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1 Introduction 
 
The launch of new high resolution image sensors, the availability of reasonable cheap, high 
performance PCs and new technologies developed by the computer vision community are the 
basic requirements for a new way of modeling virtual habitats. Through the use of digital 
sensors redundancy is available at almost no additional cost. This redundancy is the key to 
solve one of the main problems in photogrammetry and computer vision, namely the 
correspondence problem. The main goal in all our R&D work is targeted to minimize the human 
interaction during the modeling process. All the results throughout this paper are obtained fully 
automatically if not stated otherwise. 
This paper is organized as follows. Section 2 describes the estimation of a 3D city block model 
using airborne images. In Section 3 we explain the orientation of terrestrial acquired images and 
their registration towards the 3D block model in more detail. Section 4 outlines our approach on 
how important objects are modeled very precisely. Section 5 concludes this paper and 
describes some ongoing and future work. 
 
 
2 City Modeling using Airborne Data 
 
Currently, aerial photogrammetry is undergoing a “paradigm shift” [1] which means the transition 
from minimizing the number of film photos due to human operator intensive processing to 
maximizing the robustness of automation due to high redundant image information using new 
large format digital aerial cameras.  
In our workflow we use images from an UltraCam-D camera from Vexcel Imaging which delivers 
16 bit pan-sharpend RGB-NIR images with a size of 11500 x 7500 pixels. The camera is able to 
deliver images almost every second. 
Our workflow includes the following steps: a classification of all images, the aerial triangulation 
(AT) using area and feature based POIs, a dense matching to generate a dense DSM (digital 
surface model), a refined classification using the DSM, a ‘true’ orthophoto production, and the 
estimation of a DEM. In this paper we will focus on the automatic AT and on dense matching. 
 
 
2.1 Automatic Aerial Triangulation 
 
Digital airborne cameras are able to deliver high redundant images which result in small 
baselines. Normally, the strips of images have at least 80% forward overlap and at least 20% 
side overlap (in urban areas 60% side overlap). This high redundancy - one point on the ground 
can be seen in up to 15 images - and the constraint motion of a plane help to find good starting 
solutions needed for a fully automated AT. Nevertheless, an accurate extraction of tie points is 
needed for a robust and accurate AT [2]. Our POI extraction is based on Harris points and POIs 
from line intersections [3].  
 
The POIs from line intersections which we call ‘zwickels’ are very suitable for urban areas. 
Zwickels are sections defined by two intersecting line segments, dividing the neighborhood 
around the intersection point into two sectors. The information inside the smaller sector is used 
to compute an affine invariant representation. We rectify the sector using line information and 
compute a histogram of the edge orientations as a description vector. The descriptor combines 
the advantage of accurate point localization through line intersection as well as higher 
descriptivity through use of a larger image region compared to descriptors computed around the 
points. Compared to other affine invariant descriptors we demonstrate that our method avoids 
the problem of depth discontinuities. In several matching experiments we show that our features 
are insensitive against viewpoint changes as well as illumination changes. 
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After the POIs extraction in each image we calculate feature vectors in the close neighborhood. 
These feature vectors are used to find 1 to n correspondences between POIs in two images. 
Using affine invariant area based matching the number of candidates is further reduced. For all 
remaining candidates we iteratively apply an affine transformation to maximize the cross-
correlation score. As a result we get a list of corresponding points. In order to fulfill the non-
ambiguous criteria, only matches with a high distinctive score are retained. The robustness of 
the matching process is enhanced by processing a back-matching as well.  
 
 

 
 
Figure 1: In this example we use zwickels only to show their strength in urban areas. There are only two outliers within 

the best 25 matches before the epipolar constraint is applied. Corresponding POIs are connected by lines. 
 
 
Another restriction is enforced by the epipolar geometry. Therefore the RANSAC method is 
applied to the well known five point algorithm [4]. As a result we obtain inlier correspondences 
as well as the essential matrix. By decomposition of the essential matrix the relative orientation 
of the current image pair can be calculated. 
This step is accomplished for all consecutive image pairs. In order to get the orientation of the 
whole set, the scale factor for additional image pairs has to be determined. This is done using 
corresponding POIs available in at least three images. A block bundle adjustment refines the 
relative orientation of the whole set and integrates other data like GPS or ground control 
information. Figure 2 shows an oriented block of 7 x 50 aerial images together with the used 3D 
tie points on the ground. The whole block of images was processed without any human 
interaction. 
 

 
 

Figure 2: 7 strips of about 50 images each (5 strips flown east-west and 2 north-south) denoted by small arrows are 
oriented to each other using about 70.000 tie points on the ground which are shown as white dots. 

  



2.2 Dense Matching 
 
Once the AT is finished we perform a dense area based matching to produce a dense DSM 
(digital surface model). During the last few years more and more new dense matching 
algorithms were introduced. A good comparison of stereo matching algorithms is given in a 
paper by Scharstein et al.[5]. Recently, a PDE based multi-view matching method was 
introduced by Strecha et al. [6]. In our approach we focus on an iterative and hierarchical 
method based on homographies to find dense corresponding points. For each input image an 
image pyramid is created and the calculation starts at the coarsest level. Corresponding points 
are determined and upsampled to the next finer level where the calculation proceeds. This 
procedure continues until the full resolution level is reached. A more detailed description of this 
algorithm implemented on graphics hardware can be found in [7]. 
In order to handle multiple high resolution aerial images an intelligent memory management 
system is needed. Figure 3 shows some first results of our approach. 
 
 

     
 

Figure 3: A dense triangular mesh is calculated from oriented aerial images. a) Only parts of the mesh are textured to 
see the high geometric resolution of the mesh. b) A second view of the same mesh from close above the roofs. Due to a 
flight height of about 1000m above ground, the facades cannot be modeled very well due to small intersection angles. 
 
 
A ‘true’ orthophoto is obtained by orthoprojection of the DSM (see Figure 4). The color 
information of the orthophoto is calculated using all available aerial images and is based on 
view-dependent texture mapping described in [8]. 
 
 

 
 

Figure 4: 3D view of the textured DSM with the projection mode set to orthonormal projection and a vertical viewing 
direction. The facade surfaces are not visible, as expected from a ‘true’ orthophoto. 

 

  



 
 
3 City Modeling using Terrestrial Data 
 
In this part we concentrate on the refinement of the facades of buildings. We assume that a 3D 
block model with roof surfaces exists. The 3D block model is augmented using image 
sequences captured by a digital consumer camera from arbitrary positions. Currently, we use a 
calibrated digital camera with a geometric resolution of 4064 x 2704 and 12bit per pixel 
radiometric resolution. The images are captured with high overlap resulting in short baselines. 
Our work flow consists of seven consecutive steps which will be explained in the following 
subsections. Subsection 3.2, 3.3 and 3.4 are described in [9] in more detail. 
 
 
3.1 Line Extraction, Vanishing Point Detection and Point-of-Interest (POI) extraction 
 
The line extraction starts with an edge detection with subpixel accuracy. Pairs of edgels in close 
proximity are randomly picked to form a potential line segment. If enough other edgels close to 
these segments are found the line is kept and merged to collinear segments. These extracted 
lines are used to detect vanishing points based on a method proposed by Rother [10]. POIs are 
extracted from intersecting lines pointing towards different vanishing points and classified into 8 
categories dependent on their position relative to the two lines and on their gradient information. 
 
 
3.2 Relative Orientation of Image Pairs from Vanishing Points  
 
The relative orientation of a camera has 5 degrees of freedom - three for the rotation and two 
for the direction of the baseline. We assume that two adjacent images in a sequence view the 
same plane to some extent and thus share the same vanishing points. From this information we 
can calculate the relative rotation between each image and the plane and therefore the relative 
rotation between the two images (see Figure 5a). The direction of the baseline is found in a two 
stage approach. First potential matches of POIs from the same category are searched for. 
Second, for all matches all POIs from one image are projected into the other while this is shifted 
along the potential match (see black continuous line in Figure 5a). This procedure results in 
lines which can be seen in Figure 5b. The correct position of the second image relative to the 
first is found at the point where most of the lines overlap with POIs of the same category. 
 
 

           
 
Figure 5: a) Assuming that two images view the same plane, their relative rotation can be obtained from their vanishing 
points. b) POIs from one image are projected into the other while this is shifted along the potential match (depicted as a 

black continuous line in Figure 5a). 
 
 
 
 
 
 
 

  



3.3 Relative Orientation of Image Sequences 
 
In order to calculate the orientation of a continuous sequence we perform the following steps: 
1. Without loss of generality, we assume a fixed baseline to calculate 3D points from 
corresponding points and the relative orientation of the first image pair. 
2. An adjacent image is added to the sequence. The rotation is obtained from the vanishing 
points as described before. The position is determined by minimizing a cost function that sum 
up the reprojection errors of suitable 3D points. Suitable means that there exist 
correspondences between a POI in the new image and POIs that led to the 3D point. 
3. The rotation of the new image is improved by minimizing the same cost function we used 
above. 
4. The corresponding points of the new image are either used to calculate new or to improve old 
3D points. 
5. As long as adjacent images are left, we proceed with step 2. 

 

 
 

Figure 6: Sequence of oriented terrestrial images and the used 3D POIs which are mostly found on corners of windows. 
 
 
3.4 Geo-referencing of Image Sequences 
 
So far we have only obtained a relative oriented sequence, where the position and orientation in 
geo-referenced coordinates as well as the scale is not known. In a normal case the upgrade 
from a relative orientation to a geo-referenced orientation of all images needs at least three well 
distributed control points. Due to the fact, that the vertical direction of the images is already 
known from vanishing points only two control points are necessary to transform the images into 
a geo-referenced coordinate system. Using two 3D point correspondences and the information 
from the vanishing points we calculate a transformation matrix that solves the orientation 
upgrade for the whole sequence. 
 
 
3.5 Dense area based matching 
 
The dense matching framework used for dense façade modeling is very similar to the one 
explained in section 2.2. Figure 7 shows one result for a building in Vienna. 
 

 
 

Figure 7: Dense textured point cloud calculated using the information from the oriented sequence of images shown in 
the front of the façade. 

  



 
 
3.6 Orthophoto generation 
 
Once we have a dense surface model of the facades of the buildings we can calculate an 
orthoprojection normal to the main direction of the facade to obtain a ‘true’ orthophoto. Figure 
8.a shows one result where the black areas correspond to regions with no visibility to any input 
image. A more pleasant orthophoto for visualization purposes can be produced by filling up the 
black areas with color information from the surrounding regions. Figure 8.b shows the result of 
this approach. 
 
 

          
 

Figure 8: a) Orthonormal projection of the dense point cloud shown in Figure 7. b) Areas with no visibility to any input 
image are filled with color information from surrounding regions. 

 
 
3.7 Line matching 
 
The set of line segments per image together with the known orientation of the image sequence 
are the input for the line matching algorithm. Our approach closely follows the one described by 
Schmid and Zisserman [11]. The result of the line matching process is a set of 3D lines in object 
space. Basically the algorithm works as follows: For a reference line segment in one image of 
the sequence potential line matches in the other images are found by taking all lines that are 
enclosed by the epipolar lines induced by the endpoints of the reference line segment. Each of 
these potentially corresponding line pairs gives a 3D line segment (except for those, which are 
parallel to the epipolar line, since in this case no intersection between the epipolar line and the 
image line can be computed). The potential 3D lines are then projected into all remaining 
images. If image lines are found which are close to the reprojection, the candidate is confirmed, 
else it is discarded. Finally a correlation based similarity criterion is applied to select the correct 
line. Figure 9 shows two views of the extracted 3D line set. Obviously, due to the small vertical 
baseline the geometric accuracy of the horizontal line segments is limited. A more detailed 
description of the involved steps can be found in [12]. 
 

          
 

Figure 9: Two views of the 3D line matching results. 
 
 

  



 
4 Modeling of Cultural Heritage 
 
In this part we concentrate on high quality modeling of distinct objects like important facades or 
statues within a city. The workflow consists of an orientation process which is followed by a 
dense matching process. In the orientation process we use affine invariant POIs descriptors. A 
first result of an automatically oriented sequence of images around a statue can be seen in 
Figure 10.  
 

 
 

Figure 10: 3D tie points of a statue which are obtained during the relative orientation of a sequence of images around 
that statue. 

 
 

Additionally, in the case of modeling statues we need a segmentation process to distinguish 
between foreground (relevant parts belonging to a statue) and background information to 
support the matching process. This information, which is currently inserted by a human 
operator, is important to reduce the outlier rate in the matching process and to get a meaningful 
3D model with a semantic description of the object [13]. 
Again, the dense matching algorithm uses all the available image information to get an image-
consistent 3D reconstruction of the object. Within our hierarchical image matching approach 
coarse 3D information from lower levels is used to restrict the number of used images to those 
with potential visibility. A 3D model of a statue in front of the Landhaus building in Graz can be 
seen in Figure 11. 
 
 

 
 

Figure 11: Dense 3D surface model with two close-up views of a statue in front of the Landhaus in Graz. 
 
 

  



5 Conclusion and Future Work 
 
In this paper, new methods for the modeling of cities in different level of details and with 
different input data were proposed. In all our approaches we use high redundancy in the input 
data to solve the correspondence problem with minimized human interaction. New high 
resolution digital sensors and high performance of common hardware (PCs) helped to 
overcome most of the problems dealt with in the past. 
Currently, we are investing hardware based solutions (mainly using graphics hardware) to 
accelerate time consuming CPU-based algorithms. 
In the future we see the need to integrate recognition aspects into the 3D modeling approach to 
further improve the 3D reconstructions and to obtain a semantic description of our 3D models 
as well. 
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