Mathware & Soft Computing 15 (2008) 263-272

Interval-Valued Fuzzy Ideals Generated by an Interval-Valued Fuzzy Subset in Ordered Semigroups

M. Shabir and Israr Ali Khan^{*} Dept. Mathematics, Quaid-I-Azam University Islamabad, Pakistan. Dept. Mathematics, Shanghai University,

99 Shangda Road, Shanghai 200444, P.R. China. mshabirbhatti@yahoo.co.uk , i_ali81@yahoo.com

Abstract

In this paper, we define the concept of interval-valued fuzzy left (right, two sided, interior, bi-) ideal in ordered semigroups. We show that the interval-valued fuzzy subset \overline{J} is an interval-valued fuzzy left (right, two sided, interior, bi-) ideal generated by an interval-valued fuzzy subset \overline{A} iff J^- and J^+ are fuzzy left (right, two sided, interior, bi-) ideals generated by A^- and A^+ respectively.

Keywords. Interval-valued fuzzy subsemigroup, Interval-valued fuzzy left (right, two-sided) ideal, Interval-valued fuzzy interior ideal, Interval-valued fuzzy bi-ideal.

1 Introduction and Preliminaries

Interval-valued fuzzy subsets were proposed thirty years ago as a natural extension of fuzzy sets by L.A.Zadeh [10]. Interval-valued fuzzy subsets have many applications in several areas. In [10], Zadeh also constructed a method of approximate inference using his interval-valued fuzzy subsets. In [9], Al Narayanan and T. Manikantan introduced the notions of interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semigroups. The concept of fuzzy sets on ordered semigroups has been introduced by N.Kehayopulu and M.Tsingelis in [5]. In [6], they have discussed fuzzy bi-ideals in ordered semigroups and they discuss fuzzy interior ideals in ordered semigroups in [7].

^{**} Corresponding author makhan93@yahoo.com

²⁶³

In this note we have introduced the concept of an interval-valued fuzzy left (right, two-sided, interior, bi-) ideal generated by an interval-valued fuzzy subset in ordered semigroups. Some characterizations of such generated interval-valued fuzzy ideals are also discussed.

An ordered semigroup is an ordered set S at the same time a semigroup such that $a \leq b \Rightarrow ax \leq bx$ and $xa \leq xb$ for all $a, b, x \in S$.

A non-empty subset A of an ordered semigroup S is called a subsemigroup of S if $A^2 \subseteq A$.

A non-empty subset A of an ordered semigroup S is called a right (resp. left) ideal of S if

- 1. $AS \subseteq A \ (resp. SA \subseteq A)$
- 2. $a \in A, S \ni b \le a \Rightarrow b \in A$.

A is called an ideal of S if it is both a right and a left ideal of S (cf. e.g, [1, 2]). A subsemigroup A of S is called an interior ideal of S [7] if

1. $SAS \subseteq A$.

2. $a \in A, S \ni b \le a \Rightarrow b \in A$.

A subsemigroup A of S is called a bi-ideal of S [6] if

- 1. $ASA \subseteq A$.
- $2. \ a \in A, \ S \ni b \leq a \Rightarrow b \in A.$

An ordered semigroup S is called regular [4] if for each element a of S, there exists an element x in S such that $a \leq axa$.

A fuzzy subset f of an ordered semigroup S is a function from S to the unit interval [0, 1] [5].

Let S be an ordered semigroup. A fuzzy subset f of S is called a fuzzy subsemigroup of S if $f(xy) \ge \min\{f(x), f(y)\}$ for all $x, y \in S$.

- A fuzzy subset f of S is called a fuzzy left (resp. right) ideal of S if
- 1) $x \le y \implies f(x) \ge f(y)$

2) $f(xy) \ge f(y)$ (resp. $f(xy) \ge f(x)$).

If f is both a fuzzy left ideal and a fuzzy right ideal of S, then f is called a fuzzy ideal of S or a fuzzy two sided ideal of S [1].

Equivalently, f is called a fuzzy ideal of S if

- 1) $x \le y \implies f(x) \ge f(y)$
- 2) $f(xy) \ge \sup\{f(x), f(y)\}.$

A fuzzy subsemigroup f of S is called a fuzzy interior ideal of S [7] if

- 1) $x \le y \implies f(x) \ge f(y)$
- $2) \qquad f(xyz) \ge f(y).$

A fuzzy subsemigroup f of S is called a fuzzy bi-ideal of S [6] if

- 1) $x \le y \implies f(x) \ge f(y)$
- 2) $f(xyz) \ge \min\{f(x), f(z)\}.$

2 Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in ordered semigroups

An interval number on [0, 1], say \overline{a} , is a closed subinterval of [0, 1], that is, $\overline{a} = [a^-, a^+]$ where $0 \le a^- \le a^+ \le 1$. Let D [0, 1] denotes the family of all closed subintervals of [0, 1], $\overline{0} = [0, 0]$ and $\overline{1} = [1, 1]$.

Now we define " \leq ", "=", " Min^{i} ", " Max^{i} " in case of two elements in D [0, 1]. Consider two elements $\overline{a} = [a^-, a^+]$ and $\overline{b} = [b^-, b^+]$ in D [0, 1]. Then

i) $\overline{a} \leq \overline{b}$ iff $a^- \leq b^-$ and $a^+ \leq b^+$

ii) $\overline{a} = \overline{b}$ iff $a^- = b^-$ and $a^+ = b^+$

iii) $Min^i \{\overline{a}, \overline{b}\} = [\min\{a^-, b^-\}, \min\{a^+, b^+\}]$

iv) $Max^{i}\{\overline{a},\overline{b}\} = [\max\{a^{-}, b^{-}\}, \max\{a^{+}, b^{+}\}].$

Let X be a set. A mapping $\overline{A} : X \longrightarrow D[0,1]$ is called an interval valued fuzzy subset (briefly, an i - v fuzzy subset) of X, where $\overline{A}(x) = [A^{-}(x), A^{+}(x)]$ for all $x \in X, A^{-}$ and A^{+} are fuzzy subsets in X such that $A^{-}(x) \leq A^{+}(x)$ for all $x \in X$.

Let \overline{A} and \overline{B} be two i - v fuzzy subsets of X. Define the relation " \subseteq " between \overline{A} and \overline{B} as follows:

 $\overline{A} \subseteq \overline{B}$ iff $\overline{A}(x) \leq \overline{B}(x)$ for all $x \in X$, *i.e* $A^{-}(x) \leq B^{-}(x)$ and $A^{+}(x) \leq B^{+}(x)$ for all $x \in X$.

Let S be an ordered semigroup with identity element 1 and IF(S) denotes the set of all i - v fuzzy subsets of S.

Definition 1 Let A be a fuzzy subset of an ordered semigroup S with identity element 1. Then the smallest fuzzy left (right, two sided, interior, bi-) ideal of S containing A is called a fuzzy left (right, two sided, interior, bi-) ideal of S generated by A denoted by $\langle A \rangle_L$ {($\langle A \rangle_R, \langle A \rangle, \langle A \rangle_I, \langle A \rangle_B$ } respectively.

Definition 2 An i - v fuzzy subset \overline{A} of an ordered semigroup S is called an i - v fuzzy subsemigroup of S if for all $x, y \in S$, $\overline{A}(xy) \ge Min^i \{\overline{A}(x), \overline{A}(y)\}$.

Definition 3 An i - v fuzzy subset \overline{A} of an ordered semigroup S is called an i - v fuzzy left (resp. right) ideal of S if for all $x, y \in S$

i) $x \le y \Rightarrow \overline{A}(x) \ge \overline{A}(y)$

ii) $\overline{A}(xy) \ge \overline{A}(y)$ (resp. $\overline{A}(xy) \ge \overline{A}(x)$).

An i - v fuzzy subset \overline{A} in S is called an interval valued fuzzy two sided ideal of S if it is both an i - v fuzzy left ideal and an i - v fuzzy right ideal of S.

Definition 4 An i - v fuzzy subsemigroup \overline{A} of an ordered semigroup S is called an i - v fuzzy interior ideal of S if for all $x, y, z \in S$

i)
$$x \leq y \Rightarrow \overline{A}(x) \geq \overline{A}(y)$$

ii) $\overline{A}(xyz) \geq \overline{A}(y)$.

Definition 5 An i - v fuzzy subsemigroup \overline{A} of an ordered semigroup S is called an i - v fuzzy bi-ideal of S if for all $x, y, z \in S$ i) $x \leq y \Rightarrow \overline{A}(x) \geq \overline{A}(y)$ ii) $\overline{A}(xyz) \geq Min^i \{\overline{A}(x), \overline{A}(z)\}.$

Theorem 1 An interval valued fuzzy subset \overline{A} of an ordered semigroup S is an i - v fuzzy subsemigroup (left ideal, right ideal, two sided ideal, interior ideal, biideal) of S iff A^- and A^+ are fuzzy subsemigroups (left ideals, right ideals, interior ideals, bi-ideals) of S.

Proof. Let \overline{A} be an i - v fuzzy subsemigroup of S. Then for all $x, y \in S$, $\overline{A}(xy) > Min^i \{\overline{A}(x), \overline{A}(y)\},$ where $Min^{i}\{\overline{A}(x), \overline{A}(y)\} = [min\{A^{-}(x), A^{-}(y)\}, min\{A^{+}(x), A^{+}(y)\}].$ Thus $\overline{A}(xy) \ge [min\{A^{-}(x), A^{-}(y)\}, min\{A^{+}(x), A^{+}(y)\}].$ Hence $[A^{-}(xy), A^{+}(xy)] \ge [min\{A^{-}(x), A^{-}(y)\}, min\{A^{+}(x), A^{+}(y)\}].$ Thus $A^{-}(xy) \ge \min\{A^{-}(x), A^{-}(y)\}$ and $A^{+}(xy) \ge \min\{A^{+}(x), A^{+}(y)\}].$ Hence A^-, A^+ are fuzzy subsemigroups of S. The converse is straightforward. Now suppose \overline{A} is an i - v fuzzy left ideal of S. Then for all $x, y \in S$, $x \leq y \Rightarrow \overline{A}(x) \geq \overline{A}(y)$ and $\overline{A}(xy) \geq \overline{A}(y)$. Now $\overline{A}(x) \ge \overline{A}(y) \Rightarrow [A^-(x), A^+(x)] \ge [A^-(y), A^+(y)].$ That is $A^{-}(x) \ge A^{-}(y)$ and $A^{+}(x) \ge A^{+}(y)$. $\overline{A}(xy) \ge \overline{A}(y) \Rightarrow [A^-(xy), A^+(xy)] \ge [A^-(y), A^+(y)].$ Thus $A^-(xy) \ge A^-(y)$ and $A^+(xy) \ge A^+(y)$. Hence A^- and A^+ are fuzzy left ideals of S. The converse is straightforward. Similarly we can prove for other cases. \Box

Definition 6 Let $\overline{A} \in IF(S)$. Then the smallest i - v fuzzy left (right, two sided) ideal of S containing \overline{A} is called an i - v fuzzy left (right, two sided) ideal of S generated by \overline{A} , denoted by $<\overline{A} >_L (<\overline{A} >_R, <\overline{A} >)$ respectively.

Theorem 2 Let $\overline{A} \in IF(S)$, then $\langle \overline{A} \rangle_L = \overline{J}$,

where $\overline{J} = [J^-, J^+]$ such that $J^-(x) = \sup_{\substack{x \le x_1 x_2 \\ x_1, x_2 \in S}} A^-(x_2)$ and $J^+(x) = \sup_{\substack{x \le x_1 x_2 \\ x_1, x_2 \in S}} A^+(x_2)$ for all $x \in S$.

Proof. For all $a \in S$ $J^{-}(a) = \sup_{a \leq x_1 x_2} A^{-}(x_2) \geq A^{-}(a)$, since $a = 1.a \Rightarrow A^{-}(a) \leq J^{-}(a)$. Similarly $A^{+}(a) \leq J^{+}(a) \Rightarrow \overline{A}(a) = [A^{-}(a) \quad A^{+}(a)] \leq \overline{J}(a) = [J^{-}(a) \quad J^{+}(a)]$. Thus $\overline{A} \subseteq \overline{J}$. Now we show that \overline{J} is an interval-valued fuzzy left ideal of S, for this we have to show $x \leq y \Rightarrow \overline{J}(x) \geq \overline{J}(y)$ and $\overline{J}(xy) \geq \overline{J}(y)$ for all $x, y \in S$. Let $x, y \in S$, such that $x \leq y$. If $y \leq x_3 x_4$ then $x \leq x_3 x_4$. Hence $J^{-}(y) = \sup_{y \leq x_3 x_4} A^{-}(x_4) \leq \sup_{x \leq x_1 x_2} A^{-}(x_2) = J^{-}(x)$. Similarly $J^+(x) \ge J^+(y) \Rightarrow \overline{J}(x) \ge \overline{J}(y)$. Now if $y \le x_1 x_2$ then $xy \le (xx_1) x_2$. Hence $J^-(y) = \sup_{\substack{y \le x_1 x_2 \\ y \le x_1 x_2}} A^-(x_2) \le \sup_{\substack{xy \le x_3 x_4 \\ \overline{J}(xy) \ge \overline{J}(y)}} A^-(x_4) = J^-(xy)$. Similarly $J^+(xy) \ge J^+(y)$. Hence $\overline{J}(xy) \ge \overline{J}(y)$. Let \overline{B} be any i - v fuzzy left ideal of S such that $\overline{B} \supseteq \overline{A}$. Then for all $a \in S$ $B^-(a) \ge A^-(a)$ and $B^+(a) \ge A^+(a)$. Now $J^-(a) = \sup_{xy} A^-(a_2)$

$$(a) = \sup_{\substack{a \le a_1 a_2 \\ a \le a_1 a_2}} A (a_2)$$

$$\leq \sup_{a \le a_1 a_2} B^-(a_2)$$

$$\leq \sup_{a \le a_1 a_2} B^-(a_1 a_2) \le B^-(a).$$

Similarly $B^+(a) \ge J^+(a)$ for all $a \in S \Rightarrow \overline{J} \subseteq \overline{B}$. Hence $\langle \overline{A} \rangle_L = \overline{J}$. \Box

Theorem 3 Let $\overline{A} \in IF(S)$, then $\langle \overline{A} \rangle_R = \overline{J}$,

where
$$\overline{J} = [J^-, J^+]$$
 such that
 $J^-(x) = \sup_{\substack{x \le x_1 x_2 \ x_1, x_2 \in S}} A^-(x_1)$ and
 $J^+(x) = \sup_{\substack{x \le x_1 x_2 \ x_1, x_2 \in S}} A^+(x_1)$ for all $x \in S$.

Proof. The proof is similar to the proof of Theorem 2. \Box

Theorem 4 Let $\overline{A} \in IF(S)$. An interval-valued fuzzy subset \overline{J} is an i-v fuzzy left (right) ideal of S generated by \overline{A} if and only if J^- and J^+ are fuzzy left (right) ideals of S generated by A^- and A^+ respectively.

Proof. Suppose \overline{J} is an i - v fuzzy left ideal of S generated by \overline{A} .

Then by Theorem 1, J^+ and J^- are fuzzy left ideals of S.

Since $\overline{A} \subseteq \overline{J}$, we have $A^- \subseteq J^-$ and $A^+ \subseteq J^+$.

If B is a fuzzy left ideal of S containing A^- , then define $\overline{B}: S \to D[0,1]$ by

 $\overline{B}(x) = [B^-(x), B^+(x)]$, where $B^-(x) = B(x)$ for all $x \in S$ and $B^+(x) = 1$ for all $x \in S$.

Since B^- and B^+ are fuzzy left ideals of S, by Theorem 1, \overline{B} is an i - v fuzzy left ideal of S.

Clearly $\overline{A} \subseteq \overline{B}$ so $\overline{J} \subseteq \overline{B} \Rightarrow J^- \subseteq B^- = B \Rightarrow J^-$ is fuzzy left ideal of S generated by A^- .

Similarly we can show that J^+ is fuzzy left ideal of S generated by A^+ .

Conversely, assume that J^- and J^+ are fuzzy left ideals of S generated by A^- and A^+ respectively.

Then by Theorem 1, \overline{J} is an i - v fuzzy left ideal of S containing \overline{A} .

If \overline{B} is an i-v fuzzy left ideal of S containing \overline{A} , then $A^- \leq B^-$ and $A^+ \leq B^+$. Since B^- and B^+ are fuzzy left ideals of S, we have $J^- \leq B^-$ and $J^+ \leq B^+$. Hence $\overline{J} \subseteq \overline{B}$. Thus \overline{J} is an i-v fuzzy left ideal of S generated by \overline{A} . \Box **Theorem 5** Let $\overline{A} \in IF(S)$, then $<<\overline{A}>_L>_R = <\overline{A}> = <<\overline{A}>_R>_L$.

Proof. By Theorem 3, $\langle \overline{A} \rangle_L >_R$ is an i - v fuzzy right ideal of S. Clearly, $<<\overline{A}>_L>_R = [<<A^->_L>_R, <<A^+>_L>_R].$ For all $x, y \in S$, $<< A^{-} >_{L} >_{R} (xy) = sup < A^{-} >_{L} (a_{1})$ $xy \leq a_1a_2$ = sup $sup A^{-}(z_2)$ $xy \leq a_1a_2 \quad a_1 \leq z_1z_2$ and $<< A^{-} >_{L} >_{R} (y) = sup < A^{-} >_{L} (y_{1})$ $y \leq y_1 y_2$ $sup A^-(w_2).$ = sup $y\!\leq\!y_1y_2\quad y\!\leq\!w_1w_2$ Obviously, $<< A^{-} >_{L} >_{R} (xy) \ge << A^{-} >_{L} >_{R} (y).$ Similarly we have $\langle A^+ \rangle_L \geq_R (xy) \geq \langle A^+ \rangle_L \geq_R (y)$. It follows that, $<<\overline{A}>_{L}>_{R}(xy) = [<<A^{-}>_{L}>_{R}(xy), <<A^{+}>_{L}>_{R}(xy)]$ $\geq [<< A^- >_L >_R (y), << A^+ >_L >_R (y)]$ $= \langle \overline{A} \rangle_L \rangle_R (y).$ Hence $\langle \overline{A} \rangle_L >_R$ is an i - v fuzzy left ideal of S. So $<< A^- >_L >_R$ is an i - v fuzzy ideal of S. Since $\overline{A} \subseteq \langle \overline{A} \rangle_L \subseteq \langle \overline{A} \rangle_L \rangle_R$, we have $\langle \overline{A} \rangle_L \rangle_R \supseteq \overline{A}$. Suppose \overline{B} is any i - v fuzzy ideal of S such that $\overline{B} \supseteq \overline{A}$. Since $\langle \overline{A} \rangle_L$ is a smallest i - v fuzzy left ideal of S containing \overline{A} , we have, $\overline{B} \supseteq \langle \overline{A} \rangle_L$. Also $\overline{B} \supseteq \langle \overline{A} \rangle_L \rangle_R$, since $\langle \overline{A} \rangle_L >_R$ is a smallest i - v fuzzy left ideal of S containing $\langle \overline{A} \rangle_L$. This shows that $\langle \overline{A} \rangle_L >_R$ is a smallest i - v fuzzy left ideal of S containing \overline{A} . Therefore $\langle \overline{A} \rangle_L \rangle_R = \langle \overline{A} \rangle$. Similarly we can prove that $\langle \overline{A} \rangle_R \rangle_L = \langle \overline{A} \rangle$. Hence $\langle \overline{A} \rangle_L \rangle_R = \langle \overline{A} \rangle = \langle \overline{A} \rangle_R \rangle_L$. \Box

Definition 7 Let $\overline{A} \in IF(S)$. Then the smallest i - v fuzzy interior ideal of S containing \overline{A} is called an i - v fuzzy interior ideal of S generated by \overline{A} , denoted by $<\overline{A} >_I$.

Theorem 6 Let $\overline{A} \in IF(S)$, then $\langle \overline{A} \rangle_I = \overline{J}$, where $\overline{J} = [J^-, J^+]$ such that

$$J^{-}(x) = \sup_{\substack{x \leq x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S}} A^{-}(x_2)$$

$$J^{+}(x) = \sup_{\substack{x \leq x_1 x_2 x_3 \\ x_1, x_2, x_3 \in S}} A^{+}(x_2) \quad \text{for all } x \in S.$$

Proof. For all $a \in S$, we have

 $J^{-}(a) = \sup_{a \le x_1 x_2 x_3} A^{-}(x_2) \ge A^{-}(a)$ because $a \le 1a1$.

Similarly $J^+(a) \ge A^+(a)$. Therefore $\overline{J}(a) = [J^-(a), J^+(a)] \ge [A^-(a), A^+(a)] = \overline{A}(a).$ Let $x, y \in S$, such that $x \leq y$. If $y \leq x_1 x_2 x_3$ then $x \leq x_1 x_2 x_3$. Hence $J^{-}(y) = \sup_{y \leq x_1 x_2 x_3} A^{-}(x_2) \leq \sup_{x \leq x_4 x_5 x_6} A^{-}(x_5) = J^{-}(x).$ Similarly $J^+(y) \le J^+(x)$. Hence $\overline{J}(x) = [J^{-}(x), J^{+}(x)] \ge [J^{-}(y), J^{+}(y)] = \overline{J}(y).$ Also for all $x, y, z \in S$, if $y \leq a_1 a_2 a_3$ then $xyz \leq (xa_1)a_2(a_3z)$. Hence $J^{-}(y) = \sup_{y \le a_1 a_2 a_3} A^{-}(a_2) \le \sup_{xyz \le b_1 b_2 b_3} A^{-}(b_2) = J^{-}(xyz).$ Similarly $J^+(y) \le J^+(xyz)$. Thus $\overline{J}(y) = [J^-(y), J^+(y)] \le [J^-(xyz), J^+(xyz)] = \overline{J}(xyz).$ This shows that \overline{J} is an i - v fuzzy interior ideal of S containing \overline{A} . Let \overline{B} be any i - v fuzzy interior ideal of S such that $\overline{B} \supseteq \overline{A}$. Then for all $a \in S$, $J^{-}(a) = \sup A^{-}(a_2)$ $a \leq a_1 a_2 a_3$ $\leq \sup_{a_1a_2a_3} B^-(a_2)$ $\leq \sup_{a \leq a_1 a_2 a_3} B^{-}(a_1 a_2 a_3) \leq B^{-}(a).$ $a\!\leq\!a_1a_2a_3$ Similarly $J^+(a) \leq B^+(a)$. Hence $\overline{J}(a) \leq \overline{B}(a)$. This shows that \overline{J} is the smallest i - v fuzzy interior ideal of S containing \overline{A} , that is $\langle \overline{A} \rangle_I = \overline{J}$. \Box

Theorem 7 Let $\overline{A} \in IF(S)$. An interval valued fuzzy subset \overline{J} is an i-v fuzzy interior ideal of S generated by \overline{A} iff J^- and J^+ are fuzzy interior ideals of S generated by A^- and A^+ respectively.

Proof. The proof is similar to the proof of Theorem 4. \Box

Definition 8 An i-v fuzzy subsemigroup \overline{A} of S is called an i-v fuzzy submonoid of S if $\overline{A}(1) \ge \overline{A}(x)$ for all $x \in S$.

Theorem 8 Let \overline{A} be an i - v fuzzy submonoid of S then $\langle \overline{A} \rangle_B = \overline{J}$ where

$$J^{-}(x) = \sup_{x \le x_1 x_2 x_3} \min\{A^{-}(x_1), A^{-}(x_3)\}$$
 and

$$J^{+}(x) = \sup_{x \le x_1 x_2 x_3} \min\{A^{+}(x_1), A^{+}(x_3)\} \quad \text{ for all } x \in S.$$

Proof. For all $x \in S$, $J^{-}(x) = \sup_{\substack{x \leq x_1 x_2 x_3 \\ \geq \min\{A^{-}(1), A^{-}(x)\} = A^{-}(x), \}}$ because $x \leq 1.1.x$ and $\overline{A}(1) \geq \overline{A}(x)$ for all $x \in S$. Similarly we have $J^+(x) \ge A^+(x)$. Therefore $\overline{J}(x) \geq \overline{A}(x)$ and so $\overline{J} \supseteq \overline{A}$. Let $x, y \in S$ such that $x \leq y$. If $y \leq x_1 x_2 x_3$ then $x \leq x_1 x_2 x_3$. Hence $J^{-}(y) = \sup \min\{A^{-}(x_1), A^{-}(x_3)\}$ $y \leq x_1 x_2 x_3$ $\leq sup min\{A^{-}(a_1), A^{-}(a_3)\}$ $x\!\leq\!a_1a_2a_3$ $= J^{-}(x).$ Similarly we have $J^+(x) \ge J^+(y)$. Thus $\overline{J}(x) \geq \overline{J}(y)$. Also for all $x, y, z \in S$. If $x \le x_1 x_2 x_3$ and $z \le z_1 z_2 z_3$, then $xyz \le (x_1 x_2 x_3) y(z_1 z_2 z_3)$. Hence $J^{-}(xyz) = \sup \min\{A^{-}(a_1), A^{-}(a_3)\}$ $_{xyz\leq a_{1}a_{2}a_{3}}$ $min\{A^{-}(x_1), A^{-}(z_3)\}.$ \geq sup $xyz \leq x_1(x_2x_3yz_1z_2)z_3$ $x \le x_1 x_2 x_3, \ z \le z_1 z_2 z_3$ We can write $A^{-}(x_1) \ge \min\{A^{-}(x_1), A^{-}(x_3)\},\$ $A^{-}(z_3) \ge \min\{A^{-}(z_1), A^{-}(z_3)\}$. It follows that $J^{-}(xyz) \ge$ $min\{min\{A^{-}(x_1), A^{-}(x_3)\}, min\{A^{-}(z_1), A^{-}(z_3)\}\}$ sup $xyz \leq x_1(x_2x_3yz_1z_2)z_3$ $x \leq x_1 x_2 x_3, \ z \leq z_1 z_2 z_3$ $=\min\{\sup_{x\leq x_1x_2x_3}\min\{A^-(x_1),A^-(x_3)\},\sup_{z\leq z_1z_2z_3}\min\{A^-(z_1),A^-(z_3)\}\}$ $\scriptstyle x \leq x_1 x_2 x_3$ $= min\{J^{-}(x), J^{-}(z)\}.$ Similarly we have $J^+(xyz) \ge \min\{J^+(x), J^+(z)\}$. Therefore $\overline{J}(xyz) = [J^{-}(xyz), J^{+}(xyz)]$ $\geq [min\{J^{-}(x), J^{-}(z)\}, min\{J^{+}(x), J^{+}(z)\}]$ $=Min^{i}\{\overline{J}(x),\overline{J}(z)\}$ and so, $\overline{J}(xyz) \ge Min^i \{\overline{J}(x), \overline{J}(z)\}.$ Taking y = 1, we have $\overline{J}(xz) \ge Min^i \{\overline{J}(x), \overline{J}(z)\}.$ This shows that \overline{J} is an i - v fuzzy bi-ideal of S. Let \overline{B} be an i - v fuzzy bi-ideal of S such that $\overline{B} \supseteq \overline{A}$. Then for all $a \in S$, we have $J^{-}(a) = \sup \min\{A^{-}(a_1), A^{-}(a_3)\}$ $a < a_1 a_2 a_3$ $\leq sup min\{B^{-}(a_1), B^{-}(a_3)\}$ $a \leq a_1 a_2 a_3$ $\leq sup \quad B^{-}(a_1a_2a_3) \leq B^{-}(a).$ $a \le a_1 a_2 a_3$ Similarly we have $J^+(a) \leq B^+(a)$. Thus $\overline{J} \subseteq \overline{B}$. Hence \overline{J} is a smallest i - v fuzzy bi-ideal of S containing \overline{A} . That is $\langle \overline{A} \rangle_B = \overline{J}$. \Box

Theorem 9 Let \overline{A} be an i-v fuzzy submonoid of S. Then an i-v fuzzy subset \overline{J} is an i-v fuzzy bi-ideal of S generated by \overline{A} if and only if J^- and J^+ are fuzzy bi-ideals of S generated by A^- and A^+ respectively.

Proof. The proof is similar to the proof of Theorem 4. \Box

Theorem 10 Let S be a regular ordered semigroup and $\overline{A} \in IF(S)$,

then
$$\langle \overline{A} \rangle_B = \overline{J}$$
, where
 $J^-(x) = \sup_{x \le x_1 x_2 x_3} \min\{A^-(x_1), A^-(x_3)\}$ and
 $J^+(x) = \sup_{x \le x_1 x_2 x_3} \min\{A^+(x_1), A^+(x_3)\}$ for all $x \in S$.

Proof. From the proof of Theorem 8, it is enough to prove that $\overline{J} \supseteq \overline{A}$. For all $x \in S$, we have

For all $x \in B$, we have $J^{-}(x) = \sup_{\substack{x \le x_1 x_2 x_3 \\ x \le x_1 x_2 x_3}} \min\{A^{-}(x_1), A^{-}(x_3)\}$ $\geq \sup_{\substack{x \le x a x \\ x \le x a x}} \min\{A^{-}(x), A^{-}(x)\}$ Similarly we have $J^{+}(x) \ge A^{+}(x)$. Therefore $\overline{J}(x) \ge \overline{A}(x)$ and so $\overline{J} \supseteq \overline{A}$. \Box

Remark 1 Theorem 9 is also true for an i-v fuzzy subset \overline{A} of a regular ordered semigroup S.

References

- N. Kehayopulu, On left regular and left duo poe-semigroups, Semigroup Forum, 44, No. 3 (1992), 306-313.
- [2] N. Kehayopulu, On prime, weakly prime ideals in ordered semigroups, Semigroup Forum, 44, No. 3 (1992), 341-346.
- [3] N. Kehayopulu, On completely regular poe-semigroups, Math Japon. 37, No. 1 (1992), 123-130.
- [4] N. Kehayopulu, On regular duo ordered semigroups, Math Japon. 37, No. 3 (1992), 535-540.
- [5] N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids. Semigroup Forum, 65, No. 1 (2002), 128-132.
- [6] Niovi Kehayopulu and Michael Tsingelis, Fuzzy bi-ideals in ordered semigroups, Information Sciences, 171 (2005) 13-28.
- [7] Niovi Kehayopulu and Michael Tsingelis, Fuzzyinterior ideals in ordered semigroups, Lovachevskii Journal of Mathematics, 21 (2006) 65-71.
- [8] Bingxue Yao, Young Li and Kaiquan Shi, Fuzzy ideal generated by a fuzzy subset in semigroups, The Journal of Fuzzy Mathematics, 10 (2002) No. 4, 885-891.

- [9] Al Narayanan and T. Manikantan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semigroups, J. App. Math & computing, 20 (2006) 455-464.
- [10] L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences, 8 (1975) 199-249.