
~ 130 ~

Mathematical Representation of the Hardware Round-Robin Scheduler
Analytical Model for Single-ISA Heterogeneous Architectures

Daniel Nemirovsky†‡, Nikola Markovic†‡, Osman Unsal†, Mateo Valero†‡, Adrian Cristal†‡ⱡ

Computer Architecture for Parallel Paradigms, Barcelona Supercomputing Center (BSC), Barcelona, Spain †
Department of Computer Architecture, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain ‡

Artificial Intelligence Research Institute - Spanish National Research Council (IIIA-CSIC), Barcelona, Spain ⱡ
(daniel.nemirovsky,nikola.markovic,osman.unsal,mateo.valero,adrian.cristal)@bsc.es

INTRODUCTION

Introduction Over the past few years, hardware chip
manufacturers have been shifting strategies to overcome the
well-known Power Wall which imposes the practical
limitations to increasing CPU performance by raising the
processor’s running frequency. The most recently applied
schemes to exploit high single and multi-threaded
performance at lower energy costs have been to increase the
number of cores per chip as well as their diversity leading to
what is commonly referred to as heterogeneous multi or many
core architectures. In spite of the visible gains the architectures
offer, heterogeneity poses significant challenges to the OS,
one of the most critical being thread scheduling[1]. In this
paper we provide contributions consisting of 1) a Hardware
Round-Robin Scheduling policy motivated by [2] and
derivation of a mathematical model for analyzing it, and 2) an
analysis and comparison of the performance results obtained
through our mathematical model with ones gathered via a
simulator and real physical system. HRRS policy and
mathematical model In order to effectively enhance the
scheduling efficiency on a heterogeneous system within a
realistic scope of implementation, we have sought a
scheduling scheme that leaves the OS unmodified. To achieve
this, we have provided the OS with an abstracted view of the
heterogeneous physical hardware as being instead composed
of four identical (homogeneous) logical cores. As a
consequence, the OS scheduler will now map software threads
onto the logical cores which enables the OS scheduling
policies and implementation to be left unaltered. Meanwhile,
as the OS scheduler maps threads to the logical cores, which
may happen at every software-quantum or while handling
interrupts, the Hardware Round-Robin Scheduler (HRRS),
which is triggered into action at every hardware-quantum,
maps the logical cores to the physical cores. In essence, the
HRRS remaps the software threads that are abstractly assigned
to a logical core by the OS to the physical cores of the
underlying hardware which actually execute the threads.

Equation (1) represents the basic mathematical model for
execution time of all workloads on all cores where N

represents the total number of cores and hardware threads, Q
is the scheduling quantum, W represents the workload per
thread (equal per thread), B = CPI_large/Q , S = CPI_small/Q
, and C<1 represents the fraction of the scheduling quantum
spent in context switching. The overhead for migrating a
workload from one core to another has three components: 1) a
penalty for storing and restoring the architecture state (i.e., the
registers which are at most a few kilobytes of state), 2) an
overhead attributed to the time it takes to drain a core’s
pipeline prior to migration, and 3) migration overhead due to
cache compulsory misses and
sharing effects. The latter is by far the largest and most
important component, being at least two order of magnitude
larger in terms of latency cost than the first two components
combined. In order to estimate the migration overhead we
have compared the overhead on a real machine (Intel i7 quad-
core Haswell micro-architecture) by applying the method
described by Li C. et al. [3], with our simulation results which
were obtained using the Sniper simulator [4] and SPEC2006
benchmark suite. Evaluation summary In order to be able to
exploit time varying workload execution behavior while
keeping migration overhead small, we set the time slice
granularity (i.e., hardware scheduling quantum) to be 1ms,
compared to the typical 4ms quantum used by the OS software
scheduler. Based on evaluations from previous work as well as
our own experimental results from running on a physical
machine, we have assumed a fixed 3,000 cycle penalty for
storing and restoring the architecture state. Our experiments
were carried out on a real machine as well as with the Sniper
simulator and used different scheduling quanta show that
migration overheads ranges from 3,000 to 30,000 cycles for a
workload less than 500KB and up to around 300,000 cycles
for workloads greater than 500KB. Our simulations show
average performance benefit of 11 percent for HRRS
compared to the OS software scheduler. After including these
migration overheads into our mathematical model we compare
the model’s predicted performance of the HRRS scheme with
results extracted using the simulator and got an error rate of
less than 3 percent.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41792785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

~ 131 ~

Figure 1. Analytical model comparing ideal HHRS performance with an ideal
Linux OS scheduler on different heterogeneous system configurations

REFERENCES

[1] K. Van Craeynest et al. Scheduling heterogeneous multi-cores through
performance impact estimation (pie). In Proc. ISCA, 2012.

[2] N. Markovic et al. Thread lock section-aware scheduling on asymmetric
single-isa multi-core. In IEEE CAL, 2014.

[3] S. Li et al. Quantifying the cost of context switch. In Proc. Workshop
Exp.Comput. Sci., 2007.

[4] T. Carlson et al. Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation. In Proc. SC, 2011.

