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Abstract

Phenomena with a constrained sample space appear frequently in practice. This is the case,

for example, with strictly positive data, or with compositional data, such as percentages or

proportions. If the natural measure of difference is not the absolute one, simple algebraic

properties show that it is more convenient to work with a geometry different from the usual

Euclidean geometry in real space, and with a measure different from the usual Lebesgue

measure, leading to alternative models that better fit the phenomenon under study. The general

approach is presented and illustrated using the normal distribution, both on the positive real line

and on the D-part simplex. The original ideas of McAlister in his introduction to the lognormal

distribution in 1879, are recovered and updated.

MSC: 60A10, 60E10, 62E10.

Keywords: Additive logistic normal distribution, Aitchison measure, Lebesgue measure, lognor-

mal distribution, orthonormal basis, simplex.

1. Introduction

In general, continuous multivariate observations are assumed to be real random vectors

which density functions are defined with respect to the Lebesgue measure. The Lebesgue

measure is compatible with the inner vector space structure of real space and thus natural

in R. When random vectors are defined on a constrained sample space, E ⊂RD, methods

and concepts used in real space can lead to nonsensical results. For example, for positive

random variables, the usual confidence interval x̄±kS, where S is the standard deviation,

can include negative values. In the case of random compositions, i.e., of random vectors
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defined on the simplex that represent proportions of some whole, problems appear

if correlations between components are used. This is a well-known problem stated

by Pearson (1897) and called spurious correlation. A way to avoid these problems

is to use transformations, such as the logarithm on the positive real line or logratio

transformations on the simplex (Aitchison, 1986). There is a long history behind the

logarithmic and the logratio transformations. The well-known lognormal and the logistic

normal distributions were introduced in R+ and in the simplex, respectively, through

these transformations. In this contribution, we revise those definitions and propose

a common and new theory to introduce a normal distribution in constrained sample

spaces. In particular, we focus on a general constrained sample space, E ⊂ RD, which

admits a meaningful Euclidean vector space structure, possibly different from the usual

structure of real space. The idea, previously used in Eaton (1983), is that, for any

Euclidean vector space E with a one-to-one transformation to RD, a measure λE ,

compatible with its structure, is obtained from the respective structure of RD and its

Lebesgue measure. This allows us to define density functions on E considering the

measure λE or, equivalently, the corresponding density functions of the coordinates.

Every one-to-one transformation between a set E and real space induces a real Eu-

clidean vector space structure in E, with associated measure λE . Particularly interesting

are those transformations that are meaningful and related to the measure of difference

between observations. This idea can be found in Galton (1879), as an introduction to

the logarithmic transformation as a means to acknowledge Fechner’s law, according

to which perception equals log(stimulus). The idea was then formalised by McAlister

(1879). This approach has acquired a growing importance in applications, due to the fact

that some constrained sample spaces, which are subsets of some real space — like R+
or the simplex — can be structured as Euclidean vector spaces (Pawlowsly-Glahn and

Egozcue, 2001). It is important to emphasize that this approach implies using a measure

which is different from the usual Lebesgue measure.

The advantage of this approach is that it opens the door to study statistical models

using a measure which is considered to be appropriate or natural for the studied

phenomenon, instead of the ordinary Lebesgue measure. Here we apply this idea to the

normal distribution on the two mentioned constrained sample spaces, the positive real

line, R+, and the simplex, SD. They are well known as the lognormal distribution and

the additive logistic normal distribution when expressed with respect to the Lebesgue

measure. We focus on their representation when the reference measure is the measure

associated to the Euclidean vector space structure of the sample space. While the

probability law is the same, the change of representation produces a change in some

characteristic values of the distribution. Also, some invariance properties of normal

distributions appear as natural within the structure of the sample space. These properties

usually get lost when representing these distributions with respect to the Lebesgue

measure. The idea of using not only an interpretable space structure, but also to change

the measure, is a powerful tool because it leads to results coherent with the interpretation

of the measure of difference, and because they are mathematically more straightforward.
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Section 2 describes some technical details in an abstract setting concerning Eu-

clidean vector spaces, their reference measure, and the definition of the normal prob-

ability density functions on them. Sections 3 and 4 present the application of these con-

cepts to the positive real line and the simplex, respectively, as well as some examples on

normal modelling in these constrained spaces.

2. Probability densities in Euclidean vector spaces

Let E ⊆ RD be the sample space for a random vector X, i.e. each realization of X is in

E. Assume there exists a one-to-one, differentiable, mapping h : E → Rd with d ≤ D. In

the case of the positive real line, E = R+ and d = D = 1, i.e. R and R+ have the same

dimension. This is not the case of the simplex S
D, which consists of vectors of D positive

components adding up to a fixed constant. Only d = D−1 components are required to

specify a point in it, i.e. the dimension of SD is d = D− 1 < D. The mapping h allows

to define a Euclidean vector structure on E just translating the standard properties of Rd

into E. The existence of the mapping h implies some characteristics of E. An important

one is that E must have some border set so that h transforms neighbourhoods of this

border into neighbourhoods of infinity in Rd . For instance, a sphere in R3 with a defined

pole can be transformed into R2, but, if no pole is defined, this is no longer possible.

The vector addition or internal operation ⊕ and the scalar multiplication or external

operation ⊙ in E are defined as

x⊕y = h−1(h(x)+h(y)) , α⊙x = h−1(α ·h(x)) ,

for x,y ∈ E and α ∈ R. With these definitions, E is a d-dimensional vector space. The

metric structure is induced by the inner product 〈x,y〉E = 〈h(x),h(y)〉. It implies the

norm, ‖x‖E = ‖h(x)‖, and the distance, dE(x,y) = d(h(x),h(y)), thus completing the

Euclidean vector space structure of E. This structure is derived from the inner product,

norm and distance in Rd , denoted as 〈·, ·〉, ‖ · ‖ and d(·, ·), respectively. By construction,

h(x) is the vector of coordinates of x∈E. The coordinates correspond to the orthonormal

basis in E given by the images of the canonical basis in Rd by h−1. The origin of the

space E is then h−1(~0) where~0 is the neutral element of Rd with respect to the ordinary

sum. The Lebesgue measure in Rd , λd , induces a measure in E, denoted λE , using the

fact that h is one-to-one and setting λE(h
−1(B)) = λd(B), for any Borelian B in Rd

(Eaton, 1983). This idea was used in Pawlowsky-Glahn (2003) to define the Aitchison

measure on the simplex.

In order to define probability density functions (pdf’s) in E, a reference measure

is needed. A pdf is the Radon–Nikodym derivative of a probability measure P with

respect to a measure on E. When the reference measure is λE , we denote the pdf as

f E = dP/dλE . When E is viewed as a subset of RD, the pdf with respect to the Lebesgue

measure λD could be eventually considered. However, if d < D, the random vector X
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cannot be absolutely continuous with respect to λD and the pdf does not exist. Our

approach, and a more natural way to define a pdf for X, is to start with a pdf for the

(random) coordinates Y = h(X) in Rd . Assume that fY is the pdf of Y with respect

to the Lebesgue measure, λd , in Rd , i.e. Y is absolutely continuous with respect to

λd and the pdf is the Radon–Nikodym derivative fY = dP/dλd . The random vector

X is recovered from Y as X = h−1(Y). When D > d, h−1(Y) can be expressed using

only d of its components. Let h−1
d be such a restriction and Xd = h−1

d (Y). The inverse

mapping is denoted by hd(Xd) and it holds that hd(Xd) = h(X). This means that more

than d components of X are redundant. When D = d, the restriction of h−1 reduces to

h−1
d = h−1. For instance, to recover a vector in the simplex of D components from its

representation using d = D−1 coordinates, one can recover d = D−1 components. The

remaining one is obtained from the constant sum of all components. The pdf of Xd with

respect to the Lebesgue measure in Rd is computed using the Jacobian rule

fXd
(xd) =

dP

dλd

(xd) = fY(hd(xd)) ·
∣∣∣∣
∂hd(xd)

∂xd

∣∣∣∣ , (1)

where the last term is the d-dimensional Jacobian of hd . The next step is to express the

pdf with respect toλE , the compatible measure in E. The chain rule for Radon–Nikodym

derivatives implies

f E
Xd
(xd) =

dP

dλE

(xd) =
dP

dλd

(xd) ·
dλd

dλE

(xd) , (2)

and, due to the inverse function theorem, the last derivative is

dλd

dλE

(xd) =

∣∣∣∣
∂h−1

d (hd(xd))

∂y

∣∣∣∣=
∣∣∣∣
∂hd(xd)

∂xd

∣∣∣∣
−1

, (3)

Substituting (2) and (3) into (1),

f E
X (x) =

dP

dλE

(x) = fY(h(x)) , (4)

where the subscripts d have been suppressed, as they only play a role when computing

the Jacobian. Difficulties using f E
X , arising from the fact that the integral P(A) =∫

A f E
X (x)dλE(x) is not an integral with respect to the Lebesgue measure in Rd but

with respect to the Lebesgue type measure in E, are solved working with coordinates.

Particularly, they are solved working with coordinates with respect to an orthonormal

basis in E. Using (4) the probability of an event A ⊆ E can be computed as P(A) =∫
h(A) fY(h(x)) dλd(h(x)) or, in simpler notation, P(A) =

∫
h(A) fY(y) dy.
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The representation of the distribution of random variables by pdf’s defined with

respect to the measure λE requires a review of the moments and other characteristics

of the pdf’s. Following Eaton (1983), the expectation and variance of X are defined as

follows:

Definition 2.1 Let X be a random variable supported on E and h : E → Rd the

coordinate function defined on E. The expectation in E is

EE [X] = h−1

(∫

Rd
y fh(X)(y) dy

)
(5)

= h−1 (E[h(X)]) , (6)

provided the integral in (5) exists in the Lebesgue sense.

Intuitively, the expectation (5) in E consists of representing the elements of E using

coordinates and to integrate using the pdf of the coordinates; the result is transformed

back into E. Equation (6) summarizes this result using the standard definition of

expectation of the coordinates in Rd .

The variance involves only real expectations and can be identified with the variance

of coordinates. Special attention deserves the metric or total variance (Aitchison, 1986;

Pawlowsly-Glahn and Egozcue, 2001). Assuming the existence of the integrals, the met-

ric variability of X with respect to a point z ∈ E is defined as VarE [X,z] = E[d2
E(X,z)].

The minimum metric variability is attained for z = EE [X], thus supporting the definition

in (5)–(6). The metric variance is then

VarE [X] = E[d2
E(X,EE [X])] . (7)

The mode of a pdf is normally defined as its maximum value, although local maxima

are also frequently called modes. However, the shape and, particularly, the maximum

values depend on the reference measure taken in the Radon-Nikodym derivatives of the

density. Since the Lebesgue measure in the coordinate space, Rd , corresponds to the

measure λE in E, the mode can be defined as

ModeE [X] = argmax
x∈E

{ f E
X (x)}= h−1

(
argmax

y∈Rd

{ fh(X)(y)}
)

.

3. The positive real line

The real line, with the ordinary sum and product by scalars, has a vector space structure.

The ordinary inner product and the Euclidean distance are compatible with these
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operations, i.e. they satisfy the translation invariance and the homogeneity properties.

But this geometry is not suitable for the positive real line. Confront, for example,

some meteorologists with two pairs of samples taken at two rain gauges, {5;10} and

{100;105} in mm, and ask for the difference; quite probably, in the first case they will

say there was double the total rain in the second gauge compared to the first, while

in the second case they will say it rained a lot but approximately the same. They are

assuming a relative measure of difference. Consequently, for them the natural measure

of difference is not the usual Euclidean one, and the ordinary vector space structure of

R does not behave suitably for the problem. In fact, problems might appear shifting a

positive number (vector) by a negative real number (vector); or multiplying a positive

number (vector) by an arbitrary real number (positive or negative scalar), because results

can be outside R+.

There are two operations, ⊕, ⊙, which induce a vector space structure in R+
(Pawlowsly-Glahn and Egozcue, 2001). In fact, given x,x∗ ∈ R+, the internal operation,

which plays an analogous role to addition in R, is the usual product x⊕ x∗ = x · x∗ and,

for α∈R, the external operation, which plays an analogous role to the product by scalars

in R, is α⊙ x = xα. An inner product, compatible with ⊕ and ⊙ is 〈x,x∗〉+ = lnx · lnx∗,
which induces a norm, ‖x‖+ = | lnx|, and a distance, d+(x,x

∗) = | lnx∗− lnx|, and thus

the complete Euclidean vector space structure in R+. Since R+ is a one-dimensional

vector space, there are only two orthonormal bases: the unit-vector (e) and its inverse

element with respect to the internal operation (e−1). From now on the first option is

considered and it will be denoted by e. Any x∈R+ can be expressed as x= lnx⊙e= elnx

which reveals that h(x) = lnx is the coordinate of x with respect to the basis e. The

measure λ+ in R+ can be defined so that, for λ1 the Lebesgue measure in R1, and

an interval (a,b) ⊂ R+, λ+(a,b) = λ1(lna, lnb) = | lnb − lna| and dλ+/dλ1 = 1/x

(Mateu-Figueras, 2003). Following the notation in Section 2, all these definitions can be

obtained by setting E = R+, D = d = 1 and h(x) = lnx. The generalization to E = RD
+

is straightforward: for x ∈ RD
+, the coordinate function can be defined as h(x) = ln(x),

where the logarithm applies component-wise.

3.1. The normal distribution on R+R+R+

Using the algebraic-geometric structure in R+ and the measure λ+, the normal distribu-

tion on R+ was defined in Mateu-Figueras et al. (2002) through the density function of

orthonormal coordinates.

Definition 3.1 Let (Ω,F,P) be a probability space. A random variable X : Ω −→ R+
is said to have a normal on R+ distribution with two parameters µ and σ2, written

N+(µ,σ
2), if its density function with respect to λ+ is

f+X (x) =
dP

dλ+
(x) =

1√
2πσ

exp

(
−1

2

(lnx−µ)2

σ2

)
, x ∈ R+. (8)
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The density (8) is the usual normal density applied to coordinates lnx as implied by

(4) and it is a density in R+ with respect to the λ+ measure. This density function

is completely restricted to R+ and its expression corresponds to the law of frequency

introduced by McAlister (1879). The probability law corresponding to the density (8) is

that of the lognormal distribution, denoted Λ, where µ and σ2 are the logarithmic mean

and variance. The continuous line in Figure 1 represents the density function (8) for

µ= 0 and σ2 = 1. Note that the areas under the log-normal density fX are proportional

to probabilities, whereas areas under f+X , as shown in the figure, are not. In the case of

f+X a probability is proportional to the ordinate of the curve times the length of dx, i.e.

times λ+(x,x+dx) = | ln(x+dx)− ln(x)|.
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Figure 1: Density function f+X (——) and fX (- - - -) with µ= 0 and σ = 1.

According to this approach, the normal distribution in R+ exhibits properties analo-

gous to the normal distribution in R, the most relevant of which are summarized in the

following properties. The corresponding proofs are presented in the appendix.

Property 3.1 Let X ∼ N+(µ,σ
2), a ∈ R+ and b ∈ R. Then, the random variable

X∗ = a⊕ (b⊙X) = a ·Xb is distributed as N+(lna+bµ,b2σ2).

Property 3.2 Let X ∼ N+(µ,σ
2) and a ∈ R+. Then, f+a⊕X(a⊕ x) = f+X (x), where f+X

and f+a⊕X represent the probability density functions of the random variables X and

a⊕X = a ·X, respectively.

Property 3.3 If X ∼N+(µ,σ
2), then E+[X ] = Med+[X ] = Mode+[X ] = eµ.

Property 3.4 If X ∼N+(µ,σ
2), then Var+[X ] =σ2.

Note that property 3.1 implies that the family N+(µ,σ
2) is closed under the operations

in R+ and property 3.2 asserts the equivariance under translations in R+.

The expected value, the median and the mode are elements of the support space R+,

but the variance is only a numerical value which describes the dispersion of X . We are
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used to taking the square root of σ2 as a means to represent intervals centred at the

mean and with radius equal to some standard deviations. Such an interval, centred at

E+[X ] = eµ and with length 2kσ, is (eµ−kσ,eµ+kσ), as d+(e
µ−kσ,eµ+kσ) = 2kσ. This

kind of interval is used in practice (Ahrens, 1954); for instance, under log-normality

assumption, predictive intervals in R+ are computed on log-transformed data, and

then back-transformed using exponentiation. In figure 2(a) we represent the interval

(eµ−σ,eµ+σ) for a N+(µ,σ
2) density function with µ= 0 and σ2 = 1. It can be shown

that it is of minimum length in R+, and also an isodensity interval, as the distribution

is symmetric around eµ in R+. This symmetry might seem paradoxical, in view of the

shape of the density function. But still, it is symmetric within the Euclidean vector space

structure of R+, although certainly not within the space structure of R.
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Figure 2: Dashed line: interval (eµ−σ,eµ+σ); (a) f+X , corresponding to N+(µ= 0,σ2 = 1),

(b) fX corresponding to Λ(µ= 0,σ2 = 1).

An important aspect of this approach is that consistent estimators and exact confi-

dence intervals for the expected value are easy to obtain. It is enough to take exponen-

tials of those obtained from normal theory using log-transformed data, i.e. using the

coordinates with respect to the orthonormal basis. Thus, let x1,x2, . . . ,xn be a random

sample and yi = lnxi for i = 1,2, . . . ,n. Then, the optimal estimator for the mean of a

normal in R+ population is the geometric mean (x1x2 · · ·xn)
1/n, that equals to eȳ. An

exact (1−α)100% confidence interval for the mean is (eȳ−tα/2S/
√

n,eȳ+tα/2S/
√

n), where

S denotes the standard deviation of the log transformed sample and tα/2 the (1−α/2)

t-student (n−1 d.f.) quantile.

The normal distribution plays a relevant role in statistics mainly due to its relation-

ship with the central limit theorem. The central limit theorem for the log-normal model

is well-known (Aitchison and Brown, 1957). The sums of random variables are replaced

by multiplications of positive variables and the limiting distribution is the log-normal.

As the central limit theorem concerns the limiting probability law and the multiplication

of random variables, it can be translated into terms of the normal in R+. Let X1, X2, ...,

Xn be a sequence of random variables in R+. Define the coordinates of Xi as Yi = lnXi for
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i = 1,2, . . . , and assume they are mutually independent and identically distributed with

mean µ and variance σ2. The standardized variable (1/n)∑
n
i=1(Yi −µ)/σ converges in

law, for n → ∞, to a random variable with standard normal distribution due to the cen-

tral limit theorem. Transforming back using h−1 = exp, the central limit theorem for the

normal in R+ yields: the random standardized geometric mean

Zn =
1

nσ
⊙

n⊕

i=1

[Xi ⊖ exp(µ)] =

[
n

∏
i=1

(
Xi

exp(µ)

)1/σ
]1/n

,

converges in law, as n → ∞, to a random variable distributed N+(1,0).

The role of the operations ⊕ and ⊙ (in R+ they are the multiplication and powering)

in the central limit theorem is remarkable. Its relevance relies on the fact that the

operations on random variables involved are interpretable and of frequent use.

3.2. Normal on R+R+R+ versus lognormal

The lognormal distribution has long been recognized as a useful model in the evalua-

tion of random phenomena whose distribution is positive and skew, and specially when

dealing with measurements in which the random errors are multiplicative rather than

additive. The history of this distribution dates back to 1879, when Galton (1879) ob-

served that the law of frequency of errors was incorrect in many groups of phenomena.

This observation was based on Fechner’s law which, in its approximate and simplest

form, is sensation=log(stimulus). According to this law, an error of the same magnitude

in excess or in deficiency (in the absolute sense) is not equally probable; therefore, he

proposed the geometric mean as a measure of the most probable value instead of the

arithmetic mean. This remark was followed by the memoir of McAlister (1879), where

a mathematical development concluding with the lognormal distribution was performed.

He proposed a practical and easy method for the treatment of a data set grouped around

its geometric mean: convert the observations into logarithms and treat the transformed

data set as a series round its arithmetic mean, and introduced a density function called

the law of frequency which is the normal density function applied to the log-transformed

variable, i.e. the density (8). In order to compute probabilities in given intervals, he in-

troduced also the law of facility, nowadays known as the lognormal density function (9).

A unified treatment of lognormal theory is presented in Aitchison and Brown (1957);

recent developments are compiled in Crow and Shimizu (1988). A great number of

authors use the lognormal model from an applied point of view. Their approach assumes

R+ to be a subset of the real line with the usual Euclidean geometry restricted to it. This

is how everybody understands the sentence an error of the same magnitude in excess or

in deficiency in the same way. One might ask oneself why there is much to say about

the lognormal distribution if the data analysis can be referred to the intensively studied

normal distribution by taking logarithms. One of the generally accepted reasons is that
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parameter estimates are biased if obtained from the inverse transformation. As noted

above, the normal on R+ distribution is well known as the lognormal distribution. But

the proposed change of representation produces differences in some properties which

are studied below.

Recall that a positive random variable X is said to be lognormally distributed with

two parameters µ and σ2 if Y = lnX is normally distributed with mean µ and variance

σ2. We write X ∼ Λ(µ,σ2). Its probability density function is

fX(x) =





1√
2πσx

exp

(
− 1

2

(
lnx−µ
σ

)2
)

x > 0,

0 x ≤ 0.
(9)

Comparing (9) with (8), subtle differences can be observed. One is that (9) includes

a case for the zero and for the negative values of the random variable. This fact is

paradoxical, because the lognormal model is completely restricted to R+. It is forced

by the fact that R+ is considered as a subset of R with the restricted structure and,

consequently, the variable is assumed to be a real random variable, hence the name

lognormal distribution in R. Another difference lies in the coefficient 1/x, the Jacobian,

which is necessary to work with real analysis in R. In the lognormal case the Jacobian is

necessary because the density is written with respect to the Lebesgue measure, but in the

normal in R+ case the Jacobian is not necessary as the density is expressed with respect

to λ+. More obvious differences are that (9) is not equivariant under translations and is

not symmetric around the mean. Note that for the lognormal case, E[X ] = eµ+
1
2σ

2
, the

Med[X ] = eµ and Mod[X ] = eµ−σ
2
. Using our approach a different expected value and

a different mode are obtained, while the value for the median is the same. The dashed

line in Figure 1 illustrates the probability density function (9) for µ = 0 and σ2 = 1. It

clearly differs from the density function (8) plotted in continuous line.

As for the normal in R+ case, an interval centered at the mean and with radius

equal to some standard deviations can be represented for the lognormal in R. Consid-

ering R+ as a subset of R with an Euclidean structure, such an interval is: (E[X ]−
kStdev[X ],E[X ]+ kStdev[X ]). But it has no sense, because the lower bound might take

a negative value. For example, for µ = 0 and σ2 = 1, the above interval with k = 1 is

(−0.512,3.810). This is the reason why sometimes intervals (eµ−kσ,eµ+kσ) are used,

which are considered to be non-optimal, because they are neither isodensity intervals,

nor do they have minimum length. In Figure 2(b) we represent the interval (eµ−σ,eµ+σ)
for Λ(µ,σ2) with µ = 0 and σ2 = 1. It is clear that in the bounds of the interval the

density function takes different values.

Consistent estimators and exact confidence intervals for the mean and the variance

of a lognormal variable are difficult to compute. Early methods are summarised by

Aitchison and Brown (1957) and Crow and Shimizu (1988). In the literature an extensive

number of procedures and discussions can be found. It is not the objective of this paper
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to summarise them all and to provide a complete set of formulas. For the mean, the term

eȳ multiplied by a term depending on σ, expressed as an infinite series or tabulated in a

set of tables, is obtained in most cases (Aitchison and Brown, 1957; Krige, 1981; Clark

and Harper, 2000). For example, Sichel (1996) optimal estimator for the mean of a

lognormal population is used by Clark and Harper (2000). This estimator is obtained

as eȳγ, where γ is a bias correction factor depending on the variance and the size

of the data set. It is tabulated in a set of tables. A similar bias correction factor is

used to obtain confidence intervals on the population mean (Clark and Harper, 2000).

Nevertheless, in practical situations, sometimes the sample geometric mean, eȳ, is used

to represent the mean and in some cases also to represent the mode of a lognormally

distributed variable (Herdan, 1960). But, as adverted by Crow and Shimizu (1988), those

affirmations cannot be justified using the lognormal theory. On the contrary, using the

normal in R+ approach, those affirmations are completely justified.

3.3. Example

The differences between using a density with respect to the Lebesgue measure λ or a

density with respect to the measure λ+ can be best appreciated in practice. In order

to compare the classical lognormal estimators with those obtained by the normal in R+
approach, we have simulated 300 samples representing sizes of oil fields in thousands of

barrels, a geological variable often lognormally modelled (Davis, 1986). The objective

with this simple example is to estimate a suitable location parameter and a corresponding

confidence interval and to compare the results obtained using the lognormal approach

with the results obtained using the proposed approach. Using the classical lognormal

procedures and Table A2 provided by Aitchison and Brown (1957) we obtain 161.96

as an estimate for the mean. Afterwards, using Tables 1,2 and 3 given by Krige (1981),

we obtain 162.00 and (150.31,176.78) as an estimate and approximate 90% confidence

interval for the mean. Also, using Tables 7, 8(b) and 8(e) provided by Clark and Harper

(2000), we could apply Sichel’s bias correction to obtain 161.86 and (144.07,188.39)

as the optimal estimator and confidence interval for the mean in the context of the

lognormal approach.

Using the normal in R+ approach we obtain 145.04 as the estimate for the mean

and (138.70,151.68) as the exact 90% confidence interval for the mean. Logically,

different values are obtained, as different methodologies are used. The mean is obtained

as eȳ and it is not necessary to apply any bias correction, as unbiasedness is in this

case equivalent to unbiasedness in coordinates. The confidence interval is obtained

as (eȳ−t0.05S/
√

n,eȳ+t0.05S/
√

n) where S denotes the sample standard deviation of the log

transformed sample. Note that only exponentials of the mean and the 90% confidence

interval obtained from normal theory using log-transformed data are taken. As can be

observed, the differences to those obtained using the lognormal approach are important.

With the normal in R+ a much more conservative result is obtained, although it is

consistent with the assumed geometry of R+.
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Figure 3: Simulated sample, n = 300. (a) Histogram and fitted lognormal density; the Lebesgue-lengths of

the bins are equal. (b) Display analogous to a histogram and fitted normal in R+ density; the λ+-lengths

of the bins are equal.

In order to compare graphically the normal in R+ and the lognormal approaches

we can represent the histogram with the corresponding fitted densities. In Figures 3(a)

and 3(b) the histogram with the fitted lognormal and normal in R+ densities are shown.

Note that the intervals of the histogram are of equal length in both cases, as the absolute

Euclidean distance is used in (a) and the relative distance in R+ is used in (b) to compute

them. Thus, (b) is a display analogous to a histogram, based on the structure defined in

Section 3. Finally, in Figure 4 the histogram of the log-transformed data or, equivalently,

of the coordinates with respect to the orthonormal basis, with the fitted normal density,

is provided. This last figure is adequate using both methodologies, but in this case we

have chosen exactly the same intervals as in Figure 3(b). This is only possible using the

normal on R+ approach, as the intervals on the positive real line have corresponding

intervals in the space of coordinates.
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Figure 4: Simulated sample, n = 300. Histogram of the log-transformed sample with the fitted normal

density. The bins of the histogram are the log-images of the bins shown in Figure 3(b).
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The normal on R+ density model and its properties have been applied in a spatial

context, and the results have been compared with those obtained with the classical

lognormal kriging approach (Tolosana-Delgado and Pawlowsky-Glahn, 2007). Using

this approach, problems of non-optimality, robustness and preservation of distribution

disappear.

4. The simplex

Compositional data are parts of some whole which carry only relative information. Typi-

cal examples are parts per unit, percentages, ppm, or moles per liter. When constrained to

sum to a constant, their sample space is the D-part simplex, SD = {x = (x1,x2, . . . ,xD)
T :

x1 > 0,x2 > 0, . . . ,xD > 0; ∑
D
i=1 xi =κ}, where T stands for transpose and κ is a constant,

set to 1 for simplicity in (Aitchison, 1982).

The simplex S
D has a (D− 1)-dimensional Euclidean vector space structure (Bill-

heimer et al., 2001; Pawlowsly-Glahn and Egozcue, 2001) with the following opera-

tions. Let C(·) denote the closure operation which normalises any vector x to a constant

sum (Aitchison, 1982), x,x∗ ∈ S
D, and α ∈ R. The internal operation, called perturba-

tion, is defined as x ⊕ x∗ = C(x1x∗1,x2x∗2, . . . ,xDx∗D)
T
, with inverse x ⊖ x∗ =

C(x1/x∗1,x2/x∗2, . . . ,xD/x∗D)
T
. The external operation, called powering, is defined as α⊙

x = C(xα1 ,x
α
2 , . . . ,x

α
D)

T, and the inner product as

〈x,x∗〉a =
1

D
∑
i< j

ln
xi

x j

ln
x∗i
x∗j

. (10)

The associated squared distance

d2
a(x,x

∗) =
1

D
∑
i< j

(
ln

xi

x j

− ln
x∗i
x∗j

)2

,

is relative and satisfies standard properties of a distance (Martı́n-Fernández et al., 1998),

i.e. da(x,x
∗)= da(a⊕x,a⊕x∗) and da(α⊙x,α⊙x∗)=|α | da(x,x

∗). The corresponding

geometry is known as Aitchison geometry, and therefore the subindex a is used.

The inner product (10) and its associated norm, ‖x‖a =
√
〈x,x〉a, ensure the exis-

tence of orthonormal basis {e1,e2, . . . ,eD−1} which, for a given basis, lead to a unique

expression of a composition x as a linear combination,

x = (〈x,e1〉a ⊙ e1)⊕ (〈x,e2〉a ⊙ e2)⊕ . . .⊕ (〈x,eD−1〉a ⊙ eD−1).

In inner product spaces, an orthonormal basis is not uniquely determined. It is not

straightforward to determine which one is the most appropriate to solve a specific

problem, but a promising strategy, based on binary partitions, has been developed in
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(Egozcue and Pawlowsky-Glahn, 2005). Here, whenever a specific basis is needed, the

basis given in (Egozcue et al., 2003) is used. In this basis, the coordinates of x ∈ S
D are

yi =
1√

i(i+1)
ln

(
x1x2 · · ·xi

xi
i+1

)
, i = 1,2, . . . ,D−1 . (11)

The coordinates in this particular basis are denoted ilr(x) to emphasise the fact that

this coordinate transformation is an isometric mapping from S
D to RD−1 and that the

coordinates are log-ratios (Egozcue et al., 2003). The important point is that, once an

orthonormal basis has been chosen, all standard statistical methods can be applied to

the coordinates and transferred to the simplex preserving their properties. This is what

we call the principle of working on coordinates (Mateu-Figueras et al., 2011). As stated

in Section 2., the Lebesgue measure in the space of coordinates induces a measure in

S
D, denoted here as λa and called Aitchison measure on S

D. This measure is absolutely

continuous with respect to the Lebesgue measure on RD−1, and the relationship between

them is |dλa/dλD−1| = (
√

D x1x2 · · ·xD)
−1 (Pawlowsky-Glahn, 2003). Following the

notation in Section 2., all these definitions can be obtained by setting E = S
D and

d = D−1.

For later use, the concept of subcomposition is required. For 1 < C < D, a C-part

subcomposition, xS, from a D-part composition, x, can be obtained as xS = C(Sx),

where S is a C×D selection matrix with C elements equal to 1 (one in each row and

at most one in each column) and the remaining elements equal to 0 (Aitchison, 1986).

A subcomposition can be regarded as a composition in a simplex with fewer parts, and

thus as an element of a space of lower dimension.

4.1. Some basic statistical concepts in the simplex

A random composition X is a random vector with S
D as sample space. In the literature

laws of probability over SD using the Lebesgue measure can be found. Consequently,

the probabilities or any moment are computed using the classical definition. But some

usual elements appear to be of little use when working with real situations. One typical

example is the expected value, in the sense that frequently it does not lie within the

bulk of the sample. As an alternative, the geometric interpretation of the expected value

has been used to define the centre, cen[X], of a random composition. It is defined

as the composition that minimises the expression E[d2
a(X,cen[X])] (Aitchison, 1997;

Pawlowsly-Glahn and Egozcue, 2001). The result is cen[X] = C(exp(E[lnX])), which

can be rewritten as (Egozcue et al., 2003) cen[X] = ilr−1(E[ilr(X)]), or, in general terms,

as

cen[X] = h−1 (E [h(X)]) .
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The centre of a random composition is equal to the expectation in S
D defined in Equation

(5) in Section 2. This is an important result because if a law of probability on S
D is

defined using the classical approach, this equality does not hold.

As already mentioned, traditionally the simplex has been considered as a subset of

real space and, consequently, the laws of probability have been defined using the stan-

dard approach. This is the case for families of distributions like the Dirichlet (Monti

et al., 2011), the additive logistic normal (Aitchison, 1982), the additive logistic skew-

normal (Mateu-Figueras et al., 2005), or those defined using the Box-Cox family of

transformations (Barceló-Vidal, 1996). Except for the Dirichlet, these laws of proba-

bility are defined using transformations from the simplex to real space. Two of these

transformations will appear later herein, the additive log-ratio (alr) and the centred log-

ratio (clr),

alr(x) =

(
ln

(
x1

xD

)
, . . . , ln

(
xD−1

xD

))T

, (12)

clr(x) =

(
ln

(
x1

g(x)

)
, . . . , ln

(
xD

g(x)

))T

, (13)

where g(x) is the geometric mean of the components of x. The relationship between the

alr and the clr transformations is provided by Aitchison (1986, p.92). The relationships

between the alr, clr and ilr transformations are provided by Egozcue et al. (2003).

4.2. The normal distribution on SDSDSD

Aitchison (1986) introduced the additive logistic normal (aln) distribution. A random

variable on the simplex is aln distributed if the alr transformed random composition (12)

has a multivariate normal distribution. The alr transformation is a representation of a

composition using coordinates with respect to an oblique basis of the simplex (Egozcue

et al., 2011). An equivalent definition can be formulated using orthonormal coordinates.

Additionally, the Aitchison measure on the simplex is used to obtain the corresponding

density function. Although the following definition is formally different from that of the

aln, it corresponds to the same probability law with a different parametrisation.

Consider an orthonormal basis on S
D and let h(·) be the corresponding orthonormal

coordinates.

Definition 4.1 Let (Ω,F, p) be a probability space. A random composition X : Ω−→ S
D

is said to have a normal on S
D distribution, with parameters µ and ΣΣΣ, if its moment

generating function is

M(t) = E[exp(tTh(X))] = exp

(
µT t+

1

2
tTΣΣΣ t

)
,
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where t is a D−1 real vector. The D−1 vector µ is the mean expressed in coordinates

and the (D−1)× (D−1) matrix ΣΣΣ is the covariance matrix of the coordinates.

The parameters µ and ΣΣΣ depend on the specific orthonormal basis selected. If the

covariance matrix ΣΣΣ is non singular, it can be inverted and the regular normal distribution

can be defined as follows:

Definition 4.2 Let (Ω,F, p) be a probability space. A random composition X : Ω−→ S
D

is said to have a regular normal on S
D distribution, with parameters µ and ΣΣΣ, if its

density function is

f SX (x) = (2π)−(D−1)/2|ΣΣΣ|−1/2 exp

(
−1

2
(h(x)−µ)T

ΣΣΣ−1 (h(x)−µ)
)

. (14)

The notation X ∼ N
D
S
(µ,ΣΣΣ) is used. The subscript S indicates that it is a density on

the simplex, i.e. a Radon-Nykodym derivative with respect to the Aitchison measure on

S
D; the superscript D indicates the number of parts of the composition. Figure 5 shows

the isodensity curves of two normal densities on S
3 taking the particular basis given

by Egozcue et al. (2003) and using a ternary diagram as a convenient and simple way

for representing 3-part compositions (see Aitchison, 1986, p.6). The isodensity curves

are not equidistant, the levels are only chosen in order to clearly show the shape of the

density function. To understand Figure 5, it should be remarked that the areas on the

ternary diagram are computed according λa, which significantly differs from the usual

Lebesgue area intuitively assigned to the triangle interior. The differences of assigned

areas are specially dramatic near the edges of the triangle.

The density (14) is the usual normal density applied to coordinates h(x) as implied

by (4). It is a density in S
D with respect to the λa measure. The same strategy is used by

Mateu-Figueras and Pawlowsky-Glahn (2007) to define the skew-normal in S
D law.

The main properties of this model follow. A complete proof of each property can

be found in the appendix. The proofs are straightforward for a reader familiar with

compositional data analysis.

x
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3

(a) (b)

Figure 5: Isodensity plots of two N
3
S
(µ,ΣΣΣ) with (a) µ= (0,0), (b) µ= (−1,1) and ΣΣΣ = Id.
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Property 4.1 Let X ∼N
D
S
(µ,ΣΣΣ), a ∈ S

D and b ∈ R. Then, the D-part random composi-

tion X∗ = a⊕ (b⊙x) has a N
D
S
(h(a)+bµ, b2ΣΣΣ) distribution.

Property 4.2 Let X ∼ N
D
S
(µ,ΣΣΣ) and a ∈ S

D. Then f Sa⊕X(a ⊕ x) = f SX (x), where f SX
and f Sa⊕X represent the density functions of the random compositions X and a ⊕ X,

respectively.

Property 4.3 Let X ∼ N
D
S
(µ,ΣΣΣ) and XP = P X, the random composition X with the

parts reordered by a permutation matrix P. Then XP ∼N
D
S
(µP,ΣΣΣP) with µP = UTPUµ,

ΣΣΣP = (UTPU)ΣΣΣ(UTPTU), where U is a D× (D− 1) matrix with the clr transformation

of an orthonormal basis of SD as columns.

Property 4.4 Let X ∼ N
D
S
(µ,ΣΣΣ) and XS = C(SX), the C-part random subcomposition

obtained from the C×D selection matrix S. Then XS ∼N
C
S
(µS,ΣΣΣS), with µS = U∗T

SUµ,

ΣΣΣS = (U∗T
SU)ΣΣΣ(UTSTU∗), where U is a D× (D−1) matrix with the clr transformation

of an orthonormal basis of SD as columns and U∗ is a C× (C− 1) matrix with the clr

transformation of an orthonormal basis of SC as columns.

Property 4.5 Let X ∼N
D
S
(µ,ΣΣΣ). Then, the expected value in S

D is

cen[X] = Ea[X] = h−1(µ) ,

independently of the orthonormal basis of SD for which the coordinate mapping h is

defined.

Property 4.6 Let X ∼N
D
S
(µ,ΣΣΣ). The metric variance of X is Vara[X] = trace(ΣΣΣ).

Property 4.1 states that the normal on S
D law is closed under perturbation and pow-

ering. Property 4.2 states that it is equivariant under perturbation. This is important, be-

cause when working with compositional data the centring operation (Martı́n-Fernández

et al., 1999), a perturbation using the inverse of the centre of the data set, is often ap-

plied in practice to better visualise and interpret the pattern of variability (von Eynatten

et al., 2002). Properties 4.3 and 4.4 show that the normal on S
D family is closed under

permutation and subcompositions.

Given a compositional data set the estimates of parameters µ and ΣΣΣ can be computed

applying the maximum likelihood procedure to the coordinates. The estimated values µ̂

and Σ̂ΣΣ allow to compute the estimates of the centre (expected value in S
D) and metric

variance of the random composition X, as

Êa[X] = (µ̂1 ⊙ e1)⊕·· ·⊕ (µ̂D−1 ⊙ eD−1) = h−1(µ̂) ,

̂Vara[X] = trace
(

Σ̂ΣΣ

)
.
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To validate the distributional assumption of normality on S
D, some goodness-of-

fit tests of the multivariate normal distribution have to be applied to the coordinates

of the sample data set. There is a large battery of possible tests but, as suggested

by Aitchison (1986), it is reasonable to start testing the normality of each marginal

using empirical distribution function tests. Unfortunately, the univariate normality of

each component is a necessary but not sufficient condition for the normality of the

whole vector. Also, these univariate tests depend on the orthonormal basis chosen. This

difficulty does not depend on the proposed methodology, as the same problem appears

when working with laws of probability defined using transformations and the Lebesgue

measure in S
D (Aitchison et al., 2003). The multivariate normal model can also be

validated considering the Mahalanobis distance (h(X)− µ̂)TΣ̂ΣΣ
−1
(h(X)− µ̂), which is

sampled from a χ2
D−1-distribution if the fitted model is appropriate. In this case, the

dependence on the chosen orthonormal basis disappears (Stevens, 1986). The use of

empirical distribution function tests is also suggested in (Aitchison, 1986).

As mentioned at the beginning of this section, the parametrisation used depends on

the selected orthonormal basis. In fact, the vector µ and the matrix ΣΣΣ are the mean and

the covariance matrix of the coordinates random vector h(X). Nevertheless, the distri-

bution can also be defined using object parameters (Tolosana-Delgado, 2005; Eaton,

1983). The idea under the object parametrisation is to define the model independently

of the coordinates used for representation. The mean vector of the coordinates µ is the

coordinate representation of a composition in S
D, µS = h−1(µ), that does not depend

on the selected basis. The covariance matrix ΣΣΣ can be interpreted as the representation

of a symmetric positive semidefinite endomorphism ΣS on S
D. For each choice of basis

in S
D the endomorphism has a different matrix representation ΣΣΣ, but the endomorphism

itself remains the same. Then, as proposed by Tolosana-Delgado (2005), the normal on

S
D distribution can be defined as

Definition 4.3 A random composition X is said to follow a normal on S
D distribution

with a given mean vector µS and a positive semidefinite symmetric endomorphism ΣS

on S
D, if for any testing vector x, the projection 〈x, X〉a follows a univariate normal

distribution on R with expectation 〈x, µS〉a and variance 〈x, ΣSx〉a.

If ΣS is positive definite, the density with respect to λa is

f SX (x) = (2π)−(D−1)/2|ΣS|−1/2 exp

(
−1

2
〈x⊖µS,Σ−1

S
(x⊖µS)〉a

)
,

where |ΣS| is the determinant of the endomorphism ΣS.

As noted by Tolosana-Delgado (2005), given a basis, object definitions may be

identified with coordinate ones, proving that the coordinate approach gives the same

results whichever basis is used.
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4.3. The central limit theorem in SDSDSD

The relevant role of the normal distribution for real vectors is due to the central limit

theorem and related properties. The normal distribution in the simplex satisfies a central

limit theorem in SD, as stated in (Aitchison, 1986) to characterize the logistic normal

distribution. In the present context, the multivariate central limit theorem (Kocherlakota

and Kocherlakota, 1982) holds for coordinates. Let X1, X2, ..., Xn be a sequence of

random compositions in S
D. Consider their coordinates with respect to an arbitrary

orthonormal basis Yi = h(Xi)∈RD−1, i= 1,2, . . . ,n. Assume that the coordinate vectors

Yi are mutually independent and identically distributed with mean µ and covariance

matrix ΣΣΣ; then, being Yn = n−1 ∑
n
i=1 Yi, the random vector

√
n
(
Yn −µ

)
converges in

distribution to the multivariate normal N(0,ΣΣΣ) as n → ∞. These random vectors are

coordinates of the random compositions

√
n⊙
(
Xn ⊖h−1(µ)

)
, Xn =

1

n
⊙

n⊕

i=1

Xi = C

(
exp

(
1

n

n

∑
i=1

lnXi

))
. (15)

The random compositions (15) converge in distribution to N
D
S
(0,ΣΣΣ), and the multivariate

central limit theorem holds in the simplex. The reference operation is the perturbation

and the corresponding average equals to the closed geometric mean composition, that

is, the geometric mean vector followed by the closure operation. This result justifies the

name of normal in the simplex for the studied distribution. However, the relevance of

a central limit theorem in this context relays on the interpretation of the average Xn or

just the perturbation of random variables in the simplex. Perturbation has many intuitive

interpretations depending on the applied context. The following example of concentra-

tions may be illustrative. Suppose that Z contains the concentrations of D pollutants in

a sample of water. The sample is filtered using a permeable membrane with transfer

function X, i.e. the components are multiplicative factors applied to the concentrations

in Z. The perturbation Z ⊕ X expresses the output concentrations after applying the

filter X. As the filtering membrane is replaced by another similar one after each filter-

ing process, we can assume that X is random. In order to express the random effect

of a filtering membrane we perform a sequence of filtering experiments with similar

but different transfer functions. The mean transfer function, say Xn, will be approxi-

mately distributed as a normal in the simplex as predicted by the central limit theorem.

4.4. The normal on SDSDSD vs the additive logistic normal

The normal on the simplex is well known as the logistic normal distribution. Neverthe-

less, the proposed change of representation produces differences in some properties. In

this section we study these changes.

The approach used in (Aitchison, 1982) to define the additive logistic normal law

on the simplex is standard: transform the random composition from the simplex to real
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space, define the density function of the transformed vector, return to the simplex using

the change of variable theorem. The result is a density function for the initial random

composition with respect to the Lebesgue measure. Therefore, a random composition is

said to have an additive logistic normal distribution (aln) when the additive log-ratio (alr)

transformed vector −see Eq. (12)− has a normal distribution. Note that this definition

does not explicitly state that the change of variable theorem is used. But this is the

principal difference between the approach based on working with transformations, and

the new approach, based on working with coordinates.

The aln model was initially defined using the additive log-ratio transformation.

Using the matrix relationship between log-ratio transformations (Egozcue et al., 2003)

the density function in terms of an isometric log-ratio transformation is obtained.

Consequently, we can define the logistic normal distribution with parameters µ and ΣΣΣ,

with density function:

fX(x) =
(2π)−(D−1)/2 |ΣΣΣ |−1/2

√
Dx1x2 · · ·xD

exp

(
−1

2
(ilr(x)−µ)T

ΣΣΣ−1 (ilr(x)−µ)
)
. (16)
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Figure 6: Isodensity plots of two logistic normal densities with (a) µ= (0,0), (b) µ= (−1,1) and ΣΣΣ = Id.

To easily compare both approaches we will use the normal density on the simplex

taking the basis given by Egozcue et al. (2003) and consequently the ilr vector stated

in (11). Nevertheless, any orthonormal basis could be considered, as the vector ilr(x)

can be obtained from h(x) and the corresponding change of basis matrix. The only

difference between expressions (14) and (16) is the term (
√

Dx1x2 · · ·xD)
−1, the Jacobian

of the isometric log-ratio transformation that reflects the change of the measure on S
D.

The influence of this term can be observed in the isodensity curves in Figure 6, where

areas on the triangle are computed using the ordinary Lebesgue measure. These curves

can be compared with the curves in Figure 5, where areas where computed using λa.

The differences between Figures 5 and 6 are obvious; in particular the tri-modality in

Figure 6(a). This behaviour is not exclusive of the logistic normal density, bimodality

is also present with Beta or Dirichlet densities when their parameters are close to 0 and

the Lebesgue measure is considered. In Figure 6(b) a single mode can be observed;
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nevertheless, the position and the shape of the curves are not the same as in Figure 5(b),

the corresponding normal on S
3.

Another difference is the moments of any order. The expression of the density

function plays a fundamental role when any moment is computed. The density (16) is

a classical density, consequently moments are computed using the standard definition.

Obviously, the results are not the same as in the normal on S
D case. For example, the

expected value of an aln density, denoted as E[X], exists but numerical procedures have

to be applied (see Aitchison, 1986, p.116) to find it and the result is not the same

as in property 4.5. Using our approach, the centre of a random composition, denoted

as cen[X] (Aitchison, 1997), is obtained when the expected value Ea[X] is computed.

Consequently, it is not necessary to define new characteristic parameters. Using the

classical definition, e.g. the expected value, a representative location parameter is

obtained. Remember that the centre of a random composition was introduced by

Aitchison (1997) because he perceived that the usual expected value E[X] is not a

representative location parameter. This discrepancy appears because Aitchison (1982)

adopts perturbation and powering as operations in the sample space, but uses the density

function with respect to the Lebesgue measure, thus assuming for the density a measure

not compatible with the operations.

Some coincidences can be found as well. The closure under perturbation, powering,

permutation and subcompositions of the logistic normal density model is proven by

Aitchison (1986), and stated in Properties 4.1,4.3 and 4.4 for the normal on S
D density

model. Nevertheless, the logistic normal class is not equivariant under perturbation, i.e.

fa⊕X(a⊕x) 6= fX(x).

In summary, the essential differences between both approaches are the shape of the

probability density function, in some cases leading to multi-modality for the standard

approach; the moments which characterise the density, particularly important in practice

for the expected value and the variance; and equivariance under perturbation.

4.5. Example

To illustrate the differences between a density with respect to the Lebesgue measure λ

and a density with respect to the measure λa in S
D, a GDP data set will be used. The data

set used is taken from the National Accounts Statistics database and is available on the

United Nations Statistic Division web page http://unstats.un.org/unsd/snaama/dnllist.asp.

We use the information corresponding to the year 2009 for 208 countries. The GDP data

set is based on the international standard industrial classification (ISIC) of all economic

activities. The original data contains the percentages of each economic activity for all

countries divided in six categories.

The goal is to compare some characteristics corresponding to the logistic normal

and the normal densities on the simplex. In order to provide some useful comprehensive

figures a three-part compositional data set is preferred. For this reason the three-part

subcomposition (x1,x2,x3) is used, where
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Figure 7: GDP data with isodensity curves of the fitted (a) logistic normal and (b) normal on S
3 densities.

• x1 = agriculture, hunting, forestry, fishing (ISIC A-B),

• x2 = mining, manufacturing, utilities (ISIC C-E),

• x3 = construction (ISIC F).

Following the suggestions by Aitchison (1986), a battery of 12 tests of goodness-of-

fit are used. They are based on the Anderson-Darling, Cramér-von Mises and Watson

statistics, applied to the coordinates of the three-part sample data set. In particular, the

tests are applied to the marginal distributions, to the bivariate angle distribution and

to the radial distribution. Taking a 5% significance level, no significant departure from

normality is obtained by any of these tests.

Parameters of the two density models, the normal on S
3 and the logistic normal, are

equal. This is a direct consequence of the definition of densities and hence likelihoods.

In this case, after taking a suitable ilr transformation (eq. 11 was used), the maximum

likelihood estimates for both density models are:

µ̂= (−0.715,0.521)T, Σ̂ΣΣ =

(
1.303 0.452

0.452 0.680

)
.

Figures 7(a) and 7(b) show the sample in a ternary diagram and the isodensity curves

of the fitted logistic normal density and the normal in S
3 density. Different features

are observed. The logistic normal density shows two modes whereas the normal in

S
3 exhibits a single mode. When contours and sample are plotted in the coordinate

space (Figure 9(a)) differences disappear, as the probability density in ilr-coordinates, a

bivariate normal in R2, is equal for the two density models.

After plotting the contours of the density with respect to the Lebesgue measure

(Figure 7(a)) showing two modes, one might think about the existence of two sub-

populations that could explain the bimodality of the logistic normal density. However,

using the available information on the data set concerning geography or development of

countries, no coherent reasons were found for the observed bimodality shown in Figure
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7(a). The bimodality in this case is only due to the measure of reference chosen in the

simplex.

For illustration purposes, changes of density contours under powering are shown in

Figure 8 for both density models. Let X denote the three-part random variable of the

example with the estimated parameters µ̂ and Σ̂ΣΣ shown above, and consider Xα = α⊙X

for α = 1/2. In Figures 8(a) and 8(b) the isodensity contours with respect to the

Lebesgue measure and the Aitchison measure in the ternary diagram are represented.

As can be observed, in the logistic normal case, the bimodality disappears. In other

words, the power transformation, which should only move the centre of the density and

modify the variability, can eliminate or in other cases generate arbitrary modes if the

Lebesgue measure is considered (Mateu-Figueras and Pawlowsky-Glahn, 2008). This

undesirable behaviour of modes and isodensity contours prevents the use of the logistic

normal density on the simplex and all statistics depending on it, e.g. expectation and

covariance with respect to the Lebesgue measure on the simplex, predictive regions, etc.
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Figure 8: Power transformed GDP data with isodensity curves of the fitted (a) logistic normal and (b)

normal on S
3 densities.
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Figure 9: ilr coordinates of the (a) GDP data set and (b) the power transformed data set with the

corresponding fitted normal densities.



52 The normal distribution in some constrained sample spaces

5. Conclusions

A particular Euclidean vector space structure of the positive real line and of the

simplex, together with the associated measure, allow us to define parametric models

with desirable properties. Normal density models on R+ and on S
D have been defined

through their densities over the coordinates with respect to an orthonormal basis and

their main algebraic properties have been studied. From a probabilistic point of view,

those laws of probability are identical to the lognormal and to the additive logistic

normal distribution defined using the Lebesgue measure and the standard methodology

based on transformations. Nevertheless, some differences are obtained in the moments

and in the shape of the density function. In particular, the expected value with respect

to the new measure differs from what would be obtained with the Lebesgue measure

for the lognormal and additive logistic normal distributions, but leads to the parameters

that are used for these models. It thus yields directly a suitable characterization of these

models. In the normal in R+ case, a consistent estimator and confidence intervals for the

mean are easily obtained directly from the log-transformed data, while in the lognormal

case, i.e., keeping the Lebesgue measure and therefore aiming at the corresponding,

common expected value, a bias correction is necessary. In the normal in S
D case we

show important differences in the shape of the density. The normal in S
D always appears

unimodal, whereas bimodal and trimodal densities could be obtained using the standard

approach.
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Appendix

This appendix contains the proofs of properties contained in Section 3.1 and Section 4.2.

They use the expected value, the covariance matrix, the linear transformation property

of the multivariate normal distribution and some matrix relationships among vectors of

coordinates and among log-ratio transformations.
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Proof of property 3.1. The coordinates of the random variable X∗ are obtained from the

coordinates of the variable X as ln(X∗) = ln(a)+b ln(X). The density function of ln(X)

is the classical normal density on the real line; thus, the linear transformation property

can be used to obtain the density function of the ln(X∗) random variable. Therefore,

X∗ ∼N+(lna+bµ,b2σ2).

Proof of property 3.2. From property 3.1 we know that a⊕X = a ·X ∼N+(lna+µ,σ2).

From (8) we get

f+a⊕X(a⊕ x) =
1√

2πσ
exp

(
−1

2

(ln(ax)− (lna+µ))2

σ2

)
= f+X (x).

Proof of property 3.3. From (6) we know that EE [X ] = exp(E[lnX ]) because the or-

thonormal coordinates on the positive real line are obtained with the logarithmic trans-

formation. Given some coordinate, the exponential function provides the element on R+.

The density function of lnX is the normal distribution, as stated in Definition 3.1. Thus,

the expected value is the µ parameter and, consequently, EE [X ] = exp(µ). The same

result is obtained for the median and the mode, as the normal distribution is symmetric

around its expected value µ.

Proof of property 3.4. From (7) we know that the variance can be understood as the

expected value of the squared distance around its expected value, i.e. Var+[X ] =

E[d2
+(X ,E+[X ])]. Working on coordinates and using the density function of lnX we

obtain Var+[X ] = E[d2(lnX ,E[lnX ])] = Var[lnX ] =σ2.

Proof of property 4.1. The orthonormal coordinates of the random composition X∗

are obtained from the orthonormal coordinates of the composition X via h(X∗) =
h(a)+bh(X). The density function of h(X) is the classical normal density in real space;

thus, the linear transformation property can be used to obtain the density function of

h(X∗). Therefore, X∗ ∼N
D
S
(h(a)+bµ,b2ΣΣΣ).

Proof of property 4.2. Using property 4.1, a ⊕ X ∼ N
D
S
(h(a) + µ,ΣΣΣ). We know that

h(a⊕x) = h(a)+h(x), therefore,

fa⊕X(a⊕x) = (2π)−(D−1)/2 |ΣΣΣ |−1/2

× exp

[
−1

2
(h(a⊕x)− (h(a)+µ))T

ΣΣΣ−1 (h(a⊕x)− (h(a)+µ))

]

= (2π)−(D−1)/2 |ΣΣΣ |−1/2 exp

[
−1

2
(h(x)−µ)T

ΣΣΣ−1 (h(x)−µ)
]

= fX(x).
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Proof of property 4.3. For a centered log-ratio transformed vector it is straightforward

to see that clr(XP) = Pclr(X) (Aitchison, 1986, p. 94). Using the matrix relationship

between the centered and the isometric log-ratio vectors (Egozcue et al., 2003) we

conclude that h(XP) = (UTPU)h(X). Given the density of h(X), and applying the

linear transformation property of the normal distribution in real space, a N
D
S
(µP,ΣΣΣP)

distribution is obtained for the random composition XP.

Proof of property 4.4. (Aitchison, 1986, p. 119) gives the matrix relationship between

alr(XS) and alr(X). Using the matrix relationships between the additive, centered and

isometric log-ratio vectors (Egozcue et al., 2003), we conclude that h(XS)= (U∗′ SU)h(X).

Given the density of h(X), and applying the linear transformation property of the nor-

mal distribution in real space, the density of h(XS) is obtained as that of the N
C
S
(µS,ΣΣΣS)

distribution.

Proof of property 4.5. From (6) we know that Ea[X] = h−1(E[h(X)]), and from (14)

we know that the density function of h(X) is the multivariate normal distribution; thus

E[h(X)] = µ. Finally, the composition Ea[X] is obtained applying h−1.

Proof of property 4.6. From (7) we know that the variance can be understood as

the expected value of the squared distance around its expected value, i.e. Vara[X] =

E[d2
a(X,Ea[X])]. Working on coordinates and using the density function of h(X) we

obtain Vara[X] = trace(ΣΣΣ).
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