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Abstract

In many applications, it is often of interest to assess the possible relationships between covariates

and quantiles of a response variable through a regression model. In some instances, the effects of

continuous covariates on the outcome are highly nonlinear. Consequently, appropriate modelling

has to take such flexible smooth effects into account. In this work, various flexible quantile

regression techniques were reviewed and compared by simulation. Finally, all the techniques

were used to construct the overall zone specific reference curves of morphologic measures of

sea urchin Paracentrotus lividus (Lamarck, 1816) located in NW Spain.

MSC: 62G08, 62J02, 62P10.
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1. Introduction

Quantile regression is a statistical technique which allows, among other applications, to

calculate growth curves and reference values, and is extremely useful in various fields of

application, such as Ecology, Economy and Medicine, examples of which can be seen

in Brian (2003), Koenker (2001), González-Barcala (2008), respectively. In the applied

field, the need arises to extend the classic parametric approach by using smoothing

techniques in regression to capture all the variations that occur in population quantile

curves in response to a set of covariates.
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Figure 1: Shown at left is a colony of P. lividus sea urchins from the intertidal site.

Shown at right in orange are the gonads (the part that is marketed).

Quantile regression is used in cases where a study seeks to estimate the different

percentiles (e.g., the median) of a population of interest. One advantage of using quantile

regression to estimate the median rather than using ordinary least squares regression (to

estimate the mean), is that the former is less sensitive to the presence of atypical values.

When it comes to using different measures of central trend and dispersion, quantile

regression can be regarded as a natural analogue in regression analysis for ensuring a

more complete and robust data analysis. A further advantage of this type of regression

lies in the possibility of estimating any quantile and thus being able to ascertain what

occurs in the case of extreme population values.

In practice there are different methodologies – with freeware implementations devel-

oped by the R Development Core Team (2011) – which address quantile regression. To

our knowledge, while no general comparative analysis has targeted all of these method-

ologies, one such analysis has reportedly been conducted by Fenske (2011) on two of

them.

Our principal aim was to conduct a comparative study, using simulation and ap-

plication to real data, to carry out a brief review of a number of currently used flexi-

ble quantile regression techniques implemented in R software. Specifically, the follow-

ing were reviewed: i) Koenker and Basset’s methodology in Koenker (1978), using the

quantreg package; ii) Cole (1988)’s least means squares (LMS) method, represented

here in the form of a vector generalised additive model as proposed by (Yee (1996)), us-

ing the VGAM package; iii) the method based on generalised additive models for location,

scale and shape proposed by Rigby (2001) and implemented in the gamlss package;

and, iv) a new approach to quantile regression using the boosting process described by

Buehlmann (2007), with the mboost package.

This study is structured as follows: Section 2.1 takes classic quantile regression

and extends it to the non-parametric case; Section 2.2 outlines four current methods

of non-parametric quantile regression; and Section 3 then makes a comparative study

of the different techniques reviewed. The simulation study envisages a non-parametric
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scenario that allows for the respective results yielded by the above-mentioned quantile

regression techniques to be compared. Lastly, section 4 takes two of the four.

2. Quantile regression

2.1. Overview

Let (x1,y1), . . . ,(xn,yn) be a random sample with variable response y and covariate x.

The problem of parametric quantile regression is thus defined as

yi = β0τ+β1τ xi +ǫi,τ ∀i ∈ {1, . . . ,n} (1)

with β0τ,β1τ ∈ R and ǫi,τ ∼ Hτ verifying Hτ(0) = τ. The estimated β̂0τ and β̂1τ are

obtained by solving

(β̂0τ, β̂1τ)= arg min
(β0τ,β1τ)∈R2

{

∑
yi≥A

τ |yi −β0τ−β1τ xi|+ ∑
yi<A

(1−τ) |yi −β0τ−β1τ xi|

}

(2)

Due to the assumption of linearity in the covariate, the above model can be very

restrictive in some instances. This constraint can be avoided by replacing the linear

index β0τ+β1τ · xi with a non-parametric structure. Accordingly, a generalisation of

the model in (1) is given by

yi = fτ(xi)+ǫi,τ ∀i ∈ {1, . . . ,n} (3)

with fτ being an unknown smooth function and τ ∈ (0,1). Moreover, the τ-th quantile

of the error ǫ conditional on the covariate x is assumed to be zero, namely, Qτ(ǫi,τ|x) =

0. Given the sample (x1,y1), . . . ,(xn,yn) the estimation of fτ is obtained by using some

smoother of the form

f̂τ(x) =
n

∑
i=1

ωλ,τ(xi)yi (4)

where λ is the smoothing parameter and ωλ,τ is the function of weights (kernel type,

splines, etc.). Some of these methods are now reviewed below.
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2.2. Methods reviewed

A number of techniques for calculating population growth curves are described in the

current literature. Four techniques displaying different approaches and implemented in

R software developed by the R Development Core Team (2011), are further discussed

below.

2.2.1. Linear-programming-based technique

As its starting point, the linear-programming-based (LP-based) approach to the calcula-

tion of the quantile reference curve τ deems estimations of penalised quantile regression

splines to be solutions to the minimisation of:

n

∑
i=1

ρτ{yi −g(xi)}+λ
∫
{g′′(x)}2dx (5)

where ρτ(u) = u{τ− I(u < 0)} is the function check proposed by Koenker (1978)

and λ is the smoothing parameter of the resulting cubic spline, which generalises the

classic approach of least squares smoothing splines pioneered by Wahba (1990). Since

the minimisation problem posed entails a high computational cost, in expression (5)

{g′′(x)}2 is usually replaced by |g′′(x)| (Koenker, 1994). Indeed, this is the approach

used in the quantreg package. In our study, the rqss function was used to estimate

the quantile curves, with smoothing being added in the non-parametric case via the qss

function. No specifications were laid down as to the monotonicity of the data. This

was due to the fact that, since the work scenarios encountered by us are not always

monotonic, we felt this was something that should be borne in mind when it came to

fitting the model.

2.2.2. Cole’s least means squares method

In this case, the percentile reference curves are calculated on the basis of the distribution

of the data. Hence, based on the LMS technique described in Cole (1988), the calculation

of the τ-th percentile uses Box-Cox family power transformations λ to obtain the

pertinent estimates for the mean and standard deviation. In this procedure, one obtains

the τ-th percentile curve given by the equation

Qyi
(τ|xi) = M(xi)[1+L(xi)S(xi)zτ]

1/L(xi) (6)

with zτ being the normal equivalent deviate for tail area τ and L(x),M(x) and S(x)

being functions that, as shown in (Cole, 1988), relate to the parameters λ,µ and σ of

the distribution of the original simple data. These functions are estimated using vector

generalised additive models (VGAM) proposed by Yee (1996) and based on smoothing
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splines (Hastie, 1990). To implement this method, we used the VGAM-library vgam

function.

2.2.3. Methodology of generalised linear models for location, scale and shape

The generalised linear models for location, scale and shape (GAMLSS) methodology

proposed by Rigby (2005) assumes the structure

Qyi
(τ|xi) = fτ(xi)+ exp(gτ(xi))zτ = µ(xi)+σ(xi)zτ (7)

with zτ as being defined previously and where smoothing is introduced into the esti-

mation of the data-distribution parameters, µ(x) and σ(x), via the functions fτ j and

gτ j using regression B-splines described in Boor (1978). Computational implementa-

tion was performed using gamlss belonging to the package of the same name. The

resulting estimations, µ̂ and σ̂, are based on B-Spline regression.

2.2.4. Boosting algorithms for quantile regression

Calculation of percentile curves based on boosting algorithms (BOOSTING) for quan-

tile regression evolved from boosting algorithms for classification, the best known of

which is the AdaBoost described in Freund (1997). Over the following two years, this

algorithm was propounded by Breiman (1998, 1999), as a backward stepwise algorithm,

known as the functional gradient descent FGD algorithm. Friedman, Hastie and Tibshi-

rani (2000) and Friedman (2001) then carried out statistical developments which en-

abled the FGD algorithm to be applied to estimating functions, including regression.

Subsequently Buehlmann (2007) developed boosting methods for estimation in quantile

regression, and more recently, Fenske (2009) propounded the functional gradient boost-

ing algorithm for additive quantile regression. In this approach, the τ-th percentile is

given by

Qyi
(τ|xi) = fτ(xi) (8)

where the non-linear term of equation (8) introduces smoothing function, fτ, for

continuous non-linear covariate x. In this paper, we fitted this model by means of

smoothing P-splines with B-spline bases, using the mboost package gamboost

function for the purpose.

3. Simulations

A simulation study was conducted to compare the behaviour of the different quantile

regression techniques reviewed. To this end, samples were generated in accordance with

the model
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y = 2+1.5log(x)+0.5xε (9)

with errors εi independently and identically distributed, and the covariate x was gen-

erated following a uniform distribution U(0,3). One hundred (m = 100) independent

samples {(xi,yi)}
n
i=1 of size n = 400 were generated from the model (9) with indepen-

dent random variables distributed following these different scenarios: Scenario A Nor-

mal standard distribution; Scenario B Student t distribution; and Scenario C Gamma

distribution.

The mean squared error (MSE) and the mean absolute deviation error (MADE) were

calculated for the quantile curves corresponding to τ ∼ 0.3,0.5,0.7. These errors are

given by the equations (10) and (11) respectively,

MSE =
1

100

100

∑
j=1

(Q̂
( j)
τ (x)−Q

( j)
τ (x))2 (10)

MADE =
1

100

100

∑
j=1

|Q̂
( j)
τ (x)−Q

( j)
τ (x)| (11)

where Q̂
( j)
τ (x) is the estimation of the τ−th percentile for xi, Q

( j)
τ (x) is the real value of

the τ−th percentile for x.

Table 1: This table shows the mean (standard deviation) of the MSE and the MADE

for the different methodologies and scenarios in the simulation sample.

Scenario τ LP-based LMS GAMLSS BOOSTING

A
0.3

MSE 0.115(0.133) 0.146(0.028) 0.143(0.017) 0.126(0.041)

MADE 0.254(0.172) 0.204(0.067) 0.201(0.060) 0.241(0.068)

0.5
MSE 0.110(0.092) 0.151(0.027) 0.171(0.028) 0.119(0.030)

MADE 0.259(0.165) 0.184(0.061) 0.192(0.055) 0.224(0.056)

0.7
MSE 0.134(0.115) 0.174(0.028) 0.171(0.031) 0.137(0.048)

MADE 0.284(0.182) 0.188(0.060) 0.182(0.064) 0.240(0.062)

B
0.3

MSE 0.230(0.064) 0.359(0.043) 0.264(0.049) 0.188(0.069)

MADE 0.296(0.078) 0.267(0.055) 0.276(0.065) 0.298(0.066)

0.5
MSE 0.295(0.052) 0.169(0.038) 0.202(0.040) 0.144(0.057)

MADE 0.256(0.064) 0.219(0.057) 0.235(0.050) 0.248(0.057)

0.7
MSE 0.376(0.086) 0.227((0.050) 0.226(0.057) 0.193(0.078)

MADE 0.288(0.077) 0.251(0.050) 0.239(0.064) 0.293(0.064)

C
0.3

MSE 0.191(0.036) 0.515(0.077) 0.771(0.069) 0.120(0.044)

MADE 0.195(0.045) 0.581(0.080) 0.624(0.076) 0.222(0.060)

0.5
MSE 0.390(0.086) 0.645(0.071) 0.458(0.084) 0.171(0.067)

MADE 0.309(0.077) 0.588(0.088) 0.540(0.090) 0.285(0.066)

0.7
MSE 0.524(0.120) 0.611(0.169) 0.690(0.157) 0.231(0.089)

MADE 0.404(0.094) 0.981(0.139) 0.942(0.085) 0.340(0.081)
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Figure 2: The solid line shows the theoretical median curve and the dashed line shows

the 95% simulation bands for the different techniques in the Scenario A.
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Figure 3: The solid line shows the theoretical curve and the dashed line shows

the fit for the quantiles τ∼ 0.3,0.5,0.7 using the respective techniques in the Scenario A.

Results are shown for the 100th simulation.
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The results of this study are shown in Table 1 and similar results can be appreciated

for all techniques. As can be seen with the MSE criterion: under Scenario A, the LP-

based technique presents the lowest mean values and the BOOSTING technique shows

the second lowest; for the Scenarios B and C, the BOOSTING technique presents

the lowest mean values and the LP-based technique shows the highest mean values

in Scenario B. Following the MADE criterion: in Scenarios A and B, the LP-based

and BOOSTING techniques present the highest mean values; although under Scenario

C the BOOSTING technique shows the lowest mean values in 5th and 7th percentile

and the LP-based technique presents the second lowest, being the opposite in the 3rd

percentile. When comparing standard deviation for the MSE and the MADE values,

can be appreciated that the LMS and GAMLSS technique shows the lowest values

in Scenarios A and B although the LP-based and BOOSTING techniques present the

lowest values in Scenario C.

As mentioned above, we have not seen a clear winner in Table 1. But when graphing

this, a clear change has been noticed and we can see the improvement of working with

the boosting methodology. In the graphical presentations, the 95% simulation bands for

the median and the quantile curves corresponding to different values of τ are shown in

Figures 2 and 3.

As can be seen from Figure 2, the inability of the LP-based, LMS and GAMLSS

techniques to capture the variability of the data completely gave rise to problems in the

simulation bands, and in the initial values of the covariate in particular.

When boosting algorithms were used, however, an improvement in the fit was

observed across the entire scenario, with this being especially evident in the initial values

referred to above. These characteristics can likewise be discerned in the calculation of

the percentiles corresponding to τ∼ 0.3,0.5,0.7 shown in Figure 3.

4. Application to the exploitation of marine resources

The study was undertaken at the following two sites along Galicia’s Atlantic seaboard

(NW Spain): Punta Area das Vacas (42◦06′54′′ N; 008◦54′30′′ W) (intertidal 1) situated

on the Vigo estuary (Rı́a de Vigo); and Lago (42◦19′25′′ N; 008◦49′37′′ W) (intertidal

2) located on Aldán Bay (Ensenada de Aldán), at the southern edge of the Pontevedra

estuary (Rı́a de Pontevedra). Both sites are representative of populations with a great

abundance of P. lividus on the Galician coast.

Samples were collected from January 2002 to February 2003 along the lower

intertidal zone of both sites (intertidal 1 and intertidal 2), and in the sublittoral area of

Lago (site 2−sublittoral). The samples were randomly collected, with each comprising

a total of 25 specimens of P. lividus. A total of 725 specimens were finally studied.The

specimens were weighed and measured while fresh. The parameters considered for

study purposes were the following two continuous variables: fresh weight, which is a

good indicator of the commercial potential of sea urchins and was taken into account by
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Figure 4: Global population: depiction of the fits for the τth percentiles

(τ ∈ {30,50,70}) with the GAMLSS and BOOSTING techniques.

Table 2: This table shows the values of the estimates obtained at the global sample and at the various sites

for different diameter (Diam.) values for the median (τ= 0.5). These estimates were computed using the

GAMLSS(G-T) and BOOSTING(B-T) techniques.

Global intertidal 2 intertidal 2 sublittoral

Diam. G-T B-T G-T B-T G-T B-T G-T B-T

2.0 3.42 3.46 3.49 3.40 2.90 2.66 3.83 3.68

2.5 7.48 7.05 7.24 7.03 7.03 6.14 7.60 6.74

4.0 26.55 26.75 27.17 27.00 27.38 26.32 32.94 28.10

5.5 67.10 66.47 65.93 66.84 66.74 66.04 71.76 69.11

6.0 86.13 87.75 81.52 85.79 83.22 83.94 91.36 87.55

8.0 191.96 189.43 — — — — 182.15 192.37

being treated as a variable of interest; and diameter which, according to (Lustres-Pérez

(2006)), is an indicator of size and strongly correlated with age, and was deemed to be

a covariate in the model fitted.
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Figure 5: Suitable zone by reference to resource exploitation: depiction of the fits for the τth percentiles

(τ ∈ {30,50,70}) with the BOOSTING technique.

In order to show the growth of the urchin population at different percentiles, two of

the techniques applied to the global population studied are considered. Figure 4 shows
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the weight change versus diameter for the τth percentile, (τ∼ 0.3,0.5,0.7), to GAMLSS

and BOOSTING techniques. The results are similar in both cases but present slight

differences as can be seen in Table 2.

Since the sample was collected in three separate locations, the behaviour of previous

percentiles in each of the zones has also been studied. In this case only one of the

techniques studied, the boosting technique, has been used.

As can be seen in Figure 5 and in Table 3, our results showed that specimens of the

sublittoral population displayed important differences with respect to those collected

from the two intertidal populations. For any given size, sublittoral sea urchins were thus

observed to register higher weights than those that inhabited the intertidal strip, across

all the population quantile curves. These divergences increased from the point at which

P. lividus attained the stipulated commercial size (diameter 5.5 cm). Furthermore the

existence of a greater number of larger-sized specimens in the sublittoral population

was also in evidence.

Table 3: This table shows the values of the estimates obtained at the various sites for different diameter

(Diam.) values and for three different percentiles (τ). These estimates were computed using the BOOSTING

technique.

intertidal 1 intertidal 2 sublittoral

Diam.τ=0.3 τ=0.5 τ=0.7 τ=0.3 τ=0.5 τ=0.7 τ=0.3 τ=0.5 τ=0.7

2.0 3.15 3.40 3.67 2.67 2.66 2.68 3.30 3.68 3.80

2.5 6.68 7.03 7.43 6.09 6.14 6.08 6.48 6.74 8.15

4.0 26.37 27.00 27.80 25.18 26.32 27.61 26.16 28.10 29.45

5.5 64.45 66.84 68.88 64.08 66.04 68.28 67.48 69.11 73.01

6.0 82.12 85.79 87.06 81.46 83.94 86.60 84.79 87.55 90.86

8.0 – – – – – – 186.64 192.37 196.73

5. Discussion

The results yielded by the simulation process suggest that the methods are competitive

for fitting quantile regression models. Estimation of parameters and selection of vari-

ables cannot be made at a single stage of the estimation, nor can the degree of smoothing

be selected automatically with the LP-based technique. The LMS method is likewise un-

able to select the smoothing parameter automatically, is very sensitive to data-dispersion

and displays problems when it comes to working with negative-value responses. This

last-mentioned aspect makes it necessary for translations to be made before and after

fitting the model, to ensure that the results obtained can be properly assessed. As with

the two previously described techniques, the GAMLSS methodology requires selection

of the degree of smoothing. The boosting-based method is the one which (1) estimates

the parameters, (2) selects the variables at a single stage of the estimation, and (3) im-

plements automatic selection of the degree of smoothing. Furthermore, in the light of
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the results shown in Figures 2 and 3, among the four methods discussed, the boosting-

based method is the one for which the data best fits both small and large values of the

covariate. The drawback of this last-mentioned methodology arises due to the fact that

the percentile curves are calculated separately, and this leads to problems with the cross-

tabulation of quantiles. With respect to application to real data, as Figure 5 and Table 3

show, there is a clear difference between the populations considered. The study confirms

that sublittoral populations display conditions better suited to exploitation of P. lividus,

due to:

• the existence of a greater number of commercial specimens; data corroborated

in earlier studies undertaken on the Galician coast, such as those by Fernández-

Pulpeiro (1999) and Lustres-Pérez (2006). In the latter case, a study of 206

intertidal and 63 sublittoral sites showed that the percentage of commercial sea

urchins was 7% at the intertidal site and exceeded 50% at the sublittoral site; and,

• the greater development of sublittoral versus intertidal sea urchins, i.e., higher

weights for any given diameter. This in turn means that during the harvesting

periods on the Galician coast (from October to April), the quantity of gonads

extracted from each sea urchin (the substance that is marketed) is appreciably

higher.

Accordingly, we feel that it would be advisable for exploitation of P. lividus to be

basically undertaken in the sublittoral area and always in a controlled manner. This

would prevent the harvesting of a sizeable quantity of specimens with low commercial

yields. Inappropriate extraction leads to a greater depletion of specimens, which limits

the regeneration of populations of this echinoderm and, in turn, brings about a greater

alteration in coastal ecosystems, bearing in mind the fundamental role that this species

plays in the equilibrium of the habitats in which it lives (e.g. Benedetti-Cecchi, 1995;

Kitching, 1961 and Ruitton, 2000).

Acknowledgements

The authors would like to express their gratitude for support received in the form of

National Research Projects MTM2008-01603 and MTM2010-09213-E from the Span-

ish Ministry of Science and Innovation and the Galician Regional Authority Research

Project INCITE08PXIB208113PR.

References

Benedetti-Cecchi, L. and Cinelli, F. (1995). Habitat heterogeneity, sea urchin grazing and the distribution

of algae in litoral rock pools on the west coast of italy (western mediterranean). Marine Ecology

Progress Series, 126, 203–212.



94 Flexible quantile regression models: application to the study of the purple sea urchin

Breiman, L. (1998). Arcing classifiers (with discussion). Annals of Statistics, 26, 801–849.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation, 11, 1493–1517.

Brian, S., Cade, B. and Noon, R. (2003). A gentle introduction to quantile regression for ecologists. Fron-

tiers in Ecology and the Environment, 1, 412–420.

Buehlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting.

Statistical Science, 22, 477–505.

Cole, T. J. (1988). Using the lms method to measure skewness in the nchs and dutch national height

standards. Annals of Human Biology, 16, 407–419.

de Boor, C. (1978). A Practical Guide to Splines. Springer.

Fenske, N., Kneib, T. and Hothorn, T. (2009). Identifying risk factors for severe childhood malnutrition

by boosting additive quantile regression. Technical report, Department of Statistics University of

Munich.

Fenske, N., Kneib, T. and Hothorn, T. (2011). Childhood malnutrition by boosting additive quantile regres-

sion. Journal of the American Statistical Association, 106, 494–510.

Fernández Pulpeiro, E., César Aldariz, J., Lustres-Pérez, V. and Ojea Bouzo, C. (1999). Ordenación inte-
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