v

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

Parallel programming issues and what the compdardo to help

Sara Royuela Xavier Martorell
Barcelona Supercomputing CentetUniversitat Politécnica de Catalufya
{sara.royuela, xavier.martorell}@bsc.es

Abstract- Twenty-first century parallel programming models are Provides to the programmer. To understand thesescssme

becoming real complex due to the diversity of aettiures they need background in the memory model of OpenMP [1] isdeek

to target (Multi- and Many-cores, GPUs, FPGAs, etWhat if we
could useone programming model to rule them all, one prognémg
model to find them, one programming model to biimgm all and in
the darkness bind them, in the land of MareNostwhere the

A. Automatic storage variables as shared. Automatic
storage variables are allocated and deallocatenhatically
when the program flow enters and leaves the emgosdde

Applications lie OmpSs programming model is an attempt to do soy|gck. \When the compiler detects that such a véiaimy be

by means of compiler directives.

Compilers are essential tools to exploit applicaoand the
architectures the run on. In this sense, compileralgsis and
optimization techniques have been widely studied,olider to
produce better performing and less consuming codes.

In this paper we present two uses of several analyseshave
implemented in the Mercurium[3] source-to-sourcengder: a) the

first use is to help users with correctness hingarding the usage of

the OpenMP and OmpSs tasks; b) the second uselis t@ble to
execute OpenMP in embedded systems, with verg ft#mory,
thanks to calculating the Task Dependency Grapth@fapplication
at compile time. We also present the next stepsuofwork: a)
extending range analysis for analyzing OpenMP anchpSs

accessed after its scope has been exited, it peeptse
following solutions: a) changing the data-sharintyitzute
from shared to private , for basic data types; b) adding a
taskwait , for arrays and structures.

B. Data-race situations. Data-races occur when dwo
more threads access shared data and at least oriee of
accesses is a write. When the compiler detectsagdation,
it proposes the following solutions: a) protectihg accesses
with a critical or an atomic construct, b) adding a
taskwait ~ between the uses.

C. Incoherent data-sharing. The data-sharing attibf
a variable must be coherent with its usage. We lchiexe

recursive applications, and b) modeling applicaionsing OmpSs Situations, in the following order: a) variabledided within a

and future OpenMP4.1 tasks priorities feature.

Keywords- Compiler, Static Analysis, Task Dependency Graph

OpenMP, OmpSs, Embedded System

|. INTRODUCTION

Static and dynamic analysis and optimization teghes are

task and never used in that task, but used after th
synchronization of the task, should &igared ; b) private
variables in a task should be defined before beiead,
otherwise they must bfirstprivate ; C) firstprivate
variables in a task should not be defined beforagheecad,
otherwise they must hgivate

D. Incoherent dependencies. Task dependenciesace u

widely used in order to enhance performance andepowto impose an order in the execution of the taskspdndable
consumption. Dynamic techniques benefit from a nonebjects must be coherent with the usage of thogectshin the

restricted knowledge of the application (address®s values
of all variables are known), but they require tlxeaition of
the program along with the instrumentation librafhis

means adding overhead, as well as having resaltstt a
specific execution. Other data-sets or architestureay
change the results of the analysis. On the contrstgtic

techniques have limited information (values of tlaiables
and pointer aliasing situations), but have the fiené being

effortless from the point of view of the programmas well as
being valid for any input data. Neither of the ops is perfect
nor valid for everything, and they can indeed bmicimed for
better results.

[I. CORRECTNESS

task. We check three situations: a) objects acdegagyointer
should specify the dependency in the accessedgstoirsstead
of the pointer; b)input dependences should be read and
never written within the task; @utput dependences should
be written within the task, and should not be reefibre being
written.

We have tested this work with over 70 students &nd
benchmarks on different courses, and the resutstaown in
Figure 1. Most errors captured by the compilerraetated with
the default data-sharing attributes because usengetf to
explicitly change them. The less common errors thase
caused by users explicitly defining incorrect dsitaring
attributes. Dependences errors are not common beaauly
one of the five benchmarks includes task dependence

Although programming models such as OpenMP and

OmpSs are tantalizing due to its simplicity and|aduiity,
they also bring forth difficulties when it comesftdly exploit
their capabilities. The compiler can be crucialaaticipate
bugs that may be very hard to find at runtime. \&&=1§ on the

FIGURE 1
Occurrences of each Correctness Mistake

Occurrences

OpenMP and OmpSs tasking models to define a set of

situations that may cause: a) a runtime failurealpss of
performance, or c) a non-deterministic result. Wespnt
different cases the compiler is able to detect tuedhints it

100

0
0 E - —
Dead Incoherent
Firstprivate

Incoherent Race
Private

Incoherent
pointer input

Incoherent Auto. Storage
as Shared

https://core.ac.uk/display/41793007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We also have compared our results with those otitaele
Solaris Studio 12.3 (OCS12.3) compiler for the ¢hrfest

shown in Figure 3. The memory consumption of thatinue
using our statically computed TDG scales (in terofs

cases, because it does not implement support fek tamemory consumption) much better than the plainadibg

dependences. Since OCS12.3 does not provide hirgat a
performance, Mercurium suggests more accurateigouin

case A. OCS12.3 may report wrong messages for Base

which can be solved by enclosing the analyzed faslka
parallel construct. Finally, OCS12.3 does not odesi
declaring a variable as private when its initialugais not
read, so it may result in a loss of performanceaise C.

V. STATICTASK DEPENDENCYGRAPH

Tasks dependencies impose an order in the execottithe
tasks. OpenMP and OmpSs runtimes build a Task Dispey
Graph (TDG) ensuring that order. Building the graph
runtime is feasible for HPC systems, where largewarts of
memory with a reasonable performance penalty aadadnle.
Nonetheless, it may be impossible for embeddedesyst
where memory can be very limited. The Programmirag#ls
and the Real Time teams at BSC have united thetefoto
build a tool-chain able to derive a TDG staticalljhe tool-
chain is shown in Figure 2.

FIGURE 2
Offline Tool-chain for an Static TDG Creation

- [ooe]

Source code

int maing) { 3
- oxer

Instantiator

B Mercurium
ﬁ“g“ P wask C/C++ Compiler

}

Transformed

4»' GCC Compiler I—Dl EEESTEEY |
++

Generating the TDG statically requires a seriessteps.
First of all, the Mercurium compiler generates araiel
Control Flow Graph [4] (PCFG) that extends the camm
CFG with parallelism information. Then inductionrizdbles
analysis is executed to discover the evolution atheloop.
Finally, range analysis [5] extended with suppodr f
parallelism is used to calculate the value of theables at
each point of the program. All this information used to
generate aaugmented static TD@sTDG) containing: a) one
node per each task/taskwait/barrier construct, Ibpassible
synchronization edges among these nodes,
predicates defining the conditions for the edgesxist, and c)
information about all control flow statements (citimhals
and loops) involved in the execution of the presigu
mentioned constructs.

Source code

After that, the Boxer Instantiator expands the aSTD

obtaining the complete TDG that will be executedustime.
This is performed in two steps: 1) expansion of tbatrol
flow structures (i.e. decide the number of itenasimf each
loop statement, and the branches taken in eachitmovad
statement); 2) check of the dependency predicatetetide
the task instances that have actual dependencespiidtess
results in arexpanded static TD@sTDG).

Finally, the code generated by Mercurium is pasksaligh
the GCC back-end compiler to generate the binaay will
run in our lightweight libgomp. The tests of ouoktehain are

supporting tasks dependencies, while increasingiineber of

tasks.
FIGURE 3
MEMORY USAGE (IN KB) OF DIFFERENTRTLS

1800
1600
1400

1200

1000 -~ omp 3.1++

omp 4.0 ——

KB

800
600
400

200

) 500

1000 1500 2000

of task

MODELING TASK PRIORITIES

OpenMP4.1 and OmpSs include support for definirgida
priorities, thus promoting some tasks over othehermwall of
them are ready to be executed. By using our staticchain
to compute the TDG, we intend to model the appbeat and
extract patterns in which the priorities of thekasan be
decided at compile time. This is part of our ongoivork and
we are looking for applications to exploit this @tionality.

2500 3000 3500 4000

VI.

ACKNOWLEDGMENT

We acknowledge the Mercurium group, always helging
giving priceless opinions and contributions to thisrk. We
also thank the Real Time group which brought ugtfrileas
and push forward this collaboration.

LIST OFPUBLICATIONS

1.(appeared) R. Ferrer, S. Royuela, D. Caballerdduéan, X. Martorell, E.
Ayguadé. “Mercurium: Design Decisions for a S2S @den”. Cetus Users
and Compiler Infrastructure Workshop, PA@D11.

2.(appeared) S. Royuela, A. Duran, C. Liao, D.J. @nin“Auto-scoping for
OpenMP tasks'lWOMP, 2012.

3.(appeared) S Royuela, A Duran, X Martorell. “Corapilautomatic
along withdiscovery of ompss task dependencie€PC, 2013.

4.(accepted) D. Caballero, S. Royuela, R. FerrerDAran, X. Martorell.
Optimizing Overlapped Memory Accesses in User-d@eécVectorization.
ICS, 2015.

5.(accepted) S. Royuela, R. Ferrer, D. CaballeroMdrtorell. “Compiler
Analysis for OpenMP Tasks Correctnes€F, 2015.

6.(submitted) R. Vargas, S. Royuela, MA Serrano, Hiifighes. “A
Lightweight OpenMP Run-time for Embedded SysterfSCAD, 2015.

REFERENCES

OpenMP ARB. “OpenMP API, v.4.0", July 2013,
http://www.openmp.org/mp-documents/OpenMRpdf.
S. Royuela, R. Ferrer, D. Caballero, X. Martbré&Compiler Analysis
for OpenMP Tasks Correctnes€F15
BSC. “The Mercurium compiler”, http://pm.hes/mcxx.
S. Royuela, A. Duran, and X. Martorell, “Coilgp Analysis and its
application to OmpSs'Master’s Thesis at UPQR012.

R. Ernani, V. H. Sperle, F. M. Quintédo, “Adt and low-overhead
technique to secure programs against integer ovesf| CGO13

(1
(2

(3]
(4]

(5]

