol supports three messages
types.

2.3.1 Controller-to-switch

Controller-to-switch messages are initiated by the controller and used
directly to manage or inspect the state of the switch. A response from the
switch may not be required. Those messages are :

— features : identity and basic capabilities of a switch,

— configuration : to set and query configuration parameters in the switch,

— modify-state : to manage state on the switch,

— read-state : to collect various information from the switch,

— packet-out : to send packets out of a specified port on the switch,

— barrier : they are request/reply messages use to ensure message de-
pendencies have been met or to receive notifications for completed
operation,

— role-request : to set the role of the OpenFlow channel, set the Control-
ler ID, or query them,

— asynchronous-configuration : to set additional filter on the asynchro-
nous messages.

2.3.2 Asynchronous

Asynchronous messages are sent from the switch without a controller
soliciting. Those messages informing the controller are :

— packet-in : transfer the control of a packet,

27

— flow-removed : removal of a flow entry from a flow table,

— port-status : change on a port,

— role-status : change of the role of the controller,

— controller-status : the status of a OpenFlow channel changes,

— flow-monitor : change in a flow table :

2.3.3 Symmetric

Symmetric messages are sent without any solicitation from the control-
ler and switch. They are :

— Hello : messages exchanged between the switch and controller upon
connection startup,

— Echo : request/reply messages to verify the liveness of a controller-
switch connection, and as well can be used to measure its latency or
bandwidth,

— error : to notify a problem to the other side of the connection,

— experimenter : provide a standard way for OpenFlow switches to of-
fer additional functionality within the OpenFlow message type space.

Figure 18 – Types of OpenFlow messages

28

The figure 18 summarizes the main messages used to measure delay
between the switch and controller.

The way to measuring the delay relies on those technologies. The POX
controller includes the possibility to create your own controller and Mini-
net your own topology. With that, a packet probe is sent to measure the
delay needed for a packet to go from on switch to the other.

29

30

3 Measuring delay

3.1 Monitoring mechanism

The current applications have several distributed components and need
to communicate between them with the lower latency networks path to
reduce their response times. Monitoring path latency is most of the time
doing form the edge, it means that an ICMP requests (probes) are sent and
the response time is measuring.

Some papers have proposed solutions as OpenNetMon [15], DevoFlow
[16], OpenSketch [17], SLAM [18]...
The solution proposed here, monitors latency from inside the network.
In other words, the information about path is captured directly from net-
work devices. The main idea is to use the OpenFlow messages, presented
in the part 2.3, in order to measure the delay between switches.

The first step is to create a packet which will be used as a probe. Then,
the controller, with a PacketOut message, requests to the switch to send
the packet through a particular port to the next one. Finally, when the next
switch receives the packet, it sends a PacketIn message to the controller in
order to communicate the state of the packet. The figure 19 shows the
mechanism.

31

Figure 19 – Monitoring mechanism

The delay needed corresponds to the time T3, meaning the time bet-
ween the two switches. When the controller receives the PacketIn mes-
sages, the total time can be determined : Ttotal = T1 + T2 + T3.
T1 = 0.5*(Tb - Ta) where Ta is the time when sending out ports-stats-
request packet and Tb is the time when receiving port-stats-received pa-
cket. The same method can be applied to get T2. As a consequence :
T3 = Ttotal - T1 - T2.

3.2 Implementation

As said in the part 2.2 about the POX controller, it is possible to im-
plement its own program to the controller and launch it from a terminal
with the command : ./pox.py your-file. In this, the packet probe is crea-
ted by defining its source, destination and payload with the port number
and the timestamp. The packet probe is sent each 2 seconds. Each time
that this packet will be detected on the network, the delay calculated will
be printing on a file and on the terminal. If the packet detected is not the
probe, it is forward.

The network is simulated with Mininet. It is composed of 2 Open vS-
witches and 2 hosts, as on the figure 19. At the beginning, the delay bet-

32

ween the host and the switches is 1ms and between switches is 10ms. The
host1 pings the host2 45 times. The delay between switch is increased to
50ms after 15s, and 200ms after 30s.

3.3 Results

Figure 20 – POX and Mininet terminals

POX and Mininet are launched in two different terminals as we can see
on the figure 20. POX on the left, show less measures of delay than Mininet
on the right. This is due to it takes care only of the probe packets sent and
thet are sent every 2 seconds. The first ping is always higher than the next

33

one because it is the first time that a packet browses the network and so
the path is discovered.

The graphic 21 shows the difference between the monitoring delays and
the ping values. We can see that at the beginning, they are pretty closed,
but when the delay is 200ms, there is a gap between both. And after ha-
ving repeated the experiment numerous times, it was the same result.

Figure 21 – Difference between the monitoring delays and the ping values with
initial delay of 10ms

In a second experimentation, the delay between switches at the begin-
ning is 0ms. After 15s, it becomes 10ms, after 30s it is of 30ms, after 45s
50ms and then after 60s it is of 20ms. I obtained the following graphic 22 :

34

Figure 22 – Difference between the monitoring delays and the ping values without
initial delay

The values of the time difference are shown on the graphic 23. In the
first times, ping is above the monitoring delay, but after 10ms, it changes.
The time difference between both is no more than 14ms but it is still huge,
and it reaches when the delay between switch is 50ms.

Figure 23 – Time difference between monitoring and ping values

35

An explanation of this difference could be the calibration of the control-
ler. As we can see on the graphic 22, the delay at the beginning should be
closed to 0ms, and not to 2ms.

36

Conclusion

The main purpose of this project was to work SDN and OpenFlow ins-
tead of traditional networks. The first main step has been to discover and
learn more about SDN and OpenFlow protocol, and also Mininet and
POX. And the second one, was to see how to integrate a monitoring func-
tion directly on the controller.

This project show that it is possible to monitoring a SDN network to
measure the delay. After, there are some improvements to bring on the
program to considering it as efficient and reliable. For example, the control-
ler’s calibration or the number of packet lost. The bandwidth could also
been integrated to the monitoring. Moreover, the topology used on this
work is linear with 2 switches and 2 hosts. It could be interesting to see
what it happens with a topology more complexe.

Thus, the SDN environment has been emulated with Mininet, but it
could have differences with a real network, even if Mininet certifies an
emulation pretty closed to the reality.

37

References

Références

[1] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia
Obraczka, and Thierry Turletti. A survey of software-defined net-
working : Past, present and futur of programmable netorks. IEEE
Communications survey tutorials, 16, 2014.

[2] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn :
an intellectual history of programmable networks. Queue - Large-Scale
Implementations, 11, 2013.

[3] Albert Greenberg, Gisli Hjamtysson, David A. Maltz, Andy Myers,
Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui
Zhang. A clean slate 4d approach to network control and manage-
ment. ACM SIGCOMM Computer Communication Review, 35, 2005.

[4] Martin Casado, Micheal J. Freedman, Justin Petit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethan : Taking control of the enter-
prise. ACM SIGCOMM ’07, pages 27–31, 2007.

[5] Nick McKeown, Guru Parulkar, Tom Anderson, Larry Peterson, Hari
Balakrishnan, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow : Enabling innovation in campus networks. ACM SIG-
COMM Computer Communication Review, 38, 2008.

[6] Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-
defined networking : a comprehensive survey. 2014.

[7] OpenFlow Networking Foundation. http://www.opennetworking.
org, accessed on March 2015.

[8] Wolfgang Braun and Michael Menth. Software-defined networ-
king using openflow : protocols, applications and architecture design
choices. Futur Internet, 2014.

[9] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. Network
innovation using openflow, a survey. IEEE communications surveys
and tutorials, 16, 2014.

xii

[10] http://archive.openflow.org/wp/current-deployments/, acces-
sed on June 2015.

[11] Open Network Fundation. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-spec-v1.0.0.pdf, accessed on April 2015.

[12] Open Network Fundation. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-switch-v1.5.1.pdf, accessed on April 2015.

[13] Bob Lantz, Brandon Heller, and Nock McKeown. A network in a
laptop : rapid prototyping for software-defined networks. Proceeding
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[14] M. McCauley. About Nox. http://www.noxrepo.org/nox/
about-nox, accessed on March 2015.

[15] Niels L. M. van Adrichem, Christian Doerr, and Fernando A. Kui-
pers. Opennetmon : Network monitoring in openflow software-
defined networks. IEEE NOMS, 2014.

[16] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yala-
gandula, Puneet Sharma, and Sujata Banerjee. Devoflow : Scaling
flow management for high-performance networks. ACM SIGCOMM,
pages 254–265, 2011.

[17] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic
measurement with opensketch. 10th USENIX Symposium on Networ-
ked Systems Design and Implementation, pages 29–42, 2013.

[18] Curtis Yu, Cristian Lumezanu, Abhishek Sharma, Qiang Xu, Guo-
fei Jiang, and Harsha V. Madhyastha. Software-defined latency mo-
nintoring in data center networks. Lecture Notes in Computer Science,
8995 :360–372, 2015.

xiii

Annexes

Annexe A

Script for POX controller

II

1 from pox.core import core
2 from pox.lib.util import dpidToStr
3 import pox.openflow.libopenflow_01 as of
4 from pox.lib.addresses import IPAddr, EthAddr
5 import pox.lib.packet as pkt
6 from pox.lib.util import dpid_to_str
7 from pox.openflow.of_json import *
8 from pox.lib.recoco import Timer
9 import time

10 from pox.lib.packet.packet_base import packet_base
11 from pox.lib.packet.packet_utils import *
12 import struct
13 from datetime import datetime
14 log = core.getLogger()
15

16 #global variables
17

18 start_time = 0.0
19 sent_time1=0.0
20 sent_time2=0.0
21 received_time1 = 0.0
22 received_time2 = 0.0
23 src_dpid=0
24 dst_dpid=0
25 mytimer = 0
26 OWD1=0.0
27 OWD2=0.0
28

29 postfix=datetime.now().strftime("%Y%m%d%H%M%S")
30

31

32 f2=open("delay%s.csv"%postfix, "w")
33 f2.write("Type,Source,Destination,Delay\n ")
34 f2.flush()
35

36 #probe protocol, only timestamp field
37

38 class myproto(packet_base):
39 "My Protocol packet struct"
40 def __init__(self):
41

42 packet_base.__init__(self)
43 self.timestamp=0
44

45 def hdr(self, payload):
46

47 return struct.pack(’!I’, self.timestamp)
48

49 def _handle_ConnectionDown (event):
50

51 global mytimer
52

53 print "ConnectionDown: ", dpidToStr(event.connection.dpid)
54 mytimer.cancel()
55 f2.close()
56

57

58 def _handle_ConnectionUp (event):
59

III

60 global src_dpid, dst_dpid, mytimer
61

62 print "ConnectionUp: ", dpidToStr(event.connection.dpid)
63

64 for m in event.connection.features.ports:
65 if m.name == "s0-eth0":
66 src_dpid = event.connection.dpid
67 elif m.name == "s1-eth0":
68 dst_dpid = event.connection.dpid
69

70 if src_dpid<>0 and dst_dpid<>0:
71 mytimer=Timer(2, _timer_func, recurring=True)
72 mytimer.start()
73

74 def _handle_portstats_received (event):
75

76 global start_time, sent_time1, sent_time2, received_time1, received_time2, src_dpid, dst_dpid,OWD1,OWD2
77

78 received_time = time.time() * 1000 - start_time
79

80 #measure T1
81 if event.connection.dpid == src_dpid:
82 OWD1=0.5*(received_time - sent_time1)
83 #print "OWD1: ", OWD1, "ms"
84 #measure T2
85 elif event.connection.dpid == dst_dpid:
86 OWD2=0.5*(received_time - sent_time1)
87 #print "OWD2: ", OWD2, "ms"
88

89

90

91 def _handle_PacketIn (event):
92

93 global start_time,OWD1,OWD2
94

95 packet = event.parsed
96 #print packet
97 received_time = time.time() * 1000 - start_time
98

99 if packet.type==0x5577 and event.connection.dpid==dst_dpid:
100 c=packet.find(’ethernet’).payload
101 d,=struct.unpack(’!I’, c)
102 #obtain T3
103 print "delay:", received_time - d - OWD1-OWD2, "ms"
104 f2.write("Packet-In,%s,%s,%s\n"%(src_dpid,dst_dpid,(received_time - d - OWD1-OWD2)))
105 f2.flush()
106

107 a=packet.find(’ipv4’)
108 b=packet.find(’arp’)
109

110

111 if a:
112 #print "IPv4 Packet:", packet
113 msg = of.ofp_flow_mod()
114 msg.priority =1
115 msg.idle_timeout = 0
116 msg.match.in_port =1
117 msg.match.dl_type=0x0800
118 msg.actions.append(of.ofp_action_output(port = 2))

IV

119 event.connection.send(msg)
120

121 msg = of.ofp_flow_mod()
122 msg.priority =1
123 msg.idle_timeout = 0
124 msg.match.in_port =2
125 msg.match.dl_type=0x0800
126 msg.actions.append(of.ofp_action_output(port = 1))
127 event.connection.send(msg)
128

129 if b and b.opcode==1:
130 #print "ARP Request Packet:", packet
131 msg = of.ofp_flow_mod()
132 msg.priority =1
133 msg.idle_timeout = 0
134 msg.match.in_port =1
135 msg.match.dl_type=0x0806
136 msg.actions.append(of.ofp_action_output(port = 2))
137

138 if event.connection.dpid == src_dpid:
139 #print "send to switch"
140 event.connection.send(msg)
141 elif event.connection.dpid == dst_dpid:
142 #print "send to switch1"
143 event.connection.send(msg)
144

145 if b and b.opcode==2:
146 #print "ARP Reply Packet:", packet
147 msg = of.ofp_flow_mod()
148 msg.priority =1
149 msg.idle_timeout = 0
150 msg.match.in_port =2
151 msg.match.dl_type=0x0806
152 msg.actions.append(of.ofp_action_output(port = 1))
153

154 if event.connection.dpid == src_dpid:
155 #print "send to switch"
156 event.connection.send(msg)
157 elif event.connection.dpid == dst_dpid:
158 #print "send to switch1"
159 event.connection.send(msg)
160

161

162

163 def _timer_func ():
164

165 global start_time, sent_time1, sent_time2, src_dpid, dst_dpid
166

167 if src_dpid <>0:
168 sent_time1=time.time() * 1000 - start_time
169 #print "sent_time1:", sent_time1
170 #send out port_stats_request packet through src_dpid
171 core.openflow.getConnection(src_dpid).send(of.ofp_stats_request(body=of.ofp_port_stats_request()))
172

173 f = myproto()
174 f.timestamp = int(time.time()*1000 - start_time)
175 #print f.timestamp
176 e = pkt.ethernet()
177 e.src=EthAddr("0:0:0:0:0:2")

V

178 e.dst=EthAddr("0:1:0:0:0:1")
179 e.type=0x5577
180 e.payload = f
181 msg = of.ofp_packet_out()
182 msg.data = e.pack()
183 msg.actions.append(of.ofp_action_output(port=2))
184 core.openflow.getConnection(src_dpid).send(msg)
185

186 if dst_dpid <>0:
187 sent_time2=time.time() * 1000 - start_time
188 #print "sent_time2:", sent_time2
189 #send out port_stats_request packet through dst_dpid
190 core.openflow.getConnection(dst_dpid).send(of.ofp_stats_request(body=of.ofp_port_stats_request()))
191

192

193

194 def launch ():
195

196 global start_time
197

198 start_time = time.time() * 1000
199

200 print "start_time:", start_time
201

202 core.openflow.addListenerByName("ConnectionUp", _handle_ConnectionUp)
203 core.openflow.addListenerByName("ConnectionDown", _handle_ConnectionDown)
204 core.openflow.addListenerByName("PortStatsReceived",_handle_portstats_received)
205 core.openflow.addListenerByName("PacketIn",_handle_PacketIn)

VI

Annexe B

Script to create the topology for Mininet

VII

1 #!/usr/bin/python
2

3 from mininet.net import Mininet
4 from mininet.node import Node
5 from mininet.link import TCLink
6 from mininet.log import setLogLevel, info
7 from threading import Timer
8 from mininet.util import quietRun
9 from time import sleep

10

11 def myNet(cname=’controller’, cargs=’-v ptcp:’):
12 "Create network from scratch using Open vSwitch."
13 info("*** Creating nodes\n")
14 controller = Node(’c0’, inNamespace=False)
15 switch = Node(’s0’, inNamespace=False)
16 switch1 = Node(’s1’, inNamespace=False)
17 h0 = Node(’h0’)
18 h1 = Node(’h1’)
19

20 info("*** Creating links\n")
21 linkopts0 = dict(bw=100, delay=’1ms’, loss=0)
22 linkopts1 = dict(bw=100, delay=’10ms’, loss=0)
23 link0 = TCLink(h0, switch, **linkopts0)
24 link1 = TCLink(switch, switch1, **linkopts1)
25 link2 = TCLink(h1, switch1, **linkopts0)
26

27

28 link0.intf2.setMAC("0:0:0:0:0:1")
29 link1.intf1.setMAC("0:0:0:0:0:2")
30 link1.intf2.setMAC("0:1:0:0:0:1")
31 link2.intf2.setMAC("0:1:0:0:0:2")
32

33

34 info("*** Configuring hosts\n")
35 h0.setIP(’192.168.123.1/24’)
36 h1.setIP(’192.168.123.2/24’)
37 h0.setMAC("a:a:a:a:a:a")
38 h1.setMAC("8:8:8:8:8:8")
39

40 info("*** Starting network using Open vSwitch\n")
41 switch.cmd(’ovs-vsctl del-br dp0’)
42 switch.cmd(’ovs-vsctl add-br dp0’)
43 switch1.cmd(’ovs-vsctl del-br dp1’)
44 switch1.cmd(’ovs-vsctl add-br dp1’)
45

46

47 controller.cmd(cname + ’ ’ + cargs + ’&’)
48 for intf in switch.intfs.values():
49 print intf
50 print switch.cmd(’ovs-vsctl add-port dp0 %s’ % intf)
51

52 for intf in switch1.intfs.values():
53 print intf
54 print switch1.cmd(’ovs-vsctl add-port dp1 %s’ % intf)
55

56

57 switch.cmd(’ovs-vsctl set-controller dp0 tcp:127.0.0.1:6633’)
58 switch1.cmd(’ovs-vsctl set-controller dp1 tcp:127.0.0.1:6633’)
59

VIII

60 info(’*** Waiting for switch to connect to controller’)
61 while ’is_connected’ not in quietRun(’ovs-vsctl show’):
62 sleep(1)
63 info(’.’)
64 info(’\n’)
65

66 def cDelay1():
67 switch.cmdPrint(’ethtool -K s0-eth1 gro off’)
68 switch.cmdPrint(’tc qdisc del dev s0-eth1 root’)
69 switch.cmdPrint(’tc qdisc add dev s0-eth1 root handle 10: netem delay 50ms’)
70 switch1.cmdPrint(’ethtool -K s1-eth0 gro off’)
71 switch1.cmdPrint(’tc qdisc del dev s1-eth0 root’)
72 switch1.cmdPrint(’tc qdisc add dev s1-eth0 root handle 10: netem delay 50ms’)
73

74

75 def cDelay2():
76 switch.cmdPrint(’ethtool -K s0-eth1 gro off’)
77 switch.cmdPrint(’tc qdisc del dev s0-eth1 root’)
78 switch.cmdPrint(’tc qdisc add dev s0-eth1 root handle 10: netem delay 200ms’)
79 switch1.cmdPrint(’ethtool -K s1-eth0 gro off’)
80 switch1.cmdPrint(’tc qdisc del dev s1-eth0 root’)
81 switch1.cmdPrint(’tc qdisc add dev s1-eth0 root handle 10: netem delay 50ms’)
82

83

84 # 15 seconds later, the delay from switch to switch 1 will change to 50ms
85 t1=Timer(15, cDelay1)
86 t1.start()
87 # 30 seconds later, the delay from switch to switch 1 will change to 200ms
88 t2=Timer(30,cDelay2)
89 t2.start()
90

91 #info("*** Running test\n")
92 h0.cmdPrint(’ping -i 1 -c 45 ’ + h1.IP())
93 sleep(1)
94 info("*** Stopping network\n")
95 controller.cmd(’kill %’ + cname)
96 switch.cmd(’ovs-vsctl del-br dp0’)
97 switch.deleteIntfs()
98 switch1.cmd(’ovs-vsctl del-br dp1’)
99 switch1.deleteIntfs()

100 info(’\n’)
101

102 if __name__ == ’__main__’:
103 setLogLevel(’info’)
104 info(’*** Scratch network demo (kernel datapath)\n’)
105 Mininet.init()
106 myNet()

