Criticality-Aware Dynamic Task Scheduling for
Heterogeneous Systems

Kallia Chronaki, Alejandro Rico, Rosa M. Badid and Eduard Ayguad®
"Barcelona Supercomputing Center, Barcelona, Spain
TResearch Institute (I11A) - Spanish National ReshaZouncil (CSIC), Barcelona, Spain
*Universitat Politécnica de Catalunya - Barcelondil &arcelona, Spain
kallia.chronaki@bsc.es, alejandro.rico@bsc.es, roshadia@bsc.es,

eduard.ayguade@bsc.es

INTRODUCTION ARM big.LITTLE and up to 2.7x in a simulated 128reo

In the search of performance and energy efficiencfhip'

heterogeneous multi-core architectures are an &pgemption
for next-generation high-performance computing.

These architectures combine different types of gssing
cores designed at different
optimization points, thus exposing a performancesqrarade-
off.

Current and future parallel programming models rieebe
portable and efficient when moving to such systehwad
balancing and scheduling are two of the main chghs in
utilizing such heterogeneous platforms. The ustask-based
programming models with dynamic scheduling is a way
tackle these challenges. Some of these programmidgls
allow the specification of inter-task dependendlest enable
automatic scheduling and synchronization by thetima
system.

OmpSs is a powerful task-based programming modgd wi
dependency tracking and dynamic scheduling. In tddls we
will describe the OmpSs approach on scheduling roldget
tasks onto the asymmetric cores of a heterogensgstem.
The proposed dynamic scheduling policy uses inftiona
discoverable at runtime and reduces total execuiioe. It
first prioritizes the newly-created tasks at ruriatcording to
the shape of the task dependency graph; it theectdethe
longest path of the dynamic task dependency grapia,
finally it assigns critical tasks to fast cores amsh-critical
tasks to slow cores.

Previous works on scheduling for heterogeneoueBysby
using task priorities require the prior knowledgevarious
parameters of the workload; for example the taskcetion
time, which cannot be discoverable without proflior the
task dependency graph of the workload.

The experimental evaluation proves that our impletatgon
speeds up the execution of four scientific kernelthe ARM
big.LITTLE heterogeneous chip. Our proposal ouipens a
dynamic implementation of the state-of-the-art iHegeneous
Earliest Finish Time scheduler by up to 1.15x, #reldefault
breadth-first
OmpSs scheduler by up to 1.3x in the 8-core hetsregus

Previous criticality-aware schedulers for heteragers
systems are static and based on the knowledge obiimy
information. Our proposal performs dynamic schedylising

performance and powépformation discoverable at runtime, is implemefgabnd

works without the need of an oracle or profiling.

In our evaluation using four dependency-intensive
applications, our proposal outperforms a dynamic
implementation of Heterogeneous Earliest Finishelioy up
to 1.15x%, and the default breadth-first OmpSs saleedy up
to 1.3x in a real 8-core heterogeneous platformugntb 2.7x
in a simulated 128-core chip.

RELATED WORK

Several previous works propose scheduling heusigtiat
focus on the critical path in a task dependencply(@DG) to
reduce total execution time [1, 2, 3, 4]. To idBnthe tasks in
the critical path, most of these works use the ephwf
upward rankand downward rank The upward rank of a task
is the maximum sum of computation and communicatiost
of the tasks in the dependency chains from th&tttasn exit
node in the graph. The downward rank of a taskhis t
maximum sum of computation and communication cosh®
tasks in the dependency chain from an entry nodkeeirgraph
up to that task. Each task has an upward rank amchwaard
rank for each processor type in the heterogenegsters, as
the computation and communication costs differ s&ro
processor types.

The Heterogeneous Earliest Finish Time (HEFT) adlgor
[4] maintains a list of tasks sorted in decreasinder of their
upward rank. At each schedule step, HEFT assigagabk
with the highest upward rank to the processor finahes the
execution of the task at the earliest possible tikweother
work is the Longest Dynamic Critical Path (LDCPya@ithm
[1]. LDCP also statically schedules first the taskh the
highest upward rank on every schedule step. THerdifce
between LDCP and HEFT is that LDCP updates the
computation and communication costs on multiplecessors



(1]

(2]

(3]

(4]

of the scheduled task by the computation and conuation
cost in the processor to which it was assigned.

The Critical-Path-on-a-Processor (CPOP) algoritdirajso
maintains a list of tasks sorted in decreasingroaden HEFT,
but in this case it is ordered according to theitamdof their
upward rankanddownward rank The tasks with the highest
upward rank + downward rankelong to the critical path. On
each step, these tasks are statically assignduetprbcessor
that minimizes the critical-path execution time.

The main weaknesses of these works are that (a) the
assume prior knowledge of the computation and
communication costs of each individual task on gacitessor
type, (b) they operate statically on the whole dejeacy
graph, so they do not apply to dynamically schetlule
applications in which only a partial representatioh the
dependency graph is available at a given pointie,tand (c)
most of them use randomly-generated synthetic dipay
graphs that are not necessarily representative ke t
dependencies in real workloads.

REFERENCES

M. Daoud and N. Kharma. Efficient Compile-TinEask Scheduling for
Heterogemeous Distributed Computing Systems. Iallearand Distributed
Systems, 2006. ICPADS 2006. 12th International €amrfce on, volume 1,
pages 9, 2006.

M. Hakem and F. Butelle. Dynamic Critical P&lcheduling Parallel
Programs onto Multiprocessors. In In the Proceeding the 19th IEEE
International Parallel and Distributed Processingm@osium, IPDPS'05,
pages 203b-203b, April 2005.

C.-H. Liu, C.-F. Li, K.-C. Lai, and C.-C. WUA dynamic Critical Path
Duplication Task Scheduling Algorithm for Distrilest Heterogeneous
Computing Systems. In Parallel and Distributed &yst 2006. ICPADS
2006. 1% International Conference on, volume 1, pages 8620

H. Topcuoglu, S. Hariri, and M.-Y. Wu. Perfornwe-Effective and Low-
Complexity Task Scheduling for Heterogeneous Coingut IEEE

Transactions on Parallel and Distributed Syster8§3)i260-274, Mar 2002.



