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Abstract 
Macroscopic deformations in embryonic soft tissues are due to the intra-cellular remodelling and cell 
intercalation. We here present a computational approach that can handle the two types of deformations, 
and also take into account the active cell response. The model resorts to cell centred techniques, where 
particles represent cell nuclei, and to vertex models, where the vertices represent cell boundaries. This 
hybrid approach allows to consider separately intra-cellular and inter-cellular forces, and at the same 
time impose cell incompressibility. The model is applied to simulate the active stretching of 
epithelium. 
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1. Introduction 
The observed deformations of embryonic multicellular tissues is governed by multiple proteins 
that mediate the activity of the cytoskeleton [4] and at also by adhesive proteins that control inter- 
cellular contact (cadherins, lime, catenins,...) [1]. The macroscopic shape changes are the result of 
the contributions of the two types of forces, which together strongly influence cell polarisation 
and intercalation [9]. When simulating characteristic morphological processes such as germ band 
extension [4], it is crucial to properly handle the connectivity changes that take place during cell 
reorganisation, and at the same time capture the polymeric material of the cell. 

From the computational standpoint, cell-centred models focus on the force balance between cell 
nuclei [5], while in vertex models mechanical equilibrium is applied at the cell-cell junctions [3, 
8]. In order to capture the two types of approaches, we here propose a hybrid model that 
combines mechanical equilibrium at cell centres, but also includes mechanical constraints at the 
associated vertex points in order to simulate cell incompressibility. 

2. Methodology 
2.1. Tissue definition 
We will consider cellular tissues with a constant number of cells N, and located on a sufficiently 
regular manifold, not necessarily flat. The tissue kinematics is defined at each discrete time 
instants tn  by the cell-cell connectivity, here denoted by Tn, and the positions of the cell centres Xn  = [x1  …, xN ], with xi

n  the position of cell i at time tn. We denote by Cn  = {Xn  ,Tn} the 
n n 

configuration of the tissue at time tn which fully describes its kinematics. 
At each time increment, the new configuration Cn+1 is searched from the previous comfiguration 
Cn by solving the following two step process [6]: 

• S1. Find the mechanically equilibrated positions Xn+1  maintaining the connectivity Tn 

constant. 
• S2 Find the new connectivity Tn+1 maintaining the centre positions Xn+1. 
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Figura 1. Computational process for retrieving positions and connectivity Xn+1 and Cn+1 from the same 

• quantities at time tn. 

The new set {Xn+1, Tn+1} defines the new configuration Cn+1. Step S1 is here resolved by solving 
equilibrium of all the forces at each cell-centre (particles). The new connectivities are instead 
found resorting to Delaunay triangulation, which is here adapted to obtain connectivity patterns 
that are convex and not necessarily flat. Figure 1 illustrates the two step process, where the 
process S2 comprises the Delaunay and the filtering stages. The next two sections detail the steps 
S1-S2. 

2.2. Mechanical Equilibrium. 
The  cell-cell  connectivity  defined  by  Tn   includes  information  on  the  set  of  Ni   particles  Ii 

={i1,…,iNi} connected to each particle i. Each pair of connected particles {i; j} are joined with a 
bar element that represents the forces between the two cells. This force is derived here from an 
elastic potential, 

                                                                               (1) 

where εij  = (l ij  - L ij)/L ij is the scalar elastic strain, and l ij = ||xi  – xj|| and L are the current and 
reference lengths. We note that the latter is not necessarily equal to the initial length L ij = ||xi

0 – 
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xj
0||. The traction force at particle i is then given by (no summation on i): 

 

 

Mechanical equilibrium is then computed by solving the following set of equations: 
 

 

which is equivalent to minimising the total elastic energy of the system V =ΣiΣj Vij. The 
methodology is equivalent to the one employed in standard particle systems [2]. The 
main particularity is the use of the potential in (1), which includes the reference length Lij . 
When this length is equal to Li

0 , the elements are equivalent to standard linear elastic bars 
(although the resulting equations are non-linear due to the change of direction of tij ). If instead 
Lij is allowed to vary, this quantity is understood as an additional internal variable. In this case, 
it is necessary to 

(i) define its evolution law, and 

(ii) set a strategy to update the reference length for newly connected particles. 

 
 
2.2.1 Evolution law of active length L 

We will assume that the cells adapt their resting length according to their strain state, so that 
they tend to relax. Such behaviour can be described according to the following evolution law 
for [7], 

 

 
 
 

where γ is the remodelling rate, a material parameter that measures the ability of the polymeric 
cytoskeleton to adapt to the imposed strain. It has been shown that the resulting response is 
equivalent to a Maxwell-like model. 

 
 
2.2.2. Update of active length L 

In order to define a resting length for any arbitrary direction, we define at each particle i the 
active length tensor Li, which contains information on the distribution of the resting length around 
point xi, in a similar manner to the strain tensor in continuum mechanics. The active length along 
direction n is computed as 

 

 

The computation of tensor L is achieved by minimising the error of the previous expression with 
respect the existing directions nij around a particle i (see [6] for further details): 

 

 
2.3. Cell-cell connectivity: Delaunay triangulation and Voronoi tessellation 
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Once the set of new positions Xn+1 has been obtained, the connectivity between the particles is 
obtained resorting to a Delaunay algorithm on the whole set of particles. Due to the new 
positions, the new connectivity Tn+1 may differ from the previous connectivity Tn. Furthermore, 
due to the fact that standard Delaunay triangulations yield a convex polytope, and that the set of 
particles form a curved manifold, the algorithm is modified by, 

(a) excluding triangles (or tetrahedra in 3D) that have a very high aspect ratio, and 

(b) mapping the set of particles on a flat surface, and using the resulting two-dimensional 
triangulation 

on the curved manifold. The process in (b) is illustrated in Figure 2, where the mapping of the 
particles on a curved manifold to the flat surface is represented by ϕ(X). 

 
 

 
Figure 2: Schematic of the mapping employed for applying Delaunay triangulation on curved monolayers 

 
In addition, since the particles represent cell centres (nuclei), we will use a Voronoi tessellation 
of the Delaunay network in order to represent the cells. Due to the fact that standard Voronoi 
tessellations give unbounded domains with vertices located at infinity, we have added some 
”phantom” particles at the boundary of the tissue. Furthermore, when cells are on a curved 
manifold (monolayer or epithelium), we also added “phantom” offset particles above and below 
the manifold in order to retrieve the bounded domain of the cells. Such Voronoi vertices can be 
interpolated on the domain of the particles, and used to impose mechanical constraints or 
incompressibility of the individual cells. 

3. Results and Conclusions 
We have applied the previous model to flat and curved stretched monolayers. Figure 3b shows 
the deformed shape of a cylindrical tissue subjected to imposed displacements at one of its ends, 
and undergoing connectivity changes with a variable resting length. We have quantified the non- 
linear response due to the distinct contributions of the cell reorganisation and the resting length 
changes. Both have very different origin, and can be modulated independently in our model. 
Although no cell activity has been implemented, we expect to do so in order to better mimic the 
in-plane reorganization of embryonic tissues [9]. 
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Figure 3: (a) Initial and (b) deformed shape for the curved monolayer test. 
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