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Abstract:

Purpose: We aim to examine the capacitated multi-item lot sizing problem which is a typical

example of  a large bucket model, where many different items can be produced on the same

machine in one time period. We propose a new approach to determine the production sequence

and lot sizes that minimize the sum of  start up and setup costs, inventory and production costs

over all periods.

Design/methodology/approach: The approach is  composed of  three  steps.  First,  we  compute  a

lower bound on total cost. Then we propose a three sub-steps iteration procedure. We solve

optimally the lot sizing problem without considering products sequencing and their cost. Then,

we determine products quantities to produce each period while minimizing the storage and

variable production costs. Given the products to manufacture each period, we determine its

correspondent optimal products sequencing, by using a Branch and Bound algorithm. Given

the sequences of  products within each period, we evaluate the total start up and setup cost. We

compare then the total cost obtained to the lower bound of  the total cost. If  this value riches a

prefixed value, we stop. Otherwise, we modify the results of  lot sizing problem.

Findings: We show using an illustrative example, that the difference between the total cost and its

lower  bound  is  only  10%.  This  gap  depends  on  the  significance  of  the  inventory  and

production  costs  and  the  machine’s  capacity.  Comparing  the  approach  we  develop  with  a

traditional one, we show that we manage to reduce the total cost by 30%. 
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Research limitations/implications: Our model fits better to real-world situations where production

systems run continuously. This model is applied for limited number of  part types and periods. 

Practical implications: Our approach determines the products to manufacture each time period,

their economic amounts, and their scheduling within each period. This outcome should help

decision  makers  bearing expensive  start  up and setup costs,  to  reduce their  Inventory  and

Production costs and Start up and setup cots.

Originality/value: The main idea of  the proposed approach is to intelligibly reduce the number of

products to manufacture within each period in order to decrease the setup cost; since in case of

limited machine’s capacity,  we show that setup costs could increase when reducing the total

number  of  parts  manufactured  over  the  entire  planning  horizon.  In  fact,  the  triangular

inequality in setup costs is proved to be not usually available.

Keywords: multi-item  capacitated  lot  sizing,  sequence-dependent  setup  costs,  iterative  approach,

production planning, scheduling

1. Introduction

Lot sizing models are models that determine the optimal timing and the level of production.

These  models  have  to  consider  setup  times  and/or  setup  costs  since  researchers  have

demonstrated  that  to  improve  the  production  system’s  performance  (such  by  reducing

makespan, improving the output capacity, reducing inventories), setup times/costs should be

taken into account when determining the production planning.

The setup time is the period required to prepare a device, machine, process or system to be

ready to function or accept to a job. The setup cost includes the expenses incurred in setting

up a machine, a work center, or an assembly line, to switch from one production job to the

next. Research by Allahverdi and Soroush (2008) display some examples of setup activities in

a  manufacturing  system (such  as  obtaining  tools,  cleaning  up),  in  a  service  organization

(setting  up  a suitable  environment  to  perform tasks),  in  a  computer  system (transferring

programs and their dependent files) and in a synchronous circuit (holding the data signals

steady). The setup cost and setup time can be proportional or not. If the resource idle time is

the only considered by setting up, than the setup cost and setup time are proportional. In this

case, it is sufficient to consider, either setup cost or time. In other situations, the setup time

may be negligible whereas the setup cost  is  very  important.  This  is  the case of  chemical

compounds  manufacturing,  metal  processing,  food  processing  or  paper  industries,  (Kolfer,

Wagner, Beham, Kronberger & Affeenzeller, 2009).

Research by Karimi, Fatemi Ghomi and Wilson (2003) discern two types of setup structure:

Simple and Complex. The complex setup structure can be classified into one of the following
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three types:

• Setup carry over: it allows continuing the production run from the previous period into

the current period; and saving an additional setup cost.

• Family or major setup: applied when there are similarities in manufacturing process and

design of a group of items. The family (major) setup time is incurred when at least one

product  of  this  family  is  produced.  An  individual  (minor)  setup  time  may  be  also

incurred when a product is produced in a period.

• Sequences-dependent  setup:  item  setup  cost  and  time  depend  on  the  production

sequence. In this case, the scheduling affect considerably the total production cost.

In case of important setup costs and/or times, it is possible that a production plan established

without taking them into account is partially or totally modified when minimizing overall costs.

Suppose that, according to a given production plan, product i is planned to be manufactured in

period  t.  If  the  manager  observes  that  setup  costs  will  be  considerably  reduced  by

manufacturing i in period (t-1) and if this satisfies existing capacity restrictions, modifying the

production plan will surely minimize overall costs.

Taking into account set up costs when they are sequences-dependent implies  that Factory

managers have to decide which products to make in which periods, and the exact production

sequence and production quantities in order to minimize the sum of different costs. Thus, they

have to tackle both a lot-sizing and a scheduling problem.

In this paper, we take into account these setup costs while solving a lot sizing problem. The

problem we study belongs to a variety of Dynamic Lot Sizing models that takes into account

these setup costs. It is called Capacitated Lot Sizing and scheduling Problem with Sequence

Dependent setup costs (CLSPSD). Since this variety may not be very common, we situate it

amongst the inventory models.

Among the wide variety of lot sizing problems, research by Jans and Degraeve (2007) recall

that at one end of the spectrum there are the continuous time scale, constant demand and

infinite time horizon lot sizing problems. In this category we find the well known Economic

Order Quantity model (EOQ) and the Economic Lot Scheduling Problem (ELSP). At the other

end of this spectrum we have the discrete time scale, dynamic demand and finite time horizon

lot sizing models. This type of planning is generally referred to as Dynamic Lot Sizing.

Research by Ullah and Parveen (2010) give some attributes useful for distinguishing various

inventory models. Among these attributes, we base on number of items to classify a single

level single-resource dynamic lot sizing models into two classes: 

• Single item problems: we have to decide whether to produce or not a single item in

each planning period. In each period with non-zero production, a set-up is incurred. We

can find  the  classical  model  ULS “Uncapacitated Lot  Sizing  problems”:  we have  to

produce a single item in a single machine with unlimited capacity.
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• Multi-item problems: we adopt the classification of Gupta and Magnusson (2005) and

Belvaux and Wolsey (2000) based on the time window structure. We distinguish two

sub classes: 

• The “small buckets models” also termed “small time window” or the “Discrete Lot

Sizing and scheduling problems”, it supposes that the planning horizon is divided

into small time periods at which only one or two product(s) can be produced. It

groups: (1) CSLP Continuous Set up Lot sizing Problem where the start up cost is

introduced, (2) PLSP Proportional Lot Sizing and scheduling Problem which allows

producing at most two different items in each time period, (3) DLSP Discrete Lot

Sizing and scheduling Problem which assumes a discrete production policy. That is,

an item must be produced at full capacity and (4) GLSP the General Lot Sizing and

scheduling Problem generalizes models using restricted time structures.

• The “large bucket models” also termed “the large time window”. It considers large

planning  periods  in  which  multiple  products  can  be  manufactured.  The  typical

example of this class is, the CLSP “Capacitated Lot Sizing Problems”. Many different

items can be produced on the same machine with limited capacity, in each time

period.

According to this classification, the CLSPSD problem belongs to “large bucket models” and is

an extension to the CLSP. 

In this  paper,  we treat a  CLSPSD problem characterized by a single  capacitated machine,

multiple items and multiple item periods. We assume that setup times are much smaller than

processing  times.  Hence,  what  makes  expensive  the  changeovers  is  the  lost  or  the

obsolescence of tools needed for the setup. According to the classification given by Gupta and

Magnusson (2005),  the problem we treat  belongs to  the Zero setup times and Sequence-

dependent  setup  costs.  Besides,  we  assume  unlimited  storage  capacity  because  of  small

products’ size. Therefore, demand is satisfied either by producing in the same period or by

carrying inventories from earlier periods. For each period of time, we determine the products

to manufacture, their quantities and their sequence in order to satisfy deterministic dynamic

demand over the multiple periods of the planning horizon and to minimize the total cost which

includes storage cost, variable production cost, start up and setup costs. 

Our contribution is twofold. First, we propose a new optimization problem that accounts for

setup costs incurred when switching from one period to another. Unlike past studies, periods

are not independent. Our framework considerably increases the size of the search space which

was ∑
periods

(number of parts manufactured within the period)! and becomes ∏
periods

(number of

parts manufactured within the period)!.

Second, we suggest a new approach to solve this problem. We adapt the principle of small

buckets  problems to  large bucket  ones.  Small  buckets  problem assume that  at  most  one
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product type is manufactured within each period. We then reduce the total number of parts

manufactured in the entire horizon by trying to produce all the parts in the earlier periods and

thus reducing the frequency of switching from parts.

In section 2, we explain, basing on mathematical models, what differs the CLSPSD from the

classical problems namely ULS and CLSP. In section 3, we review the literature about the

different problems and the approaches proposed to solve it. In section 4, we describe our

approach. In section 5 we study an illustrative example and evaluate the performance of our

approach. A conclusion follows.

2. Related Lot sizing models

To explain the difference between the CLSPSD problem and common lot sizing models, we use

the mathematical modeling. We detail the ULS followed by the CLSP and small bucket models. 

Firstly, we present notation used for expressing sets, decision variables and data commonly

used in the models.

Sets 

T: set of all periods in the planning horizon indexed by t and m denotes the last period

P: set of all products indexed by i, j, k and l

Decision variables 

• Single item problem 

xt production level for period t 

yt =1 if production occurs at t, 0 otherwise

st inventory level at the end of period t

• Mutli-items problem 

xit production level of i in period t

yit =1 if we manufacture product i at t; 0 otherwise 

sit inventory level of product i at the end of period t

Parameters

• Single item problem 

vct production cost at t

sct set-up cost at t

hct holding cost of product

dt demand due of product at the end of period t

• Multi item problem 
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vcit production cost of i at t

scit set-up cost of i at t 

hcit holding cost of i

dit demand due of product i at the end of period t

capt production capacity of machine at t

vti variable production time consumed to manufacture product i

The single item uncapacitated lot sizing problem (Jans & Degraeve, 2007)

Model (1)

( )∑ ++
=

m

t
tttttt shcyscxvcMin

1
(1)

Ttsdxsts tttt ∈∀+=+−1.. (2)

Ttydx t

m

tk
kt ∈∀∑≤

=
. (3)

xt ,st≥0 ; y t∈{0,1 } ∀ t∈T (4)

The  objective  function  (1)  minimizes  the  total  cost  of  production,  set  up  and  inventory.

Constraint  (2)  is  the demand balance equation.  Constraint  (3) expresses  the fact  that  no

ending inventory is allowed, so production is limited by the remaining cumulative demand.

The capacitated lot sizing problem (CLSP) (Jans and Degraeve, 2007)

In this type of problems, many different items can be produced on the same machine in one

time period. The machine has a limited production capacity. Thus what differs in the objective

function from the previous model is the extra index i used to identify the items.

Model (2)

Min∑
i∈P

∑
i∈T

(sc it y it+vc it x it+hc it s it ) (5)

TtPisdxsts itititti ∈∀∈∀+=+−1,.. (6)

{ } TtPiydvtcapx it

m

tk
ikitt ∈∀∈∀∑≤

=
,min (7)

Ttcapxvt titi ∈∀≤∑ (8)

x it , s it≥0 ; y it∈{0,1} ∀ i∈P ,∀ t∈T (9)

In the set up constraint (7), production is now limited by both the capacity and the remaining
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demand. Constraint (8) is added to take into account the machine’s capacity.

Small bucket models (Jans & Degraeve, 2007)

In this type of problems, we assume that at most one type of item can be produced on the

same machine during each time period.

Model (3)

( )∑ ∑ +++
∈ ∈Pi Ti

itiitiitiitit shcxvcysczgMin (10)

TtPisdxsts itititti ∈∀∈∀+=+−1,.. (11)

Ttyit ∈∀≤∑ 1 (12)

TtPiycapxvt ittiti ∈∀∈∀≤ (13)

z it≥y it−y i , t−1 ∀ i∈P ,∀ t∈T (14)

x it , s it≥0 ; y it , z it∈{0,1} ∀ i∈P ,∀ t∈T (15)

The new variable introduced is the start up variable with an associated start up cost g it. A

start up occurs when the machine is set up for an item for which there was no set up in the

previous period.  Constraint  (12) illustrates  the assumption described before  and  imposes

that the machine can only be set up for at most one item in each period. Constraint (13)

allows the production for each item to be up to its capacity if there is a set up. The start up

variables are modelled in constraint (14) where z it equals 1 if yit equals 1 and yi t-1 equals 0,

thus, if the product i is produced in period t and was not produced in period t-1, a start up

occurs.

The capacitated lot sizing problem with sequence-dependent set up times and costs

and storage constraints (CLSPSD) (Gupta & Magnusson, 2005)

The model expressed hereafter is the model described by Gupta and Magnusson (2005) using

notations of Jans and Degraeve (2007).

Model (4)

∑∑∑∑ +∑
= == = =

m

t

N

i
iti
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t

N

i

N

j
ijtij shcyscMin

1 11 1 1
(16)

TtPisdxsts itititti ∈∀∈∀+=+−1,.. (17)

TtPiYx itit ∈∀∈∀≤− 0 (18)
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Ttstyx
N

i

N

j
ijijt
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i
it ∈∀≤∑∑+∑

= ==
1

1 11
(19)

x it , s it≥0 ; y ijt∈{0,1 } ∀ i , j∈P ,∀ t∈T (20)

Research by Gupta and Magnusson (2005) assume that machine capacity is normalized to

one per period. Production quantities denoted by x it are then denoted in terms of fractions of

available  capacity.  N identifies  the number of  product  types.  Y it is  a  binary variable  that

equals 1 if product i is produced in period t, 0 otherwise. y ijt is a binary variable, equal to 1 if

a  setup occurs from product  i  to  product  j  in  period t,  0  otherwise.  It  is  assumed that

changing over from product i to j takes st ij time units of capacity, and variable production

costs are ignored.

Constraints  (17)  and  (19)  are  material  balance  and  capacity  constraints,  respectively.

Constraint (18) ensures that whenever xit > 0, the indicator variable Yit is automatically set

to 1. 

After describing the CLSPSD problem, we review in section 3 some papers that have treated

this problem.

3. Problem definition 

3.1. Related works

Many researchers have focused on lot sizing problems but several works have been proposed

to solve the CLSPSD problem. Haase and Kimms (2000) study a single-stage, single-machine

production system where setup costs and times are sequence dependent. They formulate a

large-bucket  mixed  integer  programming  which  considers  only  “efficient  sequences”.  Their

work is mainly based on enumerating all possible sequences of products; then, they select

those that minimize total setup and holding costs. However, the connection between sequences

when switching from a period to another is not considered. This is a serious shortcoming when

processing  the  first  product  in  the  sequence  of  period  t+1  after  the  last  product  in  the

sequence of period t is  very consuming in setup cost and time. Kovács, Brown  and Tarim

(2009) extend the work of Haase and Kimms (2000) by developing a dynamic program for

computing efficient sequences. They introduce a new mixed-integer programming model in

which binary variables indicate whether individual items are produced in a period. Parameters

for  this  program  are  generated  by  a  heuristic  procedure  in  order  to  establish  a  tight

formulation.  Consequently,  they  manage  to  solve  problems  where  the  product  of  items’

number and time periods’ number is at most 60-70, (Kovács et al., 2009).

Meyr (2000) models and solves the problem of integrating lot sizing and scheduling of several

products on a single, capacitated production, taking into account sequence-dependent setup

times.  He determines and schedules continuous  lot  sizes  that  meet  deterministic  dynamic

demands  and  minimize  inventory  holding  costs  and  sequence-dependent  setup  costs.  He
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develops a general algorithmic approach where a dual reoptimization algorithm is combined

with  a  local  search heuristic.  He  proves  with  computational  tests  the  effectiveness  of  his

solution method.

Gupta  and Magnusson (2005) study a single machine capacitated lot sizing and scheduling

problem with sequence dependent setup costs and non-zero setup times. They provide an

exact solution restudied by Almada-Lobo, Oliveira and Carravilla (2008), and a heuristic  in

order to solve large problem instances. The authors find that their heuristic is more effective

when there are many more products than there are planning periods.

3.2. Problem definition 

We consider a single production resource with limited capacity. In each time period, multiple

products can be manufactured. Backlogging is not allowed. Products’ size is so small that we

can  store  many  products  and  consequently  the  storage  capacity  is  considered  unlimited.

Demand is satisfied either by producing in the period or by carrying inventories from earlier

periods. Switching from a product to another requires an important setup cost which depends

on the sequence and the period. The setup time is negligible and supposed equal to zero. 

We have to determine in each period of time, the products to manufacture, their quantities and

their sequence.  The objective is  to minimize the total  cost which consists  of  storage cost,

variable production cost, setup and start up cost.

Our contribution concerns both, the problem studied and the approach developed to solve it.

We treat a capacitated lot sizing problem with sequence dependent set up costs. Importantly,

we  consider  that  setups  are  incurred  not  only  within  but  also  between  periods.  To  our

knowledge, no study has so far dealt with this problem. When we consider setups incurred

between periods, a solution like producing (P1-P3-P2) in period 1 and (P4-P5) in period 2 may

be excluded if setup cost incurred of producing P4 after P2 is too high. 

To solve this type of CLSP, we develop a method that tries to approach the large buckets

problem studied here to a small buckets one. Let us explain more this point.  Because we

consider that more than one product type can be manufactured in each period, we belong to

the class Large buckets models. We know that to minimize the total setup costs, we have to

manufacture the total demand (over the entire planning horizon) for product i before switching

to product j. This approach is the principle of small buckets models: at most, one product type

is manufactured in each period. 

Though, we do not adopt this restrictive assumption; we just try to approach it by reducing

when possible the number of products manufactured within each period.

The principle of small buckets problem provides us a lower bound. We evaluate our solution by

using this lower bound and explain under which conditions we can closely approach this lower

bound.
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3.3. Mathematical formulation

The problem we treat in this paper can be modelled as follows:

Model (5)

(21)

TtPidssxst itititit ∈∈+=+ − ,. 1 (22)

Ttcapxvt t

N

i
itit ∈=∑

=1
(23)

x it≥0 i∈P , t∈T (24)

s it≥0 i∈P , t∈T (25)

Before giving constraints linking variables xit and both yijt and ypklt, we should note that, in this

model,  yijt identifies binary variables that correspond to 1 if  the product j is manufactured

immediately after product i in period t, and 0 otherwise. ypklt identifies binary variables that

correspond to 1 if product k is the last product of the production sequence in period t and l the

first product of the production sequence in period t+1, and 0 otherwise.

Associated to decision variables sit, xit, yijt, ypklt and zi, binary variables αit and βit are added. αit

are Binary  variables  that  correspond  to  1  if  product  i  is  manufactured in  period  t  and 0

otherwise.  βit are Integer variables that indicate the position of product i in the production

sequence, at period t. Let us give and then explain constraints between this set of variables.

TtPixitit ∈∈≤ ,α (26)

TtPiMx itit ∈∈≤ ,.α (27)

TtPi
i

itit ∈∈∑≤≤ ,0 αβ (28)

TtPiMitit ∈∈≤ ,.αβ (29)

TtPiMitit ∈∈≤ ,.βα (30)
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TtPijPiitjtjtit ∈∈≠∈−+≤+ ,1 ββαα (31)

TtPijPiy itjtitjtijt ∈∈≠∈−−+−≤− ,1)(1 ββαα (32)

{ }mTtPklPkMypyy klt
i

tli
i

kitjtjt −=∈≠∈≤−∑−+∑−++ + ..1,.3)1()1( 1αα (33)

{ } TtPiit ∈∈∈ 1,0α (34)

TtPiINit ∈∈∈β (35)

{ } TtjiPjiyijt ∈≠∈∈ ,,1,0 (36)

{ } { }mTtklPlkypklt −=≠∈∈ ..1,,,,1,0 (37)

Constraints (26) and (27) indicate that if we manufacture product i in period t then variables αit

equal 1, thus, if amounts xit are strictly positive then αit equal 1. Relation between variables αit

and  βit are determined by constraints (28), (29) and (30). While constraints (29) and (30)

affect 0 to βit when product i is not manufactured in period t, i.e. when αit equals 0, constraints

(28) determine their domains of variation. These domains are delimited by 0 and the number

of products manufactured at period t, i.e. the sum of αit. Constraints (31) avoid attributing the

same position in the production sequence to two different items. In fact, if we manufacture

products i and j at period t, i.e. if αit and αjt equal 1, then (βjt – βit) is necessary greater than 1

or lower than (-1). Constraints (32) attribute the value 1 to variables y ijt when products i and j

are manufactured at period t (βit and βjt equal 1) and item’s j position succeeds item’s i position

in the production sequence, what means product j is manufactured immediately after product i

(βjt – βit =1).  Finally  constraints  (33) imply  that  if  product  k has  the last  position  in  the

production sequence at period t and product l has the first position in the production sequence

at period (t+1) then the binary variable ypklt equals 1. The last product of the production

sequence  at  period  t  verifies  0=∑
i

kity  what  means  no  product  is  manufactured  after

product k, in the period t. The first product of the production sequence at period (t+1) verifies

01 =∑ +
i

tily  what means only one product is  manufactured after product l,  in the period

(t+1).

Finally, gi denotes start up cost associated to manufacturing product i and z i binary variable

that corresponds to 1 if product i is the first product manufactured in period 1 and 0 otherwise.

Start up costs concern only period 1 and are considered in the following constraints.
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Piz ii ∈≤ α 1 (38)

PiMzy i
k

kii ∈≤−∑−+ .1)1( 11α (39)

{ } Pizi ∈∈ 1,0 (40)

Constraints (38) assign the value 0 to zi if product i is not produced in the first period and

constraints (39) assign the value 1 to zi if product i is manufactured in the first period (αi1=1),

and this product is the first product manufactured at this period, this means that no product

precedes i, so 01 =∑
k

kiy .

The difference between our model and Gupta’s model is the binary variables introduced in the

objective function to express costs incurred from switching from one period to another.

This NP Hard problem is modelled as a non linear mathematical model,  (Chaieb Memmi &

Hammami Laaroussi, 2010). To solve it, we propose the approach described Section 4.

4. Proposed Approach

We propose in this paper a new approach for solving a CLSPSD problem. The main idea is to

reduce the number of products to manufacture within each period in order to decrease the

setup cost. 

The approach is composed of three steps. First, we propose to compute a lower bound on total

cost.  This  lower bound is  given by  adding the  inventory and production costs  determined

without considering the setup and start up costs; and the setup and start up costs determined

by relaxing the constraint of limited capacity. Determining this lower bound is detailed in the

first step. Then we propose a three sub-steps iteration procedure. Firstly, we solve optimally

the  lot  sizing  problem  without  considering  products  sequencing  and  their  cost.  Thus,  we

determine  products  quantities  to  produce  each  period  while  minimizing  the  storage  and

variable production costs. Given the products to manufacture each period, we determine its

correspondent  optimal  products  sequencing,  by  using  on  a  B&B  algorithm.  Given  the

sequences of products within each period, we evaluate the total start up and setup cost. The

total cost of this solution is the sum of the cost of lot sizing problem and the start up and setup

cost. We compare then the total cost obtained, to the lower bound of the total cost. If this

value riches a prefixed value, we stop. Otherwise, we modify the results of lot sizing problem

by assigning to the lowest economic amount 
11ti

Q  corresponding to the pair (product i1, period

t1), the value 0 (see equation. (41)). We resolve the lot sizing problem after inserting the new

constraint. If there is no feasible solution, we update the set E (E=E-{(i1,t1)}) and we assign

the value 0 to another economic product  Qi2t2.  We repeat determining products sequencing
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within periods, evaluating the criterion’s value and comparing it to a prefixed value until the

prefixed value is reached or after an important number of iterations without ameliorating the

criterion’s value.

{ }0/),(min
),(

11
≠∈∈==

∈
itit

Eti
ti QperiodsofsettproductsofsetiEwithQQ (41)

4.1. Step 1, Lower Bound determination

We recall that the total cost we aim to minimize is composed of: 

• Production and holding costs

• Setup and start up costs 

In order to determine a lower bound to the total  cost,  we compute a lower bound for its

components, Production and Holding costs, and Setup and start up costs.

For the first component, we model the lot sizing problem without considering setup and start

up costs. The model obtained is linear and is described below. 

Model (6)

( )∑∑ +
= =

m

t

N

i
itititit xvcshcMin

1 1
.. (42)

TtPidssxst itititit ∈∈+=+ − ,. 1 (43)

Ttcapxvt t

N

i
itit ∈=∑

=1
(44)

s it≥0 x it≥0 i∈P , t∈T (45)

Constraint (43) is  the demand balance equation and (44) expresses that the production is

limited by the machine’s capacity.

When solving this linear model, we obtain: 

• The optimal Production and Inventory cost, let ZL denotes this cost.

• The optimal products quantities to manufacture each period. Given these amounts we

are able to set in the set of parts to manufacture each period. Assume, for example,

three product types. In period 1, the amounts of products P1 and P2 are different from

zero whereas the amount of products P3 equals zero. We know that the set of parts

that will be manufactured in period 1 is {P1, P2}. We need then to find whether we

should manufacture P1 before P2 or P2 before P1.

To determine the lower bound for setup and start up costs, we relax the machine capacity

constraint. We suppose, if  we are manufacturing product type i, that we do not switch for

another product type before producing the total demand (over the entire planning horizon) of
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product i. This approaches the principle of Small buckets models which assume that at most

one product type is manufactured within each period.

Therefore, to determine the lower bound of setup and start up costs, the problem consists in

simply enumerating all the possible sequences of products, each sequence engender a total

setup and start up cost. We then retain the sequence that minimizes this total cost, this total

cost constitutes the lower bound we searched for. If we have to manufacture three types of

products (P1, P2, P3), there are six possible sequences {P1-P2-P3}{P1-P3-P2}{P2-P1-P3}{P2-

P3-P1} {P3-P1-P2}{P3-P2-P1}. Total cost incurred by the sequence {P1-P2-P3} is given by:

Start up cost (P1)+setup cots (P1 to P2)+ setup cots (P2 to P3)

The lower bound LB is the sum of lower bound of production and inventory cost, zL
*, and the

lower  bound  of  start  up  and  setup  cost  zs
*.  The  algorithm  for  computing  LB  is  given  in

Appendix A.

4.2. Step2, Iterative procedure for finding a feasible solution

As we mentioned earlier, the step consists of three sub-steps, cf. Appendix A.

4.2.1. Sub-Step2.1 Production plan determination

Firstly,  we  solve  optimally  the  lot  sizing  problem (Model  6)  without  considering  products’

sequencing  and  their  cost.  Thus,  we  determine  quantities  to  produce  each  period  while

minimizing the storage and variable production costs.

4.2.2. Sub-Step2.2 B&B algorithm for solving the sequencing problem

Since the products  to manufacture are already determined in the first step,  it  remains to

schedule the products within each time period in order to minimize start up and setup costs.

Scheduling separately each time period regardless of the setup costs between periods can

degrade  the  solution’s  performance.  That  is  why  we  have  to  schedule  the  products  with

consideration to the costs incurred from switching from one period to another. We proposed to

solve the sequencing problem with a branch and bound method motivated by its practical

advantage: finding an optimal solution by reducing the search space. 

We  illustrate  the  sequencing  problem with  a  simple  example.  Suppose  that  the  amounts

provided by solving the lot  sizing problem (without  considering start  up and setup  costs)

provides for three part types and over three periods the following amounts: 

• Period 1: amounts of (P1,P2,P3)=(100,200,0)

• Period 2: amounts of (P1,P2,P3)=(100,200,300)

• Period 3: amounts of (P1,P2,P3)=(0,400,100)

Consequently, the set of parts to schedule for respectively periods 1, 2 and 3 are {P1,P2}

{P1,P2,P3}{P2,P3}.
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The solution of the sequencing problem has the same form. In fact, we will obtain these sets of

parts. What will differ is just the schedule of parts within each set.

In what follows we describe after recalling some principles of the B&B method, the algorithm

we have developed. 

A branch and bound method B&B enables to enumerate all solutions of search space to find the

optimal  one,  Pessan,  Bouquard  and Néron (2008).  The search space in  a B&B method is

represented by a tree stored using a data structure containing the nodes that have not yet

been explored.

The algorithm consists of three main components: (1) a bounding function, (2) a strategy for

selecting and (3) a branching rule, (Clausen & Perregaard, 1999). There are two standard

ways to calculate the lower bound function: maintain the objective function but relax the sub-

problem or maintain the feasible region but modify the objective function. We distinguish three

strategies for selecting, (1) the best first search strategy BeFS, (2) the breath first strategy

and (3) the Depth First Strategy DFS. The BeFS consists of selecting among the live sub-

problems the lowest bound node. The breath first strategy corresponds to a situation where all

nodes at one level are treated before any node at a higher level. In a DFS, we choose the node

with the largest level to explore. A breadth-first search strategy requires less memory than the

best-first  strategy, (Zhou & Hansen,  2006). The depth first strategy has the advantage of

finding feasible solution quickly and keeping a reasonable stack size, Pessan  et al. (2008).

Finally, the decision “how to separate” depends on the speed to find a new sub-problem. 

In addition to the three components, we need to compute an initial solution enabling us to

have an upper bound. The objective value of the initial solution represents the upper bound on

the objective function. Searching an initial good feasible solution facilitates fathoming of nodes

as early as possible, (Clausen & Perregaard, 1999).

The B&B algorithm we developed consists of three main procedures: 

Procedure 1: Computing an initial solution and determining an Upper Bound

To determine an initial solution for our sequencing problem, we proceeds by searching from the

set of parts to manufacture on period 1, the part Pi that has the lowest start up cost. We then

assign to this part the first position in the set. In the second position, we choose the part Pj

that provides the lowest set up cost incurred when switching from Pi to Pj. We continue this

processing over the next time periods. Suppose that Pk is the last part to manufacture in

period t, we choose from the set of parts to manufacture in period t+1 the part Pl that implies

the least setup cost with Pk.

Procedure 2: Computing the lower bound

It is well known that the quality of the lower bound is one of the most critical elements of any

branch-and-bound algorithm. As we mentioned above, there are two ways to obtain the lower

bound. In most cases,  computing a lower bound consists  of relaxing some constraints (in
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different ways) and in solving a new easier problem. 

In our algorithm, we consider one main relaxation to obtain lower bounds. For all products not

yet scheduled, we relax the constraint of respecting the demand. In other words, we have the

possibility not to schedule the remained products. The lower bound LB we consider is the start

up and setup costs incurred by the scheduled parts to which we add the minimum setup cost

multiplied by the number of remained positions to fill. To illustrate, consider again the example

of scheduling {P1,P2}{P1,P2,P3}{P2,P3}. Suppose that we have already scheduled P1, P2 in

period 1 and assigned the first position to P1 in period 2, so we have for example {P2-P1}

{P1-?-?}{?-?}, it remains to schedule four products; the lower bound is given by: 

{start up cost(P2) + setup cost(P2-P1) + setup cost(P1-P1) + 

(number of parts that remain to schedule-1)*Min setup cost different from zero}

Procedure 3: Branching scheme and search strategy

The branching scheme consists of scheduling a new product after a partial schedule. 

For the previous example, {P2-P1}{P1-?-?}{?-?} constitutes a partial schedule.

We select the product that is not yet scheduled and that maximizes the lower bound. As the

search space is explored by using the depth first strategy, if the value of such a lower bound is

greater than the value of the upper bound, then this node is removed. 

We need to compute the lower bound of each node included in the tree. A node included

corresponds to a product selected and scheduled in the first available case. For each case

already scheduled, we have as information: the product selected to schedule, products already

scheduled, the lower bound reached, and the current time period. 

This algorithm is described in Appendix A.

4.2.3. Sub-Step2.3 Performance evaluation of a feasible solution

We compute total cost of feasible solution obtained. It is the sum of production and inventory

costs, computed in sub-step1, and the startup and setup costs computed in sub-step2. If the

difference between the total cost and the lower bound, calculated in step1, riches a prefixed

value;  or  the  prefixed  maximum  number  of  iterations  is  reached,  the  algorithm  stops.

Otherwise we modify the results of lot sizing problem by inserting a new constraint which

implies to assign the value 0 to the lowest economic amount. We then return to substep1 and

we resolve the lot sizing problem after inserting the new constraint.
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5. Computational results

Our approach has important practical implications. It determines the products to manufacture

each  time  period,  their  economic  amounts,  and  their  scheduling  within  each  period.  This

outcome should help decision makers bearing expensive start up and setup costs, to reduce

their Inventory and Production costs and Start up and setup cots.

In this section we evaluate the performance of our approach and assess its limits. We study

three plausible scenarios with an illustrative example. In the first one, we choose start up and

setup cost significantly higher than production and inventory costs. In the second scenario, we

study the effect of varying machine’s capacity on results and approach’s performance. In the

third  scenario,  we  show  that  the  performance  reached  in  first  and  second  scenarios  is

noticeably moderated when production and inventory costs are important. 

We  describe  in  what  follows,  the  Illustrative  example.  We  consider  a  planning  horizon

composed of  four  periods  and four  product  types  to  manufacture  on a  single  capacitated

machine.  We  assume  the  following  data  that  reveals  start  up  and  setup  costs  are  more

important than production and inventory costs:

• Average Inventory cost multiplied by average demand = 1% average setup cost 

• Average Setup cost = 10% average start-up cost

• Average production cost multiplied by average demand = 10% setup cost 

• Machine capacity = number of items multiplied by (3/2 x Maximum demand)

Among the set of equivalent demands, some demands are much more inconsequential. 

Inventory, production, start up and setup costs, processing times and demands are presented

in Appendix B.

Scenario 1: Evaluating the approach’s performance and Comparing between the developed

approach and the traditional sequential approaches 

Usually, when solving the lot sizing problems, parts are not scheduled within periods and thus,

setup costs are not considered. The sequences of items are determined independently and

without re-examining the results of the lot sizing problems. In our works we modify these

results (by assigning to some of them the value 0 as explained section 4). Table 1 shows that

we manage to reduce the total cost, determined by the traditional approach, by 30%.

Solution Lot sizing cost “ZL” Start up and setup costs “ZS” Total cost “TC”

Traditional approach 54,4 2700 2754,4

Our approach 94,4 1850 1944,4

Gap 73,53% -31,48% -29,41%

Table 1. Comparing the New approach with the Traditional one
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Our developed approach has improved the traditional approach by about 30% in terms of total

cost. To explain the reduction in total cost incurred by our approach, we compare the economic

amounts xit, the inventory level sit and the sequences of items provided by the two approaches

and illustrated in Table 2.

Solution Traditional approach New approach

Economic amount x=

100 80 90 100
90 10 100 90
80 100 80 80
100 90 80 90 00260100

016010080

01900100

000370

=x

Inventory level

0000

0000

0000

0000

=s

0901700

08000

090010

0100190270

=s

Sequence 1243 3124 1243 3124 1324 43 32

Table 2. Comparing Economic amounts, Inventory levels and Sequences

As we can see in Table 2, we have succeeded to reduce the number of setups. The number of

type products manufactured in period 2 is reduced from 4 given by the traditional approach to

2. In period 3, the number is reduced from 4 part types to 2 and in period 4, from 4 to 0. This

is derived from the economic amounts matrix where we have eight amounts equal to zero.

However, in the traditional approach, none of the amounts equals zero. In fact, the machine

capacity and storage capacity allow manufacturing the products earlier to store them, and to

satisfy demand of following periods. After iteration 8 (Figure 1), we cannot increase anymore

the number  of  zeros in  economic  amounts  matrix  otherwise the machine capacity  will  be

exceeded. 

Figure 1. Total cost, Lot sizing cost (ZL) and Scheduling cost (ZS) 

obtained when applying the proposed approach

When the inventory cost is not so important, clearly the decision maker regroups the products

in earlier periods to reduce the frequency of switching from one part type to another. Thus, the

total number of parts produced over the planning horizon is also reduced. Due to machine

capacity  constraint,  grouping  all  products  to  manufacture  in  earlier  periods  is  not  usually
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possible. Besides, notice that, when machine capacity is limited, reducing the total number of

parts  (to  manufacture  over  the  entire  planning  horizon)  could  increase  set  up  costs.  We

observe this case in iteration 7. The total number of products manufactured decreased, while

the total start up and setup cost increased. In fact, in iteration 6, we were manufacturing ten

products; the total start up and setup cost were equal to 2150 mu. This number decreased to

nine products whereas the start up and setup costs increased by 16%. The reasons to this

increasing are: 

First, the triangular inequality, setupcost[Pi, P j] < setupcost[Pi, Pk]+ setupcost[Pk, Pj]

is not usually verified, this is the case hereafter: 

setupcost[P2,P1](650)> setupcost[P2,P4](250) + setupcost[P4,P1](50)

Second,  switching  from  period  (t)  to  period  (t+1)  may  deteriorate  the  total  setup  cost.

Suppose for example, that the last product we manufacture in period t is Pi and when reducing

the total number of parts, we eliminate Pi from the set of parts to manufacture in period t+1.

Any part that has the first position in the sequence of period (t+1) will engender greater set up

cost than when we keep producing the same part type Pi.

Scenario 2: Comparing the approach’s results with the Lower Bound

In this scenario, we aim to compare results of our approach to the lower bound described in

Section 4. This lower bound on total cost is composed of (1) lower bound on production and

inventory cost (that is lower bound on lot sizing cost), and (2) the lower bound on the start up

and setup cost (lower bound for the scheduling problem).

Computing the lower bound for this illustrative example, we find: 

• Lower bound on lot sizing cost = 54,4 mu 

• Lower bound on start up and setup cost = 750 mu, it corresponds to the sequence

(1-2-4-3)

• Lower bound on total cost = 54,4+750= 804,4 mu

In this example, the total cost according to the traditional approach’s solution is 2754.4 which

represent 250% of  the lower bound, whereas, the total  cost  of  our approach’s solution is

1944,4 which represents 150% of the lower Bound (iteration8). This gap can be improved if we

increase the machine’s capacity to 2*maximum demand*number of items; it becomes equal to

90% (iteration  10),  and if  the machine  capacity  reaches  4*maximum demand*number of

items, the gap is reduced to 10% (iteration 12). 

We present in Figure 2, Figure 3, Figure. 4, respectively, the evolution of lot sizing cost, start

up and setup cost, total cost and their lower bounds. Figure 2 shows that the lot sizing cost

increases with the number of  iterations.  Because,  we produce all  parts  in  earlier  periods,

inventory costs  are systematically  increased.  Figure 3  shows that  start  up and setup cost
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reaches the lower bound in the last iteration where we do not switch for a new part type if we

have not produced the total demand for the current product.

Here, since start up and set up costs are much more important than production and inventory

costs; the total cost is too close to its lower bound (the gap is 10%), Figure 4.

Figure 2. Lot sizing cost and its lower bound Figure 3. Scheduling cost and its lower bound

Figure 4. Total cost and its lower bound

Scenario 3: Limits of the approach

Our approach provides interesting results when the inventory costs are not very important

(this  is  the  case  in  scenario1)  and  the  machine  capacity  is  not  limiting  (as  explained  in

scenario2). Under these conditions, the total cost follows the evolution of setup and start-up

cost  (Figure 5).  This  scenario  illustrates  that  decreasing  the  total  cost  is  considerably

moderated when production and inventory costs are too important. This is shown in Figure 5

where  the  average  unitary  production  cost  multiplied  by  the  average  demand  equals  the

average setup cost,  the average unitary inventory cost multiplied by the average demand,

equals  1%, 10% and  then  100% of  average  setup cost.  In  the  first  case,  the  total  cost

decreases when start up and setup costs decrease. In the second, we manage to decrease the

total cost even though the inventory costs are important. In case 3, the reduction in total cost

is insignificant despite the decrease in the start up and setup costs.

Notice that for the three scenarios more than 90% of demands are close to the maximum

demand (please refer to the matrix of demand in Appendix B). Consequently, when we assign
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the value 0 to one of the amounts resulting from solving the lot sizing problem, the impact on

its cost is very important. Nevertheless, we manage to considerably reduce the total cost. This

is the case especially when Production and Inventory costs are not too high.

Figure 5. Effect of varying inventory cost

6. Concluding remarks

In this paper, we propose an iterative approach for solving a lot sizing and scheduling problem

with  sequence  dependent  setup  costs.  Our  model  explicitly  accounts  for  the  setup  costs

between periods planning and fits better to real-world situations where production systems run

continuously.  The  key  element  of  our  approach  is  to  reduce  the  number  of  items  to

manufacture  over  the entire  planning  horizon.  Therefore,  the frequency of  setting  up the

production machine is also reduced. 

In the case of  limited machine’s  capacity,  we show that setup costs  could increase when

reducing the total number of parts manufactured over the entire planning horizon. In fact, the

triangular inequality in setup costs is not usually available, as shown in scenario 1. We can

compute a lower bound to setup costs if the total number of manufactured part is reduced to

the strict number of part types. To this lower bound, we add the lower bound of Production and

Inventory costs. 

We illustrate the economic significance of our result using a 4 periods and 4 products case. We

obtain a deviation of 10% from the lower bound. This deviation depends on the machine’s

capacity and on the significance of Inventory and Production costs. Similar to the heuristics
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proposed  in  the  literature,  the  performance  of  our  iterative  approach  is  data-dependent.

Rather, we view it as a tool that offers valuable guidance to decision makers in manufacturing

facilities. Further research on modeling setup times is needed.
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Appendix A. Iterative approach for solving the CLSPSD problem
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