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Abstract- Despite supercomputers deliver huge computational power, 
applications only reach a fraction of it. There are several factors 
limiting the application performance, and one of the most important 
is the single processor efficiency because it ultimately dictates the 
overall achieved performance. We present the folding mechanism, a 
process that combines measurements captured through minimal 
instrumentation and coarse-grain sampling ensuring low time 
dilation (less than 5%). The mechanism reports instantaneous 
performance and source-code references for optimized binaries 
accurately by taking advantage of the repetitiveness of many 
applications, especially in HPC. The mechanism enables the 
exploration of the application performance and guides the analyst to 
source-code modifications. 

 

I. MOTIVATION  

Nowadays, supercomputers deliver an enormous amount of 
computational power; however, it is well-known that 
applications only reach a fraction of it. There are several 
factors that limit the achieved application performance. One of 
the most important factors is the single processor performance 
(i.e. how fast a processor executes a work unit) because it 
ultimately dictates the overall achieved performance. 
Performance analysis tools are pieces of software that help 
locating performance inefficiencies and identifying their 
nature within applications to ultimately improve the 
application performance. These tools rely on two collection 
techniques to invoke their performance monitors: 
instrumentation and sampling. Instrumentation refers to the 
ability to inject performance monitors into concrete 
application locations whereas sampling deals with invoking 
the installed monitors periodically. Each technique has its 
advantages. The measurements obtained through 
instrumentation are directly associated with the application 
structure while sampling allows a simple way to determine the 
volume of the measurements captured. In any case, the 
granularity of the measurements provides valuable insight 
cannot be easily determined a priori. Should analysts study the 
performance of an application for the first time, they may 
consider using a performance tool and instrument every 
routine or use high-frequency sampling rates in order to 
provide the most detailed results. More often than not, these 
approaches lead to large overheads that impact on the 
application performance and thus alter the measurements 
gathered and, therefore, mislead the analyst. 

 

II. FOLDING 

  The folding mechanism overcomes the overhead by taking 
advantage of the repetitiveness of many applications. This 
mechanism smartly combines instrumented and inexpensive 
coarse-grain sampled information that dilates the application 

runtime less than 5% on optimized binaries. The results of the 
mechanisms include rich reports that show the instantaneous 
performance evolution and source-code progression within 
instrumented regions of code accurately. To this end, the 
captured metrics should contain information regarding 
performance metrics associated to the processor such as 
number of instructions executed, number of L1 cache misses, 
and stalled cycles, as well as, call-stack information to 
correlate with the application structure. 

  The folding projects the collected samples into a synthetic 
instance preserving their time since the start of their respective 
instance; thus, a sample fired at time Ts within an instance that 
starts at Ti gets mapped into the representative region at time 
δs, where δs = Ts - Ti. Figure 2 provides a visual description 
of the process in order to help understand it. The top of the 
Figure depicts a time-line of an application with a repetitive 
region (e.g. a routine, a loop body, …) that has been executed 
three times during the whole execution whereas the bottom 
part schematizes how the folding works. The analyst 
instruments the application to determine when each routine 
invocation begins (shown as Ix, where x={1,2,3}) and ends 
(shown as I’x, where x={1,2,3}). The analyst also enables a 
periodic sampling mechanism that freely runs no matter the 
application activity (in the example, providing measurements 
every seven units of time). As a consequence of using the 
folding mechanism, the synthetic instance contains more 
samples than any other instance, and therefore, it is capable of 
depicting the progression within the instance more accurately. 

 
 

A. Detailed performance counter evolution 
The folding depicts instantaneous progression of the 
performance counters using a fitting mechanism on the 
performance metrics associated to the folded samples. We 
have evaluated two fitting algorithms used in different areas to 
report continuous metrics: a Gaussian interpolation process 
named Kriging [1], and piece-wise linear regressions.  No 
matter the approach taken, the folding results include the 

Figure 2: Illustration of the folding process. 
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progression of the performance counter rates. From all these 
counter rates, the MIPS rate indicates whether a region of code 
runs at good pace but it does not unveil the reasons for 
performance bottlenecks, if any. Our work has addressed this 
topic by taking advantage of performance analytical models 
based on performance counters and applying them to the 
folding results. For instance, Figure 3 shows the progression of 
the MIPS rate (in black, on the right Y-axis) and other 
performance counter ratios per instruction (in other colors, on 
the left Y-axis) in the most time-consuming region of CGPOP 
[2]. The plot exposes two phases within this region. The first 
phase runs approx. at 500 MIPS and seems to be limited by 
the amount of cache misses per instruction (approx. 6%). The 
second phase starts running at 2000 MIPS after decreasing the 
cache miss ratio from the first phase. The subsequent decrease 
of L3 cache misses turns into an increase to the instruction rate 
up to 3500 MIPS. 

 
B. Detailed correlation with source-code 

 
  The correlation of performance inefficiencies and their 
associated source code is a cornerstone to understand why the 
efficiency of an application falls behind the computer’s peak 
performance and to enable optimizations on the application 
code, ultimately.  We have explored the opportunities of the 
folding mechanism when treating source code references 
captured in the samples to allow the analyst easily understand 
the application’s bottlenecks. Despite source code references 
do not benefit from fitting models as the performance 
counters, our work has also explored two approaches to 
establish an approximate correlation between performance and 
source code. One of these approaches takes benefit of the 
phases delimited by the piece-wise linear regressions when 
fitting the performance counters, and associates source code 
references to each phase. The other approach has been inspired 
by MultiSequence Alignment techniques [3,4] and finds 
similarities in consecutive sampled call-stacks to unveil the 
active routine.  

 

Figure 4 exemplifies the results in which the performance 
results are collocated with their source-code when exploring 
one of the most time-consuming regions in Arts_CF [5]. This 
region exposes two phases in terms of the instruction rate and 
each of these phases is correlated with a particular region of 
code (shown in a different background color).  It is worth to 
notice that the first phase (shown in red), reveals that the 
routine scalar_weno5_coeff (line 667) runs approx. at 2600 
MIPS, which is far below the processor’s peak performance. 
Despite we did not have access to the application source-code, 
we asked the developer for the surrounding lines and after 
exploring them we were able to suggest optimizations that 
improved the performance of the region by 17.4% by applying 
well-known optimization techniques to tiny regions of code. 

 

Figure 4: Results of the Arts_CF application showing the source-code 
collocated with the performance results. 

CONCLUSIONS 

  We have presented a mechanism that reports the 
instantaneous progression of the performance metrics and 
source code references accurately for already optimized 
binaries. The mechanism is capable of reporting the 
performance progression of very small delimited regions of 
code by using coarse-grain sampling, ensuring low intrusion 
during the application execution.  Despite not every 
application may benefit from manually changing the source-
code, the mechanism has proven valuable to guide the analyst 
to small code changes based on well-known optimization 
techniques to further increase the performance. 
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