
Instrumentation Viewpoint/11/ MARTECH11 38

Guillermo Lara, Ram´on Miralles, Mariam Torres
Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Polit`ecnica de Val`encia
Edificio 8G, 46022, Valencia, Spain
phone: + (34) 963879737, email: rmiralle@dcom.upv.es

NAIVE BAYES CLASSIFIER FOR AUTOMATIC ANALYSIS OF BELU-
GA WHALE SONGS

Abstract - Very little is known about the way cetaceans and particularly beluga 
whales communicate. However as scientists and biologists investigate it is observed 
the extraordinary adaptation of the cetacean communication system to the under-
water medium and the surprising communication skills. The ultrasonic sound emit-
ted by beluga whales can be identified in what some scientists call vocalizations and 
related to animal behavior. The signal processing group GTS (iTEAM) of the Univer-
sitat Polit`ecnica de Val`encia alongside with the Oceanogr`afic have developed an 
automatic system for continuously monitoring beluga whale sounds. This system is 
intended to establish new behaviour patterns and help biologists to obtain a better 
understanding of beluga whales. The present work is devoted to the comparison of 
the different Naive Bayes classifiers into the
automatic monitoring system.

Keywords: Statistical signal processing, Signal detection and classification, Bioacus-
tics.

1. INTRODUCTION
Previous studies have shown that the analysis of the beluga vocalizations pat-
terns is a good tool to evaluate their communication and welfare state [1]. The 
correlation obtained between vocalizations and behaviors show up that their 
vocalizations are strongly influenced by external stimulus. The first impression 
when beluga vocalizations are heard for the first time is that there are an endless 
variety of sounds. Nevertheless, time-frequency analysis shows that there are 
a limited number of patterns and they are repeated. The researchers from the 
Signal Processing Group (iTEAM) trained an automatic algorithm, after having 
worked with large amount of data picked up from long time periods of direct 
visualization. The classification system is based on statistical analysis from the 
acoustic signal received by the hydrophone [2]. The developed system was ap-
propriated for designing experiments that help to understand a bit more the
beluga behavior. 
This paper is focused on analyzing the best vocalization classifier for the system. 
In order to do that, a comparative among Naive Bayes distributions (Gaussian, 
Kernel, Multinomial and Multivariate multinomial) is presented.

2. BELUGA WHALE SOUNDS AND THEIR RELATION TO ANIMAL BEHAVIOR
Studies of the vocalizations emitted by the Oceanogr`afic beluga whales (Kairo 
and Yulka) have allowed scientists to obtain a large collection of sounds. These 
studies started in 2003 when both whales arrived at the installations of the Ciu-
dad de las Artes y las Ciencias from the Mar del Plata, in Argentina. A compari-
son between vocalizations rate and animal welfare was done. This comparative 
study demonstrated that during stress periods (such as those produced by air 
transport to new facilities or beluga pregnancy) acoustic activity decreased sig-
nificantly [1]. Additionally, a set of classification categories for beluga sounds 
was created. All this work was done manually listening one by one a large num-
ber of records and analyzing with the aid of the spectrogram how the energy 
was distributed in time and frequency. This process is tedious and time consum-
ing and can not be maintained 24 hours a day. Instead of continuous inspection,
researchers analyze only a few minutes a day of the recordings. Recently, the 
Instituto de Telecomunicacion y Aplicaciones Multimedia (iTEAM) has begun to 
collaborate with the Oceanogr`afic researchers to employ automatic classifiers
which allow a continuous examination of the emitted sounds.
We pretend to use a simple classification scheme that will help to establish rela-
tionships among sounds and behaviors. The quantity of vocalizations produced 
by belugas, or cetacean in general, reaches an extensive number of data with 
complex and rapidly repeated clicks [3]. In order to create a simple set of cat-
egories all the vocalizations will be classified in three groups: tonal, pulsed and 
Jawclap sounds. In this study the echolocation clicks are not taken into account
and they have been manually removed from the recordings. Echolocation is 
broadly studied in many species and seems to be used by the animals as a bio-
logical sonar instead of having communicative purposes.
Tonal sounds are characterized by narrow bandwidth squeals and whistles, 
giving out a very concrete component clearly detected in frequency. Differ-

ences such as the number of frequencies during the same period of time can be 
found. When belugas produce more than one frequency simultaneity is called 
multitonal vocalization in contrast when an isolated frequency component is 
detected, called as a simple tonal one. In most cases tonal sounds seem to have 
communicative nature.
Pulsed sounds look like short broadband clicks (see figure 1). These kind of vo-
calization can be related to communicative or aggressive behaviour. A differ-
ent kind of pulsed sound is the Jawclap. The mechanisms that beluga whales 
use to generate this sound is completely different to the mechanism employed 
to generate other pulsed sounds. Due to the aggressive meaning associated 
to this sounds a specific category has been created. Zookeepers and biologists 
from Oceanogr`afic were fundamental in the development of this classification 
scheme. 
In addition to single vocalization it is frequently found combinations of two or 
more individual vocalizations. These combinations are usually associated with 
special situations and specific stimulus which make difficult to distinguish one 
category or another. This kind of signals, that will be re ferred in this work as 
mixed signals, are composed of various vocalizations concatenated or over-
lapped in time. The classification algorithm must consider this extraordinary 
capability of belugas. The mixed signal can be composed of a tonal-pulsed mix 
or a pulsed-jawclap mix. An example of this flexibility to produce sounds is illus-
trated in the figure 1 where the combination of a pulsed and a jawclap are really
close in time.

Fig. 1: Spectrogram of beluga whale vocalizations showing two alternated 
pulsed vocalizations (blue square) and Jawclaps (red square)

3. BRIEF DESCRIPTION OF THE AUTOMATIC CLASSIFIER OF BELUGA WHALE 
SOUNDS 
The recorded vocalizations were provided by the Oceanografic biologists. 
Sounds were acquired in the Oceanografic facilities using a single hydrophone, 
an acquisition card and a computer. For this preliminary study an Excel table 
with the relative time when each vocalization started. Their duration and the 
manual classification was also supplied.
The classification has been done using MATLAB and the MATLAB Statistic tool-
box. This work has been focused on comparing for this specific application a set 
of Naive Bayes classifiers and choosing the most appropriated. A Naive Bayes 
classifier is a probabilistic classifier based on Bayesian statistics with strong inde-
pendence assumptions. It classifies data in two steps; firstly, using the training 
samples estimates the parameters of a probability distribution and secondly, it 
predicts the probability of that sample belonging to each class. The class-condi-
tional independence assumption simplifies the training step. It allows a better 
estimate of the Naive Bayes parameters required for accurate classification, and 
uses less training data than other classifiers.
All the steps and decisions involved in sampling data affect the pattern, so the 
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choice of the distinguishing features is a critical step to design [4]. In order to 
improve the accuracy of classification, it is essential to choose the features that
can capture the temporal and spectral characteristics of signals. After several 
empirically combinations, table 1 shows the features chosen: features 1-9 are 
frequency parameters related to resonances, bandwidths and power spectral 
amplitudes. Features 10-13 give statistical information related to higher order 
moments of the vocalization [5]. Feature 18 is inspired in the human voice pa-
rameters obtained in LPC (vocoder) models [6]. This parameter gives informa-
tion of the residual prediction error. Finally features 14-17 give higher order sta-
tistical information of the residual prediction error (feature 18).

Numberts Features

1 Fundamental frequency f0

2 Q-Factor of f0 = Df0= f0

3 Power Spectral Density at frequency fo Sx( f0)

4 Fundamental frequency f1

5 Q-Factor of f1 = Df1= f1

6 Power Spectral Density of frequency Sx( f1)

7 Fundamental frequency f2

8 Q-Factor of f2 = Df0= f2

9 Power Spectral Density of frequency Sx( f2)

10 “Skewness” of the vocalization (as described in [5])

11 “Kurtosis” of the vocalization (as described in [5])

12 Autocovariance test of the vocalization (as described in [5])

13 Temporal reversibility of the vocalization (as described in [5])

14 “Skewness” of the sonority signal

15 “Kurtosis” of the sonority signal

16 Autocovariance test of the sonority signal

17 Temporal reversibility of the sonority signal

18 Sonority signal (as described in [6])

Table 1: Brief description of the features vector employed in the
automatic classifier.

    - An objective criterion to minimize all the possible characteristics of the sub-
sets.
     - A sequential searching algorithm which adds or eliminates the character-
istics subsets when the criterion is evaluated. This sequential searching allows 
testing feature to feature, using the called Sequential Forward Selection (SFS) 
[7].
The classification set was composed of 313 vocalizations where the most repre-
sentative 50 were chosen for the training set. During the training phase a cat-
egory label or cost for matching the pattern was provided. It was seek to reduce 
the sum of the costs for the pattern (tonal, pulsed and jawclap sounds). Figure 
2 evaluates the error when classifying Gaussian, Kernel, Multinomial and Multi-
variate multinomial density functions as the number of features is increased. In 
addition to these classifiers (based on Naive Bayes), two discriminant analysis 
classifiers were also compared because of their covariance matrices similarities 
with Naive Bayes (diaglinear an diagquadratic). A brief outline of the compared 
distributions are:
     - The ’normal’ distribution is appropriate for features that have normal distri-
butions in each class. For each feature you model with a normal distribution, the 
Naive Bayes classifier estimates a separate normal distribution for each class by 
computing the mean and standard deviation of the training data in that class.
    -  The ’kernel’ distribution is appropriate for features that have a continuous 
distribution. It does not require a strong assumption such as a normal distri-
bution and you can use it in cases where the distribution of a feature may be 
skewed or have multiple peaks or modes. It requires more computing time and 
more memory than the normal distribution. For each feature you model with a 
kernel distribution, the Naive Bayes classifier computes a separate kernel den-
sity estimate for each class based on the training data for that class.
    -  The multinomial distribution is appropriate when all features represent 
counts of a set of words or tokens. The classifier counts the set of relative token 
probabilities separately for each class. The classifier defines the multinomial dis-
tribution for each row by the vector of probabilities for the corresponding class.
    - The multivariate multinomial distribution is appropriate for categorical fea-
tures. For each feature you model with a multivariate multinomial distribution, 
the Naive Bayes classifier computes a separate set of probabilities for the set of 
feature levels for each class.
For each one, the optimal ordination to minimize the training error was solved 
(see table 2). The best classifier during the training set was the one based on 
Naive Bayes with Multivariate multinomial configuration. It achieved less than 
1% error with just only for features (1, 4, 3 and 6). The “Kernel” distribution was 
the second best distribution which uses 11 features to get less than 5% error. 
The others classifiers have similar behavior with up to 20% error, being the Mul-
tinomial distribution the worst classifier during the training set.
It is important to emphasize that the errors obtained in the training test in table 
2 will be lower than the errors that will be later obtained in the test set (next 
section).

5. RESULTS
In order to check the classifier efficiency, results were compared on a different 
vocalization set processed and manually classified by the Oceanogr`afic biolo-

Fig. 2: Comparative among the different 
classifiers distributions and the number of 
features used for their evaluation.

4. COMPARATION AMONG CLASSIFIERS DISTRIBUTIONS
In order to optimize the performance of the classifier, all the characteristics 
were tested by a training set. The objective was reducing the eighteen features 
shown in table 1. The algorithm of sequential selection was created for selecting
and ordering the most representative characteristics for each distribution [7]. 
The results are shown in table 2. The steps were followed by:
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gists. This set was tested for all the classifiers and the results are shown in table 3.
The table presents the classification rate for all Bayes classifiers for the optimal 
number of features and for the whole set of eighteen features. It also shows the 
percentage number of vocalizations that are not classified (missing rate). When
the order and the number of features is optimum, the classification rate will be 
the best. Table 3 shows also that if mixed signals are not considered classification 

percentages increase for all classifiers excepting the Naive Bayes Multivariate
Multinomial. Naive Bayes Multivariate Multinomial classifier reaches a 98.7% of 
classification rate, but it has a 30% missing rate (vocalizations that was not able 
to assign to any category). It shows up that if it does not have a clear decision 
about each vocalization, it will not classify the signal. In spite of when the classi-
fier does it, the algorithm classifies successfully. In addition, this classifier has the 
distinction to obtain the same classification rate when it uses all the eighteen 
features or when it uses the optimum order number of features. This is because 
the features added do not cause any confusion, unlike the other classifiers do. 
The Naive Bayes kernel classifier using the optimum order and number of fea-
tures without mixed signals obtains the best results, specifically a 89.2% clas-
sification rate and just a 0.2% missed signals. On the other hand, the classifier 
Naive Bayes Multinomial has the worst classification rate (66.6%), but the Gauss-
ian obtains a good one (81.8%). Either of them do not have missed signals. The 
percentages for the diaglinear and diagquatratic classifiers (not shown in table 
3) are quite similar to those given for the Naive Bayes Gaussian distribution.

6. CONCLUSIONS AND FUTURE WORK
The study presented here showed that the best classifier for the system was the 
Naive Bayes following a kernel distribution with the optimum number of fea-
tures. The percentages achieved for this classifier for the whole set of vocaliza-
tions (including consecutive and partially overlapped vocalizations) was 84% 
of detection probability with just 1.7% of vocalizations that the algorithm was 
not able to classify. This study has shown that it is possible to create a real time
classifier to analyze beluga sounds the 24 hours a day.
The percentages achieved are quiet good, but they could be improved if a more 
precise classifier that could take into account the mixed vocalizations was em-
ployed. It has to be known that the number of mixed vocalizations is not negligi-
ble. In fact, in the vocalizations files we have analyzed approximately the 20-25% 
of vocalizations were marked by the biologists as mixed vocalizations. In order 
to get this goal the authors propose as future lines:
     - Pyramidal analysis in time and fusion of the different classifiers to decide 
whether it is a single vocalization or a mixed one.
    - Combining a low resolution classifier based on spectrogram correlation with 
the proposed Naive Bayes classifier. 
Increasing the number of categories will be done as a more precise beluga be-
havior knowledge is achieved. Open sea tests of the proposed algorithm for 
different species (dolphins) and the possibility of integrating the proposed al-
gorithm in underwater buoys is also planned.
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Clasificator Sorted Significative Features Opt. # Error

Diaglinear 6,15,2,10,5,17,12,7,9,14,11,1,4,16,18,3,8,13 10 21.43

D i a g q u a -
dratic

9,15,3,10,2,18,11,7,1,17,14,16,4,13,8,5,16,
12

11 20.77

N.B.
Gaussian

1,15,6,11,8,17,9,14,18,10,2,7,3,4,13,5,16,12 11 19.49

N.B. Kernel 12,16,6,2,10,13,7,15,1,4,18,8,17,3,11,14,9,5 11 5.11

N.B. Multino-
mial

9,15,6,3,10,12,16,18,13,1,14,17,4,7,11,2,8,5 12 26.52

N.B. Multivari-
ate
Multinomial

1,4,3,6,7,8,5,9,10,11,12,13,14,2,15,16,17,18 3 0.96

Table 2: Optimal number of features and most significative features
sorted from more to less significance (N.B.=Naive Bayes).
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Naive Bayes Mutivariate multinomial Distribution

Optimal Features All Features

All Signals No mixed sign All Signals No mixed sign

Noise 100% 100% 100% 100%

Tonal 97.3.% 97.3.% 97.3.% 97.3.%

Pulsed 100% 100% 100% 100%

Jawclap 100% 100% 100% 100%

No classification 40.1% 30.0% 40.1% 30.0%

Total 98.7% 98.7% 98.7% 98.7%

Naive Bayes Kernel Distribution

Optimal Features All Features

All Signals No mixed sign All Signals No mixed sign

Noise 96.2% 96.2% 97.1% 97.1%

Tonal 85.4.% 89.1.% 78.4.% 80.7.%

Pulsed 66.0% 74.7% 67.0% 76.3%

Jawclap 63.9% 83.3% 71.4% 97.1%

No classification 1.7%  0.2% 2.1% 0.2%

Total 84.2%  89.2%  82.1% 86.7%

Naive Bayes Gaussian Distribution

Optimal Features All Features

All Signals No mixed sign All Signals No mixed sign

Noise 91.3% 91.8%  93.1% 93.6%

Tonal 71.2%  76.4% 76.0% 84.2%

Pulsed 60.5% 69.2%  59.3% 67.5%

Jawclap 50.3% 60.0%  37.0% 32.1%

No classification 0.0% 0.0% 0.0% 0.0%

Total 77.0% 81.8% 74.3% 79.4%

Naive Bayes Multinomial Distribution

Optimal Features All Features

All Signals No mixed sign All Signals No mixed sign

Noise 69.1% 75.2% 69.6% 73.6%

Tonal 58.8% 60.4%  56.6% 53.6%

Pulsed 32.1% 40.5% 31.5% 37.1%

Jawclap 31.3% 50.0% 66.7% 83.3%

No classification 0.0% 0.0% 0.0% 0.0%

Total 60.5% 66.6% 58.6% 62.6%

Table 3: Comparative distribution percentages among different distributions.
(Up-Down) N.B. multivariate multinomial, N.B. kernel,
N.B. Gaussian and N.B. multinomial


