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Abstract-Despite supercomputers deliver huge computatiooalgp, runtime less than 5% on optimized binaries. Thelte®f the

applications only reach a fraction of it. There aseveral factors o chanisms include rich reports that show the inateous
limiting the application performance, and one oé tmost important

is the single processor efficiency because it aitely dictates the Performance evolution and source-code progressighinw
overall achieved performance. We present the fgldirechanism, a instrumented regions of code accurately. To thid, ethe

process that combines measurements captured threnghimal — canred  metrics should contain  information regaydi
instrumentation and coarse-grain sampling ensuritmyv time

dilation (less than 5%). The mechanism reports amstneous Performance metrics associated to the processoh sisc

performance and source-code references for optimibmaries number of instructions executed, number of L1 catieses,

accurately by taking advantage of the repetitvened many gng stalled cycles, as well as, call-stack inforomatto
applications, especially in HPC. The mechanism esmbthe

exploration of the application performance and gsidhe analyst to  COrrelate with the application structure.
source-code modifications.

The folding projects the collected samples intoyatlsetic
instance preserving their time since the starheirtrespective
instance; thus, a sample fired at time Ts withinnstance that

Nowadays, supercomputers deliver an enormous anujunt starts at Ti gets mapped into the representatigmmeat time
computational power; however, it is well-known thatss, whereds = Ts - Ti. Figure 2 provides a visual description
applications only reach a fraction of it. There @@veral of the process in order to help understand it. Tpeof the
factors that limit the achievt_ed appl!cation perfance. One of Figure depicts a time-line of an application withepetitive
the most important factors is the single procegsoformance region (e.g. a routine, a loop body, ...) that hasnbexecuted

(i.e. how fast a processor executes a work unit) becausethree times during the whole execution whereashemom

ultimately dictates the overall achieved perforneanc . .
Performance analysis tools are pieces of softwhat help part schematizes how the folding works. The analyst

locating performance inefficiencies and identifyirtgeir  INStruments the application to determine when eaxtiine
nature within applications to ultimately improve eth invocation begins (shown as Ix, where x={1,2,3})daends
application performance. These tools rely on twtlecton  (shown as I'x, where x={1,2,3}). The analyst alsoables a
techniqgues to invoke their performance monitorsperiodic sampling mechanism that freely runs notenahe
instrumentation and sampling. Instrumentation sefer the  application activity (in the example, providimyeasurements
ability to inject performance monitors into coneret every seven units of time). As a consequence aigusiie

application locations whereas sampling deals witvoking  5|ding mechanism, the synthetic instance containsre
the installed monitors periodically. Each techniguas its samples than any other instance, and therefoiecétpable of

advantages. ~ The measurements — obtained  throu epicting the progression within the instance nameuratel
instrumentation are directly associated with the@ligption picting prog Y.

structure while sampling allows a simple way toedetine the
volume of the measurements captured. In any cdse, t
granularity of the measurements provides valuabkight

I MOTIVATION

cannot be easily determinadpriori. Should analysts study the frstance #1 nstance #2 fnstance #3
performance of an application for the first timaey may ?'. Sp' Sﬁ. . Isﬁ Sp‘ Sﬁul . Sp‘i Sﬂ I\p
consider using a performance tool and instrumergnev  fime 03 7 14\ 19 2021 28 3536 37 42 49 53 56
routine or use high-frequency sampling rates ineprtb h \\\I‘IZ\\\ e .
provide the most detailed results. More often thah these S. $,5.5, S,S,5.
approaches lead to large overheads that impact hen t Figure 2: llustration of the folding process.
application performance and thus alter the measemésn © Synthetic instance
gathered and, therefore, mislead the analyst. A. Detailed performance counter evolution
The folding depicts instantaneous progression oé th
1. FOLDING performance counters using a fitting mechanism ba t

] ] ) performance metrics associated to the folded sampée
The folding mechanism overcomes the overhead bydak haye evaluated two fitting algorithms used in difet areas to

advantage of the repetitiveness of many applicatidrhis  report continuous metrics: a Gaussian interpolatimtess
mechanism smartly combines instrumented and inestpen named Kriging [1], and piece-wise linear regressionNo
coarse-grain sampled information that dilates thplieation = matter the approach taken, the folding resultsushel the
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progression of the performance counter rates. Fathrthese
counter rates, the MIPS rate indicates whethegi@meof code
runs at good pace but it does not unveil the resadon
performance bottlenecks, if any. Our work has askbé this
topic by taking advantage of performance analytivaldels
based on performance counters and applying therthéo

folding results. For instanceigure3 shows the progression of

the MIPS rate (in black, on the right Y-axis) anthey

performance counter ratios per instruction (in oitw@ors, on
the left Y-axis) in the most time-consuming regafnlCGPOP
[2]. The plot exposes two phases within this regibime first

phase runs approx. at 500 MIPS and seems to btdirby

the amount of cache misses per instruction (ap@B®y). The

second phase starts running at 2000 MIPS afteedsitg the
cache miss ratio from the first phase. The subsgqiecrease
of L3 cache misses turns into an increase to thteuiction rate
up to 3500 MIPS.
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Figure 3: Folding results for the most time-consugriegion in the
CGPOP application

B. Detailed correlation with source-code

The correlation of performance inefficiencies artkirt
associated source code is a cornerstone to undenatay the
efficiency of an application falls behind the cortgris peak
performance and to enable optimizations on the icgtn
code, ultimately. We have explored the opportaritdf the
folding mechanism when treating source code retmen
captured in the samples to allow the analyst easiljerstand
the application’s bottlenecks. Despite source caderences
do not benefit from fitting models as the perforiwan
counters, our work has also explored two approadbes
establish an approximate correlation between pedoce and
source code. One of these approaches takes befietfite
phases delimited by the piece-wise linear regrassiwhen
fitting the performance counters, and associatesceocode
references to each phase. The other approach easrspired
by MultiSequence Alignment techniques [3,4] anddéin
similarities in consecutive sampled call-stacksutoreil the
active routine.

Figure 4 exemplifies the results in which the performance
results are collocated with their source-code wagploring
one of the most time-consuming regions in Arts_6F This
region exposes two phases in terms of the instmictite and
each of these phases is correlated with a particalgion of
code (shown in a different background color). sltworth to
notice that the first phase (shown in red), reveahbt the
routine scalar_weno5_coeff (line 667) runs appratx2600
MIPS, which is far below the processor’'s pgaformance.
Despite we did not have access to the applicatoince-code,
we asked the developer for the surrounding lined after
exploring them we were able to suggest optimizatitimat
improved the performance of the region by 17.4%pplying
well-known optimization techniques to tiny regiafscode.
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Figure 4: Results of the Arts_CF application shaptime source-code
collocated with the performance results.

CONCLUSIONS

We have presented a mechanism that reports
instantaneous progression of the performance msetitd
source code references accurately for already ogson
binaries. The mechanism is capable of
performance progression of very small delimitediarg of
code by using coarse-grain sampling, ensuring latnugion
during the application execution. Despite not wgver
application may benefit from manually changing gwrce-
code, the mechanism has proven valuable to guelanhlyst
to small code changes based on well-known optinoizat
techniques to further increase the performance.
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