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Resumen 
El apropiado modelizado dinámico lineal de filtros de tiempo continuo (CTFs) con lazos de sintonía 

automática debe llevarse a cabo para poder asegurar la estabilidad cuando queremos diseñar 

controladores de lazo mejorados. Con este objetivo, a partir de un análisis general y sistemático que 

permite obtener un modelo incremental linealizado equivalente para pequeña señal, se derivan las 

funciones de transferencia entre las variables de salida y las tensiones de control. Ello permite, a 

continuación, un posterior diseño de los compensadores de lazo con mejora en la estabilidad y en las 

prestaciones dinámicas. Este procedimiento sistemático permite conseguir mejores controladores para 

los dos lazos de control involucrados. Sin embargo, los CTFs con lazos de sintonía o ajuste automático 

son sistemas realimentados no lineales que tienden a ser inestables. Es más, fenómenos no lineales, que 

no pueden predecirse con un enfoque mediante modelos de pequeña señal orientados al diseño, pueden 

ser observados en este tipo de sistemas de sintonía. El propósito de este trabajo es poner de manifiesto 

que cuando se varían los parámetros de control, el sistema puede presentar diferentes tipos de fenómenos 

no lineales dinámicos tales como bifurcaciones y comportamiento caótico, que no pueden ser predichos 

por el modelo en pequeña señal orientado al diseño. 

 

Palabras Clave: Filtros de tiempo continuo, lazos de sintonía automática, modelos incrementales 

equivalentes linealizados para pequeña señal, sistemas realimentados no-lineales, fenómenos no-

lineales, bifurcaciones y comportamiento caótico. 

 

 

Abstract 
The appropriate linear dynamic modeling of continuous–time filters (CTFs) with automatic tuning loops 

should be obtained to assure stability in case an improved design of the loop controllers is to be carried 

out. With this aim, starting from a general and systematic analysis in order to obtain an equivalent small–

signal linearized incremental model, from which transfer functions between output variables and control 

voltages are derived, the subsequent design of compensated loops with enhanced stability and dynamic 

performance is required. This systematic procedure allows obtaining improved controllers for the two 

involved control loops. However, CTFs with automatic tuning loops are nonlinear feedback systems with 

potential instability. What is more, nonlinear phenomena, which cannot be predicted by a design-oriented 

small signal modeling approach, are observed in this kind of tuning systems. The purpose of this work 

is to highlight that when control parameters are varied, the system could present different kinds of 

dynamical nonlinear phenomena such as bifurcations and chaotic behavior, which cannot be predicted 

by the small signal design-oriented model. 

 

Keywords: Continuous–time filters (CTFs), automatic tuning loops, equivalent small–signal linearized 

incremental model, nonlinear feedback systems, nonlinear phenomena, bifurcations and chaotic 

behavior. 
 

 

1. Introduction 

Filters with tuning capabilities are adaptive filtering stages that incorporate tuning input signals 

aimed to directly modify the parameters of the original circuit structure. They typically exhibit a 

non–linearity of the bilinear type, which is well–known in several system modeling areas as in 

average models for switching power converters [1]. This bilinear behavior is caused by terms 
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containing the product of state variables and control inputs in equations that describe their behavior. 

An additional source of modeling complexity of filters with tuning capability is caused by the 

sinusoidal nature of the reference input signal to the control loops, which requires the dynamic 

model to be obtained for low frequency baseband equivalent signals (envelope and phase shift). 

In particular, starting from the modeling technique proposed in [2] for filters with automatic tuning, 

the corresponding transfer functions from the quality factor control signal to the amplitude of the 

output signal, as well as from the central frequency control signal to the phase–shift of the output 

signal are required. As a result, these transfer functions allow designing both enhanced non–

adaptive and adaptive controllers that improve the performance of previous controllers based in 

dominant pole compensation for tuning both the quality factor (Q) and the central frequency (ωO). 

Note that the design of loop controllers is, without the knowledge of the involved transfer functions, 

blind in relation to the considered system. In addition to this, the aim of the self–tuning subsystem 

might consist not only in correcting component tolerances and drift DC errors, but also in 

dynamically varying Q and ωO parameters of the CTF. In such applications the loop bandwidth is 

critical. 

However, nonlinear phenomena that can not be predicted by a design-oriented small signal 

modeling approach are observed in this kind of tuning systems. As a matter of fact, this bilinear 

behavior and time-varying nature of the reference input signal to the control loops make the system 

prone to exhibit nonlinear phenomena that cannot be predicted by a design-oriented small signal 

modeling approach. The prediction of such behaviors can only be predicted by a suitable model 

that retains the nonlinearity and the time-variance of the system. 

That is, while an appropriate small signal linear dynamic modeling of the tunable filter should be 

obtained for design purpose, its ability to predict the real large-signal nonlinear dynamic behavior 

of the system is very limited.  To overcome this problem, a general and systematic procedure has 

to be used in order to obtain a large signal nonlinear model. 

The purpose of this work is to highlight that, when control parameters are varied, the system could 

present different kinds of dynamical nonlinear phenomena such as bifurcations and chaotic 

behavior, which cannot be predicted by the small signal design-oriented model. In addition, these 

nonlinear phenomena are also shown in high efficiency filters with tuning capabilities. Thus, the 

study of this behavior could be used to improve tuning control loops in electronically tunable 

switch-mode high-efficiency adaptive band-pass filters intended for energy harvesting applications 

[3]. 

The rest of the paper is organized as follows. Section II presents the system description and the 

mathematical dynamic model of CTFs with tuning capability.  Section III shows the description of 

and application example, in which a discrete implementation of CTF with tuning capability is 

considered. Finally, in Section IV, non-chaotic and chaotic behaviors are observed. Different tools 

are combined to identify the dynamical behavior of the system. Finally, some concluding remarks 

are drawn in the last section. 

 

2. Generic Dynamic Modeling of Tunable Filters  

The conventional tuning strategy consists of an indirect adjustment based on the so–called master–

slave scheme [2], [4]. The main filter (slave circuit) performs the filtering process for the incoming 

signal (Figure 1). The master filter, which is embedded within the O and Q tuning control loops, 

receives a reference sine wave vREF(t), whose frequency (which must be as stable as possible) 

should ideally be tracked by the filter, hence indirectly setting the central frequency of the slave 

filter. 
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Figure 1. Block diagram of a tuning system for CTF based on a master-slave strategy. 

 

The design and implementation of improved controllers for Q and ωO loops (Figures 2.a) requires 

first the dynamic modeling of the master filter considering control signals vCF(t) and vCQ(t) as 

inputs, and the phase–shift of the filter output signal for the O–control loop, and the amplitude of 

the filter output signal for the Q–control loop as outputs. Note that both control loops are nonlinear 

systems with non–DC steady–state. 
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Figure 2. (a) Basic block diagram of an on–chip tuning system for a CTF. (b) CTF model with 

amplitude and phase detectors and control loops. 

 

In order to analytically study the local stability of the tuning system, the first step consists in 

modeling the filter, considered as the control system plant, yielding the transfer functions of the 

equivalent small signal circuit. Generally [4], [5], most analog filtering structures, including 

automatic tuning, consider second order filters with three input signals as a master cell. Namely: 

The original input signal, vREF(t) in Figures 2.a and 2.b, and two control inputs, represented as 

vCF(t) and vCQ(t), that tune, respectively, central frequency (O) and quality factor (Q) of the filter. 

In addition, this second order master filter has two state variables v1(t), vO(t), one of which is usually 

the output signal of the circuit. Therefore, the system can be expressed in a space–state 

representation form as [2]: 
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It can be argued that phase and amplitude detectors (Figure 2.a) provide a circuit approximation to 

the baseband demodulation operation, with the objective of extracting from the state phasor vO(t) 

(modulated carrier signal), the phase and amplitude slow information that is required to properly 

tune both frequency and quality factor parameters, respectively (Figure 2.b).  

From the baseband–equivalent linear equations, the transfer function that relates the amplitude of 

the state variables to the control voltage that tunes the quality factor ( )CQv t , as well as the transfer 

function that relates the phase–shift of these state variables to the control voltage ( )CFv t  that tunes 

the central frequency ωO of the master (and thus slave) filter can be obtained [2]. These transfer 

functions are required for studying loop (local) stability and, in turn, design enhanced 

compensators. 

 

3. Application Example: Discrete of Continuous-Time Filter with Tuning Capability 

As an example of a CTF with tuning capability that shows dynamical nonlinear phenomena that 

cannot be predicted by the small signal design-oriented model, a particular 2nd order continuous-

time filter with tuning capability is considered in this work (Figure 3). This circuit structure consists 

in a 2nd order state–variable filter, in particular, the so–called TQE (transimpedance Q–

enhancement) filter [6], [7]. In order to perform the automatic tuning of the CTF, resistors must be 

implemented by means of electronically tunable circuits. In an on chip implementation, there are 

several available structures in order to perform the tuning capability such as the he cell known as 

MOS Resistive Circuit (MRC) [8], [9]. However, as a matter of example, and in order to reveal 

these dynamical nonlinear phenomena (such as the aforementioned bifurcations and chaotic 

behavior) in automatic tuning of CTFs, analog multipliers are used as electronically tunable cells 

in order to implement a discrete implementation of the CTF (Figure 4). Notice that, in this case, 

control voltages vCF(t) and vCQ(t) tune, respectively, the central frequency (O) and the quality 

factor (Q) of the TQE structure. 
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Figure 3. 2nd order band-pass filter with TQE (transimpedance Q–enhancement) topology. 
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Figure 4. 2nd order analog multiplier-based band-pass filter with TQE topology.  
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where constant KM is the same for all analog multipliers (1/10 for commercial model AD633). 
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On the other, the equivalent resistance R’2 that fixes the quality factor Q of the structure is: 
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3.1. Q-Control Loop 

The control loop that tunes Q is shown in Figure 5. The input of the CTF filter (reference voltage 

vREF(t) in Figure 4) is applied to the analog multiplier M1 by means of an amplifier with a gain 

proportional to the desired Q. On the other hand, the output of the CTF filter vo(t) is applied to the 

analog multiplier M2. The difference of signals provided by these multipliers is applied to an 

integral control (the loop controller OA3), in order to obtain the control voltage vCQ(t) that tunes the 

quality factor (Q) of the TQE structure. Basically, this control signal that tunes Q is: 

 
   

2 2 2

 -  
( )

t

CQ Q REF Ov t K Q V V dt


   (6) 

Thus, the control loop makes that, when the difference of the squared output amplitude ( 2

OV ) is 

equal to the squared input amplitude ( 2

REFV ) multiplied by Q2, the quality factor (Q) is tuned [10]. 
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Notice that a common choice for controlling the quality factor with a zero static error and a high 

loop bandwidth is by using a compensator with a single pole at the origin [11]. However, it has 

been shown in [10] that significant improvements on system response can be achieved if a more 

advanced controller is used. In this paper the same controller proposed in [10] is used. The transfer 

function of this controller (operational amplifier OA3) is: 
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( / 1)

i z
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K s
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, (7) 

where parameter Ki is the controller gain, and ωz and ωp are an additional zero and pole, 

respectively. 
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Figure 5. Q-control loop that tunes the quality factor of the CTF. The controller (operational amplifier 

OA3) acts as a pole-zero compensator. 

 

3.2. O-Control Loop 

On the other hand, the control loop that tunes O is shown in Figure 6. The output of the CTF filter 

vo(t) is applied to a tuned integrator (thanks to M1) in order to provide a 90º-phase shift (operational 

amplifier OA1). This 90º-phase-shifted signal is then squared in order to “lose” the amplitude 

information and keep only phase information [10]. This squared waveform is multiplied with 

reference voltage vREF(t) in order to obtain an error signal proportional to the phase shift   between 

both signals (output and input signals to the CTF). This error is applied to an integral controller 

(OA2) to obtain the final control voltage vCF(t) that tunes the central frequency (O) of the TQE 

structure. As a consequence, this control signal that tunes O is, basically: 

 
   

0
     

( ) sin ( )
t

CF CF Fv t V K dt 


      (8) 

Therefore, when the phase shift φε between both signals (output and input signals to the CTF) is 

zero, the central frequency (O) is tuned [10] by the control loop. 
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Figure 6. O-control loop that tunes the central frequency of the CTF. 

 

4. Experimental Results 

In order to corroborate and validate the chaotic behavior, simulations and experimental trials have 

been carried out with CTF shown in Figure 4, operating with its two control loops (Figures 5 and 

6). In Figure 7.a circuit signals can be observed when the system is not tuned. In this case, with an 

input signal (CH1) with amplitude of 3 V, and frequency of 7 kHz, and a Q set point of 1, the output 

signal (CH2) is not in phase with the reference input. However, if the filter is tuned (Figure 7.b), 

input and output signal signals of the filter are in phase, and the output amplitude of the output 

signal is a value that agrees with the desired Q factor (Q=1 in this case). 

 

  

(a) (b) 

Figure 7. Experimental waveforms when the filter is not tuned (a) and tuned (b). 

Channel 1: Input signal vREF(t); Channel 2: Output signal vo(t) ; Channel 3: Q-control voltage vCQ(t); and 

Channel 4: ωO-control voltage vCF(t). 

 

Finally, if the input (reference frequency) of the master filter decreases (Figure 8) below 4 kHz, the 

filter shows chaotic behavior. The phase-space diagram of the tuned CTF that shows the 

intermediate signal (v2) and the output signal (vout) with chaotic behavior is also shown in Figure 

8. 
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(a) (b) 

Figure 8. (a) Experimental voltage waveforms when the filter shows chaotic behavior. 

(b) Phase-space diagram of the tuned CTF that shows the input voltage (vref), the intermediate voltage (v2) 

and the output voltage (vout) with chaotic behavior. 

 

5. Conclusions 

In this paper, we have studied the dynamic behavior of a continuous-time filter with automatic 

tuning loops, which is a nonlinear feedback system that may present nonlinear phenomena. The 

small signal model, which is usually considered for designing the controllers, fails to predict the 

real behavior of the system. 

However, this paper shows and reveals that nonlinear phenomena such as bifurcations and chaotic 

behavior may be found in this kind of tuned systems. 

Finally, it is important to highlight that results obtained in this work can provide some help to 

advance in the observation and study of the aforementioned dynamical nonlinear phenomena, 

avoiding unstable behavior in automatic tuned filters. 
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