Evaluation of the ALIZE / LIA RAL Speaker
Verification Toolkit on an Embedded System

Aitor Herndndez Loépez

Technische Universitat Wien
Institut fiir Computertechnik (ICT)

February of 2015

Under supervision of

Univ. Prof. Dr. Hermann Kaindl
and
Dr. Dominik Ertl

Abstract

Text-independent speaker wverification is the computing task of verifying a user’s
claimed identity using only characteristics extracted from their voices, regardless
of the spoken text. Nowadays, a lot of speaker verification applications are being
implemented in software, and using these systems on embedded systems (PDAs, cell
phones, integrated computers) multiplies their potential in security, automotive, or
entertainment applications, among others. Comprehension of speaker verification
requires a knowledge of voice processing and a high mathematical level. Embed-
ded system performance is not the same as offered by a workstation. So, in-depth
knowledge of the target platform where the system will be implemented and about
cross-compilation tools necessary to adapt the software to the new platform is re-
quired, too. Also execution time and memory requirements have to be taken into
account to get a good quality of speaker verification.

In this thesis we evaluate the performance and viability of a speaker verification
software on an embedded system. We present a comprehensive study of the toolkit
and the target embedded system. The verification system used in this thesis is the
ALIZE / LIA RAL Toolkit. This software is able to recognize the identity of a
client previously trained in a database, and works independently of the text spoken.
We have tested the toolkit on a 32-bit RISC ARM architecture set computer. We
expect the toolkit can be ported to comparable embedded system with a reasonable
effort.

The findings confirm that the speaker verification results on work station are com-
parable than in an embedded system. However, time and memory requirements are
not the same in both platforms. Taking into account these results, we propose an
optimization in the speaker verification test to reduce resource requirements.

Resumen

La verificacion de locutor independiente del texto es la accién de validar la identidad
de un usuario usando Unicamente caracteristicas extraidas de su voz, sin tener en
cuenta el texto pronunciado. Hoy en dia, multitud de software de verificacién de
locutor ha sido implementado para funcionar en ordenadores personales, pero usar
estas aplicaciones en sistemas embedidos (Smartphones, teléfonos, ordenadores inte-
grados) multiplica su potencial en campos como la seguridad, el sector del automovil
u otras aplicaciones de entretenimiento. La comprensién teérica de los sistemas de
verificaciéon de locutor requiere conocimientos de procesado de voz y un nivel alto de
matematica algoritmica. El rendimiento de estos sistemas embedidos no es el mismo
que los que ofrecen los ordenadores personales, asi que hace falta un conocimiento
exhaustivo de la plataforma en la cual se va a integrar la aplicacion, asi como un
conocimiento de las herramientas de compilacién cruzadas necesarias para adaptar
el software a la nueva plataforma. Los requerimientos de tiempo y memoria también
deben ser tenidos en cuenta para garantizar una buena calidad de verificacion.

En este proyecto, se evaluaré el rendimiento y la viabilidad de un sistema de verifi-
cacién de locutor integrado en un sistema embedido. Se presenta un estudio exhaus-
tivo de las herramientas del software, asi como de la plataforma de destino utilizada.
El sistema de verificacion usado en este proyecto ha sido la herramienta ALIZE /
LIA RAL. Este software es capaz de reconocer la identidad de un cliente entrenado
con anterioridad y almacenado en una base de datos, y trabaja independientemen-
te del texto pronunciado. El software ha sido testado en una maquina de pruebas
con un procesador de 32-bit RISC ARM, pero el sistema podria ser portado a otros
sistemas sin problemas afiadidos.

Los hallazgos durante el proyecto confirman que los resultados de la verificaciéon
en un sistema embedido son similares a los obtenidos en el PC. Sin embargo, los
requerimientos de tiempo y memoria no son los mismos en las dos plataformas.
Teniendo en cuenta estos resultados, se propone una optimizacién de los pardmetros
de configuracion utilizados en el proceso de test para reducir considerablemente los
recursos utilizados.

Contents

Contents
List of Figures
List of Tables

1 Introduction

1.1 Objectives of this Master Thesis
1.2 Motivation and Opportunities
1.3 Working Plan
1.4 Overview.o

2 Background and State-of-the-Art

2.1 Biometrics and Speaker Recognition
2.2 The Automatic Speaker Recognition
2.3 Embedded Systems
2.4 Speaker Verification on Embedded Systems

3 The Process of Speaker Verification

3.1 Overview.o
3.2 Signal Processing and Feature Extraction
3.3 Training Phase
3.4 Testing Phase
3.5 Making the Decision

4 ALIZFE Library and LIA-RAL Toolkit

4.1 Overview.
4.2 ALIZE Library
4.3 LIA RAL Toolkit
4.4 SPro4 Toolkit Features Extraction

5 Open Embedded as Operating System

5.1 Embedded System Environment
5.2 Angstrom as Operating System

5.3 Cross-compilation of the Speaker Verification System

6 Configuration of ALIZE / LIA RAL

iii

iv

11
13

15
15
16
17
19
20

22
22
23
25
27

29
29
30
31

35

6.1 Shell-script Compilation
6.2 Configuration Parameters o000
6.3 Performance Optimization

7 Tests and Results
7.1 The ELSDSR Database,
7.2 Setting up the Test Environment
7.3 Performing the Test o
7.4 Results. e

8 Discussion

9 Conclusion and Outlook
9.1 Conclusion s,
9.2 Outlook,

Bibliography
A SD Formatting code

B Optimal ALIZE / LIA RAL parameters

i

49

50
50
20

52

54

56

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1

5.1
5.2
5.3

7.1
7.2
7.3

Three main types of information transmitted in a speech signal. 2
Different types of biometrics. Lo 5
R and R’graph Gauss distributions. http://www.it.lut.fi/project/gmmbayes/ . 8
A Gaussian Mixture Model in R with three components. 9
Examples of commercially available embedded devices. 12
Block diagram of MFCC acquisition. 17
UBM model and client data alignment. 18
DET example of Speaker Recognition system. 21

ALIZE and LTA RAL distribution. The LIA RAL package is based on AL-
IZE low-level library, and contains all the methods used in this master thesis. 23

An exemplary BeagleBoard B5, used in this master thesis. 30
Using the BeagleBoard. 31
Main distribution of GNU Autotools. 33

False Rejections (left) and False Acceptances (right) curves for 1024 Gaussians. 43
Equal Error Rate point in the 1042 GMM test. 44
Recognition performance for each GMM count on ELSDSR data set using 15

world iterations. Lo 45

1ii

List of Tables

2.1

6.2
6.3
6.4
6.5

7.1
7.2
7.3

7.4

Most common biometric technologies. 6
Common configuration parameters. 38
Normalization configuration parameters. 39
Training configuration parameters. 39
Testing configuration parameters. 40
EER for different GMM configurations 45
RAM requirements on the PC / BeagleBoard for 1024 GMM. 46
Feature extraction and signal processing execution times (in seconds). Ratio

(R) is obtained form dividing BeagleBoard time with laptop time 47
Testing and training execution time comparison (in seconds). 48

v

Este trabajo va dedicado con mucho carino a mis padres y a mi hermana,
por su tenacidad y su apoyo encomiable durante la realizacion de este largo
v duro proyecto. También a Dominik, por su paciencia durante mi estancia

en Viena, a mis amigos, y a toda la gente que de alguna manera u otra
forma parte de mi vida.

Chapter 1

Introduction

In our everyday lives there are many types of interfaces for human-computer interaction,
for instance: graphical user interfaces, speech interfaces, etc. However, amongst these
types, speech input is regarded as a very powerful form because of its rich character.
Among the context of spoken input (words), rich character also refers to gender, attitude,
emotion, health situation and identity of a speaker. Such information is very important for
an efficient communicative interaction between humans and gains importance for human-
computer interaction (HCI).

From the signal processing point of view, speech input can be characterized in terms of the
signal carrying message information. The waveform could be one of the representations
of speech, and this kind of signal is very useful in practical applications. We can get three
types of information from a speech signal: Speech text (transcription of the message),
language (English, German, etc.) and speaker identity (person who utters the message)
[7]. In Figure 1.1, we can see these three main types illustrated.

Due to its large number of applications, Automatic Speaker Verification (ASV) has become
an attractive domain of study in the area of signal processing and information in the last
decades. In combination with Automatic Speech Recognition (ASR), machines capable
of “understanding” humans were in the mind of scientists and investigators for years [4].
More recently, significant steps have been made in this direction, for example using Hidden
Markov Models (HMM) for speech and speaker recognition |14, 17].

Currently, applications that incorporate ASV or ASR are used in many areas (robotics,
telephony, entertainment). Electronic devices capable of speech recognition evolve towards
miniaturization (mobile phones, laptops, micro controllers, etc.), which can lead to a
decrease in available device resources (processing power, memory, etc.). Potentially, this
leads to a loss of quality in speaker recognition rates’.

There are three main areas where Speaker Recognition (SR) is intended to be used:
authentication, surveillance and forensic. SR for authentication is well understood and
allows users to identify themselves using only their voices as recognition parameters. This

'Recognition rate refers to the quality in SR process, i.e. percentage of speakers that a recognition
tool can recognize correctly.

] L HU‘i‘;b‘ I ¥ T
' l”\]._,l.l. d
Speech signal

Speech Language Speaker
recognition recognition recognition
U U J
Speech Speaker

Text Language identity

Figure 1.1: Three main types of information transmitted in a speech signal.

Speech text, language and identity of speaker are the three main recognition
fields of any speech input.

can be more efficient than carrying keys or memorizing PIN codes. SR for surveillance may
help one to filter a high amount of data, for example telephone or radio conversations. SR
in forensic can help one to prove the identity of a recorded voice and can help to convict
a criminal or discharge an innocent person in court.

When using such applications, one might not want to carry a laptop or a desktop system,
which makes an embedded device suited as an underlying platform. Accordingly, one
important challenge is to get sufficient performance of a given system having a set of
resource constraints.

In this master thesis, we analyze, improve and test the voice processing and speaker
recognition software ALIZE / LIA RAL. The ALIZE library is a set of algorithms for
automatic speaker recognition. LIA RAL is the application that uses the ALIZE library.

The main goal of this work is to evaluate this software to analyze, improve and test
its performance in an embedded system, and to compare the system results with those
obtained on a laptop. Finally, we present an optimization of the source code, to get the
same results with less time and processing requirements on both platforms.

1.1 Objectives of this Master Thesis

This thesis studies a speaker verification software that is ported on an embedded device.
The main objectives are:

e To study the historical perspectives and current research in the field of speaker
verification software on embedded devices.

e To analyze the structure of a speaker verification system, specifically the ALIZE /
LTA RAL software.

e To choose a proper operative system and cross-compiling tools to port this software
to an embedded device.

e To analyze performance results on an embedded device, and to compare it with the
results obtained with a laptop.

e To present and improve source code of the ALIZE/ LIA RAL software to get a
solution with a better performance.

e To analyze the results after improving the software, and to compare them with
previous iterations, as well as with the results from a laptop.

1.2 Motivation and Opportunities

Theory and practice of speaker recognition have improved recently. Systems capable of
getting recognition results with error rates close to 0%, almost in real time, can be achieved
today with low effort. The idea of porting such recognition systems on embedded devices
increases significantly the range of applications and opportunities of speech technologies.

There are several embedded verification systems, in addition to many other non-integrated
systems [20]. ALIZE / LIA RAL software has never been ported and tested in such an
integrated system. Taking into account the good results of the PC version, we study its
performance on an embedded system.

1.3 Working Plan

The working plan followed during this master thesis is in chronological order:

e Studying speech processing and speaker recognition documentation.

e Gaining in-depth-knowledge of the embedded systems and cross-compilation tools.
e Understanding, compiling and testing of ALIZE / LIA RAL software on a laptop.
e Cross-compiling and porting of the software to an embedded system.

e Testing of the results on an embedded system and compraising with the results from
the laptop.

e Improving the source code, analyzing the new results, and comparing them again
with the laptop results.

1.4 Overview

The material of this thesis is arranged into nine chapters as follows:

e Chapter 1 introduces the work and gives a brief description of speaker verification.

e Chapter 2 Presents background state-of-the-art of the speaker verification systems,
as well as speech processing on embedded systems.

e Chapter 3 describes the four principle steps of the speaker verification process:
Feature extraction, training stage, testing stage and decision making.

e Chapter 4 presents the tools ALIZE and LIA RAL and describes them in detail.

e Chapter 5 explains the embedded device used in this master thesis, its principle
features and the cross-compilation process.

e Chapter 6 explains different improvements used to optimize performance.

e Chapter 7 describes the setup of data used on testing and summarizes the results
obtained before and after the improvements.

e Chapter 8 discusses the speaker verification results that we gained from the embed-
ded and laptop systems.

e Chapter 9 concludes this master thesis and provides an outlook.

Chapter 2

Background and State-of-the-Art

In this section, we present background information and the state-of-the-art of speaker
verification. First, we introduce biometrics concept. Then, we explain speech processing
and speaker recognition, as well as embedded systems state-of-the-art. Finally, we explain
specific works on speaker verification. Due to the huge research effort in this field, we
only consider SV work on embedded systems related to this master thesis.

2.1 Biometrics and Speaker Recognition

The biometrics concept comes from the two words bio (Greek: life) and geometry (Greek:
measured). Thus, this combination consists of the characterization of human physical or
behavioral traits, in order to uniquely identify humans. Nowadays, access control and
surveillance are the most relevant applications where biometrics are used.

Figure 2.1: Different types of biometrics.

Iris scanning, fingerprints, hand scanning, signatures analysis and voice recognition are
the most common biometric technologies used nowadays.

Due to the possible transferability and falsification of personal documents such as pass-
ports or driving licenses, new identification methods are required. In the past, intrinsic
physical human properties have been shown on signatures, photographs or fingerprints.
Currently, since the advent of the digital era, technology is still evolving in this area and

5

these characteristics are now based on mathematical mechanisms of recognition, capable
of automatically making comparisons between two photographs, voices, or fingerprints
(Figure 2.1) from several features or line drawings on the human features. Table 2.1
compares important parameters of wide-spreaded biometric techniques.!. Although these
technologies work properly, human characteristics can be altered, damaged or even elim-
inated.

Technology Cost Ease of Special Low
Effective Use Hardware Maintenance

Requirement Costs
Fingerprints Yes Yes Yes No
Hand Geometry No Yes Yes No
Voice Verification Yes Yes No Yes
Iris Scanning No No Yes No
Facial Recognition Yes Yes Yes No

Table 2.1: Most common biometric technologies.

Table extracted from http://nextdoornerd.blogspot.com.es/2010/03/cheap-safe-
biometric-technology-voice.html.

2.2 The Automatic Speaker Recognition

Voice messages typically provide more information than the message itself. Voice messages
can provide us more information than a written one. For example, the speaker’s sex,
age, mood, or environmental conditions are factors that can be extracted from a voice
message. This extra data, which is independent of the message, can bring us credibility
of the message, the authenticity of the speaker, or many other message properties.

Thanks to the advancements of our electronic and software technology, two fields of re-
search have received more attention in recent years due to the advances in computational
speed: Speech recognition and speaker recognition. The first is the art of obtaining the
transcript of the message, i.e., what the speaker is saying. In this process, the system
should ignore age, voice, or the speaker’s sex and has to focus on the message content.
The second, speaker recognition, determines who is speaking, ignoring the message con-
tent. Now, age, dialect or voice tone have to be taken into account, because they can help
to identify the speaker and they can help us with the recognition. In both cases, environ-
mental factors, such as noise or the quality of the recordings, can adversely influence the
outcome of the process and have to be taken into account.

There are two types of speaker recognition, depending on the delivered message, namely
text-dependent and text-independent recognition. Speaker identification combines speech
recognition with speaker recognition. A speaker identification system requires a speaker

Yhttp: / /nextdoornerd.blogspot.com /”

to pronounce a given text, with which it will have carried out the training process. For
security applications, a user can log in using a voice password. Text-independent sys-
tems are able to identify a trained speaker from a different message compared to the
testing message. Nowadays, most of the research focuses on speaker recognition for text-
independent systems, which allows one a much broader scope. Being text-independent
allows one to perform SR on surveillance or access control applications that do not require
a concrete statement of text.

Theory of Speaker Verification

Speaker recognition has two main fields: Speaker identification and speaker verification.
Speaker identification allows one to identify a concrete voice from a list of potential
customers belonging to a database. It answers the question: “Who is speaking?”. Speaker
verification compares a voice message with a particular customer and accepts or rejects
it based on the score. Now, the system can answer the question: “Did the speaker utter
this segment?”. In the following, we describe speaker verification in more detail.

Nowadays, the widely used technological bases for speaker verification are:

e Hidden Markov Models (HMM): Take each client as a Markov model.

e Gaussian Mixture Models (GMM): Use a Gaussian sum distribution to model each
human.

A HMM is a statistical method which assumes that the system model is a Markov process
of unknown parameters. The main goal is to determine the unknown parameters (or
hidden, hence the name) of the chain from the observable parameters. The extracted
parameters can be used to carry out subsequent analysis. It is very common to use HMM
in pattern recognition applications [17, 15].

HMDMs are commonly used at the level of phonemes?, each using them to create an HMM.
Essentially, a state machine is created and it uses audio frames to determine the probabil-
ity of the next state. In text-dependent systems, a concrete phoneme is expected. Here,
a comparison process between a speech segment and a model is more precise. However,
Rabiner et al. [16] probed that GMM are more efficient than HMM in text-independent
systems. GMM are a parametric probability density function represented as a weighted
sum of Gaussian component densities [15]. GMM will be explained in detail below.

In addition to the above techniques, there are others such as neural networks or "support
vector machines", that are still under investigation in the field of speaker recognition as
shown in [19].

2Any of the distinct units of sound that distinguish one word from another.
(http://www.wordreference.com /definition /phoneme)

Figure 2.2: R and R’graph Gauss distributions. http://www.it.lut.fi/project /gmmbayes /

Gaussian distribution is one of the most common probability density function and
models many natural, social or psychological events.

Gaussian Mixture Models

In the last decade, GMMs have dominated text-independent speaker recognition systems.
This kind of approximation is appropriate for such tasks, because it does not consider
the text said, but exploits the spectral voice features to discriminate between speakers.
The use of GMMs in text-independent speaker recognition has been described first in the
work of Reynolds and Rose [9]. Since then, systems based on GMMs appeared in many
publications and numerous conference and are also used in the annual competitions of the
National Institute of Standards and Technology (NIST).

In the field of statistics and probability, a Gauss distribution is the most common continue
probability distribution® that can appear in real world. The graph of the associated

probability density function is "bell"-shaped, and is known as Gauss bell, as shown in
Figure 2.2.

Given a speech segment X and speaker S, the goal of speaker verification is to determine if
speaker S generated X. This can be formalized as a hypothesis test between the following

basic assumptions: Hy: X was pronounced by the speaker S. Hy: X was not pronounced
by the speaker S.

P(X|H,)))= 9accept H,
P(X|H,) | < Jreject H,

where P(X|H;), i = 0,1 is the probability of hypothesis H; evaluated for a particular
voice segment. 1 is the decision threshold for accepting or rejecting Hy. Theoretically
it should be 0, but in practical applications it is interesting to adjust the threshold to

3The probability distribution of a random variable is a function that assigns to each event random
variable defined on the probability that the event occurs.

8

Figure 2.3: A Gaussian Mixture Model in R with three components.

Note that the sum of the weights w; must be 1, or p(z|\) will not be a probability:
0.6 +0.3+0.1=1.

control the ratio between the probabilities of errors in the two possible directions of the
decision. So, the main objective of a speaker recognition system is to use a given method
to calculate both probabilities, P(X|Hy) and P(X|H,).

The basic idea of the GMM method is to calculate the probability P(X|H;) as a finite
sum of N distributions

N

where p, (z) are individual distributions, and in the case of GMMs, Gaussian distributions.
The weights w; determine how much influence each distribution has. Each Gaussian
distribution is given by:

pi(e) = ot e { 4o — 1) () (@ -)}

where y; is a Dx1 dimension mean vector and) . is the DxD covariance matrix. Thus, each
speaker is represented by a Gaussian mixture model denoted X\ = {w;, it;,>_,;}, i=1...M.
Note that since 0 < p(z|\),p,(z) > 1, the sum of the weights must be 1, or p(z|\) will
not be a probability. It can easily be seen that a distribution with a large variance and a
large weight will have a great influence on the mixture, as shown in Figure 2.3.

The application of GMMs to speaker verification requires at least two algorithms. First,
some way of determining the means, variances and weights is needed, to make the GMM
model a speaker’s voice characteristics. Second, a method of “evaluating” audio segments
using the model must be found, to verify the identity of the claimed speaker. Since the
output of the GMM is a single probability, it has to be transformed into a “yes” or “no”,
so to accept or reject the hypothesis.

Expectation Maximization Method

The most common technique for training the models in speaker recognition is by using an
Expectation Maximization (EM) algorithm [2|. The purpose of the EM algorithm is to
redefine the mixture parameters to increase the likelihood of the generated feature vector®
X, given model A:

p(XIA) > p(XA\Y)

In the area of speaker recognition, the EM-algorithm needs a given likelihood or an a
posteriori probability to be a complete algorithm. Thus, in statistical terms, the EM-
algorithm is one way of finding the maximum likelihood (ML) or maximum-a-posteriori
probability (MAP) to estimate the data of a hypothesis. For the purpose of this master
thesis are both MAP and ML variants of the EM-algorithm for GMMs needed. However,
the derivation of the equations is very intricate, and the reader is referred to Bilmes [5]
for the ML-version of the algorithm, and to the work provided by Reynolds et al. |8] for
derivations of the MAP-version.

Speaker Verification Toolkits

In this subsection, we will presenta popular non-commercial software products used for
Speaker Verification (SV). Note that there is a huge number of payment software toolkits
for this purpose, but we will compare ALIZE / LIA RAL only with open source software
toolkits.

ALIZE/LIA RAL is an open-source platform for biometric authentication with the
GPL license, used specifically for speaker or speech recognition. This software was

created in the Mistral project® at the University of Avignon, France. This project
is divided into the ALIZE library and the high-level LIA RAL toolkit [12].

ALIZE contains all needed functions to use Gaussian mixtures and speech process-
ing.

The ALIZE project was created under supervision of the ELISA consortium®. It
pretended to share and update all SR research projects in France in order to create
a strong and free common speaker recognition software. According to the documen-
tation [12], the main objectives of ALIZE are:

e To propose a toolkit making for faster development of new ideas, with a
(proved) state-of-the-art level of performance.

4N-dimensional vector of numerical features that defines an object. In speech processing, “object” is
referred to part of a recording, or speech segment.

Shttp://mistral.univ-avignon.fr /index_en.html

Shttp://elisa.ddl.ish-lyon.cnrs.fr/

10

e To encourage laboratories and research groups to evaluate new proposals using
the toolkit and both standard databases and protocols like NIST SRE ones.

e To help the understanding of speaker recognition algorithms (like EM training,
MAP adaptation or Viterbi algorithm), parameters and limits.

e To test new commercial speaker or speech recognition applications.

e To facilitate the knowledge transfer between the academic labs and between
academic labs and companies.

LIA RAL (Laboratoire Informatique d’Avignon Recognizer Architecture Library)
is a speaker verification toolkit that uses all low-level functions of the ALIZE
library. The LIA RAL is commonly used for speaker recognition purposes,
but it can be also used in the field of speech recognition.

LTA RAL toolkit is divided into the packages Spk_ Tools, Spk_ Utils, and Spk_ Det.
In this thesis, however, only Spk_Det is used. It contains those components that
are required by a biometric authentication system. The purpose of LIA RAL is to
wrap all algorithms in programs that can be run from a shell script.

Both, ALIZE and LIA RAL, are implemented in C++and will be further explained
in Chapter 4.

HTK (Hidden Markov Model Toolkit) is a well-known open-source toolkit used for speech
and speaker recognition?. It was developed by the Speech Vision and Robotics
Group of the Cambridge University Engineering Department (CUED) where it has
been used to build CUED’s large vocabulary speech recognition systems. HTK is
a portable software for the manipulation of Hidden Markov Models used primary
for speech recognition, although it has been used in many kinds of signal process-
ing modules that include Markov models manipulation (speech synthesis, speaker

recognition, image processing,...) as well.

MARF (Modular Audio Recognition Framework)!? is a collection of speech, sound, text
and language processing algorithms written in Java. A lot of applications have
been created using MARF as main library, for example: Math Testing Application,
Language Identification Application, Artificial Neural Network Testing Application
or Text-Independent Speaker Identification Application, among others'!.

2.3 Embedded Systems

An embedded system is a device designed to perform one or more dedicated functions,
often in a real-time computer system. Broadly speaking, we can define an embedded

Thttp://www.itl.nist.gov /iad /mig/tests/sre/
8The Viterbi algorithm is a dynamic programming algorithm for finding the most likely sequence of
hidden states — called the Viterbi path — that results in a sequence of observed events, especially in the
context of Markov information sources and hidden Markov models.
%http://htk.eng.cam.ac.uk/
Ohttp: / /marf.sourceforge.net /
Hhttp: //marf.sourceforge.net / #releases-dev

11

system like a computer with one or more integrated devices on the same board as seen in
Figure 2.4. For example, an embedded system can be a PDA, a smart phone, or a built-in
controller.

Nowadays, the industry is able to create physically smaller electronic systems that have
the same technical features and functionality than larger systems years ago. To achieve
price competitiveness and low dimensions of hardware devices, personal computers or
laptops can be replaced by embedded systems with the same performance.

BCS mip m|m
Delkxgcsnevlces Inc. " pog

o wR2S agp W

Figure 2.4: Examples of commercially available embedded devices.

Left: Delkin’s embedded USB module (www.delkinoem.com).
Right: ARM Cortex-8 BeagleBoard (BeagleBoard.org) used during this master thesis.

Two of the main differences between an embedded system and a personal computer are
the price and the size of the product, among the energy required, because embedded
systems, as personal computers, are mass-produced by tens of thousands or millions of
units benefiting from economies of scale. However, since an embedded system can be
dedicated to concrete tasks, electrical and size design can be adjusted to this particular
function. Embedded systems often use a relatively small processor and a small memory
to reduce costs. On the other hand, a failure in one element can imply to repair or change
the full board.

We can find an embedded system in a lot of products. Some of the most important
applications of these systems are:

e In a factory, to control an assembly or production process: A machine that is re-
sponsible for a particular task contains numerous electronic and electrical systems
for controlling motors or other mechanical device and all these factors have to be
controlled by a micro processor, which often comes with a human-computer inter-
face.

e In points of service in supermarkets or stores: Cash registers are becoming more
complex, and they integrate numerical keypads, laser bar code readers, magnetic
stripe or chip bank card readers, LCD alphanumeric display screens, etc. The
embedded system in this case requires a lot of input and output connectors and
robust features for continued work.

12

e In aircraft radars: Processing a signal from an aircraft radar requires high computing
power, small dimensions and small weight. Also, it has to be robust enough for work
on extreme conditions, like high or low temperature, low atmospheric pressure,
vibrations, etc.

e In automotive technology: A car can include hundreds of microprocessors and mi-
cro controllers that control ignition, transmission, power steering, anti-lock brakes
system (ABS), traction, etc. All this functionality is integrated in embedded devices.

In this master thesis, we will use the ARM Cortex BeagleBoard embedded system. The
BeagleBoard is an open-source low-cost low-power device, based on the ARM Cortex-A8
chip. We depict such a BeagleBoard in Figure 2.4 (right). The board is designed and
developed by Texas Instruments in association with Digi-Key.

The main purpose of the BeagleBoard project is to achieve a small, low-cost, expandable
and powerful computer. BeagleBoard software is not a finished project. It is an “in
development” project under the Creative Commons license, without official support except

community forums or wiki pages'?.

A BeagleBoard has a lot of interfaces: USB, HDMI, Ethernet, MicroSD, JTAG or camera
peripheral connections.The Linux system is the prefered operative system, so it can be
used for many applications. In Chapter 5, we will discuss the BeagleBoard features in
detail, and how we use the board in this master thesis.

2.4 Speaker Verification on Embedded Systems

As explained above, embedded systems offer a lot of opportunities. In the field of signal
processing, embedded system also allow one to design compact and cheap systems for
many purposes. In this master thesis, we will port the software of a speaker verification
system to an embedded system software. It means, the embedded system can do the same
work as performed with a laptop, like to process audio signal, to train clients and to test
clients.

Speaker Verification technology in embedded systems will face the following issues and
challenges:

1. An embedded system is commonly limited to a single microphone of the device, so
the system has to be adapted to the environment. Some experiments used two or
three microphones in the same embedded system, but it affects CPU consumption.
In contrast, with laptops or personal computers, we can work with two or more
microphones, as well as microphone arrays.

2. Models of speakers are typically stored on an extra device, like a smart card. De-
pending on the application of the system, the virtual size of this extra storage device
can be an issue. In our case it will not be an issue, because the BeagleBoard has an
SD card slot.

2http://elinux.org/BeagleBoard

13

3. Computational power and memory are typically lower. Embedded systems are often
designed to be low-cost boards, so the micro processor power is not comparable with
the power of a laptop. For example, with overclocking an ARM Cortex v8 (the CPU
in BeagleBoard) we can get 1GHz clock frequenc. Meanwhile, a common midrange
CPU in laptop or PC can work above 3 GHz easily. Moreover, BeagleBoard is
a closed hardware package with 128 MB LPDDR RAM; in laptops or personal
computers, we are working with 4 or 8 GB.

A lot of signal processing research projects try to port specific software to embedded
systems because such systems offer a lot of opportunities. In recent years, several projects
are focused on audio processing on embedded systems. Specifically, two projects are
closely related to our thesis: the TIESr Speech Recognition'® project and the Watson
Research Project on Speaker Verification in Embedded Environments [3].

The TI Embedded Speech Recognizer (Tlesr) is a fixed-point recognizer written in C-++
and C. It is designed to balance resource usage, robustness to environment, and per-
formance. It has a simple and easy-to-use user interface. This makes it an excellent
recognizer for developing a wide variety of voice-enabled embedded applications. Tlesr
is a medium-sized phonetic-based recognizer that can accommodate a vocabulary of up
to several hundred words. The words and phrases to be recognized can be dynamically
changed by an application. The latest Tlesr project release comes with general English
language support, and tools to develop the support for other languages. Tlesr has been
tested on some Linux OS platforms,; including the BeagleBoard and several OMAP EVM
boards (35x, 1.138, Zoom), as well as platforms running Windows and Windows Mobile.

This project helps us to understand how a speech processing software has to be adapted
to be able to run on a BeagleBoard. We also contacted Lorin Netsch, the Tlesr project
manager from Texas Instruments for questions about cross-compilations tools of the Bea-
gleBoard.

In the Watson Research SV on the ES project, a low-resource, text-independent speaker
verification (SV) system with an efficient voice model compression technique is described,
including its implementation exclusively with integer arithmetic. The authors describe
and discuss the individual algorithmic steps, the integer implementation issues and its
error analysis. The performance of the system is evaluated with data collected via iPaq
devices and the work discusses the impact of the model compression as well as integer
approximation on the accuracy.

Bhttps://gforge.ti.com /gf /project /tiesr/

14

Chapter 3

The Process of Speaker Verification

Before we explain the ALIZE / LIA RAL software in more detail,we present the under-
lying theory of the speaker verification process. The steps presented in the following are
commonly used in audio processing.

3.1

Overview

In this chapter, a revision of the text-independent speaker verification process is presented.
All verification or identification processes follow the next steps:

. Feature extraction is the first step in the Speaker Verification (SV) process. It

consists of transforming a segment of speech data (wav, raw, etc.) into a parameter
vector that is used in the next step. Feature extraction includes audio sampling,
labeling, and feature normalization [6].

The second step is creating a Universal Background Model (UBM). According to the
Reynolds definition in [10], “A Universal Background Model (UBM) is a model used
i a biometric verification system to represent general, person-independent feature
characteristics to be compared against a model of person-specific feature character-
istics when making an accept or reject decision”. A lot of input data is needed for
this purpose.

In the training phase we create the gaussian mixture model (GMM) of the client.
Training is performed using the Universal Background Model calculated in second
step, and taking some input data from the speaker. The Universal Background
model and the input data are combined using the Maximum A Porteriori adaptation
(MAP).

. In the testing phase we will gain a testing score of each client for each model. We

will perform the feature extraction of the input speech segment and we will compare
it with the speakers database.

The last step in the process decides if the system should accept the speaker as
database member, or reject it. So, an acceptance threshold is defined depending

15

on system purpose (low false acceptance ratio, or low false rejection ratio), and the
system takes a decision comparing the score obtained in testing phase with this
threshold.

3.2 Signal Processing and Feature Extraction

The first step a biometric system performs is the extraction of discrete features from
continuous data, and process them in a way that we can get relevant info from the person.
According to [6], among others, in speech processing those steps are audio sampling,
labeling process, feature extraction, and feature normalization.

Audio sampling Speech acquisition is realized with a microphone or headset telephone
by converting a sound wave into an analog signal. The term sampling is referred to the
reduction of a continuous signal to a discrete signal. In signal processing, sampling s the
conversion of a sound wave (a continuous signal) to a sequence of samples (a discrete-time
signal)'.

Labeling Labeling is used in text-dependent SV systems that are based on Hidden
Markov Models. Basically, labeling means to assign a label or a name to every audio seg-
ment. In text-independent systems, it is interesting to process only the speech segments,
because there is no available information in the silence segments. So it is usual to label
“speech” segments and “silence” segments. Once the labeling is done, the next step can
be done only in speech segments, saving memory and CPU processing power.

Feature extraction Normally, linear audio samples gained from the sampling step are
not enough for the characterization of a speaker. Noise, or the change of voice leads to a
different audio spectrum, so a more robust representation of such coefficients is needed.
So, this step consists on extracting a real speaker feature vector from previous sampling
values. These features are called Cepstral Coefficients (MFCC) and are coefficients for
the representation of speech based on human hearing perception [18]. Moreover, the
extraction is improved by using the Mel scale? to model the coefficients according to
real human hearing perception. In Figure 3.1, we depict the block diagram of MFCC
acquisition.

First, the audio signal is sampled at 8 kHz as explained in the sampling step, labeled
and then windowed?. Normally, the signal is divided in segments of 25-30 ms, where the
segments overlap each other 15 ms. The next step is to switch to the frequency domain
with the help of the Fast Fourier Transform (FEFT). Then the signal is filtered by using
a filter bank of different frequencies to have a better resolution at low frequencies, which
is comparable to the human hearing system. After the Mel filtering, we will obtain one
coefficient for each filter, so, for example, using a filter bank of 40, we will obtain a vector
of 40 coefficients for each frame. The logarithmic-spaced frequency band allows a better

Thttp:/ /en.wikipedia.org/wiki/Sampling (signal processing)#Speech sampling
http://en.wikipedia.org/wiki/Mel _scale
3http://en.wikipedia.org/wiki/Window _function#Spectral _analysis

16

——

e

1 3 | ;

i “ L8| i

: l W
H“I!\ A Mool ooy

DCT
_ _ Mel Compress,

2! \Windowing » |FFT| Filters log (Smcl)aoth
envelope)

Figure 3.1: Block diagram of MFCC acquisition.

modeling of the human auditive response than a linear scale, so a log function and the
Discrete Cosine Transform (DCT) are applied. This process implies more efficient data
processing, for example, in audio compression.

Feature Normalization Real SV systems are sensitive to environmental noise. So,
effects of the recording place or channel can be prejudicial for our verification process. To
avoid this problem, or to reduce the effects of this noise, a feature normalization is done
and basically consists on applying a feature update using ;che mean and the variance of

each feature vector. For a feature z, the updated feature x is defined as follows:

’ T —
P el £

o

where ;1 and o are the mean and the variance of the whole feature vector, respectively.
It is possible to normalize only for the mean, but it is more usual and more robust to
perform it on mean and variance.

3.3 Training Phase
The user models are created in the training phase. Therefore, it is necessary to create a

background model first, and then adapt this model using extracted features of the client
speech input [10].

Creating the Background Model The basic idea of training in SV based on GMM
is not to create a unique client model using client feature vectors, because normally we

17

have not enough data of each client, and the model can become heavily under-trained?*.
Instead, a common solution is to train a general speaker model with utterances of a set of
people, and then adapt this model to each user. The adaptation is done using user data.

The name of this “general model™® is Universal Background Model (UBM). The model is
the used as a common starting point for training models in general.

The UBM is trained by using the EM algorithm for 5 — 10 iterations [8]. The training data
is collected from a special set of speakers with the only purpose of representing speech in
general. If we want to create, for example, a gender-independent UBM, we have to use
an equal distribution of male and female utterances.

Training speaker A user training is based on Maximum a Posteriori Adaptation (MAP).
Like the EM algorithm, the MAP adaptation is a process of estimation in two steps. In
the first step, the statistics of the training data to each UBM mixture are estimated.
In the second step, these new statistics are combined with the statistical features of the
UBM. Given the UBM and a feature vector X = {1, xo, ..., 7} from a speaker, it is nec-
essary to get a probabilistic alignment between the training vector and UBM mixtures.
In Figure 3.2, a sketch of the alignment is shown.

Speaker
training data

Figure 3.2: UBM model and client data alignment.

We use client data for adapting the UBM model. The speaker model is created aligning
UBM with the input speech features.

It is important to know how this alignment is done to better understand the configuration
of parameters of the MAP detector. This means for an ¢+ UBM mixture:

Pliley) = 2o

M
Zk wkpk<xt)

In the first step, using this value of P(i|z;) and z; we can calculate the weight, the mean
and the variance, which we will update in the second step. Weight, mean and variance
are defined as follows:

4Not enough data collected for getting a robust client model
5Tt is named general model because the purpose of the model is to define speech in general.

18

2

N =Y Pliley,), Eie) = g X Pliley)ay, B2’ = g 35 Plilay)e;

Finally, the MAP algorithm consists of updates of these parameters. The parameter \; is
defined as:

WiNi w
)\i:a —i—(l—ozl)wz
n

So. an updated weight, mean and variance are defined as follows:
' \,

u}.:NZ ,
2N
7

pi = ol E@)+ (L-al), oF = af B’)+(1-a0)(oy + 1o~

7

where N is the number of mixtures of distributions in the mixture. {a", o*, o }are param-
eters that control balance between old and new weight, mean, and variance estimations.
These coefficients are calculated using a relevance factor 1° that determines the relation-
ship between previous and updated values.

For example, using r =0 — a = 1. It means M; = F;(z) and no updates are performed.

3.4 Testing Phase

After the training phase, the speaker verification system is ready to be tested. We are
able to extract features of a speech segment and create a speaker model using extracted
features. Thus, the system should be able to verify speakers by using models and feature
vectors. The first step in SV testing is to define what the output of the testing shall be.

The most common output used for testing is the likelihood ratio [13]:

Hylx,0)
Ar = p(M |4,
M p(_'HM‘x79>

log Ay = log p(Hy|2, 0) — log p(—H)y |2, 0)

where p(—H)y|z,0) is defined as the probability of Hj; not being the right hypothesis
given z, i.e. M is not the speaker of x. The log ratio is commonly used as log likelthood
ratio (LLR): log Ay;. For getting p(—H |z, 0) it is necessary to get information about all
possible speakers in the world, except M. It is impossible to obtain all this information,
but we can approximate this probability, too:

19

p(~Hu|z,0) = p(Hw |z, 0)

where W is referred to the Universal Background Model.

3.5 Making the Decision

The last step of the verification process is to decide from which speaker the utterance
comes from. In the SV context, the LLR threshold defined above is not enough to describe
the performance of the system. Instead of finding a threshold, the Detection Error Tradeoff
(DET) plot and the Equal Error Rate (EER) are used, as defined in Section 3.5.2.

Types of Output

We can group the SV output in four types: True acceptance (TA), false acceptance (FA),
true rejection (TR), and false rejection (FR). TA occurs when a client or “true” speaker
is accepted. FA occurs when an impostor is accepted. This is also called false positive.
TR occurs when an impostor is rejected. FR occurs when a “true” speaker is rejected and
is called false negative.

These rates are measured as a percentage. For measuring the quality of the system,
typically only false rejections and false acceptances are used and visualized in a graph.

Detection Error Tradeoff and Equal Error Rate

The Detection Error Tradeoff plot was defined by Martin et al. [1]. In this graph, the
two possible types of error are plotted: false acceptances and false rejections. The score
distribution in the DET plot usually approximates two Gaussian distributions. In Figure
3.3% we show an example.

The Equal Error Rate (EER) is the standard numerical value to define the performance
of a biometric verification system. It is defined as the point on the DET curve where the
False Acceptance Rate and the False Rejection Rate have the same value.

It is important to note that a system with an EER of 8% does not mean necessarily that
the system allows 8% of impostors”. One can choose his / her own threshold, taking into
account the project needs.

Final Threshold

The final threshold is chosen after training, and can be set to the EER point as a starting
point. Often, the threshold fixing is ignored, and instead the EER and DET-plot are used
to show the overall system performance. In this master thesis, the threshold has been
used just to obtain EER value and quality rates.

Shttp://rs2007.limsi.fr /index.php/Constrained MLLR_for Speaker Recognition
TFalse user who claims to log in the SV system.

20

Miss probability (in %)

2 F -
MFCC-GMM ——
MFCC-SVM ———
CMLLR-SVM
D,S L 1 L
0.5 2 5 10 20 30

False Alarms probability (in %)

Figure 3.3: DET example of Speaker Recognition system.

In a DET curve false alarms are plotted against false rejections. In this example, EER is
defined at 8%, in the case of MFCC-GMM.

21

Chapter 4

ALIZFE Library and LIA-RAL Toolkit

As explained in previous chapters, in this master thesis we want to analyze the per-
formance of ALIZE / LIA RAL speaker verification library in an embedded system.
In this chapter, and according to the documentation extracted from the official website
(http://mistral.univ-avignon.fr/), we will describe the ALIZE and LIA _RAL speaker ver-
ification software [12] and we will explain its functionality relevant for this thesis in more
detail. This toolkit has been designed to work with speech features, so the SPro4 has
been used in this master thesis for this purpose. Its functionality and its most relevant
features are explained in this chapter as well.

4.1 Overview

If we refer to the author, ALIZE is defined as “an open-source platform (distributed under
LGPL license) for biometric authentication” '. This toolchain, defined as “low-level”
library, contains all needed functions to the use of Gaussian mixtures. LIA RAL is
defined as a “high-level” toolkit, and is a “set of tools to do all tasks required by a biometric
authentication system”. In Figure 4.1 we can see a diagram of the main components of
ALIZE and LIA _RAL distribution. The LIA RAL package is based on ALIZE’s low-level
library and contains two task-specific sub-deliveries: LIA SpkSeg, related to acoustic
diarization and processing methods, and LIA SpkDet, related to Speaker Verification
tools. LTA Utils contains a list of non-categorized tools that are included in LTA RAL.

Both ALIZE and LTA RAL SV software are implemented in C/C++, to allow multiplat-
form via the use of GNU Autotools?. In this chapter, we will explain each ALIZE and
LIA RAL function in relation to each stage described in Chapter 3. Neither ALIZE nor
LIA RAL do support feature extraction, so we will use SPro4 tool for this purpose. It
will be explained in Section 4.4.

thttp://mistral.univ-avignon.fr /index.html
2The Autotools consists of Autoconf, Automake, and Libtool toolkit to allow cross-compilation

22

LIA_SpkTools
high level library

ALIZE

Library : low level statistic engine

Figure 4.1: ALIZE and LIA RAL distribution. The LIA RAL package is based on
ALIZE low-level library, and contains all the methods used in this master thesis.

Figure extracted from the Mistral project web page:
http://mistral.univ-avignon.fr/index.html.

4.2 ALIZFE Library

Primarily, ALIZE is a framework of mathematics, statistics, and I/O functions on which
our SV system is built. The main categories of functionality that exist in ALIZE are: *

e Command line and configuration file parser.
e File I/O management.

e Feature file reading and writing.

e Statistical functions.

e Gaussian distributions.

e Gaussian mixtures.

e Feature file labeling and segmentation.

e Line-based file 1/0.

e Vectors and matrices management functions.

e Managers for storing named mixtures, feature files and segment.

3Information found at http://mistral.univ-avignon.fr/

23

Command line and configuration file parser. The ALIZE library uses configuration
files and command line configuration. A user can define a configuration file to set some
dynamic parameters, or define them on the command line. For example, defining a
parameter maxrProb 1 in a configuration file is equivalent to type —maxzProb 1 in command
line.

File I/O management. The library contains two classes for handling files. They are

like a Java Filestream®.

Feature file reading and writing. ALIZE supports some feature file formats for
handling feature vectors. The ones mostly used are HTK, and SPro3/4. It is possible to
use also list files, in order to concatenate feature files into a single stream.

Statistical functions. Basically, the library allows one to calculate mean and variance,
as well to generate histograms. It also contains functions for the Expectation Maximiza-
tion algorithm in general.

Gaussian distributions. ALIZE allows one to handle Gaussian full covariance matrices
and diagonal variance matrix.

Gaussian mixtures. Almost all Gaussian distribution management code in ALIZE is
targeted to Gaussian distributions. The ALIZE library is also designed to support other
kinds of distributions. In this master thesis, this feature will be used to read input data.

Feature file labeling and segmentation. ALIZE has file labeling, with a module
working in parallel with I/O. Segmentation will be used for optimization.

Line-based file I/O. All text files in ALIZE are distributed into lines and fields. One
module of the library is targeted to reading and writing these fields.

Vectors and matrices management. This library contains basic algorithms to handle
vectors and matrices.

Managers for storing named mixtures, feature files and segment. ALIZE con-
tains a group of classes called Servers to handle the storage of named entities. I.e, all
speaker models are stored in muiztures server, features are cached in features server, and
labels are stored in labels server. Tt allows an automatic organization of files in memory.
This automatic storage is essential for the data management, and lets ALIZE-dependent
applications, such LIA RAL toolkit, to work in an optimized and organized way.

*http:/ /www.cs.williams.edu /javastructures /doc/structure /structure /FileStream.html

24

4.3 LIA RAL Toolkit

The LIA _RAL toolkit is the software that wraps all the ALIZE algorithms in programs
that can be run from a shell script. In the following, we describe the main LIA RAL
tools used in this master thesis.

Normalize Features

The NORMFEAT program reads a feature file and normalizes it. It is possible to normalize
the extracted features using mean / variance normalization or Gaussianization. The first
mode simply accumulates mean or variance, and then normalizes audio features using
them. The second one performs feature warping [11] to get the Gaussian distribution
from a histogram of feature vectors. In this master thesis, only the mean normalization
will be used.

Energy Detector

The ENERGYDETECTOR tool reads a feature file and segments it based on speech energy.
The program will discard segments with lower energy level than a threshold. Using
the easiest way, meanStd, we train a GMM on the energy component and we find the
distribution with the largest weight, w;. So, we compute the threshold as:

T = W; — Q05

where 7 is the threshold and (u;,0;) are mean and variance of top distribution. « is an
empirical constant between 0 and 1 that can be defined. Normally (and also in this master
thesis), only the mean is used to get the threshold (a =0).

Training Background Model

The creation of the Universal Background Model is done with the TRAINWORLD tool.
The main purpose of this tool is to create a single GMM using a large amount of data.
Firstly, the tool creates an equal mean and variance distribution, and it is adapted itera-
tively using the Expectation Maximization method. We can configure several parameters
of this program. The most relevant are:

e Number of distributions: This will determine the number of Gaussian distributions
that the background model will have. This number will set the distributions of
future client models.

e Number of training iterations.

e Features selection: We can choose the amount of data for creating the UBM. This
selection is based on probability.

25

Training Target

The purpose of the TRAINTARGET tool is to adapt the background model to a speaker
model, using feature vectors and the MAP criterion. Like in the UBM training, not all
feature vectors are necessary for doing the adaptation, so we can also fix the percentage
of feature segments to use.

An input file for TrainTarget is a list with lines like:

SPEAKER1 speakers/spkl 001 speakers/spkl 002
SPEAKER2 speakers/spk2 001 speakers/spk2 002
SPEAKER3 speakers/spk3 001 speakers/spk3 002
SPEAKER4 speakers/spk4 001 speakers/spk4 002

In the first column the name of each speaker is declared. In the next columns, we define
the utterances that we want to use to create the model. Normally, we will use two or
three utterances. The more utterances we use, the better the model will be, because we
will have more information from the speaker.

As explained in the Section 3.3, we will use a relevance factor 7 for calculating the family
of variables «;. The TrainTarget application allows us to define this relevance factor, or
fix ay, using the “MapOccDep” or the “MapConst2” mode respectively. In this master
thesis, the “MapOccDep” mode will be used. It computes a; as a linear combination of
its value in the world model and its value obtained by an EM algorithm on the data.

Computing Test and Scoring

The COMPUTETEST tool uses the background model, the speaker models and a number
of feature files, and calculates a score. It uses the standard log-likelihood ratio (LLR)
measure for scores. An exemplary output file looks like this:

F spkFAML.MAP 1 FAML Sr3 2.26765
F spkFDHH.MAP 0 FAML Sr3 —1.7321
F spkFEAB .MAP 0 FAML Sr3 —0.5291
F spkFHRO.MAP 0 FAML Sr3 —2.1344

Here, the first column denotes F (female) or M (male) and the second and the fourth
column are referred to the name of the model and audio file, respectively. In the last
column the score is shown. We can use the third column to discriminate positive scores
(1) or negative scores (0).

The most important parameter that can be set is the number of top distributions to be
used in the result. We can greatly reduce the computational time growing up this number.
If we evaluate, for example, only five of 512 or 1024 distributions, the performance can be
improved. It will be a key point of improvement in the embedded software in this thesis.

26

Taking a Decision

The last step is the decision making. This process consists of comparing the likelthood
resulting from the comparison between the claimed speaker model and the incoming speech
signal with a decision threshold. If the likelihood is higher than the threshold, the claimed
speaker will be accepted, else rejected.

As commented in Subsection 3.5.3, a threshold should be defined according to our needs.
This master thesis evaluates the ALIZE / LIA_RAL software, so the threshold was not
defined. We will use a collection of possibe threshold values for getting FR and FA curves,
as well as equal error rate (see Section 3.5).

4.4 SPro4 Toolkit Features Extraction

Because the LTA / LIA_RAL software does not allow audio feature extraction, we have to
use another tool to extract feature vectors. SPro4 is a “free speech signal processing toolkit
which provides run-time commands implementing standard feature extraction algorithms
for speech related applications and a C library to implement new algorithms and to use

SPro files within your own programs”.

Basically, the SProj tool reads in an input audio file, processes it and extracts the feature
vector. The output feature vector will be the starting point for the LIA RAL system.
The most common SPro4 parameters that can be set are:

Format: input file format (wav, raw, sphere, etc).

Buffer size: sets the input and output buffer size. The smaller the input buffer size,
the more disk access is needed and, therefore, the slower the program is.

Sample: input waveform sample rate. Commonly 8kHz.

Normalization: system allows mean and variance normalization.

Derivatives: SPro shows first and second order derivatives.

An exemplary feature vector is stored as shown below: :

—0.20995 3.858743 —0.08501 2.455754 0.085920
1.968982 0.090583 2.134615 —0.15941 2.456415
1.715665 —1.39294 0.938561 0.489811 0.806973
0.775145 —2.62302 —-0.06644 —4.18761 —0.87814

(..)

In this master thesis, the Spro4 tool will be used as shown below for all audio files and
all tests:

Shttp://www.irisa.fr/metiss/guig/spro/

27

./sfbcep —F wave —1 20 —d 10 —w Hamming —p 16 —e —-D —k 0 audio/audiofile.wav features/
audiofile .tmp.prm

Format: Wave.

Buffer size: 20 ms.

Shift: 10 ms.

Window: Hamming.

Output cepstral coefficients: 16.

Add log-energy and first order derivatives to the feature vector.

Set the pre-emphasis coefficient to 0.

28

Chapter 5

Open Embedded as Operating System

The main goal of this master thesis is to adapt and configure a SV software, and run it
on an embedded system. In this chapter, we describe the embedded system environment
set-up and the necessary cross-compiling tools.

5.1 Embedded System Environment

The BeagleBoard is a computer development open source project. It is presented in
a single device and it is based on the Texas Instruments OMAP3530 chip, as shown in
Figure 5.1. The processor is an ARM Cortex-A8 core with a digital signal processing DSP
core. The motivation of the project is to design a computer with low-power consumption,
low-cost, compact size and expandable device. The project is in continuous development
under the Creative Commons license, as specified on the first pages of the BeagleBoard
user manual'. Moreover, the whole project is supported and commercialized by Texas
Instruments and Digi-Key.

In this master thesis, revision B5 of the board will be used. We present the most significant
features of it below. For more details of the board, please consult the manual.

In addition to the device, in this project we used a LCD monitor, a mouse, a keyboard
and a USB Hub. The board needs an auxiliary energy supply. In Figure 5.2 we can see
the laboratory setup.

The procedure in the device is similar to the procedure in a desktop PC under Linux
environment. One needs at least one SD card to store Linux and its boot loaders?. In the
next section, this procedure will be explained.

thttp://BeagleBoard.org/static/BBSRM _ latest.pdf
2Booting is a process that starts operating systems when the user turns on a computer system.

29

Figure 5.1: An exemplary BeagleBoard B5, used in this master thesis.
http:/ /www.liquidware.com /

5.2 Angstrom as Operating System

As commented above, an advantage of the BeagleBoard is that it can be used as a com-
puter using a Linux distribution. Depending on the application that one wants to use
with the board, the decision of the operating system will vary.

In this master thesis, we use the Angstrom distribution®. This distribution was created
using OpenEmbedded? tools in order to get a powerful operating system using minimal
data storage. There are several pre-compiled Angstrom distributions, but it allows one to
create a personalized operating system image with an online builder. The builder, called
Narcissus®, allows one to choose the desired characteristics for maximum features adjust
as needed. The Narcissus tool allows one to create virtual images for several embedded
systems. One can adapt the OS (command line interface, Desktop environment or based
environment for PDA style devices) and add additional packages depending on the needs.

We choose a minimal configuration, without a graphical interface, and no additional
packages. This is necessary to optimize the processing time of our application. Note that

3http:/ /www.angstrom-distribution.org
*http:/ /www.openembedded.org/wiki/Main _Page
®http:/ /narcissus.angstrom-distribution.org/

30

Figure 5.2: Using the BeagleBoard.

In the figure we can see the BeagleBoard with all peripherals used in this master thesis:
keyboard, screen and SD card.

our final speaker verification version is an offline version. If we want to verify online, an
input microphone and audio drivers would be required. However, such drivers can be
cross-compiled® for ARM, too.

In this master thesis, we use a 2 GB SD card. It is possible that other versions of the
operating system require larger cards for its correct functionality. We are using a minimal
version, so 2 GB are enough for our work.

At first, the SD card formatting and partitioning is necessary. The SD card is divided
into two parts: The OS and the system files needed for the boot process. Formatting and
partition has been done using a script. This script is presented in Annex A.

5.3 Cross-compilation of the Speaker Verification
System

As described in previous chapters, the speaker verification system proposed in this thesis
involves the usage of three main applications: The SPro4 tool, for extraction of acoustic
features of audio files, the ALIZE library, which includes all the signal processing func-
tions, and the LIA RAL toolkit, to train and test speakers using the functions of the

6See section 5.3

31

ALIZE library. The compilation and execution of these applications, however, is primar-
ily intended for desktop computers or laptops. The porting process of the software to an
embedded system requires a specific compilation according to the target system architec-
ture. In this master thesis, we have to compile each program, as well as library, to run on
an ARM architecture machine. However, we use a pre-configured OS, and the Angstrom
version presented in Section 5.2 contains compiled libraries for the ARM architecture.

Another option is to compile directly on the BeagleBoard. This means that one copies
the source code on the SD card, and compiles it using the GCC compiler of the OS of the
BeagleBoard. This compiler, however, is not contained in the minimalist version used,
and thus it is preferably to carry out cross-compiling on the host machine.

For the cross-compilation we will use the Sourgery G++ GNU-based toolchain. The cross
compiler can be installed in any Linux distribution. For more information, we refer to the
user manual”.

In the following subsections, we will explain the process of cross-compiling used for each
of the three main applications of our master thesis, using the GNU Build System.

The GNU Build System

It can be difficult to port a software program: the C compiler differs from system to
system; certain library functions are missing on some systems; header files may have
different names. One way to handle this is to write conditional code, with code blocks
selected by means of preprocessor directives (#ifdef); but because of the wide variety of
build environments this approach can become unmanageable. The GNU build system is
designed to address this problem.

The GNU Build System, also known as the Autotools, is a toolkit developed by the GNU
project. These tools are designed to help creating portable source code packages for
various Unix systems. The GNU build system is part of the GNU toolchain and is widely
used to develop open source software. Although the tools contained in the GNU build
system are under the General Public License (GPL)®, there are not restrictions to create
private software using this toolchain.

The GNU build system includes GNU Autoconf, Automake and Libtool utilities. Other
tools used are often the program GNU make, GNU get text, pkg-config and the GNU
Compiler Collection (GCC).

GNU Autoconf isused to adapt the differences between different distributions of Unix.
For example, some Unix systems may have features that do not exist or do not work on
other systems. Autoconf can detect the problem and find the way to fix it. The output
of Autoconf is a script called configure. Autoheader is also included in Autoconf, and is
the tool used to manage the C header files.

Thttps:/ /sourcery.mentor.com/GNUToolchain /doc7793 /getting-started.pdf
8http://en.wikipedia.org/wiki/GNU_General Public_License

32

(:utoscan)

e |~ T A T
aclocal utoheader) (autormake
. AT A

- | -
— I _ - -
|
T
aclocal.m: corrﬁg h.in W akefile.in
' i
> ”
utoconf 1\\ [

input file

T eese
(I_HHN'H-H;"_./

creates

executable output file

Figure 5.3: Main distribution of GNU Autotools.
Extracted from http://en.wikipedia.org/wiki/GNU _build _system.

Autoconf processes the configure.in and configure.ac files. When the tool is running the
configuration script, Autoconf can also process the Makefile.in file to produce an output
Makefile. In Figure 5.3 we can see file dependencies and distribution of Autotools.

GNU Automake is used to create portable Makefile files that are processing later using
make tool. The tool uses Makefile.am as input file and transforms it into a Makefile.in.
The Makefile.am is used by autoconf to generate the final Makefile.

Gnu Libtool can create static and dynamic libraries for various Unix OS. Libtool
abstracts the process of creating libraries and simplify the differences between systems.

33

GNU Configuration for BeagleBoard

To make the cross-compilation one has to choose the appropriate settings in the autoconf
of each program: ALIZE library, LIA RAL toolkit and SPro 4.0 features extractor. We
used the Open Source GNU cross-compilation tools supplied by Codesourcery? needed
in cross-compilation tools of GNU autoconf. This cross-compiler is basically used as
standard g+ compiler for an ARM target.

In this master thesis, the 1386 microprocessor is used as build machine, so the command
line use for the cross-compilation is:

./ configure —build=i386 —target=arm—linux—gnueabi CXX=arm—linux—gnueabi—g++ CC=arm—
linux —gnueabi—gcc CXXFLAGS=march=none

where:

e —build is referred to host machine. We can use both —build and ~host options
e —target is used to identify the target machine architecture.
e CXX and CC are referred to g++ and gcc compilers used.

o CXXFLAGS are the common flags that we use in a common compilation process.

http:/ /www.codesourcery.com /sgpp/lite/arm

34

Chapter 6
Configuration of ALIZE / LIA RAL

The ALIZE / LIA RAL package is used in many applications. In this chapter, we present
a “how-to-use” in a shell environment, the compilation process and the configuration
parameters used in this master thesis.

6.1 Shell-script Compilation

Using the LIA RAL toolkit requires one to study the application (see Section 4.3), and
its configuration parameters. Below, we will describe each application and we will discuss
the best way to define and use each application parameter. The Spro4 feature extractor
is necessary to process all files. So, a concatenation script is used. For more information,
read Section 4.4 or visit the website!.

Normalization and Energy Detection

The NormFeat tool is used to normalize the feature file. It is used as follows:

./LIA RAL/LIA SpkDet/NormFeat/NormFeat —config cfg/NormFeat.cfg —inputFeatureFilename
./ 1st/all.lst

The EnergyDetector tool is used for silence removing and labeling speaker features before
processing them.

./LIA_ RAL/LIA SpkDet/EnergyDetector/EnergyDetector —config cfg/EnergyDetector.cfg —
inputFeatureFilename ./1st/all.lst

Next, one has to re-normalize the label files. This is done with the NormFeat tool again,
with another configuration file:

./LIA_ RAL/LIA SpkDet/NormFeat/NormFeat —config cfg/NormFeat energy.cfg —
inputFeatureFilename ./l1st/all.lst

The script processFeatures.sh includes the three steps presented above.

Thttp://www.irisa.fr /metiss /guig/spro/spro-4.0.1/spro_ 4.html

35

Universal Background Model creation

Here, the Universal Background Model (UBM) is created, using all feature data that we
have normalized before. TrainWorld is used:

LIA RAL/LIA SpkDet/TrainWorld/TrainWorld —inputFeatureFilename lists /UBM.lst —config
cfg /TrainWorld . cfg

Client enrollment

Speakers that will be accepted by the system have to be trained now. It is necessary to
use a list file with a specific .ndx file. This file contains the name of the speaker model,
and the feature files used to create it. An exemplary of the speakerl0 .ndx file is shown.

spk10.MAP 10 Sa 10 Sb 10 Sc 10 Sd 10 Se 10 Sf 10 Sg

The TrainTarget tool creates the speaker model using the background data and the
speaker feature dataset specified in the .ndx file:

./LIA RAL/LIA SpkDet/TrainTarget/TrainTarget —config /cfg/trainTarget.cfg —targetIdList
/lists /mixture.ndx —inputWorldFilename wld

To make it easier, the script trainSpeaker.sh performs the feature extraction, feature
processing, ndx file creating and client enrollment one after another.

Testing of the speaker

This is the last step of the SV process. A result of the target against all clients on database
is obtained, and we will get a score for each client enrolled. Using this score, we can take
a decision. Here we use the ComputeTest:

. pkDet omputeTest omputeTest —config cfg omputeTest.cfg —ndxFilename
LIA_RAL/LIA _SpkDet/C T C T fi fg/C T f dxFil
./ndx/mixture.ndx —worldModelFilename wld —outputFilename res/result.res

The ComputeTest file saves the results in an output file with the result of each comparison.
For a simple comparison with only two enrolled clients and one testing sample, the output
file is shown as follows:

clientl .MAP 1 samplel 5.42739
client2 .MAP 0 samplel —2.67043

36

where the columns represent the enrolled client, the decision taken, the sample name and
the score obtained, respectively. In the example, we are comparing a speaker sample with
his enrolled model, and with another speaker model enrolled in the system. The decision
taken will be 1 (accepted) or 0 (denied) depending on the threshold that we are using.
Anyway, this factor will be irrelevant in this mater thesis, as the score gives us all the
information that we need to get conclusions.

For a better understanding, we present a more complex example. Now, we will compare
6 different samples of the same speaker (named FAML) against the entire database, with

4 clients enrolled. The enrolled speakers are named FAML, MREM, FEAB, MKBP. The
next output file is obtained:

spkFAML.MAP 1 FAML Sa 5.42739
spkFAML.MAP 1 FAML Sb 6.73677
spkFAML .MAP 1 FAML Sc 6.21802
spkFAML .MAP 1 FAML _Sd 5.50474
spkFAML .MAP 1 FAML Se 6.60182
spkFAML .MAP 1 FAML_Sf 5.81713
spkFAML.MAP 1 FAML Sg 5.6254
spkMREM.MAP 0 FAML Sa —2.80681
spkMREM.MAP 0 FAMIL _Sb —2.83226
spkMREM.MAP 0 FAML Sc —1.74641
spkMREM.MAP 0 FAML _Sd —2.20437
spkMREM.MAP 0 FAML Se —1.96162
spkMREM.MAP 0 FAML_Sf —1.75959
spkMREM .MAP 0 FAML Sg —1.20058
spkFEAB .MAP 1 FAML Sa 1.17351
spkFEAB .MAP 1 FAML Sb 0.908691
spkFEAB.MAP 1 FAMIL Sc 1.19148
spkFEAB .MAP 1 FAML Sd 0.703976
spkFEAB .MAP 1 FAML Se 0.462561
spkFEAB .MAP 1 FAML_Sf 0.448675
spkFEAB .MAP 1 FAML Sg 0.789436
spkMKBP .MAP 0 FAML Sa —1.24249
spkMKBP .MAP 0 FAML Sb —1.0661
spkMKBP .MAP 0 FAML Sc —0.393202
spkMKBP .MAP 0 FAMIL Sd —0.483468
spkMKBP .MAP 0 FAML Se —0.959548
spkMKBP .MAP 0 FAML_Sf —1.19945
spkMKBP .MAP 0 FAML Sg —1.03321

The speaker detector is obtaining high scores for the right speaker, and low scores for
wrong speakers.

The script testSpeaker.sh launches the entire testing process. It includes feature extraction
of test audio files, features processing of those files, and tests them against client Database.

6.2 Configuration Parameters

Every tool that we use for the speaker verification process allows one to configure several
parameters. These parameters can be fixed on the command line, but it is easier to use
dedicated configuration files .cfg.

Most of the parameters used in this master thesis are common for all the tools, but some
of them are specific for each application. It is important to get a good configuration to

37

optimize the time and the quality of the verification process. In the following, we will
present the description and possible values of the common parameters used in this master
thesis. Later, the values of the specific parameters for each application are presented, too.

Typical configuration parameters

In Table 6.1 we present common parameters used in all the tools, and their calibrated
values for this master thesis. These parameters have to be defined in all configuration

files.

Parameter Description Value
frameLength When working in segmental mode, 0.01
specify the ratio between the time unit
found in the label files and the
frame-based time unit.
distribType Specify the type of distribution. GD
vectSize Specify the size of vectors in the 34
feature files.
loadFeatureFIleFormat Specify the format of feature files. SPRO4
sampleRate Feature sample rate. 100
mixtureDistribCount Specify the number of Gaussian 64
distributions in the mixture.
maxLLk Specify maximum likelihood values. 200
minLLk Specify minimum likelihood values. -200

Table 6.2: Common configuration parameters.

Specific configuration parameters

Here we show the most important specific parameters for each tool used in the speaker de-
tection, as well as the values used in this master thesis. The parameters for normalization,
training and testing are shown in Table 6.2, 6.3 and 6.4, respectively.

38

Parameter Description Value

saveFeatFileSpro3DataKind Specifies the type feature data used in FBANK
feature extraction using SPRO.

labelSelectedFrames Specify the label name to work with. speech

nbTrainlt Number of EM iterations to estimate 8
energy distribution.

varianceFlooring Variance control parameters. 0.5
varianceCeiling Variance control parameters. 10
featureServerMask In this case, energy detection is done 16
on a single dimension of the input
vectors.
segmentalMode When working in segmental mode, true

stats and normalization are computed
for each segment independently.

Table 6.3: Normalization configuration parameters.

Parameter Description Value
MAPAlgo Specify the adaptation method to use: MAPOccDep
MAPOccDep or MAP-Const.
MAPRegFactorMean Parameter used by the MAPOccDep 14
adaptation technique.
meanAdapt If true, training will use mean true
adaptation.
alpha Parameter used by the MAPAlgo 0.75
adaptation technique.
nbTrainlt Number of EM iterations. 20
nbTrainFinallt Number of final EM iterations. 20
input WorldFilename Name of Universal Background Model. wld

Table 6.4: Training configuration parameters.

6.3 Performance Optimization

As explained in previous chapters, a lot of parameters of the ALIZE / LIA RAL toolkit
can be used to improve the functionality of the software. This software was developed
as a speech processing toolkit, not just as a speaker verification system, and we have to
adjust the parameters for this usage correctly. Moreover, an embedded system usage has
to be taken into account, and it is interesting to find a compromise between detection

39

Parameter Description Value

inputWorldFilename Name of saved world model. wld
ndxFilename Name of .ndx file. not fixed
topDistribsCount Number of Gaussians used to compute 10
the score.
computeLLKTopDistribs ~ Complete or partial computation COMPLETE
when computing LLK with "top"
distributions.

Table 6.5: Testing configuration parameters.

rate and performance in the BeagleBoard. Thus, depending on the results obtained in
the next chapter, the maximum optimized configuration files will be shown in Annex B.

40

Chapter 7

Tests and Results

In this chapter, we present the results of the tests with the ALIZE / LIA_ RAL on the
BeagleBoard. Apart from describing the setup test and presenting the SV quality per-
formance of the software, the text below is a comparison of a laptop and an embedded
platform, so the performance measures and memory requirements differences will be pre-
sented, too.

7.1 The ELSDSR Database

ELSDSR corpus design is a joint effort of the faculty, PhD students and Master students
from the department of Informatics and mathematical modeling, Technical University of
Denmark (DTU). The speech language is English, and it is spoken by 20 Danes, one
Icelander and one Canadian. It was distributed among DTU Informatics as a first pre-
liminary version in 2004.

The sampling frequency is chosen with 16 kHz having a bit rate of 16, and the audio
format is WAV. Part of the text, which is suggested as training subdivision, was made
with the attempt to capture all the possible pronunciation of English language including
the vowels, consonants and diphthongs. The training text is the same for every speaker
in the database. Regarding the suggested test subdivision, we will work with a forty-four
sentences set (two sentences for each speaker).

For the training set, 161 (7*23) utterances were recorded; and for the test set, 46 (2*23)
utterances were provided. On average, the duration for reading the training data is: 78.6s

for male; 88.3s for female; and 83s for all. The duration for reading test data, on average,
is: 16.1s (male); 19.6s (female); and 17.6s (for all)’.

The ELSDSR database has enough samples to get robust conclusions. Using huge databases,
with more information requires much more processing time for train models and collect
data and does not supply any extra information to this thesis.

Thttp://www2.imm.dtu.dk /" Ifen /elsdsr/

41

7.2 Setting up the Test Environment

As mentioned before, ELSDSR Database consists of 23 speakers: 13 males and 10 females.
Every speaker entry consists of 7 utterances for training and 2 utterances for testing. The
more clients are in the database, the more realistic the test will be, so the entire database
will be used for enrollment in our thesis.

Theoretically, clients? and impostors® must be different. Due to the limited amount of
data (we have just 23 people samples), all speakers are used as clients as well as impostors,
S0:

e Number of clients: 23

e Number of impostors: 23

Creating the universal background speech model requires a large amount of data, since it
must include all possible speech data. The more data the UBM contains, the more robust
the model will be. Typically, SV tests use very large databases to create these models. In
this test, however, we will use all available training data to create the UBM, having 161
utterances.

This database is quite small, and it is not enough to get successful and realistic speaker
verification results. Nevertheless, the main purpose of this master thesis is to compare the
performance of the speaker verification system in both platforms, not to obtain accurate
results of SV.

7.3 Performing the Test

After the preparation of the test environment, one can proceed with the testing. This part
applies the numerous steps described in Chapter 6 using a database as ELSDSR. We just
want to compare the verification results, so the training stage will be performed always in
the laptop. Thus, the fetaures extraction, the Universal Background Model creation and
the client enrollement will not be done on the BeagleBoard.

Once the UBM and the client models are created, they must be copied on the Beagle-
Board SD card. After using the cross-compilation tools described in Subsection 5.3 we
are able to launch the ComputeTest LIA/RAL tool on both laptop and BeagleBoard
systems. In order to get results, the ComputeTest tool is launched using trained UBM
and client models in both laptop and BeagleBoard platforms. It is important to use the
same parameters in both platforms, in order to compare the requirements with the same
configuration in both sides.

The relevance factor is usually considered to conclude the results of a speaker verification
system. However, in this master thesis we do not want to evaluate the quality of the SV,

2Enrolled user in the database
3Unregistered user in the database, who tries to log in.

42

but the differences between running it on a laptop or and an embedded system. We use
the same source code in both platforms, so Equal Error Rate and speaker detection quality
should be exactly the same, as they are not memory and processor speed dependent.

7.4 Results

The two main factors that we need to measure are the erecution ttme and the memory.
The first one will describe the difference between the laptop and the BeagleBoard per-
formance. The second one presents the viability of using this software on the embedded
system, since we have a limited RAM memory.

We will present these ratios in both platforms with different parameter configurations.

EER optimization

First, we measure the Equal Error Rate optimization taking into account the acoustic
features and the amount of data of our database. Before porting the ALIZE / LIA RAL
toolkit to the embedded system, one has to determine the number of Gaussian distri-
butions in the mixture that optimizes the EER. As mentioned, the EER value is the
intersection point between False Rejections and False Acceptances curves, shown in Fig-
ure 7.1, and Figure 7.2.

100

90

90
80

80

70

70

60 60

50 50

40 40

30

False rejection probability (in %)

30

False acceptance probability (in %)

20

20
10

10

T 1
-2,5 -2 -1,5 -1 -0,5 0 0,5 1 0 1 P 3
Threshold Threshold

Figure 7.1: False Rejections (left) and False Acceptances (right) curves for 1024 Gaussians.

Data extracted from the development environment performed in this Master Thesis.

43

25

15

Percentage (%)

05

0,00 0,10 0,20 030 0,40 050 0,60 0,70
Threshold

Figure 7.2: Equal Error Rate point in the 1042 GMM test.

ERR is the intersection point of false acceptances (red) and false rejections (black).

This intersection point can vary depending on a number of factors, so Table 7.1 presents
the results in terms of accuracy varying Gaussian mixtures and iterations number. The
results come from evaluating the database using the setting up described in section 7.2 and
testing different combinations of mixtures distributions and world iterations (worldits).
This last parameter describes the number of times the client model is calculated against
the UBM model. Finally, the average model is obtained.

44

Mixtures iterations Equal Error Rate
5 worldits 6,02 %
32 GMM 15 worldits 5,30 %
20 worldits 492 %
5 worldits 3,55 %
64/ GMM 15 worldits 3,12 %
20 worldits 3,08 %
5 worldits 2,40 %
128 GMM 15 worldits 2,22 %
20 worldits 2,15 %
5 worldits 2,12 %
256 GMM 15 worldits 2,05 %
20 worldits 1,97 %
5 worldits 1,55 %
512 GMM 15 worldits 1,50 %
20 worldits 1,45 %
5 worldits 1,46 %
1024 GMM 15 worldits 1,43 %
20 worldits 1,42 %

Table 7.1: EER for different GMM configurations

Secondly, it is interesting to set the DET curve according to our results. In Figure 7.3,

results are shown for 64, 128 and 256 Gaussians.

Miss probability (in %)

fffffffffffffffffff

——————————————————

fffffffffffffffffffff

t{ —— 256 Gmm|-!
| ——1286mm| !

| ——64Gmm |

————————————————————

005115 2 25 3 35 4 45 555
False Alarm Probability (in %)

Figure 7.3: Recognition performance for each GMM count on ELSDSR data set using 15
world iterations.

45

Memory requirements

The BeagleBoard OMAP3530 processor includes 256 MB NAND memory in all versions.
In this tests the revision BeagleBoard.5 is used, which also includes an additional 128 MB
DDR. The laptop has 1GB RAM. Note that the feature extraction memory requirement
is not contemplated in the table below:

Memory type 5s (175Kb) audio file 8 s (256Kb) audio file

Laptop BeagleBoard Laptop BeagleBoard

Virtual Memory 2,10 (0,21%) 2,38 (1,85%) 3,24 (0,32%) 3,45 (2,69%)
Resident Set Size 1,31 (0,13%) 1,66 (1,29%) 2,32 (0,23%) 2,71 (2,10%)

Table 7.2: RAM requirements on the PC / BeagleBoard for 1024 GMM.

The measures have been taken on a 1024 testing system, using the entire ELSDSR
database

The measurements have been performed for a system of 1024 and 512 Gaussian, and the
results are quite similar. This is why we can assume the no-dependency between the
RAM consumption and the number of Gaussian Mixtures used in the test. As we can see,
the memory requirements are not going to be a major handicap, so in the following such
sections we will omit the memory measurements.

Time results

The time requirement of this speaker verification system is the most important part of
the master thesis. The identification time depends on the number of feature vectors, the
complexity of the speaker models and the number of speakers. We want to analyze if it
is possible to perform it in a real test, taking into account the computational cost that it
represents. The time of the test has been divided into two parts: The first one is to get the
time of the processing phases that do not depend on the mixture distribution count used.
It means, features extraction, signal processing and normalization stages. The second one
consists on evaluating the training and testing stages using different number of mixtures
counts and world iterations.

It is important to understand that the total amount of time expended by our application
will be the sum of the time of both stages. Using trg as features extraction time and tgp
as signal processing time, we can define the total training time as:

7q;frain - (tFE + tSP) * Nfiles + ttrain
On the other hand, the total testing time is defined as:

Eest - tFE + 75,5'P + ttest

46

Firstly, we present the results of features extraction and signal processing in Table 7.3.
The features extraction, performed by the SPRO application, and signal processing, does
not depend on mixture count because the speaker model that uses this distributions has
not yet been created. We also take into account the length of the audio file. The longer
the speech input file is, the more time the toolkit requires to process its features.

Features extraction Signal processing
Audio file length Laptop BeagleBoard R Laptop BeagleBoard R
3 sec 0,42 2,85 6,78 0,04 1,21 30
5 sec 0,80 3,51 4,38 0,06 1,74 29
8 sec 1,35 4,20 3.05 0,10 2,72 27
10 sec 1,95 4,90 2,51 0,14 3,64 26

Table 7.3: Feature extraction and signal processing execution times (in seconds). Ratio
(R) is obtained form dividing BeagleBoard time with laptop time

Table 7.4 presents the results of evaluating the testing (fs.s;) and training (fs.qi,) times.
It is important to mention that this measure does not depend on the number or length of
the input audio file. This measure only uses featured files which have a constant length.
On the other hand, the number of mixtures has to be considered now. It is important to
take into account the world iterations used to create and test the models, because it is
the main relevant factor of the configuration parameters.

The results in Table 7.4 show that the proposed SV system for embedded systems can
be used in a real-life scenario, in terms of accuracy (as seen in Subsection 7.3.1) and
computational performance.

47

Testing Training

Miztures Iterations Laptop BeagleBoard R Laptop BeagleBoard R
5 worldits 10,74 24,35 2,26 18 272 15,11
32 GMM 15 worldits 11,33 29,12 2.57 19 300 15,78
20 worldits 12,31 33,10 2,68 21 321 15,28
5 worldits 10,89 29,67 2,72 25 382 15,28

64 GMM 15 worldits 12,70 31,88 2,51 27 405 15
20 worldits 14,51 36.10 2,48 31 469 15,12
5 worldits 13,15 32,44 2,46 35 533 15,22
128 GMM 15 worldits 16,20 35,67 2,20 37 579 15,64
20 worldits 18,45 40,08 2,17 42 657 15,63
5 worldits 16,81 39.16 2,33 48 746 15,56
256 GMM 15 worldits 20,75 45,12 2,17 51 776 15,21
20 worldits 25,25 52,13 2,06 54 813 15,05
5 worldits 24,50 68,84 2,81 63 973 15,44
512 GMM 15 worldits 30,41 78,21 2,57 67 1075 16,06
20 worldits 32,20 85,90 2,66 71 1113 15,67
5 worldits 30,15 82,91 2.75 80 1271 15,89
1024 GMM 15 worldits 37,12 90.59 2,44 84 1319 15,70
20 worldits 44,15 101,66 2.30 89 1420 15,95

Table 7.4: Testing and training execution time comparison (in seconds).

48

Chapter 8

Discussion

In this chapter, a general discussion of the results obtained in the previous chapters will
be presented.

During the research, cross-compilation was the stage that was more difficult to obtain.
Some operating systems were tested on the BeagleBoard and the minimal Angstrom
system was the one that presents the best performance in terms of processing time.

Another point worth interesting is the acquisition of the optimal parameters in the ALIZE
/ LIA_RAL configuration. When reading the literature about this Speaker Verification
system, certain specific configurations can be disregarded on embedded systems, due
to excessive processing time. Nevertheless, hard work of testing and analyzing specific
parameter combinations was done. Using the measurements obtained in Table 7.4, the
results presented in the Annex show the best optimization of embedded system, ensuring
the same verification results as in the laptop.

We can determine that due to processing requirements, it is more reliable to do just the
training stage in the embedded system, as has been done in this Master Thesis. If we
take a look on Table 7.4, we can conclude that the time difference ratios between the
laptop and the BeagleBoard grows up for the training process. For example, taking 64
GMM, the laptop spended 20 seconds for training stage. On the other hand, the ARM
processor of the BeagleBoard took 400 seconds, i.e the training stage is 15 times slower in
the embedded system. If we work with databases that take 3-4 minutes for the training in
the laptop, the process would take more than 45 minutes in the BeagleBoard, that is not
useful in practice when using embedded systems. However, the testing process could be
executed with large amount of data, considering a physical implementation of the system,
the run time is consistent compared to the execution time on laptop.

49

Chapter 9

Conclusion and Outlook

In this chapter, we conclude our thesis and present an outlook to future work to advance
in this field of research.

9.1 Conclusion

In this thesis the performance viability of a speaker verication software on an embedded
system has been evaluated. We present a comprehensive study of the ALIZE / LIA RAL
toolkit as embedded system, and the Beagleboard as a target system. We have also have
performed tests that show the possibilities of this speaker verification toolkit on embedded
systems. The evaluation has been carried out using the ELSDSR public database.

Our tests indicate that the ALIZE / LIA RAL speaker verification system can be ported
to the Beagleboard and most probably to other ARM embedded systems. As a finding,
the tests conclude that we can get exactly the same Equal Error Ratio in the Beagleboard
and in the laptop. However, the processing time is highly increased in the embedded
system, compared to the laptop one. Furthermore, we presented an optimal configuration
of the ALIZE / LIA RAL parameters, in order to get the best results in the ARM system,
in terms of EER.

As a conclusion, the processing time is the most relevant factor that differentiate the
laptop and the embedded system functionality. Our tests indicate that time ratio is
increased by a factor of 715, and we can conclude that this system can be used only for
testing purposes, as time for training is too long.

9.2 Outlook

This master thesis validates the correct functionality of the ALIZE / LTA RAL toolkit
on embedded systems, almost for testing purposes. In order to obtain our own speaker
verification software, specific for embedded systems applications, the main goal will be:

e Test the ALIZE / LIA RAL Speaker Verification toolkit with a larger database.

20

e Port this software to other ARM architecture, and compare the results with the
obtained using the Beagleboard.

e Improve the ALIZE / LIA RAL Speaker Verification source code omptimizing the
code for these embedded systems.

o1

Bibliography

[1]

2]

3]

4]

5]

6]

7]

8]

9]

[10]
[11]

[12]

[13]

T. Kamm-M. Ordowski M. Przybocki A. Martin, G. Doddington. The det curve in
assessment of detection task performance. Proceedings of Eurospeech, 4, 1997.

D.B Rubin A.P. Dempster, N.M. Laird. Maximum-likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, Ser. B, 39, 1977.

J. Pelecanos-G.N. Ramaswamy B. Tydlitat, J. Navratil. Text-independent speaker
verification in embedded environments. In proceedings of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, Honolulu, 2007.

L.R. Rabiner B.H. Juang. Automatic speech recognition: A brief history of the
technology development. Georgia Institute of Technology, Atlanta, 2005.

J. Bilmes. A gentle tutorial of the em algorithm and its application to parameter
estimation for gaussian mixture and hidden markov models. International Computer
Science Institute, 1998.

T. Yingthawornsuk C. Ittichaichareon, S. Suksri. Speech recognition using mfcc.
International Conference on Computer Graphics, Simulation and Modeling, 2012.

L.P. Heck D.A. Reynolds. Automatic speaker recognition. AAAS Meeting, Humans,
Computers and Speech Symposium, 2000.

R.B. Dunn D.A. Reynolds, T.F. Quatieri. Speaker verification using adapted gaussian
mixture models. Digital Signal Processing, M.1.T, Lincoln Laboratory,Lexington,
Massachusetts, 2000.

R.C. Rose D.A. Reynolds. Robust text-independent speaker identification using gaus-
sian mixture speaker models. Lincoln Laboratory, MIT, Lexington, MA, 1995.

D.Reynolds. Universal background models. MIT Lincoln Laboratory, USA, 2001.

S. Sridharan J. Pelecanos. Feature warping for robust speaker verification. ISCA
Workshop on Speaker Recognition, 2001.

S. Meignier J.F. Bonastre, F. Wils. Alize, a free toolkit for speaker recognition. LIA
/ CNRS, Universite Avignon, 2005.

H. Jiang. Confidence measures for speech recognition: A survey. Speech Communi-
cation, 45, No.4, 2005.

02

[14] B.H. Juang L.R. Rabiner. Fundamentals of speech recognition. Prentice Hall, En-
glewood Clis, New Jersey, 1993.

[15] B.H. Juang L.R. Rabiner. An introduction to hidden markov models. IEEE ASSP
Magazine, 3, 1996.

[16] H. Lloyd-Thomas R. Auckenthaler, M. Carey. Score normalization for text-
independent speaker verification systems. Digital Signal Processing, 10, 2000.

[17] L.R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. ATT Bell Lab, Murray Hill, New Jersey, 1989.

[18] V. Tiwari. Mfcc and its applications in speaker recognition. International Journal
on Emerging Technologies, 2012.

[19] D.A. Reynolds W.M. Campbell, D.E. Sturim. Support vector machines using gmm
supervectors for speaker verification. MIT Lincoln Laboratory, 2006.

[20] K.H. Pun Y.S. Moon, C.C. Leung. Fixed-point gmm-based speaker verification over
mobile embedded system. Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Shatin, 2003.

93

O Ut W

Appendix A

SD Formatting code

Script definition for formatting SD card:
#! /bin/sh
export LC ALI=C
if [$# —ne 1 |; then
echo "Usage:_$0_<drive>"
exit 1;
fi
DRIVE=$1
dd if=/dev/zero of=$DRIVE bs=1024 count=1024
SIZE=‘fdisk —1 $DRIVE | grep Disk | grep bytes | awk ’{print $5}’°
echo DISK SIZE — $SIZE bytes
CYLINDERS=‘echo $SIZE/255/63/512 | bc*
echo CYLINDERS — $CYLINDERS
echo ,9,0x0C,

echo ,,,—
} | sfdisk -D —H 255 —S 63 —C $CYLINDERS $DRIVE

sleep 1

if [—x ‘which kpartx‘ |; then
kpartx —a ${DRIVE}

fi

PARTITION1=$ {DRIVE} 1

if [! —b ${PARTITION1}]; then
PARTITION1=$ {DRIVE} p1

fi

DRIVE NAME=‘basename $DRIVE‘ DEV DIR=‘dirname $DRIVE®

if [! —b ${PARTITION1} |; then
PARTITIONI=$DEV_DIR/mapper/${DRIVE NAME} p1
fi
PARTITION2=$ {DRIVE}2
if [! —b ${PARTITION2} |; then
PARTITION2=$ {DRIVE}p2
fi

24

49
50
51
52
53
54
55

57
58
59
60
61
62
63
64
65
66

if [! —b ${PARTITION2} |; then

fi

PARTITION2=$DEV DIR/mapper/${DRIVE NAME} p2

#make partitions.

if [b

else

if [-b

else

fi

${PARTITION1} |; then

umount ${PARTITION1}

mkfs.vfat —F 32 —n "boot" ${PARTITION1}
echo "Cant_find_boot_partition_in_/dev"
${PARITION2} |; then

umount ${PARTITION2}

mke2fs —j —L "Angstrom" ${PARTITION2}

echo "Cant_find_rootfs_partition_in_/dev"

95

© 00~ U W

QU W N =

Appendix B
Optimal ALIZE / LTIA RAL

parameters

Configuration file for TrainTarget

#+% TrainTarget Configuration File

sk ok ok

distribType
mixtureDistribCount
maxLLK

minLLK

bigEndian
saveMixtureFileFormat
loadMixtureFileFormat
loadFeatureFileFormat
featureServerBufferSize
loadMixtureFileExtension
saveMixtureFileExtension
loadFeatureFileExtension
featureFilesPath
mixtureFilesPath
labelFilesPath

IstPath
baggedFrameProbability
// mixtureServer
nbTrainFinallt
nbTrainlt
labelSelectedFrames
useldForSelectedFrame
normalizeModel

// targetIdList
inputWorldFilename
alpha

MAPAIgo
MAPRegFactorMean
featureServerMask
vectSize

frameLength

debug

verbose

meanAdapt

GD
64
200
—200
false
XML
XML
SPRO4

ALL_FEATURES

.gmm
.gmm
.tmp.prm

data/ELSDSRdatabase/features/
data/ELSDSRdatabase/ mixtures/
data/ELSDSRdatabase/labels/
data/ELSDSRdatabase/lists /

1

1

1
speech
false
false

data/ELSDSRdatabase/lists /trainFAML. lst

wld //
0.75
MAPOccDep
14
0—15,17—33
33

0.01

true

false

true

Configuration file for TrainWorld

#%% TrainWorld Configuration File

3k ek

distribType
mixtureDistribCount
maxLLK

GD
64
200

o6

o~ ™

O~ O U WN

minLLK

bigEndian
saveMixtureFileFormat
loadMixtureFileFormat
loadFeatureFileFormat
featureServerBufferSize
loadMixtureFileExtension
saveMixtureFileExtension
loadFeatureFileExtension
featureFilesPath
mixtureFilesPath
labelFilesPath

IstPath
baggedFrameProbability

baggedFrameProbabilitylnit

labelSelectedFrames
addDefaultLabel
defaultLabel
normalizeModel
featureServerMask
vectSize

frameLength

// inputFeatureFilename
fileInit

// inputWorldFilename
initVarianceCeiling
initVarianceFlooring
finalVarianceFlooring
finalVarianceCeiling
nbTrainlt
nbTrainFinallt
outputWorldFilename
debug

verbose

—200

false

XML

XML

SPRO4

ALL_FEATURES

.gmm

.gmm

.tmp . prm
data/ELSDSRdatabase/features/
data/ELSDSRdatabase/mixtures/
data/ELSDSRdatabase/labels/
data/ELSDSRdatabase/lists /
0.05

0.1

speech

true

speech

false

0-15,17—33

33

0.01

../../../ data/ELSDSRdatabase/1lists /UBMIlist. Ist

false
wld
10

1
0.5
5

20
20
wld
true
true

Configuration file for ComputeTest

x*% ComputeTest Config File

*k %
distribType
loadMixtureFileExtension

// saveMixtureFileExtension

loadFeatureFileExtension
mixtureDistribCount
maxLLK

minLLK

bigEndian
saveMixtureFileFormat
loadMixtureFileFormat
loadFeatureFileFormat
featureServerBufferSize
featureFilesPath
mixtureFilesPath
labelSelectedFrames
labelFilesPath
frameLength
segmentalMode
topDistribsCount

computeLLKWithTopDistribs

//ndxFilename
//worldModelName
// outputFilename
gender

debug

verbose
featureServerMask
vectSize
inputWorldFilename

GD

.gmm

.gmm

.tmp . prm

64

200

—200

false

XML

XML

SPRO4

ALL_FEATURES
data/ELSDSRdatabase/features/
data/ELSDSRdatabase/ mixtures/
speech
data/ELSDSRdatabase/labels/
0.01

segmentLLR

10
COMPLETE

data/ELSDSRdatabase/lists /aitor.lst

wld

data/ELSDSRdatabase/res/testing .res

F

true

false
0—15,17—33
33

wld

57

O~ O Ut W N

O~ O Ut W

Configuration file for NormFeat

#++x NormFeat config File
kK k

mode

debug

verbose

bigEndian
loadFeatureFileFormat
saveFeatureFileFormat
loadFeatureFileExtension
saveFeatureFileExtension
featureServerBufferSize
sampleRate

saveFeatureFileSPro3DataKind

//inputFeatureFilename
labelSelectedFrames
segmentalMode
writeAllFeatures
labelFilesPath
frameLength
defaultLabel
addDefaultLabel
vectSize
featureServerMode
featureFilesPath
featureServerMemAlloc

norm
false

true

false

SPRO4

SPRO4
.tmp . prm
.norm.prm
ALL FEATURES
100

FBANK

data/ELSDSRdatabase/lists /testList .

speech

false

false
data/ELSDSRdatabase/labels/
0.01

speech

speech

34

FEATURE WRITABLE
data/ELSDSRdatabase/features/
50000000

Configuration file for EnergyDetector

x%x HKnergyDetector Config File

3k ok
loadFeatureFileExtension

// saveFeatureFileExtension
minLLK

maxLLK

bigEndian
loadFeatureFileFormat
saveFeatureFileFormat

saveFeatureFileSPro3DataKind

featureServerBufferSize
featureFilesPath
mixtureFilesPath
IstPath

// inputFeatureFilename
labelOutputFrames
labelSelectedFrames
addDefaultLabel
defaultLabel
saveLabelFileExtension
labelFilesPath
frameLength
writeAllFeatures
segmentalMode

nbTrainlt
varianceFlooring
varianceCeiling

alpha
mixtureDistribCount
featureServerMask
vectSize
baggedFrameProbabilitylnit
debug

verbose

.enr .tmp.prm

.norm. prm

—200

200

false

SPRO4

SPRO4

FBANK

ALL FEATURES
data/ELSDSRdatabase/features/
data/ELSDSRdatabase/ mixtures/
data/ELSDSRdatabase/lists /
testList . Ist

speech

male

true

male

.1bl
data/ELSDSRdatabase/labels/
0.01

true

file

8

0.5

10

0.0

3

16

1

1.0

true

false

o8

Ist

