

~ 85 ~

Folding: reporting instantaneous
performance metrics and source-code references

Harald Servat, Jesús Labarta

BSC – Computer Sciences Department
UPC-DAC – Computer Architecture Department

Abstract- Despite supercomputers deliver huge computational power,
applications only reach a fraction of it. There are several factors
limiting the application performance, and one of the most important
is the single processor efficiency because it ultimately dictates the
overall achieved performance. We present the folding mechanism, a
process that combines measurements captured through minimal
instrumentation and coarse-grain sampling ensuring low time
dilation (less than 5%). The mechanism reports instantaneous
performance and source-code references for optimized binaries
accurately by taking advantage of the repetitiveness of many
applications, especially in HPC. The mechanism enables the
exploration of the application performance and guides the analyst to
source-code modifications.

I. MOTIVATION

Nowadays, supercomputers deliver an enormous amount of
computational power; however, it is well-known that
applications only reach a fraction of it. There are several
factors that limit the achieved application performance. One of
the most important factors is the single processor performance
(i.e. how fast a processor executes a work unit) because it
ultimately dictates the overall achieved performance.
Performance analysis tools are pieces of software that help
locating performance inefficiencies and identifying their
nature within applications to ultimately improve the
application performance. These tools rely on two collection
techniques to invoke their performance monitors:
instrumentation and sampling. Instrumentation refers to the
ability to inject performance monitors into concrete
application locations whereas sampling deals with invoking
the installed monitors periodically. Each technique has its
advantages. The measurements obtained through
instrumentation are directly associated with the application
structure while sampling allows a simple way to determine the
volume of the measurements captured. In any case, the
granularity of the measurements provides valuable insight
cannot be easily determined a priori. Should analysts study the
performance of an application for the first time, they may
consider using a performance tool and instrument every
routine or use high-frequency sampling rates in order to
provide the most detailed results. More often than not, these
approaches lead to large overheads that impact on the
application performance and thus alter the measurements
gathered and, therefore, mislead the analyst.

II. FOLDING

 The folding mechanism overcomes the overhead by taking
advantage of the repetitiveness of many applications. This
mechanism smartly combines instrumented and inexpensive
coarse-grain sampled information that dilates the application

runtime less than 5% on optimized binaries. The results of the
mechanisms include rich reports that show the instantaneous
performance evolution and source-code progression within
instrumented regions of code accurately. To this end, the
captured metrics should contain information regarding
performance metrics associated to the processor such as
number of instructions executed, number of L1 cache misses,
and stalled cycles, as well as, call-stack information to
correlate with the application structure.

 The folding projects the collected samples into a synthetic
instance preserving their time since the start of their respective
instance; thus, a sample fired at time Ts within an instance that
starts at Ti gets mapped into the representative region at time
δs, where δs = Ts - Ti. Figure 2 provides a visual description
of the process in order to help understand it. The top of the
Figure depicts a time-line of an application with a repetitive
region (e.g. a routine, a loop body, …) that has been executed
three times during the whole execution whereas the bottom
part schematizes how the folding works. The analyst
instruments the application to determine when each routine
invocation begins (shown as Ix, where x={1,2,3}) and ends
(shown as I’x, where x={1,2,3}). The analyst also enables a
periodic sampling mechanism that freely runs no matter the
application activity (in the example, providing measurements
every seven units of time). As a consequence of using the
folding mechanism, the synthetic instance contains more
samples than any other instance, and therefore, it is capable of
depicting the progression within the instance more accurately.

A. Detailed performance counter evolution
The folding depicts instantaneous progression of the
performance counters using a fitting mechanism on the
performance metrics associated to the folded samples. We
have evaluated two fitting algorithms used in different areas to
report continuous metrics: a Gaussian interpolation process
named Kriging [1], and piece-wise linear regressions. No
matter the approach taken, the folding results include the

Figure 2: Illustration of the folding process.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41793118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

~ 86 ~

progression of the performance counter rates. From all these
counter rates, the MIPS rate indicates whether a region of code
runs at good pace but it does not unveil the reasons for
performance bottlenecks, if any. Our work has addressed this
topic by taking advantage of performance analytical models
based on performance counters and applying them to the
folding results. For instance, Figure 3 shows the progression of
the MIPS rate (in black, on the right Y-axis) and other
performance counter ratios per instruction (in other colors, on
the left Y-axis) in the most time-consuming region of CGPOP
[2]. The plot exposes two phases within this region. The first
phase runs approx. at 500 MIPS and seems to be limited by
the amount of cache misses per instruction (approx. 6%). The
second phase starts running at 2000 MIPS after decreasing the
cache miss ratio from the first phase. The subsequent decrease
of L3 cache misses turns into an increase to the instruction rate
up to 3500 MIPS.

B. Detailed correlation with source-code

 The correlation of performance inefficiencies and their
associated source code is a cornerstone to understand why the
efficiency of an application falls behind the computer’s peak
performance and to enable optimizations on the application
code, ultimately. We have explored the opportunities of the
folding mechanism when treating source code references
captured in the samples to allow the analyst easily understand
the application’s bottlenecks. Despite source code references
do not benefit from fitting models as the performance
counters, our work has also explored two approaches to
establish an approximate correlation between performance and
source code. One of these approaches takes benefit of the
phases delimited by the piece-wise linear regressions when
fitting the performance counters, and associates source code
references to each phase. The other approach has been inspired
by MultiSequence Alignment techniques [3,4] and finds
similarities in consecutive sampled call-stacks to unveil the
active routine.

Figure 4 exemplifies the results in which the performance
results are collocated with their source-code when exploring
one of the most time-consuming regions in Arts_CF [5]. This
region exposes two phases in terms of the instruction rate and
each of these phases is correlated with a particular region of
code (shown in a different background color). It is worth to
notice that the first phase (shown in red), reveals that the
routine scalar_weno5_coeff (line 667) runs approx. at 2600
MIPS, which is far below the processor’s peak performance.
Despite we did not have access to the application source-code,
we asked the developer for the surrounding lines and after
exploring them we were able to suggest optimizations that
improved the performance of the region by 17.4% by applying
well-known optimization techniques to tiny regions of code.

Figure 4: Results of the Arts_CF application showing the source-code
collocated with the performance results.

CONCLUSIONS

 We have presented a mechanism that reports the
instantaneous progression of the performance metrics and
source code references accurately for already optimized
binaries. The mechanism is capable of reporting the
performance progression of very small delimited regions of
code by using coarse-grain sampling, ensuring low intrusion
during the application execution. Despite not every
application may benefit from manually changing the source-
code, the mechanism has proven valuable to guide the analyst
to small code changes based on well-known optimization
techniques to further increase the performance.

REFERENCES

[1] F. Trochu. “A contouring program based on dual kriging implementation.”
Engineering with computers 9.4 (1,993), pp. 160-177.

[2] Andrew Stone, John Dennis and Michelle Mills-Strout. “The CGPOP
miniapp, v1.0” Tech report CS-11-103- Colorado State University 2,011.

[3] Cedric Notredame, Desmond G. Higgins and Jaap Hering. “T-Coffee: a
novel method for fast and accurate Multiple-Sequence Alignment” Journal of
molecular biology 302.1 (2,000) pp 205-217.

[4] Andreas Doring, David Weese, Tobias Rausch and Knut Reiner. “SeqAn
an efficient, generic C++ library for sequence analysis” BMC bioinformatics
9.1 (2,009) pp 11.

Figure 3: Folding results for the most time-consuming region in the
CGPOP application.

~ 87 ~

[5] Olivier Desjardins, Guillaume Blanquart, Guillaume Balarac, and Heinz
Pitsch. “High order conservative finite difference scheme for variable density
low Mach number turbulent flows” Journal of Computational Physics 227.15
(2,008), pp-7125-7159.

LIST OF PUBLICATIONS

Harald Servat, Germán Llort, Judit Giménez, Jesús Labarta “Detailed
Performance analysis using Coarse Grain Sampling” In proceeding of the
Workshop on Productivity and Performance (PROPER), in conjunction with
Euro-PAR 2,009: 185-198.

Harald Servat, Germán Llort, Judit Giménez, Kevin A. Huck, Jesús Labarta
“Unveiling Internal Evolution of Parallel Application Computation Phases” In
proceedings of International Conference on Parallel Processing (ICPP) 2,011:
155-164.

Harald Servat, Germán Llort, Judit Giménez, Kevin A. Huck, Jesús Labarta.
“Folding: Detailed Analysis with Coarse Sampling” In proceedings of the
Parallel Tools Workshop 2,011: 105-118.

Harald Servat, Germán Llort, Judit Giménez, Kevin A. Huck, Jesús Labarta.
“Framework for a productive performance optimization” In Parallel
Computing Journal, 39(8) 2,013: 336-353.

Harald Servat, Germán Llort, Juan González, Judit Giménez, Jesús Labarta.
“Identifying code phases using piece-wise linear regressions” In proceedings
of the 28th IEEE International Parallel & Distributed Processing Symposium
(IPDPS) 2,014: 941-951.

Harald Servat, Germán Llort, Juan González, Judit Giménez, Jesús Labarta:
“Bio-inspired call-stack reconstruction for performance analysis” Technical
report UPC-DAC-RR-2014-20.

