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INTRODUCTION 

Introduction Over the past few years, hardware chip 
manufacturers have been shifting strategies to overcome the 
well-known Power Wall which imposes the practical 
limitations to increasing CPU performance by raising the 
processor’s running frequency. The most recently applied 
schemes to exploit high single and multi-threaded 
performance at lower energy costs have been to increase the 
number of cores per chip as well as their diversity leading to 
what is commonly referred to as heterogeneous multi or many 
core architectures. In spite of the visible gains the architectures 
offer, heterogeneity poses significant challenges to the OS, 
one of the most critical being thread scheduling[1]. In this 
paper we provide contributions consisting of 1) a Hardware 
Round-Robin Scheduling policy motivated by [2] and 
derivation of a mathematical model for analyzing it, and 2) an 
analysis and comparison of the performance results obtained 
through our mathematical model with ones gathered via a 
simulator and real physical system. HRRS policy and 
mathematical model In order to effectively enhance the 
scheduling efficiency on a heterogeneous system within a 
realistic scope of implementation, we have sought a 
scheduling scheme that leaves the OS unmodified. To achieve 
this, we have provided the OS with an abstracted view of the 
heterogeneous physical hardware as being instead composed 
of four identical (homogeneous) logical cores. As a 
consequence, the OS scheduler will now map software threads 
onto the logical cores which enables the OS scheduling 
policies and implementation to be left unaltered. Meanwhile, 
as the OS scheduler maps threads to the logical cores, which 
may happen at every software-quantum or while handling 
interrupts, the Hardware Round-Robin Scheduler (HRRS), 
which is triggered into action at every hardware-quantum, 
maps the logical cores to the physical cores. In essence, the 
HRRS remaps the software threads that are abstractly assigned 
to a logical core by the OS to the physical cores of the 
underlying hardware which actually execute the threads. 

Equation (1) represents the basic mathematical model for 
execution time of all workloads on all cores where N 

represents the total number of cores and hardware threads, Q 
is the scheduling quantum, W represents the workload per 
thread (equal per thread), B = CPI_large/Q , S = CPI_small/Q 
, and C<1 represents the fraction of the scheduling quantum 
spent in context switching. The overhead for migrating a 
workload from one core to another has three components: 1) a 
penalty for storing and restoring the architecture state (i.e., the 
registers which are at most a few kilobytes of state), 2) an 
overhead attributed to the time it takes to drain a core’s 
pipeline prior to migration, and 3) migration overhead due to 
cache compulsory misses and 
sharing effects. The latter is by far the largest and most 
important component, being at least two order of magnitude 
larger in terms of latency cost than the first two components 
combined. In order to estimate the migration overhead we 
have compared the overhead on a real machine (Intel i7 quad-
core Haswell micro-architecture) by applying the method 
described by Li C. et al. [3], with our simulation results which 
were obtained using the Sniper simulator [4] and SPEC2006 
benchmark suite. Evaluation summary In order to be able to 
exploit time varying workload execution behavior while 
keeping migration overhead small, we set the time slice 
granularity (i.e., hardware scheduling quantum) to be 1ms, 
compared to the typical 4ms quantum used by the OS software 
scheduler. Based on evaluations from previous work as well as 
our own experimental results from running on a physical 
machine, we have assumed a fixed 3,000 cycle penalty for 
storing and restoring the architecture state. Our experiments 
were carried out on a real machine as well as with the Sniper 
simulator and used different scheduling quanta show that 
migration overheads ranges from 3,000 to 30,000 cycles for a 
workload less than 500KB and up to around 300,000 cycles 
for workloads greater than 500KB. Our simulations show 
average performance benefit of 11 percent for HRRS 
compared to the OS software scheduler. After including these 
migration overheads into our mathematical model we compare 
the model’s predicted performance of the HRRS scheme with 
results extracted using the simulator and got an error rate of 
less than 3 percent. 
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Figure 1. Analytical model comparing ideal HHRS performance with an ideal 
Linux OS scheduler on different heterogeneous system configurations 
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