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Abstract: Objective: This paper examines infrastructural and route environment correlates of cycling
injury risk in Britain for commuters riding in the morning peak. Methods: The study uses a case-
crossover design which controls for exposure. Control sites from modelled cyclist routes (matched
on intersection status) were compared with sites where cyclists were injured. Conditional logistic
regression for matched case–control groups was used to compare characteristics of control and injury
sites. Results: High streets (defined by clustering of retail premises) raised injury odds by 32%.
Main (Class A or primary) roads were riskier than other road types, with injury odds twice that for
residential roads. Wider roads, and those with lower gradients increased injury odds. Guard railing
raised injury odds by 18%, and petrol stations or car parks by 43%. Bus lanes raised injury odds
by 84%. As in other studies, there was a ‘safety in numbers’ effect from more cyclists. Contrary to
other analysis, including two recent studies in London, we did not find a protective effect from cycle
infrastructure and the presence of painted cycle lanes raised injury odds by 54%. At intersections,
both standard and mini roundabouts were associated with injury odds several times higher than
other intersections. Presence of traffic signals, with or without an Advanced Stop Line (‘bike box’),
had no impact on injury odds. For a cyclist on a main road, intersections with minor roads were
riskier than intersections with other main roads. Conclusions: Typical cycling environments in Britain
put cyclists at risk, and infrastructure must be improved, particularly on busy main roads, high
streets, and bus routes.

Keywords: cycling; injury; route environment; case-crossover; infrastructure; intersections

1. Introduction

While there is much work looking at cycling injuries, relatively little considers injury
risk as opposed to injury numbers or injury severity (e.g., [1]). More research is needed that
incorporates exposure or amount of cycling, so that we can separate the risk that a (type of)
location poses to each cyclist from the number of cyclists using that (type of) location.

For example, one might observe a comparatively large number of injuries on a popular
cycling route, but without knowing how many cyclists use that route (exposure) it would
be unclear whether the risk per cyclist was higher, lower or equivalent to surrounding
streets. This could lead to incorrect decisions about infrastructure interventions: for
instance, planners might believe that an infrastructure intervention was dangerous based
on absolute injury numbers, when in fact it might reduce injuries per cyclist (or vice versa).

Part of the reason for the lack of risk-based analysis is a paucity of cycling flow data
on which to base such exposure calculations [2]; this is compounded by a lack of good
spatial data on route characteristics. Analysis controlling for exposure hence often focuses
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on a small selection of sites [3] to facilitate bespoke data collection. There are relatively few
comprehensive analyses covering a range of sites and a range of infrastructure types, with
some [4] using area-level data, limiting the ability to link risk directly to route segment
characteristics.

There are some studies that control for exposure. These suggest that intersections
and major roads are associated with higher injury risk (e.g., [5–7]), as is volume of motor
traffic [7]. Lower speed limits may reduce risk [8] while hills and especially downhill
gradients increase it [9]. Cycling infrastructure has been found to reduce risk per cyclist [6].
However, studies suggest that this may only be true for tracks protected/separated from
motor traffic [10]. In London, protected cycle infrastructure was associated with a reduction
in injury risk of 40–65%; however, painted advisory cycle lanes were associated with an
increase of 30% [11].

More evidence is still needed, especially covering whole networks. Where aggregate
exposure data exists, case–control methods can be used (e.g., [6,7,12]) however, at a national
level such data is rarely available. This study uses a case-crossover design, allowing us to
control for individual-level variation, unlike aggregate methods. Our first set of findings
(author reference deleted) compared injury sites to randomly selected control sites. One
finding was the high risk associated with intersection status (i.e., if a site was at or close to
an intersection). Like [13] this paper presents a new set of results matched by intersection
status, allowing investigation of risks associated with specific characteristics of intersection
and non-intersection sites.

2. Materials and Methods
2.1. Approach

This paper examines correlates of cycling injury risk in Great Britain in 2017. Ethical
approval was given by the University of Westminster.

As in [9] the study uses a case-crossover method. Researchers randomly generate
control points from the routes followed by individual cyclists prior to experiencing an injury.
This produces a set of control sites representing the typical types of route environment
experienced by the injured cyclists; and the types of places they might instead have been
injured were all types of route environment equally risky. Hence, comparing this set of
matched controls with their cases (corresponding injury locations) allows researchers to
establish which out of a range of characteristics of injury sites (e.g., road width, street
infrastructure) are associated with increased odds of injury.

As we did not have actual cyclist routes (unlike [9]) we used the Cyclestreets fastest-
route journey planner to model cyclist routes prior to injury. Comparison with observed
cyclist routes and evidence from other published work (e.g., [14]) suggests that this predicts
sufficiently well the types of routes that cyclists follow for trips such as commuting (direct-
ness being the major factor, but not the only one). (More information about the Cyclestreets
journey planner can be found online: https://www.cyclestreets.net/help/journey/routing
(accessed on 15 March 2021). We also do not know exactly where a cyclist might have
been riding at any point: whether on the footway, using or not using a cycle lane or bus
lane. Thus, the study can tell us about the safety impact of the presence of certain types of
infrastructure, not their actual use.

2.2. Data Sources

We obtained home postcode data from Department for Transport, for all cyclists
injured in Britain during 2017. While we did also have data from Northern Ireland, this
represented only ~1% of all cycle injuries, and much route environment data only covered
Britain. Hence, we decided to only cover Britain in this analysis). This was necessary to
generate routes and hence control locations. For many trips the start location is a person’s
home, and this can be predicted based on trip timing given that that >95% of cycle trips
during the morning peak start from home. We used home postcode data alongside publicly
available Stats19 injury data, which includes the point co-ordinates of the collision location.

https://www.cyclestreets.net/help/journey/routing
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2.3. Generation of Routes and Set of Controls

In Britain between 5 a.m. and 9:59 a.m., Monday to Friday, 4303 cyclists were injured
during 2017. Of these 3507 (81.5%) had full home postcode data. We used the Cyclestreets
API (fastest-route option) to model routes from home postcode area centroids to the points
of injury (set of cases). The use of postcode centroids rather than exact addresses will
make little difference to results. Postcodes contain around 15 addresses, so in major urban
conurbations with terraced or flatted housing (>90% of cases) this implies a very small
segment of street. Even in smaller towns, each postcode contains a small cluster of nearby
houses, generally all on the same street. The only possible exceptions would be sparse
areas, but Census 2011 data shows that under 1% of cycle commuters live in such areas.

We excluded points associated with routes longer than 25 km (137 routes, or 3.9%) as
we considered these unlikely to have started at the person’s home location. We excluded
29 points where injury occurred <100 m from home, as this did not give sufficient scope for
the control and injury point to differ in their characteristics.

We initially generated one control point location (set of controls) randomly from each
of the 3341 remaining routes, using ArcGIS Random Points. As explained in more detail,
when randomly generating controls, we ensured that all fell on or adjacent to the highway
network, because the Stats19 injury dataset from which the cases are obtained only contains
injuries sustained in such locations.

Initial analysis showed strong associations between intersection status and injury risk.
Specifically, when comparing our set of combined cases and controls (n = 6682, 50% cases
and 50% controls) we found that cases made up 62% of the intersection sites, but only 29%
of the non-intersection sites. This was a univariate odds ratio of 4.42 (95% CI 3.90, 5.00), or
3.43 (2.99, 3.93) after adjusting for area, road, street infrastructure and vehicle variables. In
analyses restricted only to KSI injuries (fatal and serious), the effect was 3.77 (2.68, 5.29).

These strong effects matched our expectation that intersection status would be a major
predictor of odds of injury, supporting our decision to generate a set of control points
matched on intersection status for these analyses. Some factors not associated with risk
away from intersections might prove more problematic close to junctions, and vice versa,
given different conflict profiles, for instance related to vehicle movements.

2.4. Route Environment Data

Our analysis is based on analysis of 3341 injury and 3341 control points. We sourced
route environment data in a range of ways. This included datasets provided by partners
(e.g., Basemap: Guildford, UK) or available online (e.g., OpenStreetMap, data generated
globally from citizen mapping) and use of Google Street View. For details see Supplemen-
tary Table S1.

We assigned each point the following route environment characteristics, grouped a
priori into four different categories:

1. Area type: urban/rural status, high street status (defined by clustering of retail
premises), average small area deprivation.

2. Road type: road class, road width, road gradient, speed limit, street connectivity for
motor vehicles within the network.

3. Nearby street infrastructure: Bicycle infrastructure, guard railing, bus lane, bus stop,
metro/rail/tram stop, petrol station/car park, intersection status (proximity).

4. Vehicle factors: average AM peak speed, parked cars, cycle commuter flow.

Supplementary Table S1 presents details of how each variable was calculated. Note
that while variables related to factors such as weather condition and road surface condition
are present in Stats19 data, such factors cannot be included in our regression analysis
as we do not have corresponding data from the set of control sites. The same applies to
demographic and involved-vehicle factors, which are used to provide context, but which
cannot be used in comparison between case and control sites.
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2.5. Statistical Modelling

We used conditional logistic regression, matching each injury point to its sampled
control point matched on intersection status. We analysed our data guided by our four-
category classification of environmental correlates into area type, road type, nearby street
infrastructure, and vehicle factors.

We fitted the adjusted regression models using a hierarchal modelling structure,
starting with the categories of variables conceptualised as most distal to the outcome,
and continuing with categories of variables we saw as mediating more distal factors. In
stratified analyses restricted to intersection points, we included variables on traffic signals
and roundabouts, as additional elements of street infrastructure. We included road type
and vehicle factors variables for the intersecting road where available. We conducted
sensitivity analyses restricted to KSI casualties, and present results for tests for interaction
between each predictor and whether the injury was a KSI or not.

As our study is focusing on injuries occurring during the morning commute, control
points will be closer to home and further from work than injury points, and on average
places where people work are less residential and more commercial. Hence, we expected
that injury locations would generally have a higher workplace density than control loca-
tions, as an artefact. This was indeed observed: workplace density was higher in the injury
point for 1155 participants (34.6%), in the control point for 735 participants (22.0%), and
similar (within 0.05) for 1451 participants (43.4%). To reduce confounding, we included
workplace density in all adjusted models as a covariate.

Note also that the Propensity to Cycle Tool (PCT) route network (used to look up
cycling volume, see Supplementary Table S1) was created using an algorithm (Cyclestreets)
to route cyclists between origin and destination, based largely but not only on directness.
By contrast injuries can happen anywhere that cyclists travel. Our method therefore means
control points are less likely to be ‘off the PCT network’, and therefore less likely to get a
zero or very low cycle volume value. For this reason, when modelling cycle volume as
a continuous variable we simultaneously entered a binary dummy variable identifying
whether the route contained 0–5 versus 6+ cyclists.

We examined crude associations to guide how continuous variables should be entered
into our model. Motor connectivity ranking was highly correlated with road class and other
road type variables, so we entered it as a categorical variable. Otherwise, where possible
we entered continuous variables as linear terms, to increase power and avoid complications
of interpretation from using quadratic terms. To limit the effect of outliers, we capped
road width at 15 m (276 higher values, or 4.1%, rounded to 15), average peak speed at 50
miles/h (303 higher values, or 4.5%, rounded to 50) and the number of cycle commuters
at 1000 (88 higher values, or 1.3%, rounded to 1000). After this, all continuous variables
showed an approximately linear relationship in visual inspection, with no evidence of
non-nonlinearity as judged by the inclusion of a quadratic term (all p > 0.05 in adjusted
analyses).

The proportion of variables with missing data ranged from 0 to 6.2% with respect
to the road on which the crash happened. At intersections, the proportion with missing
data ranged from 0 to 12.6% with respect to the second, intersecting road. We imputed
this data using multiple imputation (25 imputations) under an assumption of Missing
at Random. We confirmed in sensitivity analyses that results were similar when using a
complete case analysis on the 2589 participants (77.5%) with complete data for both injury
and control points.

3. Results
3.1. Sample Characteristics

Characteristics of the 3341 individuals in our sample are shown in Table 1. The large
majority were from England. 77% were male, 73% aged 25–59, and people living in the
richest two-fifths of areas were somewhat underrepresented. 82% of injuries were slight,
17% serious and 0.4% fatal. The large majority, 91%, involved cars, taxis, or vans; 4% were
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‘no other vehicle’ collisions. Most occurred when it was light (as expected given during the
morning commute), in fine weather with dry road conditions.

Table 1. Characteristics of individuals and of their crash.

Characteristic Level N (%)

Full sample 3341 (100%)

Country England 3159 (94.6%)
Scotland 131 (3.9%)

Wales 51 (1.5%)

Sex Male 2579 (77.2%)
Female 762 (22.8%)

Age 0–15 293 (8.9%)
16–24 415 (12.5%)
25–39 1276 (38.5%)
40–59 1139 (34.4%)
60–74 155 (4.7%)
75+ 34 (1.0%)

Small-area Fifth 1 (richest) 546 (17.3%)
deprivation Fifth 2 569 (18.0%)

of home Fifth 3 642 (20.3%)
Fifth 4 778 (24.6%)

Fifth 5 (poorest) 623 (19.7%)

Injury severity Fatal 14 (0.4%)
Serious 578 (17.3%)
Slight 2749 (82.3%)

Striking vehicle No other vehicle 188 (5.6%)
Cyclist 20 (0.6%)
HGV 70 (2.1%)
Bus 38 (1.1%)

Other motor vehicle, mostly cars 3025 (90.5%)

Light conditions Light 2933 (87.8%)
Dark 408 (12.2%)

Weather Fine, no high winds 2708 (85.4%)
conditions Other 464 (14.6%)

Road surface Dry 2401 (74.3%)
conditions Other 832 (25.7%)

Numbers add to less than 3341 for some variables due to missing data: in these cases, the % is calculated relative
to those with non-missing data.

3.2. Effects of Area, Road, Street Infrastructure and Vehicle Factors

Table 2 provides results from our modelling of injury predictors for all points (matched
for intersection status).
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Table 2. Predictors of injury, all points.

Category Predictor Level n Points % Injury Points Univariable Adjusted 1 Adjusted 2 Adjusted 3

Area
Type

Urban Rural 464 47% 1 * 1 1 1
Urban 6218 50% 1.41 (1.01, 1.96) 1.31 (0.94, 1.83) 1.15 (0.80, 1.66) 1.19 (0.82, 1.74)

High Street No 5953 49% 1 *** 1 *** 1 *** 1 **
Yes 729 61% 1.85 (1.55, 2.20) 1.58 (1.32, 1.89) 1.48 (1.22, 1.80) 1.32 (1.08, 1.62)

Average
deprivation Change per standard deviation increase - - 1.03 (0.96, 1.11) 1.04 (0.97, 1.12) 1.02 (0.94, 1.10) 1.01 (0.93, 1.09)

Road
type

Road class Primary 2561 58% 1 *** 1 *** 1 ***
Secondary 745 49% 0.54 (0.44, 0.66) 0.67 (0.53, 0.84) 0.68 (0.54, 0.86)

Tertiary 1215 45% 0.43 (0.36, 0.51) 0.55 (0.45, 0.67) 0.55 (0.45, 0.67)
Residential or other 2160 44% 0.44 (0.38, 0.51) 0.60 (0.49, 0.74) 0.50 (0.40, 0.63)

Road width Change per 1 m increase - - 1.16 (1.14, 1.19) *** 1.11 (1.08, 1.14) *** 1.10 (1.07, 1.13) ***

Gradient Change per 1% increase in incline
(downhill = negative) - - 0.97 (0.94, 0.99) * 0.96 (0.94, 0.99) ** 0.96 (0.93, 0.98) **

Speed limit 20 mph or less 1244 47% 1 ** 1 1
30 mph 4633 51% 1.34 (1.12, 1.61) 0.95 (0.77, 1.18) 0.95 (0.77, 1.18)
40 mph 395 52% 1.51 (1.13, 2.03) 0.90 (0.64, 1.26) 1.10 (0.77, 1.57)

over 40 mph 347 50% 1.31 (0.95, 1.82) 0.91 (0.62, 1.32) 1.10 (0.74, 1.62)

Connectivity
rank 0–24% 310 42% 1 *** 1 1

25–49% 622 43% 1.06 (0.80, 1.40) 1.04 (0.77, 1.40) 1.09 (0.80, 1.47)
50–74% 1246 47% 1.31 (1.01, 1.70) 1.17 (0.89, 1.55) 1.33 (1.00, 1.76)

75–100% 4217 53% 1.72 (1.34, 2.20) 0.96 (0.72, 1.28) 1.17 (0.87, 1.58)

Nearby
Street

infrastructure

Bicycle
infrastructure

None 5203 48% 1 *** 1 *** 1 ***
Track (no lane) 571 53% 1.29 (1.07, 1.56) 1.19 (0.97, 1.46) 1.18 (0.96, 1.45)
Lane (no track) 626 60% 1.86 (1.53, 2.26) 1.48 (1.20, 1.84) 1.54 (1.24, 1.91)
Track and Lane 84 69% 2.79 (1.70, 4.56) 2.46 (1.45, 4.16) 2.46 (1.44, 4.22)
Other, e.g., sign 142 50% 1.13 (0.80, 1.59) 1.23 (0.85, 1.78) 1.39 (0.95, 2.03)

Guardrail No 5598 49% 1 *** 1 ** 1 *
Yes 1028 58% 1.54 (1.33, 1.78) 1.25 (1.07, 1.46) 1.18 (1.01, 1.39)

Bus lane No 6267 49% 1 *** 1 *** 1 ***
Yes 359 68% 2.51 (1.95, 3.23) 1.81 (1.37, 2.39) 1.84 (1.39, 2.44)

Bus stop No 6016 50% 1 1 ** 1 **
Yes 666 47% 0.89 (0.76, 1.05) 0.75 (0.63, 0.90) 0.77 (0.64, 0.92)
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Table 2. Cont.

Category Predictor Level n Points % Injury Points Univariable Adjusted 1 Adjusted 2 Adjusted 3

Metro/rail/
tram stop

No 6642 50% 1 * 1 1
Yes 40 70% 2.60 (1.25, 5.39) 1.72 (0.79, 3.76) 1.52 (0.68, 3.36)

Petrol station or
car park

No 6259 49% 1 *** 1 ** 1 **
Yes 423 58% 1.47 (1.19, 1.81) 1.48 (1.18, 1.85) 1.43 (1.14, 1.79)

Vehicle factors
2-way average
morning peak

speed
Change per 10 mph increase - - 0.81 (0.77, 0.86) *** 0.78 (0.73, 0.84) ***

Parked cars No 2649 52% 1 ** 1
Yes 3977 49% 0.86 (0.78, 0.96) 1.00 (0.88, 1.14)

No. cycle
commuters on

segment
Change per 100 cyclists increase - - 0.99 (0.95, 1.03) 0.94 (0.90, 0.99) *

* p < 0.05, ** p < 0.01, *** p < 0.001 in tests for heterogeneity. Numbers in the N’ column add to less than 6682 points for some variables due to missing data. In all other columns all 6682 points are used, using
multiple imputation. All adjusted models additionally adjust for workplace density, as linear and quadratic terms, and when examining number of commuters on the segment we additionally included a dummy
variable ‘0–5 cycle commuters versus 6+’. Control point selected after matching for intersection status: see Supplementary Materials Tables S2–S4 for equivalent analyses using control point selected without
regard for intersection status.
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3.2.1. Effects of Area-Type Variables

Being urban and on a high street were both significantly associated with increased
odds of injury in univariable analyses, but there was no association with area deprivation.
The impact of being in an urban area attenuated and became no longer significant after
mutual adjustment for presence of a high street (adjusted model 1), and then further
attenuated upon additional adjustment. This suggests the univariable urban effect reflected
the types of roads found in urban areas plus the higher concentration of high streets. The
impact of being on a high street was somewhat attenuated after adjusting for road type,
street infrastructure and vehicle factors, but a significant independent effect remained in
the final adjusted model (3), suggesting some risk posed by aspects of the high street not
captured in other variables (odds ratio 1.32, or a 32% increase in the odds of injury).

3.2.2. Effects of Road Type Variables

All five variables were significantly associated with the odds of injury in univariable
analyses. After mutual adjustment plus adjusting for area type and nearby street infras-
tructure (adjusted model 2), injury was independently predicted by primary road type;
greater road width; and a lower gradient value (i.e., higher odds of injury for downhill
travel than flat travel, and for flat travel than uphill travel). There was no longer evidence
in adjusted analysis of an independent effect of speed limit or motor connectivity.

3.2.3. Effects of Street Infrastructure Variables

Five of six variables were significantly associated with odds of injury in univariate
analyses, the exception being a nearby bus stop. After mutual adjustment, plus adjusting
for area type and road type (adjusted model 2), injury was independently predicted by
the presence of a cycle lane (=on-road) or a cycle track (=off-road) plus a lane, but not
a track alone. Note that ‘track’ here is used to describe any kind of highway-adjacent
off-road infrastructure: in the UK, such infrastructure traditionally would tend to involve a
shared footway rather than what would usually be known as a ‘cycle track’ on the Dutch
or Danish model. Note also that we do not know whether a cyclist was in fact riding on
provided infrastructure; thus, the findings cannot show whether use of typical UK cycle
infrastructure is protective or risky, but rather whether its presence is.

These associations with cycle infrastructure type changed little after adjusting for
vehicle factors variables (motor traffic speeds, parked cars, commuter cyclist flow). In-
creased injury odds was independently predicted by presence of a bus lane, guardrail,
petrol station or car park. Again, none of these associations changed much after adjusting
for the vehicle factors variables.

3.2.4. Effects of Vehicle Factors Variables

Higher average traffic speed was associated with lower odds of injury in both uni-
variate and adjusted analyses. Parked cars were associated with lower odds of injury in
univariable analyses, but this effect disappeared in adjusted models, in particular after
adjusting for road type (parked cars are more common on residential streets). In univariable
analyses there was no association between odds of injury and volume of cycling, but after
adjustment for other factors a higher volume of cyclists was associated with lower odds
of injury.

3.3. Examination of Differential Effects between Slight Injuries versus KSI

We conducted stratified analyses comparing the 2749 individuals with a slight injury
to the 592 individuals who were killed or seriously injured (KSI) (see Supplementary
Materials Tables S2–S4). In general, the point estimates were similar between the two
injury types, although less often statistically significant for KSI because of the much smaller
sample size. There was never evidence of an interaction between any of the 17 predictor
variables shown in Table 2 and KSI status (all p ≥ 0.09).
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3.4. Examination of Differential Effects between Non-Intersection versus Intersection Points

We conducted stratified analyses comparing the 684 individuals who were not injured
at an intersection to the 2657 individuals who were injured at an intersection. The adjusted
results are shown in Table 3. Note that at intersections, ‘first road’ refers to the road on
which the cyclist was travelling at that point (based on our modelling of their route to that
point), and the ‘second road’ is the joining road.

As the number of non-intersection injuries was relatively small, the confidence in-
tervals are fairly wide and there is low power for testing for interactions. In 15 of the
17 variables tested, there was little or no evidence of an interaction in adjusted analyses
(all p ≥ 0.09). There was, however, strong evidence of an interaction between intersection
status and road class (p < 0.001) such that the protective effect of being on a secondary road
and in particular tertiary road was stronger at intersection than at non-intersection points.
There was strong evidence of an interaction between intersection status and average speed
(p = 0.004), such that the somewhat increased risk associated with very low speeds (perhaps
representative of congestion) was more pronounced at intersections than non-intersections.

In Table 3, adjusted model 2 for intersection points includes some variables applying
to the second road. After adjusting for the characteristics of the first road, there was a
significantly increased odds of injury if the second road was a minor (i.e., not primary)
road, and a significantly increased odds of injury if the second road was wider. Further
exploratory analyses indicated an interaction between the road class of the first road and
the second road (p = 0.003), such that injury odds were increased if first road were a
primary road and the second road a minor road specifically (adjusted OR 2.41, 95% CI 1.88
to 3.08, compared to first road and second road both primary: see Supplementary Materials
Tables S2–S4).

There was no effect of having a traffic signal present at an intersection, with or without
an ASL. There was, however, substantially higher odds of injury if the intersection involved
a roundabout or a mini roundabout, with similar effects of these two sorts of roundabouts.
Finally, there was evidence that the odds of injury at intersections increased as average
speed on the second road increased.
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Table 3. Results separating intersection and non-intersection sites, and additional results for intersection points.

Category Predictor Level Non-Intersection Points
(n = 1366 Points) Intersection Points (n = 5312 Points) P-Value for Interaction with

Intersection Status, Adjusted 1 Models

n
Points

% Injury
Points Adjusted n

Points
% Injury

Points Adjusted 1 Adjusted 2

Area
type

Urban Rural 177 48% 1 287 47% 1 1 p = 0.57
Urban 1191 50% 1.91 (0.91, 3.99) 5027 50% 1.04 (0.66, 1.64) 1.11 (0.68, 1.80)

High Street No 1284 49% 1 * 4669 49% 1 * 1 ** p = 0.43
Yes 84 68% 1.79 (1.01, 3.19) 645 60% 1.28 (1.03, 1.59) 1.44 (1.15, 1.80)

Average
deprivation

Change per standard
deviation - - 0.89 (0.74, 1.07) - - 1.03 (0.95, 1.13) 1.04 (0.95, 1.14) p = 0.18

Road
type,
first
road

Road class Primary 434 56% 1 * 2127 58% 1 ** * 1 *** p < 0.001
Secondary 185 51% 0.85 (0.51, 1.40) 560 48% 0.63 (0.49, 0.82) 0.44 (0.33, 0.58)

Tertiary 271 53% 1.15 (0.73, 1.81) 944 42% 0.44 (0.35, 0.56) 0.34 (0.27, 0.44)
Residential or other 477 42% 0.52 (0.31, 0.88) 1683 45% 0.47 (0.37, 0.60) 0.40 (0.31, 0.53)

Road width Change per 1 m
increase - - 1.04 (0.95, 1.12) - - 1.11 (1.08, 1.15)

***
1.07 (1.04, 1.11)

*** p = 0.19

Gradient Change per 1%
increase in incline - - 0.97 (0.91, 1.03) - - 0.95 (0.92, 0.98)

**
0.95 (0.91, 0.98)

** p = 0.75

Speed limit 20 mph or less 218 48% 1 1026 47% 1 1 p = 0.83
30 mph 885 50% 0.83 (0.47, 1.49) 3748 51% 0.97 (0.77, 1.23) 0.96 (0.73, 1.27)
40 mph 97 54% 0.87 (0.38, 2.02) 298 52% 1.10 (0.74, 1.65) 1.04 (0.63, 1.69)

over 40 mph 147 52% 1.04 (0.45, 2.43) 200 48% 1.05 (0.66, 1.66) 1.14 (0.64, 2.02)

Connectivity 0–24% 65 40% 1 245 42% 1 * 1 p = 0.16
rank 25–49% 126 42% 1.03 (0.52, 2.03) 496 43% 1.08 (0.77, 1.53) 1.07 (0.75, 1.52)

50–74% 260 46% 1.26 (0.66, 2.42) 986 48% 1.36 (0.98, 1.88) 1.28 (0.92, 1.78)
75–100% 801 54% 1.65 (0.82, 3.32) 3416 52% 1.07 (0.76, 1.50) 0.98 (0.69, 1.39)

Road
type,

second road

Road class Primary - - 885 53% 1 *** -
Not primary - - 4429 49% 2.04 (1.63, 2.54)

Road width Change per 1 m
increase - - - - 1.08 (1.05, 1.12)

*** -

Speed limit 20 mph or less - - 1100 49% 1 -
30 mph - - 3193 50% 1.00 (0.77, 1.29)
40 mph - - 192 53% 0.92 (0.55, 1.56)

over 40 mph - - 158 48% 0.75 (0.42, 1.33)
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Table 3. Cont.

Category Predictor Level Non-Intersection Points
(n = 1366 Points) Intersection Points (n = 5312 Points) P-Value for Interaction with

Intersection Status, Adjusted 1 Models

n
Points

% Injury
Points Adjusted n

Points
% Injury

Points Adjusted 1 Adjusted 2

Nearby
street

infrastructure

Bicycle None 1144 50% 1 4059 48% 1 *** 1 *** p = 0.09
infrastructure Track (no lane) 103 44% 0.81 (0.49, 1.35) 468 55% 1.31 (1.04, 1.65) 1.31 (1.03, 1.67)

Lane (no track) 74 62% 1.68 (0.92, 3.05) 552 59% 1.52 (1.20, 1.92) 1.60 (1.25, 2.05)
Track and Lane 9 78% 11.84 (0.88, 159.8) 75 68% 2.23 (1.28, 3.90) 2.34 (1.31, 4.18)
Other, e.g., sign 13 31% 0.47 (0.12, 1.87) 129 52% 1.50 (1.00, 2.24) 1.36 (0.90, 2.05)

Guardrail No 1201 49% 1 4397 48% 1 1 p = 0.80
Yes 142 59% 1.31 (0.85, 2.00) 886 58% 1.18 (0.99, 1.41) 1.14 (0.94, 1.37)

Bus lane No 1288 49% 1 4979 49% 1 *** 1 *** p = 0.47
Yes 55 64% 1.84 (0.88, 3.84) 304 68% 1.87 (1.37, 2.54) 1.89 (1.38, 2.58)

Bus stop No 1212 51% 1 ** 4804 50% 1 1 p = 0.24
Yes 156 44% 0.57 (0.39, 0.84) 510 49% 0.82 (0.66, 1.00) 0.90 (0.72, 1.12)

Metro/rail/ No 1361 50% [omitted] 5281 50% 1 1 p = 0.99†
tram stop Yes 7 100% 33 64% 1.20 (0.52, 2.76) 1.67 (0.70, 3.98)

Petrol station or No 1314 49% 1 4945 49% 1 * 1 * p = 0.54
car park Yes 54 63% 1.73 (0.92, 3.22) 369 57% 1.38 (1.08, 1.77) 1.34 (1.03, 1.74)

Traffic signal No - - 4833 49% 1 -
Yes, no ASL - - 303 61% 1.14 (0.84, 1.55)

Yes, with ASL - - 178 59% 1.26 (0.87, 1.83)

Roundabout None - - 4559 47% 1 *** -
Roundabout - - 557 69% 2.98 (2.25, 3.95)

Mini-roundabout - - 198 69% 3.55 (2.39, 5.27)

Vehicle factors,
first road

2-way average
morning peak

speed

Change per 10 mph
increase - - 0.93 (0.79, 1.10) - - 0.76 (0.70, 0.82)

***
0.78 (0.72, 0.85)

*** p = 0.004

Parked cars No 584 51% 1 2065 52% 1 1 p = 0.87
Yes 759 49% 1.01 (0.76, 1.34) 3218 49% 0.99 (0.86, 1.14) 1.06 (0.91, 1.23)
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Table 3. Cont.

Category Predictor Level Non-Intersection Points
(n = 1366 Points) Intersection Points (n = 5312 Points) P-Value for Interaction with

Intersection Status, Adjusted 1 Models

n
Points

% Injury
Points Adjusted n

Points
% Injury

Points Adjusted 1 Adjusted 2

No. cycle
commuters on

segment

Change per 100
cyclists increase - - 0.95 (0.83, 1.08) - - 0.94 (0.90, 0.99) * 0.94 (0.89, 0.99) * p = 0.86

Vehicle factors,
second road

2-way average
morning peak

speed

Change per 10 mph
increase - - - - 1.17 (1.08, 1.27)

*** -

† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 in tests for heterogeneity. ASL = advanced stop lane. Numbers in the N’ column add to less than 1368/5314 points for some variables due to missing data. In all other
columns all points are used, using multiple imputation. All models additionally adjust for workplace density, as linear and quadratic terms, and a dummy variable ‘0–5 cycle commuters versus 6+’. † From
interaction test in univariable analysis, as multivariable model could not converge. 4 points, from 2 injuries, are excluded because it was not possible to sample a control point matched for intersection status (e.g.,
as the injury occurred at the first intersection after the participant’s house).
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4. Discussion
4.1. Summary Findings

High street status was associated with an elevated injury risk in final adjusted models,
while urban area status was not, an initial effect becoming attenuated when adjusting for
other variables. In adjusted models, injury risk was independently predicted by road type
being primary, and by a more downhill gradient. Lower speed limits and lower motor
traffic connectivity were initially associated with lower injury risk, but these effects were
no longer statistically significant when adjusting for other variables. Increased road width
was associated with increased injury risk in all models.

Findings suggest that injury risk is increased by width and classification of road,
and by factors generating potentially conflicting movements by other road users—i.e.,
intersections, shops, petrol stations and car parks, and parked cars, although the presence
of other cyclists reduced risk. Bus lanes, a principal form of provision for cycling on busy
roads, increase injury risk, although this increased risk is somewhat mitigated close to bus
stops. Perhaps surprisingly, on-road cycle lanes are associated with an increase in risk
similar to presence of a bus lane combined with a bus stop, and off-road infrastructure did
not appear to be protective. This contrasts with a similar study in London which found that
cycle tracks separated from motor traffic and from pedestrians were protective; although
in the London study advisory on-road lanes also increased risk [11].

When separating intersection and non-intersection points, type of intersection mat-
tered: both roundabouts and mini roundabouts raised injury odds threefold at intersection
locations. Signals, with or without on-road infrastructure of Advanced Stop Lines (‘bike
boxes’) were not associated with increase or decrease in injury risk. At intersections, the
negative impact of main roads and of low morning traffic speeds were heightened.

4.2. Limitations

We were only able to include weekday morning peak journeys, which may affect some
of our results—for instance, the speed variable may mainly be applicable to an urban peak
hour context with a limited speed profile. We had to exclude injured cyclists for whom
home postcode was not known. Our data predominantly relates to slight injuries involving
motor vehicles, these being most injuries recorded by the police.

Our use of a modelling algorithm to route the cyclists could lead to bias, for instance,
if cyclists in practice make more use of residential roads than is suggested by the algorithm.
However, use of a relatively direct route (the Cyclestreets ‘fast route’ algorithm prioritises
directness, considering the delaying impacts of hills and traffic signals) is, we believe, likely
to represent well enough cyclist routes, especially at commuting times. This is discussed
in more detail in a related paper from this project (in press; Kapousizis, Goodman, and
Aldred). More research using routes reported by injured cyclists, such as [9] would be
helpful, particularly if it incorporated testing against algorithmically generated routes,
although such research is expensive and logistically challenging.

We were limited in route environment data sources available, and use of current
Google Streetview images may introduce bias, if for instance infrastructure has been
built post-2017 (which might be more likely in previously more dangerous environments).
Presence of parked cars is an imperfect proxy since the Google Streetview cars mainly
travel off-peak. We did not have data on motor traffic volume, as this is only available for
major roads (as in many countries), not across the whole network. The connectivity dataset
used was likely to represent a poor proxy.

4.3. Strengths

We used national data and controlled for cyclist volume and individual characteristics,
through the case-crossover approach used. This is unusual and represents an innovative
use of secondary data, allowing the research to be conducted without potentially intrusive,
costly, and time-consuming primary data collection.
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4.4. Meanings of Our Findings and Policy Implications

Unsurprisingly, our findings confirmed that main roads and wider roads (likely to
have more traffic lanes) are riskier for people cycling. Adjusting for these factors meant
that the impact of speed limits became statistically insignificant, although in univariate
modelling 30 mph limit roads were riskier than 20 mph limit roads. Our modelling of
actual motor traffic speeds in the morning peak suggested that congestion might increase
injury risk, with roads with very low motor traffic speeds seeing higher risks; although
at intersections, second roads with very low speeds conversely decreased risk. (Note
also that most of our injuries are slight, hence a study of more serious injuries might
find different patterns related to the association between speed and injury severity). The
finding for guard railing suggests that this (anti)pedestrian infrastructure may help to
create a perception among drivers that they will not encounter conflict with non-motorized
users [15].

The negative impact of environments with conflicting motor traffic movements ap-
pears clear in most cases; away from intersections this is likely to particularly relate to
curbside activity. Restrictions on car parking and hence better visibility for people cycling
might then account for the somewhat protective effect of bus stops (without a bus lane,
which has a larger negative impact). As in other studies, we found a safety in numbers
impact from other cyclists being present on the road segment; there did not appear to be a
negative impact from conflicting movements in relation to other cyclists.

Our findings in relation to cycle infrastructure are contrary to other literature, which
generally finds a protective impact (cf. a recent systematic review [16]; although note this
excluded case–control and case-crossover studies). Assuming that our algorithm has not in-
troduced bias (i.e., if cyclists are in reality more likely to use roads with cycle infrastructure
than predicted by the Cyclestreets direct routing), we believe the explanation likely lies in
the quality of the cycle infrastructure typically existing across Britain in 2017. England’s
new Cycle Infrastructure Design Guidance (LTN 1/20) suggests that infrastructure quality
may start to improve. In London, where a similar update to guidance was published six
years ago and where better data on cycle infrastructure type is available, studies already
show a reduction in risk from types of higher-quality separated infrastructure [10,11].

5. Conclusions

Improvements to infrastructure and road conditions are most needed in contexts with
higher existing risks. If roundabouts are to remain, higher-quality designs are needed,
drawing on research from contexts such as the Netherlands where roundabouts are safer
for cyclists than in the UK (e.g., [17]). Main roads, high streets, and roads with bus lanes are
all risky for cyclists, yet often serve key desire lines and destinations. Such routes should
be prioritised for higher-quality cycling infrastructure, ensuring high-quality design at
intersections where current infrastructure is currently most problematic. As cyclists are
also at high risk on main roads when passing side road junctions, these designs should
not just focus on protecting cyclists at primary–primary junctions, but also reducing risk
at side roads (for instance, reducing the number and speeds of turning movements into
and out of side roads). Making quieter streets more attractive and pleasant for cycling, for
instance through low traffic neighbourhood-type schemes restricting through motor traffic,
can also help to provide safe alternative cycle routes.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-4
601/18/6/3060/s1, Table S1: Route environment data sources; Table S2: Results stratified by KSI
(killed and seriously injured) status; Table S3: Predictors of injury, all points—with controls selected
not matching for intersection status; Table S4: Predictors of injury, among points at intersections
(n = 5314), according to the combination of the road class of the first road and the second road.
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