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Thermal Performance analysis of the double sided-Linear 
Switched Reluctance Motor 

J. Garcia Amoros, R. Bargalló Perpiñà, P. Andrada, B. Blanqué 
 
 

Abstract -- This paper presents an exhaustive study about 
the propulsion force and the thermal performance of the 
double-sided flat Linear Switched Reluctance Motor (LSRM) 
according to the number of phases (m) and the pole stroke 
(PS). The analysis is performed by means of the Finite 
Element Method (FEM) for electromagnetic computations and 
a lumped parameter for thermal model (LPT) both linked to 
an optimization algorithm based on the Response Surface 
Methodology (RSM) in order to reduce the computing time. 
The results show the optimal design of LSRM from the point 
of view of the thermo-mechanical performance for a given 
insulation class and a duty cycle operating conditions. 

 
Index Terms--Linear Switched Reluctance Motor, Finite 

element, Lumped parameter thermal model, Response 
Surface Methodology. 

 
I. NOMENCLATURE 

bp  Primary pole width (m) 
cp    Primary slot width (m) 
Tp    Primary pole pitch (m) 
lp      Primary pole length (m) 
bs  Secondary pole width (m) 
cs   Secondary slot width (m) 
Ts    Secondary pole pitch (m) 
Ns    Number of passive poles per side (Secondary) 
ls     Secondary pole length (m) 
hy     Primary yoke height (m) 
LW   Stack length (m) 
g    Air gap length (m) 
PS Pole Stroke (m) 
S    Distance between aligned-unaligned positions (m) 
m   Number of phases 
x    Translator position (m) 
wr    Dielectric width (m) 
J    Flat-topped current density peak (A/m2) 

plane of movement and the magnetic flux plane are 
perpendicular. In the longitudinal case, these planes are 
parallel. The purpose of this work is to analyze a set of 
longitudinal LSRM configurations in regard to their 
propulsion force for a given operating conditions i.e. the 
maximum temperature rise (insulation class) and the IEC 
duty cycle. The number of phases (m) and the pole stroke 
(PS) define the set of LSRM configurations under analysis. 

 
III. GEOMETRICAL AND THERMAL DESCRIPTION 

 
The longitudinal-flux LSRMs can be flat or tubular. The 

conventional double-sided flat LSRM is made by mirroring 
a single-sided longitudinal-flux flat LSRM whose result is 
two primary structures, one on each side and a secondary 
iron-connected poles. The modified double-sided LSRM 
differs from the conventional double-sided flat LSRM 
structure, in the secondary, which is comprised of 
rectangular poles without connecting iron yokes. The 
analysis is performed on the longitudinal-flux flat modified 
double-sided structure, LSRM hereinafter. 

 

A. Geometrical model 
The input geometrical variables, which characterize the 

LSRM, are the number of phases (m) and the pole stroke 
(PS). The FEM computations are made for each pair (m,PS) 
which define a LSRM structure denoted as LSRM(m,PS). 
The electromagnetic propulsion force is computed in 20 
evenly positions between the pole misalignment (taken as 
reference position i.e. x=0) and the pole alignment (x=S), 
and then it is averaged (1), where S is given by S=m·PS/2. 

1    s 

FX(m, PS, J) = s fO Fx(m, PS, J, x) · dx 
(1) 

II. INTRODUCTION 

INEAR  Switched  Reluctance  Motors  (LSRMs)  are 
being  recently  object  of  study [1]  [2]  [3].  Their 

simplicity   and   robustness   make   them   an   attractive 
alternative to linear permanent magnet motors due to their 
low  expected  manufacturing  costs  and  a  good  fault- 
tolerance   capability,   although   the   power/weight   ratio 

The parameters, which define the magnetic circuit 
dimensions, are: bp, lp, bs ls and hy (see Fig. 1). These 
parameters are normalized to the stator pole pitch Tp 

resulting: αp=bp/Tp, βp=lp/Tp, αs=bs/Tp, βs=ls/Tp , δy=hy/Tp. 
The air-gap (g) and the stack width LW are held constant. 
The stator length L can be expressed as: 

(W/kg) is significantly lower.  LSRMs can be classified as L = (m −1)·(2·m −1) + α p ·PS (2) 
transverse flux or longitudinal flux. In transverse flux, the 
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LSRM’s geometry is determined from these geometrical 
proportions {αp , αs , βp , βs , δy} [4], and by means the 
equations (2- 4). 

Np  = 2 · m  (3)
 

Ns  = 2 · (m − 1) Tp  = (m − 1) · PS 
T  = m · PS  (4) 
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The pole stroke PS is defined as the distance covered by 

the secondary (generally the movable part or  translator) 
from an aligned position to the next aligned position when 
two consecutive phases are excited. The PS parameter is 
directly related with the LSRM size as it is shown in (2). 
Figure 1 depicts two LSRM configurations i.e. LSRM(2,3) 
and LSRM(3,3). 

m=2 phases 

CCu = 225 · 8900 · VCu(m, PS) (7) 
Where  Vp(m, PS),  Vs(m, PS)   are  the  volume  of  the primary  and secondary iron respectively and VCu(m, PS) is the copper volume, given by: 

Vp(m, PS) = [4 · m · ap · f3p+2 · óy · (2 · m + ap − 

1)] · LW · (m − 1)2 · PS2 (8) 

Vs(m, PS) = 6 · (m − 1) · as · f3s · LW · T2 

(9) 

2   rr 
 

PS 
 

m=3 phases 

VCu(m, PS) = (1 − ap) · f3p · Tp  [2 · (1 + ap) · Tp + 

f3p · LW (10) 
The thermal losses considered are the Joule losses, which 

for a flat topped current waveform are: 
 

b 
lp P](m, PS) = 

 VCu(m,Ps) 58·1O6 · ( ]   ) 

√m 

 

(11) 

ls TABLE I. – THERMAL PARAMETERS 
 

Ts 

 
 

hy 

bp 
Tp 

L 
Fig. 1. LSRM main dimensions and LSRM(m,PS) examples for 

m=2 and m=3 at constant PS. 
 

B. Thermal description 
Thermal analysis is carried out by means of a lumped 

parameters thermal model (LPT). In general the lumped 
models accuracy depends on the level of refinement of the 
network and on the knowledge of the heat transfer 
coefficients. In this case the thermal network elements 
(thermal resistances and capacitances) are parameterized 
according to the input variables (m,PS) and its 
determination is based on [5]. For parameterizing and 
modelling the thermal network four main modules  have 
been defined: 1) the outer poles (see Fig. 2a), placed these 
at the ends of the both primaries, 4 in total, 2) the inner 
poles (see Fig. 2b), placed between the outer poles, 4·(m-1) 
in total, 3) the primary iron and 4) the secondary iron. An 
example of thermal model network assembled using these 
modules for LSRM(2,3) is shown in figure 3. The heat 
transfer coefficients were firstly estimated taking into 
account previous studies for rotating machines [6], and 
after,   they   were   calibrated   by   thermal   test   over   an 
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P 
LSRM(4,4)  prototype  [5].  Their  values  are  collected  in 
table I. The capacitances Cp and Cs are obtained from: 

Cp = 2600 · 7750 · Vp(m, PS) (5) 

Cs  = 650 · 7750 · Vs(m, PS) (6) 
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Fig. 2. Primary poles thermal model. 
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Process 
Convection: end winding to air. hew= 6.9W/(m2·K) 

-1 

Rew  = (ℎew · n · f3p · Tp(m, PS)2) Conduction: through 1 layer of dielectric. 
kw  = 0.04633 W/(m·K) 

-1 

Rw  = wr  · (2 · f3p · Tp(m, PS) · LW) Convection: primary iron to air. 
ℎp  = 1.753 W/(m2·K) 

-1 

Rp  = (ℎp  · L(m, PS) · LW) Radiation: Primary to secondary. 
ℎps  = 7 W/(m2·K) 

-1 

Rps = (ℎp · L(m, PS) · LW) 
Conduction: through 2 layer of dielectric. 
Rww=2·Rw 
Convection: primary's external-surface to air. hc=5.7 W/(m2·K) 
Re  = (20 · ℎe  · L(m, PS) · LW)-1 
Convection: secondary s external-surface to air. 

-1 

Rs  = (1O(m, PS) · ℎs  · At (m, PS)) 
Given (m, PS): 

1)   Nu=0.911·(Lw/0.00001589)0.385·0.7071/3
 

2) Lc=βs·Tp(m,PS)+0.5·(Ts(m,PS) - αs·Tp(m,PS)) 
3) hs=Nu·0.0263/Lw; 
4) mc=(2·hs·(Lw+αs· Tp(m,PS))/(66.1·Lw·αs· Tp(m,PS)))0.5

 

5) ηf=tanh(mc·Lc)/(mc·Lc); 
6) Af=2·Lw·Lc 

7) At=2· ((Ts (m,PS)- αs· Tp(m,PS))·Lw+Af)· 
·floor(L(m,PS)/Ts(m,PS)) 

8)    η0=1-(floor(L(m,PS)/Ts(m,PS))·Af/At)·(1-ηf) 
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Fig. 3. Thermal equivalent circuit for m=2 phases. 
 

The output of the LPT is the time-varying temperature of 
the LSRM(m,PS) configuration, averaged over the n nodes 
of the thermal network (12). 

these need to be capable of an exact measurement. In order 
to determine the response ŷ, the regression method of least 
squares is applied for multiple order polynomials, fitting the 
sure values y (n design samples computed by FE-analysis). 1 n(m,Ps) 

Tavg(m, PS, J, t) = n(m,ps) 
∑i=1 Ti (m, PS, J, t) (12) 

To minimize the computing time it is desired to keep n as 
small as possible, which is dependent on the polynomial 

The simulation time is 50000 seconds for all the cases, 
enough time to reach the rate temperature Tmax, and 
therefore Tmax(m,PS,J)=Tavg(t=50000s). From (12), it is 
adjusted an exponential law (13) for each pair (m,PS) from 
which the thermal time constant KT(m,PS) is obtained. 

- t 

order   and   the   number   of   factors  k.  The  Design  of 
Experiments  (DoE)  is  a  tool  used  for  determining  the 
optimal test points for RSM. 

RSM cannot substitute measurements and additional FE 
computations in the experimental region around the 
optimized response, but reduce them to a feasible number. 

TMAX (m, PS, J, t) = Tmax(m, PS, J) ·   1 − e 
KT(m,PS)  

(13) 
A. Procedure 

Every process is characterized by a true response such as 
the propulsion force for a linear motor, which can be 
measured and hence underlies a measurement error εm. It is 

IV. RESPONSE SURFACE METHODOLOGY 

 
The Response Surface Methodology (RSM) was first 

introduced by Box and Wilson [7] in 1951. RSM is 
efficacious when the process has no analytical expression to 
describe it or when the analytical expression is too complex 
and when there are some indeterminate factors  not 
modeled. RSM creates an empirical model that relates the 
process response to well-known input parameters. Its 
application to electromagnetic problems started in the 90’s 
[8] and other applications are founded on Jabbar [9] and 
Jolly [10] in the last decade. 

 
The purpose is to achieve a set of design variables γ in 

which  the response η reach a  maximum  or a minimum 
within  an  experimental  region ℛ,  which  is  defined  by 
practical limitations like geometry, mechanical restrictions 
or  saturation.  The  k-independent  design  variables  are 
normalized to equally bounded factors x1; x2; …, xk  and 

self-explanatory that there are no prototypes available for 
every design sample LSRM(m,PS) to verify the FEM 
computations. For this reason a single computation result 
itself is assumed to be an adequate image of a real machine 
and defined as the true response η. However the evaluation 
of the FE-analysis is not always trivial and underlies an 
error εeva. Considering this, the so-called sure value or mean 
response y is described as: 

y = 1 + Eeva  = f(x1, x 2,…. .  xi ) + Eeva (14) 
In witch y is the measured response (i.e. average Force 

Fx, Temperature Rise Tmax and other) and x1, x2,….xi are the 
input variables (in our case are: m, PS and J) The 
evaluation of the error is random and assumed to have zero 
mean value and thereby y is conditioned to be an adequate 
representation of the true response η. For relating the 
response to the input variables, the approximation function f 
(14) needs to be attained. This is accomplished by means of 
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a  low-degree polynomial represented by  a  matrix  of m = [2,3,4,5] 
arguments X and a matrix of coefficients β (15). 3mm ::; PS ::; 10mm (21) 

y = X ∙ f3 + Eeva 

 

(15) 
0.5A/mm2 ::;   ::;  0A/mm2 

 

As an example, for the second-degree model (d = 2) we 
can write: 

And the restriction of maximum temperature rise: 

TMAX (m, PS, J) : : ;  LIMIT 

 

(22) 

y = f3O + ∑f3i ∙ xi + ∑∑f3ij ∙ xi ∙ xj (16) To  solve  this problem,  the  first  step is  to  obtain  a 
polynomial representation of each of the above parameters. 

In general the number of terms and coefficients of a k- As  n example, f gure 4a shows the force (1) as function of 
variables and d-degree polynomials can be determined as: PS  and  J  for m=4  phases. In  general, for  all  of  the 

LSRM(m,PS) designs, the maximum force is achieved at 
e = (k + d  (k+d)! J=20 A/mm2  an PS=10mm, which are the limit values. 

 
 

The design 

 
 
samples  are 

d    ) =  
k!∙d! 

represented by a matrix 

(17) 
 
D  = 

Figure 4b shows the temperature rise (13). 

[D1, D2, …. Dn] containing the different geometries, for 
which the response y has been computed previously by the 
FE-analysis. This leads us to the following over-determined 
linear system of equations: 

 

y1 X1 
Y =    y2   =   X2     ∙ f3 + E = Z ∙ f3  E (18) … … 

yn Xn 
 

The   coefficient   vector  
β   is   determined   under 

 
the 

(a) 

approach of linear least squares [11]. Its so-called ordinary 
least-squares estimator  β and  henceforth  the  predicted r sponse ŷ for every single point in the experimental region 

ℛ can be obtained by: 

f3   = (Z ∙ ZT)-1 ∙ ZT ∙ Y  

y  = f3  ∙ X 
 

 

(19)  
 

(b) 
In general, it is desired to have a low number of samples, 

but this has to exceed the number of coefficients c of the 
Fig. 4. a) Average force FX(4,PS,J). b) Steady-state 

t mperature rise TMAX(4,PS,J). 
underlying multi-order tri-variate polynomials. 
Consequently, for a second-order polynomial, 10 It is also considered a polynomial fit on the thermal time 
coefficients   are   required, which   can be   provided   by constant (KT) as function of PS and m. In this case a linear 
different   RSM   designs: Full   Factorial   Design, Box approximation  is obtained.  Figure  5  shows  the  obtained 
Behnken Desing or Central Composite Design. References experimental results and the linear fit using m as parameter. 
[4]-[9] describe the details of the application of each one of 
these cited methodologies in order to minimize the number Figure  6  summarizes  the optimization  algorithm  in 

of   samples   and   to   achieve   maximum   fitting   of 
experimental results to the selected polynomial adjust. 

 
V. OPTIMAL OF DESIGN 

the which for each number of phases and fixing a maximum 
temperature rise (Tlimit), it is calculated the optimal values of 
pole stroke (PS) and current density (J) that maximize the 
propulsion force (FX). 

3 

 
In our study case the optimization problem can be easily 

established, since it consists on maximize the average 
propulsion force (FX) as function of the number of phases 
(m), pole stroke (PS) and current density (J): 

6×10 
 

5×103       
 

 
4×103

 

 
3×103

 

Kt(m=2,PS) 
Kt(m=3,PS) 
Kt(m=4,PS) 
Kt(m=5,PS) 

max(FX) 

FX = f(m, PS, J) 
Subject to the following geometrical conditions: 

 
(20) 
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Fig. 5. Therm l time constan as a function of PS and m. 
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If there are no temperature restrictions, the optimization 
algorithm (see fig. 6) determines the limit values for PS and 
J (i.e. PS=10mm and J=20A/mm2), since these values give 

Other important parameter that should be considered for 
optimal design is the type of service (continuous DC=100% 
or intermittent duty DC<100%). In general, LSRMs have a 

the  maximum force.  From these  values  the  maximum non-continuous service; according to IEC-60034-1 the duty 
temperature reached is calculated, being this Treal . Table II cycle operating conditions S3 is taken as study case. In this 
summarizes these results for a continuous Duty Cycle (DC) case the  optimization  process  starts  from the  maximum 
S1, and considering the cases of no limit temperature-rise current density Jmax and then it is determined the maximum 
(unrestricted  temperature) and  the  insulation  systems  B- force and DC without exceeding the limit insulation class 
class and F-class, whose temperature-ri e limits are 80ºC temperature  (B-class:  ∆8 ::; 80ºC).  Figure 7  shows  this 
and 100ºC respectively. When the maximum temperature- 
rise is taken as a restriction, the current density and the 
force are dramatically reduced. 

optimization   algorithm   and 
obtained results. 

table   III   summarizes   the 

TAB LE III 
OPTIMAL DESIGN FOR S3 SERVICE (PS=10). B-CLASS. 

 m=2 m=3 m=4 m=5 
JMAX F 

(N) 
DC 
(%) 

FX 

(N) 
DC 
(%) 

FX 

(N) 
DC 
(%) 

FX 

(N) 
DC 
(%) 

20 48 3.8 212 5.1 332 3 421 6,7 
18 41 4.7 200 6.3 317 7.5 400 8.3 
16 34 6.1 185 8.1 301 9.6 383 10.6 
14 27 8.1 169 10.8 282 12.6 363 13.9 
12 21 11 149 15 260 17.5 339 19.3 
10 14 18 126 22.7 235 26.1 312 28.5 
8 9 35 99 39 204 43.7 281 47.2 
6 6 100 69 92.7 161 94.9 241 92.6 

4.9 - - 52.3 100 - - - - 
4.4 - - - - 117 100 - - 
4.1 - - - - - - 174 100 

 

Figure  8  summarizes  the optimal  average  propulsion 
 
 

Fig. 6. Algorithm for S1 service optimization. 

force restricted by the insulation class temperature and as 
function of the duty cycle. The time-cycle was established 
in 1 hour. 
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Fig. 8. Optimal FX vs. Duty Cycle for B-class insulation 
(80º C). 

 

VI. CONCL USIONS 
Fig. 7. Algorithm for S3 service optimization. This  paper  has  presented a  novel  model-analysis  of 

TABLE II LSRM which finds the optimal propulsion force for a range 
OPTIMAL DESIGN FOR A S1 CLASS SERVICE. of  LSRM  confi urations  by means  of  combining  three 

techniques:  Finite  Element Analysis  (FEA),   Response 
Surface   Methodology   (RSM)   and   Lumped   Parameter 
Thermal network (LPT). 

 

The  RSM  combined  with a  FE solver [13] has been 
highly useful in saving computing time for the wide range 
of study cases covered of LSRM(m,PS,J,x , whose ranges 
are m∈ {2 + 5 phases PS∈ {3 + 10}mm J∈ {0.5 + 

20}A/mm2, x∈ {0 + S}mm. 
For  each  con iguration of LSRM(m,PS,J) the  thermal 

F 
  (

N
) 

X 

ΔTlimit (ºC) 
m 

(ph.) 
PS 

(mm) 
J 

(A/mm2) 
FX 

(N) 
ΔTreal (ºC) 

NO LIMIT 2 10 20 47.9 781 
B-CLASS 80 2 10 6.39 6 80 
F-CLASS 100 2 10 7.15 7.52 100 

NO LIMIT 3 10 20 212 1293 
B-CLASS 80 3 10 4.97 52.3 80 
F-CLASS 100 3 10 5.56 61.8 100 

NO LIMIT 4 10 20 332 1641 
B-CLASS 80 4 10 4.42 117 80 
F-CLASS 100 4 10 4.94 132 100 

NO LIMIT 5 10 20 421 1903 
B-CLASS 80 5 10 4.1 174 80 
F-CLASS 100 5 10 4.58 194 100 

 

 



analysis is performed, obtaining the maximum 
temperature rise and the thermal time constant. 
 

From FEA-RSM and LPT results an optimization 
algorithm is defined from which the propulsion 
force is optimized subject to the restrictions of 
insulation class temperature-rise and the duty cycle 
operating conditions. 

 
This modeling methodology (FEA-RSM-LPT) 

allows obtaining different optimization algorithms 
without further consuming time FE-calculations. 
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