

~ 71 ~

Criticality-Aware Dynamic Task Scheduling for
Heterogeneous Systems

Kallia Chronaki*, Alejandro Rico*, Rosa M. Badia*† and Eduard Ayguadé*‡

*Barcelona Supercomputing Center, Barcelona, Spain
†Research Institute (IIIA) - Spanish National Research Council (CSIC), Barcelona, Spain

‡Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain
kallia.chronaki@bsc.es, alejandro.rico@bsc.es, rosa.m.badia@bsc.es,

eduard.ayguade@bsc.es

INTRODUCTION

In the search of performance and energy efficiency,
heterogeneous multi-core architectures are an appealing option
for next-generation high-performance computing.

These architectures combine different types of processing

cores designed at different performance and power
optimization points, thus exposing a performance-power trade-
off.

Current and future parallel programming models need to be

portable and efficient when moving to such systems. Load
balancing and scheduling are two of the main challenges in
utilizing such heterogeneous platforms. The use of task-based
programming models with dynamic scheduling is a way to
tackle these challenges. Some of these programming models
allow the specification of inter-task dependencies that enable
automatic scheduling and synchronization by the runtime
system.

OmpSs is a powerful task-based programming model with

dependency tracking and dynamic scheduling. In this talk we
will describe the OmpSs approach on scheduling dependent
tasks onto the asymmetric cores of a heterogeneous system.
The proposed dynamic scheduling policy uses information
discoverable at runtime and reduces total execution time. It
first prioritizes the newly-created tasks at runtime according to
the shape of the task dependency graph; it then detects the
longest path of the dynamic task dependency graph, and
finally it assigns critical tasks to fast cores and non-critical
tasks to slow cores.

Previous works on scheduling for heterogeneous systems by

using task priorities require the prior knowledge of various
parameters of the workload; for example the task execution
time, which cannot be discoverable without profiling or the
task dependency graph of the workload.

The experimental evaluation proves that our implementation

speeds up the execution of four scientific kernels on the ARM
big.LITTLE heterogeneous chip. Our proposal outperforms a
dynamic implementation of the state-of-the-art Heterogeneous
Earliest Finish Time scheduler by up to 1.15x, and the default
breadth-first
OmpSs scheduler by up to 1.3x in the 8-core heterogeneous

ARM big.LITTLE and up to 2.7x in a simulated 128-core
chip.

Previous criticality-aware schedulers for heterogeneous

systems are static and based on the knowledge of profiling
information. Our proposal performs dynamic scheduling using
information discoverable at runtime, is implementable and
works without the need of an oracle or profiling.

In our evaluation using four dependency-intensive

applications, our proposal outperforms a dynamic
implementation of Heterogeneous Earliest Finish Time by up
to 1.15x, and the default breadth-first OmpSs scheduler by up
to 1.3x in a real 8-core heterogeneous platform and up to 2.7x
in a simulated 128-core chip.

RELATED WORK

Several previous works propose scheduling heuristics that
focus on the critical path in a task dependency graph (TDG) to
reduce total execution time [1, 2, 3, 4]. To identify the tasks in
the critical path, most of these works use the concept of
upward rank and downward rank. The upward rank of a task
is the maximum sum of computation and communication cost
of the tasks in the dependency chains from that task to an exit
node in the graph. The downward rank of a task is the
maximum sum of computation and communication cost of the
tasks in the dependency chain from an entry node in the graph
up to that task. Each task has an upward rank and downward
rank for each processor type in the heterogeneous system, as
the computation and communication costs differ across
processor types.

The Heterogeneous Earliest Finish Time (HEFT) algorithm

[4] maintains a list of tasks sorted in decreasing order of their
upward rank. At each schedule step, HEFT assigns the task
with the highest upward rank to the processor that finishes the
execution of the task at the earliest possible time. Another
work is the Longest Dynamic Critical Path (LDCP) algorithm
[1]. LDCP also statically schedules first the task with the
highest upward rank on every schedule step. The difference
between LDCP and HEFT is that LDCP updates the
computation and communication costs on multiple processors

~ 72 ~

of the scheduled task by the computation and communication
cost in the processor to which it was assigned.

The Critical-Path-on-a-Processor (CPOP) algorithm [4] also

maintains a list of tasks sorted in decreasing order as in HEFT,
but in this case it is ordered according to the addition of their
upward rank and downward rank. The tasks with the highest
upward rank + downward rank belong to the critical path. On
each step, these tasks are statically assigned to the processor
that minimizes the critical-path execution time.

The main weaknesses of these works are that (a) they

assume prior knowledge of the computation and
communication costs of each individual task on each processor
type, (b) they operate statically on the whole dependency
graph, so they do not apply to dynamically scheduled
applications in which only a partial representation of the
dependency graph is available at a given point in time, and (c)
most of them use randomly-generated synthetic dependency
graphs that are not necessarily representative of the
dependencies in real workloads.

REFERENCES

[1] M. Daoud and N. Kharma. Efficient Compile-Time Task Scheduling for
Heterogemeous Distributed Computing Systems. In Parallel and Distributed
Systems, 2006. ICPADS 2006. 12th International Conference on, volume 1,
pages 9, 2006.

[2] M. Hakem and F. Butelle. Dynamic Critical Path Scheduling Parallel
Programs onto Multiprocessors. In In the Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium, IPDPS'05,
pages 203b-203b, April 2005.

[3] C.-H. Liu, C.-F. Li, K.-C. Lai, and C.-C. Wu. A dynamic Critical Path
Duplication Task Scheduling Algorithm for Distributed Heterogeneous
Computing Systems. In Parallel and Distributed Systems, 2006. ICPADS
2006. 12th International Conference on, volume 1, pages 8, 2006.

[4] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing. IEEE
Transactions on Parallel and Distributed Systems, 13(3):260-274, Mar 2002.

