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Abstract-Nowadays, analysis and design of novel scalable 
methods and algorithms for fundamental linear algebra 
problems such as solving Systems of Linear Algebraic Equations 
with focus on large scale systems is a subject of study. This 
research focuses on the study of novel mathematical methods 
and scalable algorithms for computationally intensive problems 
such as Monte Carlo and Hybrid Methods and Algorithms.  

 

I. INTRODUCTION 

Solving systems of linear algebraic equations (SLAE) or 
inverting a real matrix are well-known problems. Iterative or 
direct methods to solve these systems are costly approach. One 
option of reducing the effort of solving these systems is to 
apply preconditioners before using an iterative method. 
Standard deterministic preconditioners computed by the 
optimized parallel variant- Modified SParse Approximate 
Inverse Preconditioner (MSPAI) have been changed by a 
Monte Carlo preconditioner that relies on the use of Markov 
Chain Monte Carlo (MCMC) methods [1]. The study of this 
methods and their parallel implementation is subject of current 
extreme scale computing research. 

Preconditioning refers to transform a complex problem into 
another whose solution can be tractable; preconditioner is the 
operator that is responsible for such transformation. A way to 
increase the robustness and the computational efficiency of 
iterative methods is based on preconditioning. 

Several physical problems imply to solve SLAE as result of 
discretization of partial differential equations. Iterative solvers 
are often the method of choice due to their predictability and 
reliability when considering accuracy and speed. They are, 
however, prohibitive for large-scale problems as they can be 
very time consuming to compute. These methods are 
dependent on the size of the matrix and so the computational 
effort grows with the problem size [2]. On the other hand, 
Monte Carlo (MC) methods performing random sampling of a 
certain variable whose mathematical expectation is the desired 
solution, for some problems an estimate is sufficient or even 
favourable, due to the accuracy of the underlying data. MC 
methods can quickly yield a rough estimate of the solution. 

Iterative Methods are dependent on the size of the matrix 
and so the computational effort grows with the problem 

size. The complexity of these methods is ������for dense 
matrices in the iterative case and ����� for direct methods 
with dense matrices while solving SLAE if common 
elimination are employed [3] in contrast MC methods for 
matrix inversion (MI) only require ���	� steps to find a 
single element or a row of the inverse matrix. Here N is the 
number of Markov chains and L is an estimate of the chain 
length in the stochastic process. These computations are 

independent of the matrix size n and also inherently parallel. 
Note that in order to find the inverse matrix or the full solution 
vector in the serial case, ����	�steps are required. 

 

II. RELATED WORK 

Research efforts in the past have been directed towards 
optimizing the approach of sparse approximate inverse 
preconditioners (SPAI) [4]. In the past there have been 
differing approaches and advances towards a parallelisation of 
the SPAI preconditioner. The method that is used to compute 
the preconditioner provides the opportunity to be implemented 
in a parallel fashion. In recent years the class of Frobenius 
norm minimizations that has been used in the original SPAI 
implementation [5] was modified and is provided in a parallel 
SPAI software package. One implementation of it, by the 
original authors of SPAI, is the Modified SParse Approximate 
Inverse (MSPAI) [6]. 

The proposed Monte Carlo algorithm has been developed 
and enhanced upon in the last decades, and several key 
advances in serial and parallel Monte Carlo methods for 
solving such problems have been made. There is an increased 
research interest in parallel Monte Carlo methods for Linear 
Algebra in the past year [7], [8]. 

 

III.  MONTE CARLO APPROACH 

Monte Carlo methods are probabilistic methods, which use 
random numbers to either simulate a stochastic behaviour or to 
estimate the solution of a problem. They are good candidates 
for parallelisation because of the fact that many independent 
samples are used to estimate the solution. These samples can 
be calculated in parallel, thereby speeding up the solution 
finding process. We design and develop parallel Monte Carlo 
methods with the following main generic properties: 

• efficient distribution of the compute data 
• minimum communication during the computation 
• increased precision achieved by adding extra refinement 
computations 

 

Consideration of all these properties naturally leads to 
scalable algorithms. The Procedure to get Monte Carlo 
algorithm has been presented in [9] and allows extending 
Monte Carlo algorithm for processing diagonally dominant 
matrices. 

IV.  MONTE CARLO APPROACH 

We compared matrices from different sets that have been 
obtained from two collections - The Matrix Market and The 
University of Florida Sparse Matrix Collection. These 
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matrices are used as inputs to both the MSPAI and our Monte 
Carlo based application to compute preconditioners. The 
results from those calculations are two intermediate matrices 
MSPAI and MCSPAI, one for each type of preconditioner. In 
the last step these preconditioners are used as an input to the 
BiCGSTAB (biconjugate gradient stabilized method) solver 
that is provided by the SPAI application. Numerical 
experiments have been executed on the MareNostrum 
supercomputer, located at the Barcelona Supercomputing 
Center (BSC). It currently consists of 3056 compute nodes that 
are each equipped with 2 Intel Xeon 8-core processors, 64GB 
RAM and are connected via an InfiniBand FDR-10 
communication network. The experiments have been run 
multiple times to account for possible external influences on 
the results. The computation times for both the preconditioner 
calculated by MSPAI, as well as our Monte Carlo based result, 
have been noted. While conducting the experiments, we 
configured the parameters for probable errors in both 
programs to produce preconditioners with similar properties 
and therefore producing residuals within similar ranges when 
used as preconditioners for BiCGSTAB. A random starting 
pattern has been chosen in MSPAI for best analogy to the 
stochastic nature of the Monte Carlo approach. A basic 
experiment was carried out on various classes of matrices 
from the matrix market, for example, on real non-symmetric 
matrix as bcsstm13 (fig. 1) 

 

Fig. 1.  Matrix bcsstm13. Run times for MC preconditioner and MSPAI. 
 

The number of compute cores used to calculate the 
preconditioners has been selected to match the problem size 
and provide meaningful comparisons between the two 
differing approaches. For the small test set experiments have 
been run on 6 to 30 cores of the computer system. The larger 
examples were calculated starting from 32 or 256 cores and 
scaling up to 2048 cores to investigate the differing scaling 
behavior of the deterministic method and our stochastic 
algorithm. 

 

V. SOME CONCLUSIONS AND FUTURE WORK 

A Monte Carlo based preconditioner for general matrices 
has been proposed as an alternative to the MSPAI algorithm 
and its applicability demonstrated. It has been shown that the 
stochastic Monte Carlo approach is able to produce 

preconditioners of comparable quality to the deterministic 
approach used in MSPAI. The proposed approach enabled us 
to generate preconditioners efficiently (faster) and with good 
scaling properties outperforming the deterministic approach, 
especially for larger problem sizes. 

Monte Carlo Method approach is a promising tool to solve 
the steady state heat transfer equation −��� = 0 in order to 
obtain effective homogenized heat conductivity coefficient for 
the porous Siliconized Silicon Carbide material, Margenov 
[10] propose to use MPI parallelized preconditioned conjugate 
gradient method with a preconditioner. 
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