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Abstract

Alzheimer’s disease and dementia are among the most significant current healthcare challenges 

given the rapidly growing elderly population, and the almost total lack of effective therapeutic 

interventions. Alzheimer’s disease pathology has long been considered in terms of accumulation of A
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amyloid beta and hyperphosphorylated tau, but the importance of neuroinflammation in driving 

disease has taken greater precedence over the last 15-20 years. Inflammatory activation of the 

primary brain immune cells, the microglia, has been implicated in Alzheimer’s pathogenesis through 

genetic, pre-clinical, imaging and post-mortem human studies, and strategies to regulate microglial 

activity may hold great promise for disease modification. Neuroinflammation is necessary for 

defence of the brain against pathogen invasion or damage but is normally self-limiting due to the 

engagement of endogenous pro-resolving circuitry that terminates inflammatory activity, a process 

that appears to fail in Alzheimer’s disease. Here we discuss the potential for a major regulator and 

promoter of resolution, the receptor FPR2, to restrain pro-inflammatory microglial activity, and 

propose that it may serve as a valuable target for therapeutic investigation in Alzheimer’s disease. 

Abbreviations

A Amyloid beta peptide

AD Alzheimer’s disease

CNS Central nervous system

DAM Disease-associated microglia

DHA Docosahexaenoic acid 

EPA Eicosapentaenoic acid

fA Fibrillar A

FPR1 Formylpeptide receptor 1 (human)

FPR2 Formylpeptide receptor 2 (human)

Fpr2 Formylpeptide receptor 2 (murine)

GWAS Genome-wide association study

oA Oligomeric A

ROS Reactive oxygen species

SPM Specialised pro-resolving mediator

TBI Traumatic brain injuryA
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The burden of Alzheimer’s disease & dementia

Dementias are a considerable global health challenge. In 2016, the number of individuals living 

with dementia was estimated to be 44 million, a 50% increase compared to 1990 [1]. Of the 

different forms of dementia, Alzheimer’s disease (AD) is by far the most common, affecting 

approximately 4% of individuals over the age of 65 [2] with a predicted prevalence of over 78 million 

people by 2050. [3]. These figures represent a significant burden on patients, their families and 

wider health care systems in society, with an estimated cost in 2015 of £27,450 per patient with 

moderate dementia, per year in the UK [4]. Moreover, while mortality rates due to heart disease, 

stroke and cancer have all steadily decreased in the last 20 years, AD associated death continues to 

rise [5,6], and there are still no effective therapies to slow down or halt disease progression, despite 

AD first being identified over a century ago. Strategies to address AD are thus an urgent public 

health priority.

Neuropathology of AD

AD is primarily associated with two characteristic pathologies: extracellular plaques consisting 

of fibrillar β-amyloid peptides (fAβ) and intraneuronal tangles of insoluble, hyperphosphorylated tau 

protein. The Aβ peptide is formed by sequential digestion of the ubiquitous transmembrane amyloid 

precursor protein by the enzymes - and -secretase [7]. This generates soluble Aβ monomers, 

which can spontaneously aggregate into oligomers (oAβ) and subsequent insoluble fibrils (fA), 

which are the basis for plaque formation [8]. While plaques were initially suggested as the toxic 

moiety [9], opinion has shifted in recent years to focus on the detrimental actions of soluble oAβ and 

their potent pro-inflammatory and neurotoxic effects [10–13]. Under normal circumstances, tau 

protein is a regulator of microtubule formation [14], but for reasons that are still not fully 

understood, it undergoes hyperphosphorylation in AD, driving the formation of filamentous 

intraneuronal inclusions thought to impair trafficking and ultimately lead to neuronal death [15]. As 

with Aβ, soluble tau formulations appear to be sufficient to suppress neuronal activity [16], 

emphasizing the complexity of the pathological relationships between these disease associated 

proteins.A
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While much research has focused on the role played by these classical protein hallmarks in AD 

pathogenesis, there is increasing evidence for a role of neuroinflammation in the disease, driven by 

the principal brain immune cells, the macrophage-like microglia [17], aided, as we are increasingly 

realising, by the actions of astrocytes [18]. 

Neuroinflammation in AD

Although active brain inflammation has long been recognized as a feature of AD, for many 

years this was believed to be a response to dying neurons, and thus a secondary phenomenon. 

However, more recent human imaging studies and pre-clinical models indicate that progressive 

neuroinflammation may directly contribute to AD pathology. Furthermore, with the advent of 

genome-wide association studies (GWAS) investigating genetic risk elements for AD, the immune 

response itself has now taken centre-stage in our understanding of AD pathology [19–22]. Many 

immune system-related genetic loci have been identified as disease risk factors, and both human 

imaging studies [23,24] and pre-clinical models [25,26] have identified progressively increasing 

inflammatory activity in AD. It is worth examining the links suggesting inflammation may drive AD 

pathology, as this may offer new clues for intervention points and perhaps indicate novel targets for 

therapeutic development.

Neuroinflammation in AD: Evidence from human genetic analysis

While the strongest genetic risk factor for sporadic AD is the ε4 allelic variation of the 

apolipoprotein gene APOE (Liu et al., 2013), over twenty other genes have been associated with 

sporadic AD, many of which encode microglial proteins linked to inflammation (Table 1). Of these 

genetic risk factors, TREM2 and CD33 are of particular interest given the important roles they have 

been shown to play in microglial handling of A [28,29]. TREM2 acts to control inflammatory 

responses, including suppressing pro-inflammatory cytokine production, stimulating phagocytosis, 

promoting biosynthetic metabolism and sustaining cellular energetics [30–33]. Importantly, allelic 

variants of TREM2 have been shown to increase AD risk by up to three-fold [34,35] and have been A
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detected in a range of different human populations [19,20,36,37], underlining its role as a global risk 

variant for sporadic AD. The receptor CD33 has been implicated in a range of anti-inflammatory 

microglial functions including inhibition of cytokine release [38], regulation of inflammatory toll-like 

receptor 4 signalling [39] and suppression of A phagocytotic clearance [40]. Notably, individuals 

with variants resulting in high CD33 expression experience significantly greater AD-related cognitive 

decline [41].  

Interestingly, there appears to be a degree of overlap between the risk variants associated 

with sporadic AD and those with other inflammatory diseases. A GWAS accumulating data from 

more than 100,000 individuals in patient vs. control cohorts identified eight single nucleotide 

polymorphisms (SNPs) which were associated with both AD and immune-related conditions such as 

Crohn’s disease and psoriasis [42]. Overall, the study of myeloid cell genomics has revealed 

significant over-representation of microglia in the populations of cells bearing AD risk genes [43], 

with notable AD risk allele enrichment in enhancers of microglial, macrophage and monocyte activity 

[44], strongly indicating an important role for microglial activity in AD development.

Influences of other inflammatory diseases upon AD risk

Many conditions known to drive neuroinflammation have been associated with AD, most 

notably in the case of traumatic brain injury (TBI) [45,46]. In particular, severe or repeated incidents 

of TBI have been directly linked to increased AD risk [47]: TBI increases soluble Aβ production in 

cortical tissue [48], and A deposits and tau neurofibrillary tangles have been found at higher rates 

in TBI patients than controls [49]. 

Similarly, a wide range of chronic peripheral diseases have been linked with increased AD risk, 

including conditions as common as periodontitis [50], hypertension [51] and type 2 diabetes [52,53]. 

Whilst the mechanistic links underlying these associations are often poorly understood, it is notable 

that they share increased peripheral inflammatory activity as a common feature. More directly, 

increased plasma levels of the inflammatory markers lipopolysaccharide binding protein [54] and C-

reactive protein [55] have been associated with an increased risk of AD development, again 

suggestive of a link between inflammation and AD.A
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While there is little evidence that AD has a direct infectious aetiology, several studies have 

indicated that microbes or microbial components may act to drive Aβ pathology. Aβ peptides have 

similar properties to the anti-microbial peptides of the peripheral innate immune response, in 

particular the human cathelicidin LL-37. Both peptides can activate the inflammation-associated 

receptor formyl peptide receptor 2 (FPR2) [56], and share an ability to bind and kill multiple different 

microbial species in vitro [57,58]. Moreover, transgenic mice over-expressing Aβ are relatively 

protected against experimental bacterial meningitis, whilst animals lacking the amyloid precursor 

protein are more susceptible to this infection [59]. These actions of Aβ may be relevant to human 

disease as several studies have found microbes in the brains of AD patients post mortem [60–63]. 

Whilst caution must be taken with such findings, as techniques for detection of microbes in the brain 

are highly susceptible to environmental artefact, the idea that microbial actors or their components 

could trigger Aβ production is of interest, and at the least provides further circumstantial evidence 

for an involvement of the immune response in AD pathogenesis.

Neuroinflammation in AD: Evidence from pre-clinical studies

Beyond the associative data obtained from human population studies, pre-clinical models have 

provided a second source of information suggesting a role for (neuro)inflammation in AD 

pathogenesis. Notably, single cell transcriptomic analysis of murine AD models have identified a 

significant population of so-called disease-associated microglia (DAMs) [64], a finding that has since 

been replicated in humans [65], although it is important to note that significant differences exist 

between DAMs across the two species. In general, however, DAMs are characterised by reduced 

expression of a variety of regulatory genes known to maintain microglial homeostasis, e.g. the 

fractalkine receptor CX3CR1, alongside increased expression of genes associated with lipid 

metabolism and phagocytosis, notably including TREM2. Interestingly, DAMs were also reported for 

murine models of other neurodegenerative conditions [64,66], suggesting that the pro-inflammatory 

phenotype shift they represent may be a common response to disease processes. 

Inflammatory pathways themselves appear intrinsically tied to the development and 

worsening of AD pathology. For example, whilst components of the complement pathway are A
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required for synapse refinement by microglia during development [67], accumulation of the same 

proteins has been linked to both amyloid and tau pathology in the murine PS2APP and TauP301S 

models, respectively [68–70]. Notably, microglial derived C1q is sufficient to activate reactive 

astrocytes, reducing their ability to promote neuronal survival and instead promote neuronal death 

[71]. Microglia to astrocyte communication is not unidirectional however, as astrocytes have been 

shown to drive microglial phenotype in return. For example, using APP/PS1 mice, Stat3-driven 

astrogliosis has been shown to associate with increased Aβ levels and plaque burden, suppression of 

the microglial Aβ clearance proteins CD33 and neprilysin, and increased production of pro-

inflammatory cytokines, leading to impaired spatial learning and memory [72]. The relationship 

between astrocytes and AD progression is complex and incompletely understood however, as 

attenuation of astrocyte activity both enhanced A plaque burden and dystrophic neurite number in 

APP/PS1 mice [73], and increased levels of pro-inflammatory cytokines and soluble A in APP23 

animals [74]. It seems likely that the role astrocytes play in AD will change according to the stage of 

disease progression, and is likely to be linked to different microglial activation states [71], but a 

detailed consideration of their function lies beyond the scope of this review. 

Overall, neuroinflammation has been reported in at least seven independent animal models 

of AD and associated disease, including both Aβ and tau transgenics [75–80], and reducing 

inflammation through use of anti-inflammatory agents has successfully restored memory function in 

many of these models [76,80,81]. While the involvement of neuroinflammation in AD models is 

clear, further research is required to decipher the role of different glial (sub)-populations in disease, 

enabling us to fully understand the dynamic and complex roles of microglia and astrocytes during 

disease development, and to permit their translation to human disease.

The role(s) of microglia in AD

Inflammation in the central nervous system (CNS) differs markedly from that in the periphery 

with a relatively limited role for circulating leukocytes, their place largely being taken by central cells 

including astrocytes [71,82], perivascular macrophages [83], and probably most importantly the 

microglia [84,85]. Microglia are cells of myeloid origin that migrate into the brain tissue early in A
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development and remain there, monitoring and maintaining the CNS environment [86]. These cells 

play a number of critical roles in tissue maintenance and response to injury [87], pathogen defence 

[88], removing damaged tissue [89] and synaptic plasticity, learning and memory [90,91]. For 

reasons that are still unclear however, microglia tend to become hyper-reactive with increasing age, 

exhibiting stronger responses to stimuli and failing to return completely to their baseline status after 

threat elimination [92]. 

As suggested above, several cell types have been implicated in driving the 

neuroinflammatory response, including astrocytes [71,82] and perivascular macrophages [83], but 

the primary actors are thought to be microglia [84,85]. These cells play critical roles in tissue 

maintenance and response to injury [87], alongside pathogen defence [88], synaptic plasticity and 

consequently learning and memory [90], and are thus in a position to exert beneficial or detrimental 

effects on all of these AD-associated processes. 

Depending on brain region, microglia compose approximately 5-20% of the total cells in the 

brain [93,94]. Their complexity and dynamicity are evidenced by transcriptional analysis of murine 

microglia, wherein at least nine distinct cell states were identified [95]. Greatest diversity was seen 

in prenatal and infant mice, with cells gradually becoming more uniform across the brain into 

adulthood. This uniformity declined upon advancing age and following induction of multiple 

sclerosis-like injury [95]. In human AD and control patients, single-nucleus RNA-Seq (snRNA-Seq) was 

able to identify four subclusters of microglia based on their transcriptomes, with at least one being 

over-represented in AD brain samples [96]. Notably, and unlike the previous murine studies, the 

presence of AD-associated cell populations was greater in women than men, possibly aligning with 

the increased incidence of AD in this sex [96]. Interestingly, of the 229 DAM genes previously 

identified to be upregulated in 5XFAD mice [64], only 28 were observed in the upregulated 

microglial cluster, including APOE and SPP1 [96]. A further 49 genes upregulated in this human 

cohort had not previously been identified in mouse models, including CD14 and the complement 

receptor C1Qb [96]. Thus, differential microglial phenotypes likely exist between human patients 
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and mouse models, often shifting with disease progression, which needs to be taken into 

consideration in translational work. 

Microglia are notably plastic in their phenotypic expression and have the capacity to shift 

their functions and behaviour during the course of an inflammatory response (Figure 1A), with 

different phenotypes often corresponding to distinct in vivo states [97]. Following injury or infection, 

cells become polarized towards inflammatory phenotypes, releasing a battery of pro-inflammatory 

mediators and reactive oxygen species (ROS), which may contribute to neurodegeneration if 

uncontrolled [98,99]. Many of the processes and mediators involved in driving this pro-inflammatory 

phase are also potent pro-resolving signals [100], driving microglia to a more reparative phenotype 

involving the phagocytosis and removal of apoptotic cells, cellular debris and protein aggregates; all 

of which accumulate during neurological damage [101] and aging [102,103]. The pro-resolving 

mediators released at this point are thought to have a number of beneficial effects, concurrently 

initiating a negative feedback control of pro-inflammatory cytokine production and stimulating the 

release of pro-resolving factors such as IL-10 and TGF [104–106]. Thus, the change in microglial 

phenotype seen in the progression of an inflammatory reaction is fundamental in both limiting the 

acute inflammatory response and inducing tissue repair, thereby restoring neural homeostasis [107].

Changes to microglial phenotype have been reported in multiple post mortem AD analyses, 

with increased expression of the activation markers MHC II and CD68 seen repeatedly in different 

groups of AD patients [108]. In addition, both familial and sporadic AD patients have been shown to 

bear higher expression of neuroinflammatory pathological markers in the brain areas most affected 

by the disease, including the entorhinal and temporal cortices and the dentate gyrus of the 

hippocampus [109]. These findings are further supported by in vivo imaging studies of AD patients, 

where a clear correlation has been found between binding of ligands to the microglial activation 

marker translocator protein 18 kDa (TSPO) and progression of the disease [110,111]. The advent of 

detailed transcriptomic [112–114] and proteomic [115] analyses of AD patients have provided 

further insight into the complexity of microglial phenotypic changes during disease progression, 

although interestingly these two sources of information do not always concur (Figure 1B). 
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Microglia, neuroinflammation and neurodegeneration in AD

In healthy individuals, microglial phenotype remains relatively homeostatic, wherein these 

phagocytes remove dead cells and debris, preventing their accumulation in the brain [88]. However, 

microglia are long-lived cells, renewing by sometimes imperfect clonal expansion [116], and as they 

age their degradative capacity becomes less efficient [117], leading to the build-up of unwanted 

cellular debris and aggregation of both Aβ and tau [118,119]. The relationship between microglial 

behaviour and AD pathology is complex. Microglia actively phagocytose A plaques and dead/dying 

cells in what is thought to be an attempt to clear pathology [120], but A, particularly in its 

oligomeric form, potently activates microglia and can directly contribute to neuronal damage and 

loss [10,121–123]. Moreover, Several AD risk genes are associated with microglial phagocytosis, 

including APOE [124] and TREM2 [32], suggesting risk-variants may compound the defective effects 

of aging on microglial function. 

Beyond these deleterious interactions with aging, there are also indications that aberrant 

microglial phagocytosis may be implicated in early-stage disease. Several AD risk genes are 

associated with complement [125], a system that interacts with microglia to mediate phagocytic 

synapse removal in animal models challenged with oAβ [68]. Microglia expressing the complement 

component C1q are responsible for the proliferation of neurotoxic reactive astrocytes in mice [71]. 

However, depletion of the complement component C3 can stimulate plaque accumulation and 

increase neurodegeneration in the APPSW mouse model of AD [126], indicating a complex interaction 

between microglial function, aging and other immune parameters in disease. This complexity is 

further underlined by the neuroprotective roles microglia often display in prodromal disease states. 

Using the 5xFAD model, microglia were shown to phagocytose A via TREM2 without triggering 

evident neuroinflammation [64]. The role played by TREM2 and microglia appears to change with 

disease progression however, with TREM2-expressing microglia exhibiting a strong inflammatory 

phenotype following interaction with tau aggregates, exacerbating neurodegeneration [127].

Microglia can therefore either promote extensive neuroinflammation upon amyloid or tau 

reaction or assist the clearance of age-associated amyloid accumulation, apparently depending on A
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the stage of disease progression. Inhibiting the more neuroprotective functions of microglia in AD 

patients may therefore be detrimental, with blunt microglial inhibition strategies potentially causing 

more harm than good. Greater understanding of microglial behaviour, and particularly of how to 

manipulate the phenotypic changes exhibited by these highly plastic cells will be crucial in permitting 

development of microglial-targeting therapies for AD.

Interactions of microglia with AD hallmarks

Aggregation of large quantities of fAβ is a classical hallmark of AD, most probably linked with 

degradative enzymatic dysfunction [128,129], and has been shown to correlate with changes in the 

microglial proteome [130,131], although fA is unlikely to be the main toxic form of A [13]. Rather, 

oA species appear to directly contribute to neuroinflammation in AD [132]. Microglial pattern 

recognition receptors, including several toll-like receptors and the scavenger receptors RAGE and 

CD36, recognise Aβ and trigger a pro-inflammatory response [133] that impairs learning and 

memory [134,135]. Murine age-related cognitive impairment is also directly associated with chronic 

neuroinflammation [136], wherein microglia may damage and remove healthy neurones, further 

contributing to pathology [137]. Direct interaction of microglia with oAβ also appears to cause the 

release of a battery of pro-inflammatory cytokines, chemokines and ROS [10,138,139]. Moreover, 

microglial phagocytic ability appears to be hindered following Aβ-elicited activation [140], suggesting 

that Aβ may therefore promote its own accumulation, manifesting a self-propagating inflammatory 

cycle [141].

Evidence from animal models ties microglia to amyloid plaque production, although the exact 

role these cells play is complex and, to an extent, dependent on disease stage. Depletion studies 

have revealed both positive and negative effects of microglia with respect to plaque development 

and consequent behavioural phenotypes. Microglial removal using the CSF1R inhibitor PLX5622 in 

early stages of the 5xFAD mouse model prevented plaque formation but aggravated behavioural 

deficits [142], whereas the same group found that removal at later time-points did not affect plaque 

density but did prevent neuronal loss and improve behavioural measures [143]. In contrast, use of a 

different CSF1R inhibitor PLX3397 to remove microglia in early stages of the 5xFAD model decreased A
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plaque burden but improved cognitive behaviour [144]. Similarly, microglial removal using PLX3397 

abolished the protective effects of soluble TREM2 administration upon plaque load and cognitive 

deficits in the 5xFAD model [145]. These discrepancies emphasise both the complexity of microglia-

A interactions and our paucity of understanding, although it should be borne in mind that 

microglial depletion strategies commonly have off-target effects, both within and without the CNS 

[146], as is highlighted by the finding that the non-depleting CSF1R inhibitor GW2580 prevented 

synapse loss without modulating Aβ plaque number [147], and the discovery that an alternative 

viral-mediated microglial removal strategy had no effect on plaque formation or neuritic dystrophy 

in either APP23 or APP/PS1 animals [148]. 

While this inter-study variation is important to consider in evaluating murine model data, 

and may reflect the artificial nature of these systems to an extent, a key observation in human 

disease is that microglial activation correlates with AD pathology, appearing to occur primarily after 

plaque development but before tau tangle deposition [101]. This is supported by positron emission 

tomography studies in patients, which show microglial activation to occur well before clinical AD 

symptoms are apparent [149,150]. Furthermore, microglial activation correlates well with Aβ 

deposition in AD patients [151], and brain inflammation has been shown to accompany Aβ 

deposition in the majority of patients with mild cognitive impairment that progress to having AD 

[152]. Thus, while the relationship between Aβ pathology and microglial activation is complex, it 

seems likely that these cells are important in the development of the clinical symptoms associated 

with Aβ accumulation.

Although the progression of Aβ pathology correlates poorly with clinical symptom 

development [153], both neuroinflammation and tau pathology correlate well with AD symptom 

onset and disease severity in humans [23,151,154–156]. In line with this association, microglia may 

contribute to the pathological seeding of tau, with evidence suggesting that cultured microglia from 

the tauopathy-associated rTg4510 mouse can release tau seeds that act as foci of aggregation [157]. 

This argument is supported by the demonstration that transfer of purified microglia from 

hTauCx3cr1-/- transgenic mice into wild-type animals induced host tau hyperphosphorylation [156] 

and that depletion of microglia and macrophages by treatment with clodronate liposomes A
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significantly suppressed tau propagation [158]. Microglia do not appear to be merely passive 

distributors of tau seeds however, with evidence indicating a direct role for the NLRP3 

inflammasome, a major initiator of inflammatory activity through its role in producing IL-1 and IL-

18. Specifically, intracerebral injection of brain homogenate from APP/PS1 mice into Tau22 mutant 

animals effectively induced tau hyperphosphorylation, a response not seen in two different lines of 

Tau22 mutant and NLRP3 null mice [159]. 

Thus, microglia appear to be intimately involved in the propagation of AD pathological 

hallmarks, and to correlate with worsening clinical symptoms and neurodegeneration. As both A 

and tau pathology appear to be linked to pro-inflammatory microglial behaviour, controlling and 

reversing microglial activation may be therapeutically beneficial. Exploiting the pathways governing 

inflammatory resolution which naturally control microglial activity may thus have significant 

potential in the treatment of AD. 

Inflammatory resolution in AD

Over the last 15-20 years we have come to realise that inflammation is naturally a self-

limiting response, and that many of the endogenous mediators and receptors activated in the course 

of an inflammatory response have roles in the termination of that same response, the process 

termed inflammatory resolution [100]. Resolution of inflammation is a distinct, active process 

associated with the catabolism of pro-inflammatory mediators, removal of cell debris and tissue 

repair [160], with its failure often resulting in chronic inflammation, tissue damage and disease 

[161]. Whereas conventional anti-inflammatory therapies are usually designed as antagonists or 

inhibitors of specific factors and receptors which drive the inflammatory response, resolution based 

therapeutics aim to specifically target and upregulate endogenous signalling pathways which reduce 

the cardinal signs of inflammation, but also actively promote tissue repair and promote a return to 

homeostasis [162]. This shift in approach could be crucial for neuroinflammatory disease, as events 

present early in the inflammatory cascade likely engage this co-ordinated endogenous resolution 

process [100], indicating that blockade of inflammation through the use of traditional anti-

inflammatories may also stall the resolution response. Indeed, this effect may have contributed to A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

the disappointing results of clinical trials investigating NSAID use in treating AD [163] – such 

suppressive drugs may have halted inflammatory processes, but they will also have impaired 

resolution and thus initiating stimuli are unlikely to have been fully removed. Moreover, for patients 

with AD, given that it is above all an age-related disorder, avoiding direct inhibition of the 

inflammatory pathways may be particularly beneficial as this could avoid compromising immunity 

and aggravation of the pre-existing enhanced risk the elderly have of infection associated mortality 

[164].

Many endogenous specialised pro-resolving mediators (SPMs) have been identified 

[165,166], with a remarkable degree of molecular diversity, ranging from gases such as hydrogen 

sulphide and carbon monoxide  [167], through the lipid mediators lipoxins, maresins, protectins and 

resolvins [168,169], to proteins such as annexin A1 [170]. The benefit of utilising SPMs for disease 

was first identified over a decade ago, stemming from reports that both lipoxin A4 and annexin A1 

could stimulate production of known anti-inflammatory mediators, such as IL-10 [171,172]. These 

mediators also appear to stimulate the endogenous production of other SPMs, as was observed for 

resolvin E1, which upregulated lipoxin A4 expression in mice [173]. 

Pre-clinical models and patient analysis indicate that endogenous resolution pathways may 

be dysfunctional in AD. In particular, attention has focused on lipid pro-resolving mediators such as 

the maresins, protectins and resolvins derived from the omega-3 polyunsaturated fatty acids 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) [174]. Notably, studies of AD patients 

revealed reduced levels of maresin 1, protectin D1 and resolvin D5 in the entorhinal cortex [175] and 

reduced levels of lipoxin A4 in the hippocampus and cerebrospinal fluid [176], and expression of the 

leukotriene B4 receptor BLT1 and the chemerin 1 receptor, both of which bind resolvin E1, associate 

with higher Braak stages in human AD [177], suggesting a failure in engagement of resolving 

circuitry. Moreover, exogenous administration of lipid mediators has been shown to improve 

symptoms in a number murine AD models, suggesting that activation of resolution circuitry may 

have therapeutic benefit. Namely, DHA modulates glial responses in AD [178], bilateral hippocampal 

administration of maresin 1 significantly reduced microglial and astrocyte activation and cognitive 

decline following injection of A aggregates to mice [179], and lipoxin A4 improves cognitive A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

function and reduces signs of AD including synaptotoxicity, A deposition and tau phosphorylation in 

both 3xTg-AD [180] and Tg2576 [181] mouse AD models. Lipid mediators themselves are readily 

oxidised in air, and have poor half-lives and complex storage requirements [182], but synthetic 

agonists targeting their receptors may be of greater utility. 

In particular, the G protein coupled receptor FPR2 (also termed the lipoxin A4 receptor, ALX) 

has received substantial interest. This receptor plays an important role in governing the behaviour of 

innate immune cells such as neutrophils, monocytes and macrophages [183], mediating conversion 

from pro- to anti-inflammatory behaviour and driving inflammatory resolution. Expression of FPR2 

has been reported in a number of different CNS cell types, with the strongest evidence being for 

presence within microglia [176,184], particularly following activation by pro-inflammatory stimuli 

[185], and in endothelial cells [186,187]. There is some evidence for FPR2 expression within neurons, 

with reports indicating the receptor is present within hippocampal and cortical projection cells, 

primarily in the neuropil rather than cell bodies, and in the cerebellum [188], and there is evidence 

for FPR2 in neural stem cells [189] and in neuroblastoma lines [190]. Whether FPR2 is found in other 

brain cell types is more controversial, with conflicting reports both indicating [191,192] and refuting 

[188,193] expression within astrocytes; currently there are no reports of FPR2 expression within 

oligodendrocytes or other central glial subtypes. Intriguingly, there is compelling evidence to suggest 

targeting FPR2 may be a viable approach to restraining inflammatory activity in AD. 

Formylpeptide receptor 2

FPR2 is a member of the formylpeptide receptors, a family of both class A G protein-coupled 

receptors (GPCR) and pattern recognition receptors, first identified by homology based cloning to 

the potently pro-inflammatory formylpeptide receptor 1 (FPR1) [194]. The biological actions of this 

family of receptors are complex, with three members in humans and eight identified in mice, but 

members have known roles in chemotaxis, host defence and inflammation [195–197]. FPR2 and its 

murine homologues Fpr2 and Fpr3 are unusual in having a large number of both pro-inflammatory 

and anti-inflammatory ligands of remarkable molecular diversity, from lipids to peptides to proteins 

[56]. A
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The molecular signalling pathways triggered by FPR2 activation are complex and exhibit a 

significant degree of agonist bias, a feature attributable to a number of factors. Recent 

determination of the crystal structure of FPR2 bound to the peptide ligand WKYMVm alone [198] or 

in complex with Gi [199] revealed a remarkably wide and deep ligand binding pocket, capable of 

differentially accommodating and interacting with the broad variety of molecules known to have 

potency at this receptor. Notably, functional analysis of FPR2 structure upon binding of different 

pro- and anti-inflammatory ligands to this pocket revealed distinct, complex and dose-dependent 

conformational changes between ligands, with evidence for inter-ligand allosteric interactions upon 

co-administration [200,201]. Classically, FPR2 was thought to couple to inhibitory G proteins and 

Ca2+ mobilisation, but has since been shown to engage a wider repertoire of G proteins [202], with 

ligand-dependent conformational changes in the receptor translating into recruitment of distinct 

intracellular signalling pathways [200]. A further layer of complexity to FPR2 signalling is added by its 

ability to both homodimerize and to heterodimerize with the pro-inflammatory FPR1, particularly 

upon exposure to higher ligand concentrations, thereby connecting with numerous intracellular 

signalling pathways [203]. The receptor is thought to constitutively homodimerize in monocytes, 

with pro-resolving ligands such as lipoxin A4 and annexin A1 inducing a conformational change that 

leads to activation of p38 MAP kinase, phosphorylation of MAPKAPK and Hsp27 and production of 

the anti-inflammatory cytokine interleukin-10 [203]. In contrast, the pro-inflammatory ligands of 

FPR2 such as serum amyloid A, LL-37, and notably in the context of AD, A1-42, trigger 

phosphorylation of JNK and modulation of pro-apoptotic pathways in leukocytes [204], an effect 

attributed to the ability of FPR2 to form heterodimers with FPR1 [203]. Whilst this pattern of 

intracellular signalling, and particularly the intricate allosteric interactions between ligands, is 

without doubt complex, it also offers significant opportunity for the rational design of agents able to 

selectively target specific downstream functions of FPR2 signalling, potentially minimising off-target 

actions. In particular, there is now substantial evidence to position FPR2 as a critical actor in 

inflammatory resolution, helping to terminate an inflammatory response and restore homeostasis 

[183], raising the possibility of selective development of targeted pro-resolving therapies. The 
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majority of evidence supports the targeting of interactions between FPR2 and microglia, but this is 

not necessarily an exclusive mechanism whereby FPR2 agonists could be beneficial. 

Much of our knowledge of the role of FPR2 in inflammatory resolution is derived from 

studies of its behaviour in the peripheral system. In particular, given the close similarity in ontogeny 

and behaviour between microglia and monocytes/macrophages, insight into the potential of FPR2 in 

regulating neuroinflammation can be obtained through analysis of its role in these cells. Studies of 

both human and rodent systems have identified an important role for FPR2 or its non-human 

counterparts in the recruitment of monocytes to inflammatory foci, with studies reporting positive 

chemotactic effects of numerous FPR2 ligands on those cells, including serum amyloid A [205–207], 

the cathelicidin LL-37 [208], viral and bacterial peptides [209,210], protein cleavage products 

[211,212] and secreted human proteins such as FAM3D [213] and annexin A1 [195]. These findings 

have been translated into whole organism settings, with FPR2 having been clearly identified as a key 

organiser of monocyte recruitment in conditions as diverse as peritonitis [195], bacterial sepsis 

[214], colitis [215], heart failure [216] and allergic airway inflammation [217]. The signalling 

pathways engaged in these processes are not fully described, but most work has been undertaken 

examining the role of the major pro-resolving FPR2 ligand annexin A1, which has been shown to 

trigger phosphorylation of both ERK1/2 to induce chemokinesis [212] and p38 MAP kinase to induce 

directed chemotaxis [195]. Whether similar pathways are activated in response to other known 

chemotactic agents that act through FPR2, such as serum amyloid A or LL-37 is unclear. 

As well as recruiting monocytes to inflammatory foci, and following their conversion to 

macrophages, FPR2 signalling has been shown to play a major role in efferocytosis, the phagocytic 

removal of dead cells and debris that is essential for efficient termination of an inflammatory 

reaction and the restoration of tissue homeostasis [218]. FPR2 ligands including lipoxin A4, resolvin 

D1, annexin A1 and its peptidomimetics have been repeatedly  shown to promote clearance of 

apoptotic cells by macrophages, actions inhibited variously by receptor antagonists or genetic 

ablation [219–222]. Notably, we and others have shown that FPR2 can play a similar role in 

microglial efferocytosis and the removal of apoptotic neurons [223–225], thereby preventing their 

progression to secondary necrosis and initiation of further inflammatory activity. Notably, many of A
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the genetic risk variants associated with AD are in genes associated with phagocytosis and 

efferocytosis [226], hence systems involved in promoting efferocytosis, such as FPR2, may be of 

significant use in disease treatment. 

The role of FPR2 in inflammation extends beyond monocyte recruitment and efferocytosis 

however, as the receptor is central to the phenotypic plasticity that characterises macrophage 

responses to inflammatory challenge [227]. The FPR2 ligand annexin A1, derived from apoptotic 

neutrophils in an inflammatory locus, has been shown to engage the receptor on resident and 

recruited macrophages, triggering expression of an anti-inflammatory surface phenotypic marker 

profile and production of anti-inflammatory cytokines such as interleukin-10 and TGF through 

activation of AMPK signalling [227]. This effect is particularly intriguing as it links FPR2 signalling with 

the control of cellular energy homeostasis, a function we are increasingly appreciating as a major 

regulator of immune cell activity [228,229]. 

FPR2 & Neuroinflammation in AD

The involvement of FPR2 in neuroinflammation has been relatively understudied by 

comparison with its effects in the periphery, but evidence does still implicate it as both a mediatory 

of neuroinflammatory resolution and as a potential target in AD. Initial studies of FPR2 expression 

were limited by difficulties in distinguishing it from FPR1, but more recent analyses indicate that the 

receptor is present at a relatively low level within microglia throughout the brain [184,230,231]. 

While whole brain FPR2 content does not appear to change markedly in AD [190], microglial FPR2 

expression is markedly upregulated following exposure to inflammatory stimuli, including TNF and 

agonists of toll-like receptors 2, 3, 4 and 7 [232–236], and most notably fibrillar A, such that 

microglia associated with amyloid plaques express high levels of the receptor [184,237]. This 

regulation of FPR2 expression by inflammatory stimuli has parallels with the behaviour of the 

receptor in macrophages where FPR2 expression declines as a pro-resolving phenotype is adopted 

[214,227]. Given that several studies have now indicated microglia can also be induced to take an 

anti-inflammatory phenotype by FPR2 activation [193,238,239], this may represent a mechanism to 

maintain a pro-reparative microglial phenotype. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

The increase in FPR2 expression seen in plaque-associated microglia may be associated with 

the ability of microglia to phagocytose and break down fA [132,190,240], as treatment of microglia 

with pro-resolving FPR2 ligands such as annexin A1 has been shown to stimulate fA phagocytosis 

[190], alongside reducing inflammatory cytokine production [224,241]. Intriguingly, the ability of 

primary microglia to phagocytose fA is inhibited by the actions of oligomeric forms of the peptide 

[132], providing further support for the idea that oA may have greater toxicity. In this vein, 

micromolar concentrations of oA are potent activators of microglia in vitro through FPR2, 

provoking release of inflammatory cytokines and ROS and stimulating chemotaxis [230,235,242], 

although it should be noted that treatment of microglia with more AD-relevant concentrations of 

oA had a more selective effect, triggering oxidative stress without notable inflammatory change 

[10]. Significantly, the effects of oA on microglia ROS production and metabolic phenotype could be 

reversed by subsequent treatment with small molecule agonists of FPR2 [10], suggesting a potential 

avenue for further therapeutic investigation. 

Importantly, these interactions between FPR2 and microglial behaviour feeds forward to 

improvements in cognition in several different animal models of AD. For example, using a rat model 

of AD in which A1-42 was infused intracerebroventricularly, up-regulation of Fpr2 expression was 

shown to improve working and spatial memory deficits, suppress hippocampal inflammation and A 

deposition, and induce an anti-inflammatory microglial profile [235]. Similarly suggestive of a 

beneficial role for FPR2, administration of lipoxin A4 improves recognition memory in the 3xTg-AD 

mouse [180], and the stable  aspirin-triggered 15-epi-lipoxin A4 enhanced performance on the 

Morris water maze task in the Tg2576 tau transgenic mouse [181]. In contrast, long-term 

administration of the mixed FPR1/FPR2 antagonist Boc2 improved performance on the Morris water 

maze task, prevented hippocampal neuron loss and limited microglial activity in APP/PS1 mice [243]. 

These data further support a role for FPRs in amyloid pathology, although it should be noted that 

Boc2 has also been shown to possess FPR-independent activity [244]. Thus, while further work is 

needed to fully define the role of FPR2 in AD and its models, these studies highlight the potential of 
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the receptor as a target to not only slow neuroinflammation, but to actually improve ultimate 

cognitive outcomes.

Could FPR2 have therapeutic utility for AD?

Dementia and AD are major and growing healthcare challenges, particularly as despite the 

significant work and resources that have gone into therapeutic development, there remain no 

clinically effective treatments. Primarily, efforts have been guided by the amyloid hypothesis, i.e., 

that neurodegeneration is ultimately driven by the toxic actions of A, and that its suppressed 

production or enhanced removal would be beneficial [245]. Given that over 300 clinical trials based 

on this hypothesis have now been performed and have yet to result in a clinically usable therapy, it 

may be time to expand our horizons beyond the direct role of A and investigate other aspects of 

AD [246,247]. Neuroinflammation is central to the progression of AD and is thus a key candidate 

process for investigation, although as directly acting anti-inflammatory agents such as the NSAIDs 

have also shown little effect in prospective trials, a more considered approach may be needed. 

The endogenous processes governing neuroinflammatory resolution have significant 

potential to control microglial activity in AD, with FPR2 in particular offering an attractive target for 

pharmacological treatment. Moreover, the evidence describing the intricate allosteric interactions 

between FPR2 agonists and the complex signalling patterns that result raises the possibility of 

selective targeting of pro-resolving functions for therapeutic development. Such pro-resolving FPR2 

agonists will be able to exert a number of beneficial effects in the brain, including suppression of 

pro-inflammatory cytokine and ROS production [10,190,235], improving clearance of fA [180,190] 

and apoptotic cells and debris [224] and promoting an anti-inflammatory microglial phenotype 

[193,238]. More hypothetically, if microglia do behave in a similar manner to their peripheral 

macrophage cousins [214,227], induction of a pro-resolving phenotype by FPR2 activation may also 

down-regulate expression of the receptor itself, helping to shield microglia from further pro-

inflammatory activation by oA. The ability of FPR2 to regulate such a diverse array of microglial 

processes places the receptor in a key position to govern how microglia behave under 

neuroinflammatory conditions, and we would argue, positions it as a critical target for A
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pharmacological exploitation in dementia. Given the lack of therapies available to even slow down 

AD progression, targeting a system, such as FPR2, that activates the endogenous control pathways 

that reduce inflammatory activity and promote healing hold significant promise for an intervention 

that is sorely needed in dementia treatment. 
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Table 1. Microglial genes with risk variants for sporadic AD. Functions listed correlate to potential 

roles in AD progression, and do not encompass all biological functions that these genes are 

associated with. 

Gene Function Source

CD33 Immune regulator, can reduce phagocytosis and clearance of Aβ [29,248,249]

CR1 Complement cascade regulator. Receptor for complement 

components C3b and C4b.

[20,250]

TREM2 Phagocytosis, cell differentiation and proliferation [35,114]

ABI3 Innate immunity through interferon-associated signalling [114,251]

MS4A gene 

cluster

Modulates cerebrospinal fluid levels of soluble TREM2 [19,28]

HLA-DRB1 Antigen presentation [19,252]

INPP5D Regulator of microglial proliferation and phagocytosis of both 

cellular debris and Aβ

[20,253]

PICALM Accessory protein in endocytosis. Involved in APP processing, Aβ 

clearance and tau pathology

[250,254,255]

ABCA7 Phagocytosis and lipid metabolism; associated with APP processing 

and Aβ clearance

[19,256,257]

SPI1 Transcription factor and phagocytosis regulator [258]

CLU Extracellular chaperone linked to Aβ clearance [250,259]

EPHA1 Endocytosis. Tau toxicity modulator [29,260]

BIN1 Clathrin-mediated endocytosis and recycling. APP processing and tau 

pathology propagation.

[113,261,262]

MEF2C Modulates microglial inflammatory responses [96,112]

SORL1 Endocytosis receptor. Limits amyloidogenic processing of APP. [19]
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Figure Legend

Figure 1: Microglial phenotypes are diverse, wide ranging and modifiable. A) With nine 

transcriptionally unique microglial subsets identified in mice, it is important to emphasize the 

complexity of microglia, whereby aging, pathogen exposure and disease progression are all thought 

to modify microglial phenotype. Moreover, despite often being classified as ‘pro-inflammatory’ or 

‘anti-inflammatory’, a more mixed phenotype is often the case, with cells displaying characteristic 

features of each immune state, or a combination of both. B) Transcriptomic and proteomic studies 

have identified key changes in microglial phenotype in AD, highlighting the diversity of microglial 

actions in the brain, and their potential for involvement in key disease-related processes. 

Intriguingly, pathways identified by transcriptomic and proteomic analyses do not always overlap, 

highlighting the scope for further investigation that still lies in this field. 
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