
Mathware & Soft Computing 15 (2008) 273-283

Infinitary Simultaneous Recursion Theorem

D. Vaggione
FaMAF, Universidad Nacional de Córdoba

Argentina

Abstract

We prove an infinitary version of the Double Recursion Theorem of Smullyan.
We give some applications which show how this form of the Recursion Theo-
rem can be naturally applied to obtain interesting infinite sequences of pro-
grams.

Suppose we have a formalized programming language and suppose the programs of
this language are certain words on a finite alphabet Σ. Given a program P let P#

be the 1-ary numerical function computed by P. For a word α ∈ Σ∗, let |α| denote
the length of α. Suppose we are looking for programs P0,P1 such that

P#
0 (x) = |P1|x2 + |P0|
P#

1 (x) = |P0|x2 + |P1|
for any natural number x. Although it is not clear how to define the programs
P0,P1, the Double Recursion Theorem of Smullyan [5] guarantees that they can
be effectively constructed.

Now suppose that we are looking for programs P0,P1,P2, ... such that

P#
0 (x) = |P0|+ |Px|
P#

1 (x) = |P0|+ |P1|x+ |P2x|
P#

2 (x) = |P0|+ |P1|x+ |P2|x2 + |P3x|
...

for any natural number x. In this note we prove an infinitary version of the Double
Recursion Theorem from which we obtain that such infinite sequence of programs
does exist.

For a proof of the Recursion Theorem and many of its variants see [2], [3] and
[6].

We conclude the paper with some applications which show how this form of the
Recursion Theorem can be naturally applied to different situations. In particular
we obtain the Double Recursion Theorem as a direct corollary.

273

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41790163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

274 D. Vaggione

1 Notation

We use N to denote the set of natural numbers and ω to denote the set N ∪ {0}.
Given sets A1, ..., An we use A1 × ... × An to denote the Cartesian product of

A1, ..., An, that is to say the set of all n-tuples (a1, ..., an) such that a1 ∈ A1, ..., an ∈
An. If A1 = ... = An = A, then we write An in place of A1 × ...×An. We use ♦ to
denote the unique 0-tuple. Thus A0 = {♦}.

An alphabet is a finite set of symbols. If Σ is an alphabet, then we use Σ∗ to
denote the set of all words on Σ. We use |α| to denote the length of a word α.
The unique word of length 0 is denoted by ε. If α1, ..., αn ∈ Σ∗, we use α1...αn to
denote the concatenation of the words α1, ..., αn.

We use Num to denote the alphabet formed by the numerals, i.e. the symbols

0 1 2 3 4 5 6 7 8 9

We assume that the natural numbers (that is the elements of ω) are purely abstract
entities and hence we have ω ∩Num = ∅.

Given an alphabet Σ, we use ωn × Σ∗m to abbreviate the expression

n times︷ ︸︸ ︷
ω × ...× ω ×

m times︷ ︸︸ ︷
Σ∗ × ...× Σ∗

For example, when n = m = 0, we have that ωn × Σ∗m denotes the set {♦} and
if m = 0, then ωn × Σ∗m denotes the set ωn. Also, we write (~x, ~α) in place of
(x1, ..., xn, α1, ..., αm).

Given a function f, we use Dom f and Im f to denote the domain and the
image of f, respectively. A function f is called Σ-mixed if there exist n,m ≥ 0,
such that Dom f ⊆ ωn ×Σ∗m and either Im f ⊆ ω or Im f ⊆ Σ∗. We write f : S ⊆
ωn × Σ∗m → O to express that f is a function such that Dom f = S ⊆ ωn × Σ∗m

and Im f ⊆ O.

2 A theoretical programming language

In order to express the result in a more suggestive form we shall use a theoretical
programming language, which is a mixed version of the basic programming lan-
guage used in [1] to develop computability theory. For the remainder of the paper
we assume Σ is an alphabet containing the following alphabet

Num ∪ {←,+, −̇, 6=,y ,N,W,B,L, I,F,E,S,G,O,T}

Define S : Num∗ → Num∗ as follows

S(ε) = 1
S(α0) = α1
S(α1) = α2
S(α2) = α3
S(α3) = α4
S(α4) = α5
S(α5) = α6

Infinitary Simultaneous Recursion Theorem 275

S(α6) = α7
S(α7) = α8
S(α8) = α9
S(α9) = S(α)0

Now define : N→ Num∗ as follows

1̄ = 1
n+ 1 = S(n̄)

We note that the word n̄ is the usual decimal notation of n. The words of the form

Nk̄

with k ∈ N, are called numerical variables. The words of the form

Wk̄

with k ∈ N, are called alphabetical variables. The words of the form

Lk̄

with k ∈ N, are called labels. An instruction is an element of Σ∗ which is of one of
the following forms

Nk̄ ← Nk̄ + 1
Nk̄ ← Nk̄−̇1
IF Nk̄ 6= 0 GOTO Lm̄
Wk̄ ←Wk̄a

Wk̄ ← yWk̄

IF Wk̄ BEGINS a GOTO Lm̄
Ln̄ Nk̄ ← Nk̄ + 1
Ln̄ Nk̄ ← Nk̄−̇1
Ln̄ IF Nk̄ 6= 0 GOTO Lm̄
Ln̄ Wk̄ ←Wk̄a

Ln̄ Wk̄ ← yWk̄

Ln̄ IF Wk̄ BEGINS a GOTO Lm̄

where a ∈ Σ and k, n,m ∈ N1. We use InsΣ to denote the set of all instructions.
When the instruction I is of the form Ln̄J for some J ∈ InsΣ, we call Ln̄ the label
of I and we say that I is labeled Ln̄.

We give below the intuitive interpretation associated with some instructions:

INSTRUCTION: Nk̄ ← Nk̄−̇1
1As can be noted, in order to make the instructions more readable, we use spaces between

some of the symbols. For example, we shall write

L124 IF N55 6= 0 GOTO L10

in place of

L124IFN556=0GOTOL10

276 D. Vaggione

INTERPRETATION: If the value of Nk̄ is 0 leave it unchanged;
otherwise decrease by 1 the value of Nk̄

INSTRUCTION: Wk̄ ← yWk̄

INTERPRETATION: If the value of Wk̄ is ε leave it unchanged;
otherwise remove the first symbol of the
value of Wk̄

INSTRUCTION: Wk̄ ←Wk̄a

INTERPRETATION: Place the symbol a to the right of the word
which is the value of Wk̄

INSTRUCTION: IF Wk̄ BEGINS a GOTO Lm̄
INTERPRETATION: If the value of Wk̄ begins with the symbol a,

execute next the first instruction labeled Lm̄

A program is a word of the form

I1I2...In

where n ≥ 1, I1, ..., In ∈ InsΣ and for every i = 1, ..., n, we have that

(*) if GOTO Lm̄ is a suffix of Ii, then there exists j such Ij is labeled Lm̄.

We use ProΣ to denote the set of all programs. As usual, in order to give a program,
we shall write it line by line. For example, we shall write

L2 N12← N12−̇1
W1← yW1
IF N12 6= 0 GOTO L2

in place of

L2N12←N12−̇1W1←yW1IFN12 6=0GOTOL2

The following lemma says that programs can be uniquely parsed.

Lemma 1 If I1...In = J1...Jm, with I1, ..., In, J1, ..., Jm ∈ InsΣ, then n = m and
Ij = Jj for each j ≥ 1.

Proof: Suppose In is a proper suffix of Jm. It is easy to check that Jm = LūIn for
some u ∈ N. Thus

I1...In = J1...Jm−1LūIn

which says that n > 1 and

(1) I1...In−1 = J1...Jm−1Lū.

Hence Lū is a suffix of In−1 and therefore GOTO Lū is a suffix of In−1. By (1),
GOTO is a suffix of J1...Jm−1, which is impossible. We have arrived to a contra-
diction and hence we have that In is not a proper suffix of Jm. By symmetry we
have that In = Jm and so n = m and Ij = Jj for each j ≥ 1.

Infinitary Simultaneous Recursion Theorem 277

Let

ω[N] =
{

(s1, s2, ...) ∈ ωN : there is n ∈ N such that si = 0, for i ≥ n
}

Σ∗[N] =
{

(σ1, σ2, ...) ∈ Σ∗N : there is n ∈ N such that σi = ε, for i ≥ n
}
.

We shall always assume that at any moment of a computation using a program,
almost all (i.e. all but a finite number) of the numerical variables have the value 0
and almost all of the alphabetical variables have the value ε. Thus, it is natural to
define a state to be a pair

(~s, ~σ) = ((s1, s2, ...), (σ1, σ2, ...)) ∈ ω[N] × Σ∗[N].

If i ≥ 1, then si is the value of the variable Nı̄ at the state (~s, ~σ) and σi is the value
of the variable Wı̄ at the state (~s, ~σ). The reader will have no problem to give a
formal definition of the following predicates:

- P halts, starting from the state (~s, ~σ)
- (~e,~γ) is the state obtained when P halts, starting from the state (~s, ~σ).

Let P ∈ ProΣ and let n,m ∈ ω. We define functions Pn,m,# and Pn,m,∗ as
follows

(1) DomPn,m,# = DomPn,m,∗ is the set

{(~x, ~α) ∈ ωn × Σ∗m : P halts, starting from the
state ((x1, ..., xn, 0, ...), (α1, ..., αm, ε, ...))}

(2) Pn,m,#(~x, ~α) = value of N1 at the state obtained when P halts,
starting from ((x1, ..., xn, 0, ...), (α1, ..., αm, ε, ...))

Pn,m,∗(~x, ~α) = value of W1 at the state obtained when P halts,
starting from ((x1, ..., xn, 0, ...), (α1, ..., αm, ε, ...))

A Σ-mixed function f is called Σ-computable if there exist P ∈ ProΣ and n,m ∈ ω
such that either f = Pn,m,# or f = Pn,m,∗.

As usual, once we have proved that a function f : S ⊆ ωn × Σ∗m → ω is
Σ-computable, we can use macros like

[V← f(V1, ...,Vn,U1, ...,Um)]

where V,V1, ...,Vn can be any numerical variables and U1, ...,Um any alphabetical
variables. (In particular V might be one of V1, ...,Vn.). Of course, if the above
macro is encountered in a program where V1, ...,Vn,U1, ..., Um have values for
which f is not defined, the main program will never terminate. Similarly if f : S ⊆
ωn × Σ∗m → Σ∗ is Σ-computable, we shall use macros like

[U← f(V1, ...,Vn,U1, ...,Um)]

278 D. Vaggione

where V1, ...,Vn can be any numerical variables and U,U1, ...,Um any alphabetical
variables.

A set S ⊆ ωn × Σ∗m is called Σ-recursively enumerable if S = ∅ or there exist
Σ-computable functions

fi : ω → ω, i = 1, ..., n
gi : ω → Σ∗, i = 1, ...,m

such that

S = {(f1(x), ..., fn(x), g1(x), ..., gm(x)) : x ∈ ω}

Using macros it can be proved the following

Lemma 2 If f : D ⊆ ωn × Σ∗m → ω is Σ-computable and S ⊆ ωn × Σ∗m is
Σ-recursively enumerable, then f |D∩S (i.e. the restriction of f to the set D ∩ S)
is Σ-computable.

3 Infinitary simultaneous recursion theorem

Let E1 and E2 be expressions whose values are in the set ω (resp. Σ∗) and de-
pend on values assigned to numerical variables x1, ..., xn and alphabetical variables
α1, ..., αm. Then we will write

E1 ≈ E2

to express the fact that for any given values of x1, ..., xn in ω and α1, ..., αm in Σ∗,
either E1 and E2 are undefined or both are defined and the corresponding values
are equal.

Theorem 3 (a) Let f : S ⊆ ω × ωn × Σ∗m × ProΣ → ω be Σ-computable. There
exists F ∈ ProΣ such that

(1) F1,0,∗ (i) is defined for every i ∈ ω and

F1,0,∗ (0) ,F1,0,∗ (1) ,F1,0,∗ (2) , ... ∈ ProΣ

(2) For each i ∈ ω:(
F1,0,∗ (i)

)n,m,# (~x, ~α) ≈ f (i, ~x, ~α,F)

(b) Let f : S ⊆ ω × ωn × Σ∗m × ProΣ → Σ∗ be Σ-computable. There exists
F ∈ ProΣ such that

(1) F1,0,∗ (i) is defined for every i ∈ ω and

F1,0,∗ (0) ,F1,0,∗ (1) ,F1,0,∗ (2) , ... ∈ ProΣ

(2) For each i ∈ ω:(
F1,0,∗ (i)

)n,m,∗ (~x, ~α) ≈ f (i, ~x, ~α,F)

Infinitary Simultaneous Recursion Theorem 279

Proof: We only will prove (a). As usual we need a particular case of the parameter
theorem. Let Sn,m : Σ∗ × ProΣ → ProΣ be defined by

Sn,m(α,P) = QP

where Q is the program

Wm+ 1←Wm+ 1a1Wm+ 1←Wm+ 1a2...Wm+ 1←Wm+ 1ak

with a1, ..., ak ∈ Σ such that α = a1...ak. We note that Sn,m is Σ-computable and
that for every P ∈ ProΣ we have

(i) Pn,m+1,# (~x, ~α, α) ≈ Sn,m(α,P)n,m,# (~x, ~α)
Pn,m+1,∗ (~x, ~α, α) ≈ Sn,m(α,P)n,m,∗ (~x, ~α)

Let g : ProΣ → ProΣ be defined by

g(P) = P [W2← P] [W1← Sn,m(W2,W1)]

where [W2← P] and [W1← Sn,m(W2,W1)] are adequate macro expansions. Al-
though we have not given a complete description of g, we observe that g can be
defined in such a way that it is algorithmic and hence, by Church´s Thesis, we can
assume that g is Σ-computable.

Note that2

(ii) g(P)1,0,∗ (i) ≈ Sn,m(P,P1,0,∗(i))

Let F be the following function

{(i, ~x, ~α,P) : (i, ~x, ~α, g(P)) ∈ S} → ω
(i, ~x, ~α,P) → f (i, ~x, ~α, g(P))

Since f and g are Σ-computable, so is F . Let Q ∈ ProΣ be a program which
computes F . Thus we have

(iii) f (i, ~x, ~α, g(P)) ≈ Qn+1,m+1,# (i, ~x, ~α,P)

Let k be the least number satisfying

- the variables that occur in Q are all included in the list N1, ...,Nk̄, W1, ...,Wk̄
- k ≥ n+ 1,m+ 1

Thus we have

Q = Q(N1, ...,Nk̄,W1, ...,Wk̄)

Let

Q̃ = Q(Nk̄,N1, ...,Nk − 1,W1, ...,Wk̄)

Define G : ω → ProΣ by

G(i) = T Q̃

where
2g(P)1,0,∗ (i) is defined iff P1,0,∗ (i) is defined and belongs to ProΣ, since the macro

[W1← Sn,m(W2, W1)] terminates iff the initial value of W1 is a program.

280 D. Vaggione

T =

i times︷ ︸︸ ︷
Nk̄ ← Nk̄ + 1Nk̄ ← Nk̄ + 1...Nk̄ ← Nk̄ + 1

Note that

(iv) G(i)n,m+1,# (~x, ~α,P) ≈ Qn+1,m+1,# (i, ~x, ~α,P)

Let R be the following program

[W1← G(N1)]

Obviously, we have

(v) R1,0,∗(i) ≈ G(i)

Let

F = g(R) = R [W2← R] [W1← Sn,m(W2,W1)] .

Since R1,0,∗(i) is defined and belongs to ProΣ, for every i ∈ ω, we have that F
satisfies (1). We conclude the proof by showing that F also satisfies (2).(

F1,0,∗(i)
)n,m,# (~x, ~α) ≈

(
g(R)1,0,∗(i)

)n,m,# (~x, ~α)

≈
(
Sn,m(R,R1,0,∗(i))

)n,m,# (~x, ~α) by (ii)

≈
(
R1,0,∗(i)

)n,m+1,# (~x, ~α,R) by (i)

≈ G(i)n,m+1,# (~x, ~α,R) by (v)

≈ Qn+1,m+1,# (i, ~x, ~α,R) by (iv)

≈ f (i, ~x, ~α, g(R)) by (iii)

≈ f(i, ~x, ~α,F).

We conclude the paper with some applications.

Application 1 (Double Recursion Theorem [5]). Let

f0 : S0 ⊆ ωn × Σ∗m × ProΣ × ProΣ → ω
f1 : S1 ⊆ ωn × Σ∗m × ProΣ × ProΣ → ω

be Σ-computable. There exist P0,P1 ∈ ProΣ such that

Pn,m,#
0 (~x, ~α) ≈ f0 (~x, ~α,P0,P1)
Pn,m,#

1 (~x, ~α) ≈ f1 (~x, ~α,P0,P1)

Proof: Define

f(i, ~x, ~α,P) = fi

(
~x, ~α,P1,0,∗(0),P1,0,∗(1)

)
.

By Church´s Thesis f is Σ-computable. Thus we can take

P0 = F1,0,∗(0)

Infinitary Simultaneous Recursion Theorem 281

P1 = F1,0,∗(1)

where F is the program given by the above theorem.

We remember that |α| denotes the length of the word α ∈ Σ∗.

Application 2. There are programs P0,P1, ... such that

P1,0,#
0 (x) ≈ |P1|x+ |P0|
P1,0,#

1 (x) ≈ |P2|x2 + |P1|x+ |P0|
P1,0,#

2 (x) ≈ |P3|x3 + |P2|x2 + |P1|x+ |P0|
...

Proof: Take f(i, x,P) =
∑i+1

j=0

∣∣P1,0,∗(j)
∣∣xj . By Church´s Thesis f is Σ-computable

and hence we can apply Theorem 3.

If we restrict the domain of f , we can add requirements on the domains of the
functions P1,0,#

i .

Application 3. There are programs P0,P1, ... such that

DomP1,0,#
0 = ω

DomP1,0,#
1 = ImP1,0,#

0

DomP1,0,#
2 = ImP1,0,#

1
...

and

P1,0,#
0 (x) = |P1|x+ |P0|
P1,0,#

1 (x) = |P2|x2 + |P1|x+ |P0|
P1,0,#

2 (x) = |P3|x3 + |P2|x2 + |P1|x+ |P0|
...

Proof: Let f(i, x,P) =
∑i+1

j=0

∣∣P1,0,∗(j)
∣∣xj . Let S be the following set

{(i, x,P) ∈ Dom f : i = 0 or
P1,0,∗(i− 1) ∈ ProΣ and x ∈ Im

(
P1,0,∗(i− 1)

)1,0,#
}

By Church´s Thesis S is Σ-recursively enumerable and hence f |S is Σ-computable.
Thus, we can apply Theorem 3.

Application 4. Let g : ProΣ → ProΣ be a Σ-computable function and let P g−→
sem
Q

denote the fact that g (P)n,m,# = Qn,m,#. Then

282 D. Vaggione

(a) There are programs P0,P1, ... such that

· · · g−→
sem
P2

g−→
sem
P1

g−→
sem
P0

(b) There are programs P0,P1, ... such that

· · · g◦g◦g−→
sem

P2
g◦g−→
sem
P1

g−→
sem
P0

Proof: (b) Let

f(i, ~x, ~α,P) =

 i+1︷ ︸︸ ︷
g ◦ ... ◦ g

(
P1,0,∗(i+ 1)

)n,m,#

(~x, ~α)

and take

Pi = F1,0,∗(i), i = 0, 1, ...

where F is the program given by Theorem 3.

In the following application we naturally obtain [4, Thm 11.VII].

Application 5. There are pairwise different programs P0,P1, ... such that for each
i ∈ ω, the function P0,1,#

i is the following

{Pi+1} → ω
Pi+1 → i

Proof: Let

f :
{

(i, α,P) : α = P1,0,∗(i+ 1)
}
→ ω

(i, α,P) → i

and take

Pi = F1,0,∗(i), i = 0, 1, ...

where F is the program given by Theorem 3. We note that the programs F1,0,∗(i)
are pairwise different since they compute pairwise different functions.

Application 6. (a) There are pairwise different programs P0,P1, ... such that for
each i ∈ ω, the function P0,1,∗

i is the following

{Pi,Pi+1,Pi+2, ...} → {Pi2 ,Pi2+1,Pi2+2, ...}
Pi+l → Pi2+l

(b) Let g : D ⊆ ω × ω → ω be Σ-computable. There are pairwise different
programs P0,P1, ... such that for each i ∈ ω, the function P0,1,∗

i is the following

{Pl : (i, l) ∈ D} → {P0,P1, ...}
Pl → Pg(i,l)

Infinitary Simultaneous Recursion Theorem 283

Proof: We prove (b), since (a) is a particular case of (b). First we note that the
construction of F in the proof of Theorem 3 depends only from the program Q and
the integers n,m. Thus we have defined a function

ω2 × ProΣ → ProΣ

(n,m,Q) → F(n,m,Q)

We note that this function is algorithmic and hence, by Church´s Thesis it is
Σ-computable. Also we note that

F(n,m,Q)1,0,∗(i) = J
i︷ ︸︸ ︷

II...IK, for every i ∈ ω
where J ,K ∈ ProΣ and I ∈ InsΣ. Thus the programs

F(n,m,Q)1,0,∗(0),F(n,m,Q)1,0,∗(1), ...

are pairwise different. Let

ProΣ
0 =

{
F(n,m,Q) : (n,m,Q) ∈ ω2 × ProΣ

}
Note that ProΣ

0 is Σ-recursively enumerable and therefore so is the set

S =
{

(i, α,P) ∈ ω × Σ∗ × ProΣ
0 : (i,minl α = P1,0,∗(l)) ∈ D

}
Hence the function

f : S → Σ∗

(i, α,P) → P1,0,∗(g(i,minl α = P1,0,∗(l)))

is Σ-computable and we can take

Pi = F1,0,∗(i), i = 0, 1, ...

where F is the program given by Theorem 3.

References

[1] M. Davis and E. Weyuker, Computability, Complexity and Languages, Aca-
demic Press, 1983.

[2] S. B. Cooper, Computability Theory, Chapman & Hall/CRC Mathematical
Series, Volume 26, 2004.

[3] P. Odifreddi, Classical Recursion Theory, North-Holland, 1989.

[4] H. Rogers, Jr., Theory of recursive functions and effective computability,
McGraw-Hill, New York, 1967.

[5] R. M. Smullyan, Theory of formal systems, Ann. Math. Studies 47. Princeton
University Press, 1961.

[6] ————–, Recursion Theory for Metamathematics, Oxford Logic Guides 22.
The Clarendon Press, Oxford University Press, New York, 1993.

