

~ 83 ~

Plasma Physics Code Contribution
to the Mont-Blanc Project

Xavier Sáez

Barcelona Supercomputing Center (BSC-CNS), Spain
xavier.saez@bsc.es

Alejandro Soba
Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC-CONICET), Argentina

soba@cnea.gov.ar

Mervi Mantsinen
Barcelona Supercomputing Center (BSC-CNS), Spain

Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain
mervi.mantsinen@bsc.es

Abstract-This work develops strategies for adapting a particle-in-cell
code to heterogeneous computer architectures and, in particular, to
an ARM-based prototype of the Mont-Blanc project using OmpSs
programming model and the OpenMP and OpenCL languages.

I. INTRODUCTION

The scientific grand challenges, such as fusion reactors,
have been the driving force for the evolution of High-
Performance Computing (HPC).

During the last two decades, the supercomputers have
grown rapidly in performance to provide scientists the
required computing power, at the cost of a similar growth in
power consumption.

However, nowadays the computer's performance is limited
by the power consumption and power density, so new
developed platforms to construct a future sustainable exaflop
supercomputer will have to be based on the power efficiency.
The Mont-Blanc project appeared with the aim to design
computer architectures capable of delivering an exascale
performance using 15 to 30 time less energy than present
architectures [1].

Particle-in-cell (PIC) is one of the most used methods in
plasma physics simulations [2]. The quality of results achieved
by this method relies on tracking a very large number of
particles. Therefore, PIC codes (such as EUTERPE) are good
candidates to be adapted to new HPC platforms since they
require intensive computation.

II. PARTICLE-IN-CELL CODE

A. Particle-in-cell Methods
PIC methods are used to model physical systems whose

behavior varies over different ranges of spatial scales. The
individual particles are tracked in a continuous phase space,
whereas densities and the current are computed concurrently
on stationary mesh points.

A PIC algorithm can be summarized in three steps (Fig.1)

repeated at each time step [3]:

• pull : the particle properties are interpolated to neighboring
points in the computational mesh.

• solve: the moment equations are solved on the mesh.
• push: the momentum of each particle is calculated by

interpolation on the mesh. The particle properties are
updated.

Fig. 1. The steps of a PIC algorithm.

B. EUTERPE Code

EUTERPE is a gyrokinetic PIC code for global linear and
non-linear simulations of fusion plasma instabilities in three-
dimensional geometries, in particular in tokamaks and
stellarators [4, 5].

It has been written to target traditional HPC clusters using
MPI and a domain cloning technique to increase the number of
processors without boosting the interprocessor
communications to prohibitive levels [6].

III. COMPUTER PROTOTYPE

Mont-Blanc is a European exascale computing approach to
develop a full energy-efficient HPC prototype. The project is
coordinated by Barcelona Supercomputing Center (BSC) since
October 2011.

The aim is reducing energy consumption using low-power
commercially available processors that were designed for
mobile and embedded systems. In this way, we exploit their
cheapness due to the large volume of these platforms and their
high accessibility in the commodity market.

The prototype used in this work is based on a system-on-
chip (SoC) Samsung Exynos 5 which contains an ARM
Cortex-A15 dual core and an ARM Mali T604 GPU [7].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41793022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

~ 84 ~

This embedded SoC with integrated GPU accelerator is the
first that could be used for HPC, since it supports 64-bit
floating point arithmetic and provides support for parallel
programming languages (such as OpenCL 1.1).

IV. ACHIEVEMENTS

We have developed three versions of the EUTERPE code
for this prototype:

A. Hybrid version

EUTERPE was only parallelized at task level using MPI.
For that reason, we developed a hybrid version of the code
introducing OpenMP to take advantage of all the levels of
parallelism that a multi-core architecture can offer [8].

B. OpenCL + Hybrid version

In order to obtain the best possible results on the prototype,
all the available resources were used by the application: the
dual core CPU (using previous hybrid version) and the GPU
(using a new OpenCL version).

We only wrote the most time-consuming routines to
OpenCL with the aim to minimize the necessary changes. In
the push part, one work-item was assigned to each particle.
The pull part was more challenging to implement, since
different particles could contribute to the charge density on the
same mesh point. To avoid these memory conflicts, a mesh
copy was created per work-group, so the lock contention was
far minor.

C. OmpSs version

When we port a code to a new platform not only is
important the possibility to reach the maximum performance
of the platform, but also the ease of programming it. The main
drawback of OpenCL is its low programmability because of it
is a low-level programming language.

To address this shortcoming, we tested OmpSs, a task-based
programming model developed by Barcelona Supercomputing
Center (BSC) [9]. It provides an abstraction to the user thereby
reducing programmer effort and unifies the SMP,
heterogeneous and cluster programming in one model.

Although OmpSs version is a bit slower than the hybrid
version, it is a simpler version and its productivity has
improved considerably (see Table I).

TABLE I
COMPARISON BETWEEN THE DIFFERENT VERSIONS

 Performance -
Best time (s)

Programmability /
Productivity

Routine Hybrid version +
OpenCL

OmpSs
version

OpenCL API
calls

OmpSs
directives

Push 6.02 6.92 161 12

Pull 10.31 10.83 167 18

V. CONCLUSIONS

This work confirmed that is possible to port this kind of
plasma physics codes to an ARM-based platform and we can
say that OmpSs simplifies the porting of codes to this new
platform.

REFERENCES

[1] Mont-Blanc project: European approach towards energy efficient high
performance. http://www.montblanc-project.eu

[2] C.K. Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation.
Institution of Physics, Bristol, 1991.

[3] E. Akarsu et al. “Particle-in-cell Simulation Codes in High Performance
Fortran”, Proceedings of the 1996 ACM/IEEE Conf. on Supercomputing
(IEEE Computer Society), 38, 1996.

[4] V. Kornilov, R. Kleiber, R. Hatzky, et al., Gyrokinetic global three-
dimensional simulations of linear ion-temperature-gradient modes in
Wendelstein 7-X”, Physics of Plasmas, 11, 2004.

[5] E. Sánchez, R. Kleiber, R. Hatzky, et al., Linear and non-linear simulations
using the EUTERPE gyrokinetic code, IEEE Transaction on Plasma Science
38, 9, 2010.

[6] R. Hatzky, “Domain Cloning for a Particle-in-Cell (PIC) Code on a Cluster of
Symmetric-Multiprocessor (SMP) Computers”. Parallel Computing, 32, 2006.

[7] ARM: The architecture for the Digital World. http://www.arm.com
[8] X. Sáez, A. Soba, E. Sánchez et al. “Particle-In-Cell algorithms for Plasma

simulations on heterogeneous architectures”, Proc. of the 19th Euromicro
Conf. on Parallel, Distributed and Network-based Processing (IEEE), 385-
389, 2011.

[9] A. Duran, E. Ayguadé, R.M. Badia, J. Labarta et al. “OmpSs: A proposal for
programming heterogeneous multi-core architectures”. Parallel Processing
Letters, 21, 2, 173-193, 2011.

