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Abstract—Multi-hop time synchronization is essential to large-
scale deployment of IoT and wireless sensor networks. Its per-
formance, however, is affected by the processing delays at inter-
mediate gateway nodes, which cause cumulative synchronization
error. To address this, we propose a per-hop delay compensation
scheme as a simple and effective multi-hop extension option based
on packet-relaying gateway nodes for energy-efficient time syn-
chronization in wireless sensor networks. Experimental results on
a real testbed demonstrate that the per-hop delay compensation
scheme significantly improves the multi-hop time synchronization
performance when applied to the state-of-the-art beaconless
asymmetric energy-efficient time synchronization scheme and the
conventional flooding time synchronization protocol.

Index Terms—Multi-hop time synchronization, per-hop delay
compensation, packet relaying, wireless sensor networks, energy
efficiency.

I. INTRODUCTION

T IME synchronization in wireless sensor networks
(WSNs), as a fundamental service for various

applications such as environment monitoring [1], [2], event
detection [3], and localization [4], has been extensively studied
for decades. The large-scale deployment of WSNs through
multi-hop extension enables various WSN applications to
be applicable to large areas which cannot be covered by
single-hop communication from the head node. Multi-hop
extension is also required in relatively smaller areas in order
to save transmission energy of sensor nodes and overcome
obstacles preventing line-of-sight communication. Depending
on the way of exchanging synchronization messages, the
multi-hop time synchronization schemes can be classified
into two major categories: The schemes based on two-way
message exchange and those based on one-way message
dissemination.

Compared to the schemes based on one-way message dis-
semination, those based on two-way message exchange can
compensate for propagation delay at the expense of additional
message transmissions at sensor nodes, which increases sensor
nodes’ energy consumption. Among the schemes based on
two-way message exchange, timing-sync protocol for sensor
networks (TPSN) [5] and recursive time synchronization pro-
tocol (RTSP) [6] initiate the two-way synchronization process
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from sensor nodes, while Energy-E fficient time synchro-
nization based on Asynchronous Source C lock F requency
Recovery (EE-ASCFR) [7] and asymmetric high-precision
time synchronization (AHTS) [8] reverse the two-way mes-
sages exchange procedure by initiating it from the head node
to save the energy consumption at sensor nodes, which are
many in number and typically battery-powered. Due to the
propagation delay compensation, the schemes based on two-
way message exchange could achieve higher synchroniza-
tion accuracy, but the energy consumption for the round-trip
message exchange could be an issue in case of resource-
constrained WSNs, especially under multi-hop scenarios.

Owing to their straightforward one-way forwarding syn-
chronization messages and distributed processing, conven-
tional schemes based on one-way message dissemination gain
more attraction from the research community. Flooding time
synchronization protocol (FTSP) [9], a representative one-way
message dissemination based scheme, relies on synchronized
nodes for their multi-hop extension, which further distribute
“reference points” to other sensor nodes not in the broad-
cast radius of the head and therefore consume more energy
in broadcasting their own synchronization messages. Many
variations, notably rapid-flooding multiple one-way broadcast
time synchronization (RMTS) [10], could greatly improve
the synchronization performance of the original FTSP by
reducing the accumulation of per-hop error and convergence
time but at the expense of increase in the number of message
transmissions and computational complexity. There are also
thriving consensus-based time synchronization schemes such
as [11] and [12] which could improve the convergence rate
in the multi-hop and clustered scenarios. These schemes,
however, mainly focus on the improvement of multi-hop time
synchronization performance but hardly take into account the
issue of energy efficiency.

Beaconless asymmetric energy-efficient time synchroniza-
tion scheme (BATS) [13] has been recently proposed to
reduce the energy consumption and computational complexity
of battery-powered, low-cost sensor nodes. BATS, which is
based on one-way message dissemination and time translation
for its multi-hop extension, is conceptually equivalent to the
extension based on multiple “reference points” of the flood-
ing time synchronization schemes. The direction of message
dissemination, however, is reversed to improve the energy
efficiency of sensor nodes by reducing the number of message
exchanges, and most of the distributed synchronization tasks
are centralized at the head to relieve the computational burden
of the gateway nodes.

In this letter, we systematically analyze the feasibility of
compensating for the processing delay at gateway nodes in
multi-hop WSN with a major focus on the effect of precision
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Fig. 1. Multi-hop extension based on (a) time translation proposed in BATS
and (b) packet-relaying gateways.

loss and clock skew on the processing delay compensation.
Based on the analysis, we propose a per-hop delay compensa-
tion (PHDC) scheme as a simpler but more effective multi-hop
extension option for energy-efficient WSN time synchroniza-
tion schemes leveraging one-way message dissemination and
apply it to BATS and FTSP—i.e., representative WSN time
synchronization schemes based on reverse and conventional
one-way message dissemination—to demonstrate its feasibility
and evaluate the improvement in multi-hop time synchroniza-
tion performance. To the best of the authors’ knowledge, this
is the first time that the idea of processing delay compensation
at intermediate gateways has been mathematically formulated,
systematically analyzed, and implemented on a real testbed
for performance evaluation in the context of WSNs since the
issue of processing delays was discussed in [7].

II. PER-HOP DELAY COMPENSATION IN MULTI-HOP
WSNS BASED ON PACKET-RELAYING GATEWAYS

A. Multi-Hop Extension Based on Packet-Relaying Gateways

Multi-hop extension of WSN time synchronization schemes
based on time-translating and packet-relaying gateways is
discussed in [7]. Of the two options, multi-hop extension
based on time-translating gateways is employed in the original
BATS as part of its per-hop synchronization strategy, which
establishes time synchronization by translating timestamps
across each gateway [13]. As illustrated in Fig. 1 (a), the
synchronization between the sensor node and the head node
is established through translating timestamps at the gateway,
which can eliminate the effect of gateway processing delays
on time synchronization.

With multi-hop extension based on packet-relaying gate-
ways, on the other hand, gateway operations are much simpler
because timestamps are relayed without any translation at the
gateway. The time synchronization, however, could be affected
by rather large and random per-hop processing delay (i.e., ∆)
resulting from queueing/scheduling and media access control
(MAC) operations at each gateway as shown in Fig. 1 (b); if
the per-hop delay is compensated for, the packet-relaying op-
tion could be a better alternative to the time-translating one in
terms of computational complexity and energy consumption.
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Fig. 2. A WSN with one gateway node and one sensor node.

B. Delay Compensation at a Packet-Relaying Gateway

First, we explain the basic idea of delay compensation
at a packet-relaying gateway using a 2-hop WSN shown in
Fig. 2 where, for ease of notation, we ignore subindexes of
timestamps denoting hop number unlike Fig. 1.

The processing-delay-compensated timestamp T̂1(i) for ith
synchronization (i=2, 3. . .) can be expressed as follows:

T̂1(i) = T1(i) +
⌊
∆(i) ×

T1(i) − T1(i−1)
T A(i) − T A(i−1)

⌋
, (1)

where T1(i), T A(i), and T D(i) are the MAC-layer timestamps
recorded at transmission, reception and forwarding of the ith
synchronization message on the sensor node and the gateway
node, and ∆(i) is the processing delay defined as T D(i)−T A(i).
The floor function (i.e., b·c) is used to convert the processing
delay scaled by the estimated clock frequency ratio between
the gateway and the sensor nodes to an integer for a timestamp.

Note that the integer conversion in (1) could eliminate the
effect of the precision loss in the floating-point division: Let
R be the true value of the floating-point division T1(i)−T1(i−1)

T A(i)−T A(i−1)
and ε be the error resulting from the precision loss. In this
case, the second term in (1) can be expressed as follows:

b∆(i) × (R + ε)c = b∆(i)R + ∆(i)εc

= n + bδ + ∆(i)εc ,

where n and δ are the integer and the fractional part of ∆(i)R,
respectively (i.e., n= b∆(i)Rc and δ=∆(i)R−n). Therefore, if
δ+∆(i)ε is less than one (i.e., bδ+∆(i)εc =0), the effect of the
precision loss is eliminated during the integer conversion.

Note that, because ∆(i) is an integer (i.e., a difference of
timestamps), if the clock frequency ratio between the gateway
and the sensor nodes is close to one, the fractional part of
∆(i)R becomes negligible (i.e., δ≈0). In such a case, we can
obtain the following upper bound for the precision loss:

∆(i)ε < 1⇒ ε <
1
∆(i)

. (2)

If the precision loss is less than the upper bound given in (2),
it does not affect the processing delay compensation.

1) On the Implementation without Clock Skew Compensa-
tion: When the processing delay can be managed to be lower
than a certain bound, we can ignore the clock skew com-
pensation, which would simplify PHDC at gateways. Without
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clock skew compensation, the processing-delay-compensated
timestamp in (1) can be simplified to

T̂1(i) = T1(i) + ∆(i). (3)

Let ε be the clock skew between the gateway and the sensor
nodes—i.e., (1+ε) is the clock frequency ratio between the
gateway and the sensor nodes. If the estimation of the clock
skew is perfect (including no precision loss in the floating-
point division), the error resulting from the lack of clock skew
compensation is given by1

b∆(i) (1+ε)c − ∆(i) = b∆(i)εc .

Therefore, we can obtain the following upper bound for the
clock skew:

∆(i)ε < 1⇒ ε <
1
∆(i)

. (4)

If the clock skew is less than the upper bound given in (4), it
does not affect the processing delay compensation.

Alternatively, if we are given the clock tolerance specifi-
cation (i.e., the maximum value of the clock skew in ppm),
we can derive the upper bound for the processing delay at the
gateway node, i.e.,

∆(i) <
1
ε
. (5)

A typical frequency tolerance of a crystal over the manu-
facturing process is ±100 ppm [14]. If we ignore the effect
of temperature variation (e.g., the gateway and the sensor
nodes are close to each other), the processing delay less than
104 does not affect the processing delay compensation. For
example, if the clock resolution is 1 µs, the processing delay
should be less than 104 µs which is 10 ms. Note that, when the
processing delay exceeds this bound, the clock skew should be
compensated for in order to achieve satisfactory performance.

Concerning the above analysis, we have conducted a series
of comparative experiments employing two groups of sensor
nodes, i.e., one meeting the bound of (4) and the other not.
To evaluate the performance under a multi-hop scenario, we
consider a flat 3-hop network consisting of one head, one
gateway, and two sensor nodes, where the 2-hop sensor node
also serves as a gateway node for the 3-hop sensor node.
We carried out three experiments—i.e., BATS with packet
relaying (PR), BATS with PR and delay compensation (DC)
and BATS with PR, DC and clock skew compensation (SC)—
for each group and show the mean absolute errors (MAEs) of
the measurement time estimation in Fig. 3.

As expected, packet relaying without delay compensation
results in synchronization errors of the order of milliseconds
due to the uncompensated per-hop delays. With delay com-
pensation, on the other hand, packet relaying can provide
reasonable synchronization performance when the clocks of
sensor and gateway nodes meet the bound of (4). When packet
relaying is used with clock skew compensation as well as
delay compensation, reasonable synchronization accuracy is
obtained for both 2-hop and 3-hop sensor nodes even when
their clocks do not meet the bound of (4).

1In the following, we assume ε>0 for simplicity.
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Fig. 3. MAEs of the measurement time estimation of BATS equipping
packet relaying (PR), delay compensation (DC) and skew compensation (SC)
evaluated on the sensor nodes with different clock skews, N2 and N3 stand
for the sensor nodes located in the second hop and third hop from the head.
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Fig. 4. PHDC in a multi-hop WSN.

Considering different temperature variations over a long
distance and increasing load over multiple hops affecting the
conditions of (4) and (5), packet relaying based on PHDC
but without clock skew compensation would be a viable
option for a small-scale WSNs or hybrid WSNs where a
couple of packet-relaying gateways are used between two
time-translating gateways.

C. Implementation over Multiple Gateways

When the clock frequencies of gateway and sensor nodes
are synchronized to that of the reference clock at the head as
in EE-ASCFR or the processing delays at gateways can be
managed to be lower than the delay bound given in (5), we
can ignore the effect of clock skew on the synchronization.

PHDC over multiple gateways, therefore, can be imple-
mented without clock skew compensation as illustrated in
Fig. 4, where we ignore the propagation delay as is the case for
typical WSN communication ranges in the literature. In this
case, the processing delay ∆i( j) at gateway i during the jth
synchronization can be measured as a difference between the
departure time (i.e., T1i( j)) and the arrival time (i.e., T2i( j))
of a timestamp through MAC-layer timestamping, and the
content of the received timestamp is increased by ∆i( j) at
the time of its departure as described in (3).
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In case the effect of clock skew cannot be ignored, a set
of pairs of timestamps—i.e., (T1, T2)—used for the time
synchronization between the two neighbor nodes could be
leveraged to estimate their frequency ratio: During the jth
( j=2, 3, . . .) synchronization, the ratio of the clock frequency
of node i to that of node i−1 can be estimated by2

Ri,i−1( j) =
T1i( j) − T1i( j−1)

T2i−1( j) − T2i−1( j−1)
. (6)

With the clock frequency ratio, the processing delay measured
at node i−1 can be translated to that with respect to the clock
of node i, i.e.,

∆̂i,i−1( j) = Ri,i−1( j) × ∆i−1( j). (7)

Based on (6) and (7), we can translate the processing delay
measured at node i (i=1, . . ., N−1) to that with respect to the
clock of the originating sensor node N , i.e.,

∆̂N,i( j) =

(
N∏

k=i+1
Rk,k−1( j)

)
× ∆i( j), (8)

which should be added to the content of the received times-
tamp at its departure time. The final timestamp received by
the head after a series of PHDC, therefore, is given by

T̂1N ( j) = T1N ( j) +
N−1∑
i=1
∆̂N,i( j). (9)

With this pair of (T̂1N ( j), T20( j)), the head estimates the clock
parameters of the sensor node, eliminating the effect of the
per-hop delays on time synchronization.

Note that for the delay compensation in (8), the product
of ratios (i.e.,

∏N
k=i+1 Rk,k−1( j)) should be known to each

gateway. For this, we can add the product of ratios to the
synchronization message at each gateway or we can move all
the calculations (i.e., (6)–(8)) to the head node as in BATS,
the latter of which can relieve the computational burden of
the gateways at the expense of the increased communication
overhead [13].

III. EXPERIMENTAL RESULTS

We have set up a WSN testbed for the 6-hop linear topology
shown in Fig. 5 to evaluate the improvement in multi-hop time
synchronization performance made by the proposed PHDC
when applied to BATS and FTSP based on packet-relaying
gateways. The sensor nodes are TelosB motes running TinyOS
equipped with a 32-kHz crystal oscillator (CO) having a
resolution of 30.5 µs [15].

Since the state-of-the-art WSN time synchronization
schemes could achieve microsecond to sub-microsecond
synchronization accuracy [7], 30.5 µs resolution provided by
the 32-kHz CO is insufficient. To achieve microsecond-level
synchronization accuracy, we employ the sensor node’s
internal clock for timestamping, which is driven by a
digitally-controlled oscillator (DCO) and has a minimum
resolution of 1 µs. From preliminary experiments, however,

2 (6) is an example, and advanced skew estimation schemes based on more
samples can be applied as in [13].

TABLE I
SKEWS OF 6 TELOSB SENSOR NODES’ INTERNAL CLOCKS.

Node 1 2 3 4 5 6
Skew [ppm] 1080 2340 60 1460 360 37

0 1 2 3 4 5 6

Head Node Sensor Nodes

Fig. 5. A WSN with 6-hop linear topology.
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Fig. 6. Measurement time estimation errors of BATS based on packet-relaying
gateways with PHDC.

we found that the accuracy of DCO-driven internal clocks
does not always meet the requirement of (4) even after the
calibration by the 32-kHz CO as described in [16]; in fact,
the skews of 6 sensor nodes’ internal clocks measured with
respect to that of a reference node turn out to be up to
thousands of ppms as shown in Table I. In addition to the
clock skews, we also measured the processing delays and
found that they are around 8 ms on the sensor node platform
we employed.

Employing these sensor nodes, we have implemented the
proposed PHDC with clock skew compensation on BATS with
the self-data bundling option [13]—i.e., one measurement is
bundled in each measurement message—for fair comparison
with conventional time synchronization schemes like FTSP.
Fig. 6 shows the measurement time estimation errors of BATS
with PHDC over 3600 s with a synchronization interval of 1 s;
during the experiments, each sensor node periodically sends
measurement data to the head via measurement messages.
The results show that all the sensor nodes across six hops
achieve nearly the same performance of the measurement time
estimation errors in the range of ±7 µs with no clear sign of
the cumulation of synchronization errors over multiple hops.
This indicates that, with proper compensation of both per-hop
delay and clock skew at each gateway node, the multi-hop
synchronization reduces to the synchronization between the
head and the end node, which is not much affected by the
intermediate gateway nodes.

The improvement in multi-hop synchronization performance
by the proposed PHDC becomes clearer when compared to
BATS with time translation (TT) as shown in Fig. 7, where
we also include the results of PHDC applied to FTSP—
i.e., a representative of popular flooding-based time synchro-
nization schemes based on conventional one-way message
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dissemination—to demonstrate the effectiveness of the pro-
posed PHDC for other time synchronization schemes. From
Fig. 7, we observe that the hop number hardly affects MAE
of the measurement time estimation and its standard deviation
for BATS with PHDC, achieving the average value of 1.95 µs
for MAE over 6 hops. In case of the BATS with TT and FTSP
with TT, both MAEs and their standard deviations increase as
the hop number increases, which indicates the cumulation of
synchronization errors over multiple hops.

The difference between the multi-hop synchronization per-
formance of BATS with PHDC and that of FTSP with PHDC,
by the way, shows the importance of the accurate clock skew
compensation, because BATS has advantages in compensating
for clock skew over FTSP as discussed in [8] and [13].
Though the proposed PHDC applied to FTSP shows multi-
hop synchronization performance not as good as that of BATS
with PHDC, it could provide an alternative option for multi-
hop extension of FTSP, which is simpler to implement but with
more than 50% improvement in per-hop synchronization error
over TT,—i.e., 0.21 µs in FTSP-PHDC vs. 0.45 µs in FTSP-
TT.3

IV. CONCLUDING REMARKS

In this letter, we have proposed a PHDC scheme for
multi-hop WSN time synchronization based on packet-relaying
gateways, analyzed the effect of precision loss and clock skew
on it, and discussed implementation options for the cases with
and without clock skew compensation. We applied PHDC to
both BATS, the state-of-the-art energy-efficient time synchro-
nization scheme, and FTSP, the conventional flooding time

30.5 µs per-hop synchronization error is reported for the original FTSP [9].

synchronization scheme, in order to evaluate its effectiveness
in improving multi-hop time synchronization performance.
Experimental results on a real WSN testbed demonstrate that,
when applied to BATS, the proposed scheme can properly
address the cumulative synchronization error over multiple
hops and that, in case of FTSP, it could provide a simper option
for multi-hop extension with more than 50% improvement in
per-hop synchronization error over TT.
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