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Abstract

Lipschitzian aggregation operators with respect to the natural T - indistin-
guishability operator ET and their powers, and with respect to the residuation
→
T with respect to a t-norm T and its powers are studied.

A t-norm T is proved to be ET -Lipschitzian and
→
T -Lipschitzian, and is

interpreted as a fuzzy point and a fuzzy map as well.

Given an Archimedean t-norm T with additive generator t, the quasi-
arithmetic mean generated by t is proved to be the most stable aggregation
operator with respect to T .

Keywords: Aggregation Operator, Residuation, T -indistinguishability
Operator, Lipschitzian condition.

1 Introduction

Lipschitzian aggregation operators have been studied in [5] [6] [16] by considering
the usual metric on the unit interval. In this paper we study the Lipschitzian condi-
tion of aggregation operators with respect to the natural indistinguishability oper-
ator ET and their powers EpT so that an aggregation operator h is EpT -Lipschitzian
when for all x1, x2, ..., xn, y1, y2, ..., yn ∈ [0, 1]

T (EpT (x1, y1), ..., EpT (xn, yn)) ≤ ET (h(x1, x2, ..., xn), h(y1, y2, ..., yn)).

This means that from similar inputs we obtain similar aggregations.

An aggregation operator h will be called
→
T
p

-Lipschitzian if for all x1, x2, ..., xn,
y1, y2, ..., yn ∈ [0, 1]

T (
→
T
p

(x1|y1), ...,
→
T
p

(xn|yn)) ≤
→
T (h(x1, x2, ..., xn)|h(y1, y2, ..., yn)),

meaning that if from xi we can infer yi for all i = 1, 2, ..., n, from the aggregation
h(x1, x2, ..., xn), the aggregation h(y1, y2, ..., yn) can be inferred.
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When T is the Lukasiewicz t-norm, the ET -Lipschitzian condition coincides
with the 1-Lipschitzian condition with the usual metric on [0,1] and the definition
of [16] is recovered.

It is worth noticing the relation between the ET -Lipschitzian condition of an
aggregation operator h and its extensionality with respect to the integral powers

T (

n times︷ ︸︸ ︷
ET , ..., ET ).
The t-norm T can be seen as a fuzzy point and a fuzzy map as well.
Also, if T is a continuous Archimedean t-norm with an additive generator t and

mt the quasi-arithmetic mean generated by t (mt(x1, x2, ..., xn) =
t−1

(
t(x1)+t(x2)+...+t(xn)

n

)
), then mt is the most stable aggregation operator with

respect to T .
The paper includes a section with some basic concepts in fuzzy reasoning that

can be interpreted as Lipschitzian conditions.

2 Preliminaries

This section recalls the definition of the power x(n)
T of an element x of the unit

interval with respect to the t-norm T and generalizes it to irrational exponents.
Also the definition of aggregation operator is recalled.

For the sake of simplicity we will assume continuity for t-norms throughout the
paper.

Since a t-norm T is associative, we can extend it to an n-ary operation in the
standard way:

T (x) = x

T (x1, x2, ...xn) = T (x1, T (x2, ..., xn)).

In particular, following the notation in [15], T (
n times︷ ︸︸ ︷
x, x, ..., x) will be denoted by x(n)

T .

The n-th root x( 1
n )

T of x with respect to T is defined by

x
( 1

n )

T = sup{z ∈ [0, 1] | z(n)
T ≤ x}

and for m,n ∈ N , x( m
n )

T =
(
x

( 1
n )

T

)(m)

T
.

Lemma 2.1. [15] If k,m, n ∈ N, k, n 6= 0 then x
( km

kn )

T = x
( m

n )

T .

Lemma 2.2. Let x1, ..., xn ∈ (0, 1] and n ∈ N . T (x( 1
n )

1T
, ..., x

( 1
n )
nT ) 6= 0.

The powers x( m
n )

T can be extended to irrational exponents in a straightforward
way.
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Definition 2.3. If r ∈ R+ is a positive real number, let {an}n∈N be a sequence of
rational numbers with limn→∞an = r. For any x ∈ [0, 1], the power x(r)

T is

x
(r)
T = limn→∞x

(an)
T .

Continuity assures the existence of this limit and its independence from the
selection of the sequence {an}n∈N .

Proposition 2.4. Let T be an Archimedean t-norm with additive generator t,
x ∈ [0, 1] and r ∈ R+. Then

x
(r)
T = t[−1](rt(x)).

where t[−1] is the pseudo-inverse of t.

Proof. Due to continuity of t we need to prove it only for positive rational numbers
r.

If r is a positive integer, then trivially x(r)
T = t[−1](rt(x)).

If r = 1
n with n ∈ N , then x

( 1
n )

T = z with z
(n)
T = x or t[−1](nt(z)) = x and

x
( 1

n )

T = t[−1]
(
t(x)
n

)
.

For a rational number m
n ,

x
( m

n )

T =
(
x

( 1
n )

T

)(m)

T
= t[−1]

(
mt
(
x

( 1
n )

T

))
=

t[−1]

(
mt

(
t[−1]

(
t(x)
n

)))
= t[−1]

(m
n
t(x)

)
.

Finally, let us recall the definition of aggregation operator.

Definition 2.5. [5] An aggregation operator is a map h :
⋃
n∈N [0, 1]n → [0, 1]

satisfying

1. h(0, ..., 0) = 0 and h(1, ..., 1) = 1

2. h(x) = x ∀x ∈ [0, 1]

3. h(x1, ..., xn) ≤ h(y1, ..., yn) if x1 ≤ y1, ..., xn ≤ yn (monotonicity).

The restriction of h to [0, 1]n will be denoted by h(n) so that a global aggregation
operator h can be split into the family of n-ary operators (h(n))n∈N .

For example, for a t-norm T , T(n)(x1, ..., xn) is simply T (x1, ..., xn)
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3
→
T -Lipschitzian aggregation operators

Definition 3.1. The residuation
→
T of a t-norm T is defined by

→
T (x|y) = sup{α ∈ [0, 1] | T (x, α) ≤ y).

The residuation
→
T of a t-norm T can be seen as a fuzzy implication. It satisfies

the following properties.

Proposition 3.2. Let
→
T be the residuation of a t-norm T .

→
T satisfies for all

x, y, z ∈ [0, 1]

1. x ≤ z =⇒
→
T (x|y) ≥

→
T (z|y)

2. y ≤ z =⇒
→
T (x|y) ≤

→
T (x|z)

3. x ≤ y =⇒
→
T (x|y) = 1

4.
→
T (1|y) = y

5.
→
T (x|x) = 1

6.
→
T (x|y) ≥ y.

In particular,
→
T (0|0) =

→
T (0|1) =

→
T (1|1) = 1 and

→
T (1|0) = 0, so that it

coincides with the classical implication in the crisp values.
Note that given x, y ∈ [0, 1], either

→
T (x|y) or

→
T (y|x) equal 1.

Proposition 3.3. Let T be an Archimedean t-norm with additive generator t. For
all p > 0,

→
T
p

can be calculated for all x, y ∈ [0, 1] by

→
T
p

(x|y) = t[−1](pt(
→
T (x|y)).

Example 3.4.

1. If T is the Lukasiewicz t-norm, then
→
T
p

(x|y) = Max(0,Min(1−p(x−y), 1))
for all x, y ∈ [0, 1].

2. If T is the product t-norm, then
→
T
p

(x|y) = Min
((
y
x

)p
, 1
)

for all x, y ∈ [0, 1].

Proposition 3.5. Let T -be a t-norm and p, q > 0.
→
T
p

≤
→
T
q

if and only if p ≥ q.

In general,
→
T
p

do not satisfy the conditions for being a fuzzy implication. For
example, for the Lukasiewicz t-norm,

→
T
p

(1|0) = Max(0, 1− p), which is different
from 0 for p < 1.
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Lemma 3.6. Let a, b be elements of the unit interval with a ≤ b, T a t-norm and
p > 0. Then a

(p)
T ≤ b

(p)
T .

Proof. If p is a positive integer, then clearly a(p)
T ≤ b

(p)
T .

If p = 1
n with n a positive integer, then again a

(p)
T ≤ b

(p)
T , since the supremum

of all z ∈ [0, 1] with z
(p)
T ≤ a will be smaller than the supremum of all z ∈ [0, 1]

with z
(p)
T ≤ b.

Therefore a(p)
T ≤ b

(p)
T for all positive rational p. Due to the continuity of T , the

result can be extended to all real p > 0.

Proposition 3.7. Let T be a t-norm. Then
→
T
p

satisfies properties 1., 2., 3., 5.
of Proposition 3.2.

Proof. It is a consequence of the monotonicity of the powers with respect to a
t-norm.

Nevertheless, properties 4. and 6. of Proposition 3.2 may be violated by
→
T
p

.
The next two propositions give conditions in which these properties are satisfied.

Proposition 3.8. Let T be an Archimedean t-norm.
→
T
p

satisfies property 6. of
Proposition 3.2 if and only if p ≤ 1.

Proof. Let t be an additive generator of T . Then

→
T
p

(x|y) = t[−1](pt(
→
T (x|y))) ≥ y

if and only if

pt(
→
T (x|y)) ≤ t(y)

that is equivalent to

t(
→
T (x|y)) ≤ t(y)

p

and to
→
T (x|y) ≥ t[−1]

(
t(y)
p

)
.

t(y)
p ≥ t(y) and t[−1]

(
t(y)
p

)
≤ y if and only if p ≤ 1. So

→
T (x|y) ≥ y ≥ t[−1]

(
t(y)
p

)
if and only if p ≤ 1.

Proposition 3.9. Let T be an Archimedean t-norm.
→
T
p

satisfies property 4. of
Proposition 3.2 if and only if T is strict or T is non-strict and p ≥ 1.
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Proof.
→
T
p

(1|0) = t[−1](pt(
→
T (1|0))) = t[−1](pt(0))

If T is strict, then t(0) =∞ and t[−1](∞) = 0.
If T is non-strict, then t[−1](pt(0)) = 0 if and only if p ≥ 1.

We can now define the Lipschitzian condition of an aggregation operator with
respect to

→
T
p

.

Definition 3.10. Given a t-norm T and p > 0, an aggregation operator h is
→
T
p

-Lipschitzian if for all x1, x2, ..., xn, y1, y2, ..., yn ∈ [0, 1]

T (
→
T
p

(x1|y1), ...,
→
T
p

(xn|yn)) ≤
→
T (h(x1, x2, ..., xn)|h(y1, y2, ..., yn)).

The interpretation of this property is that if from xi we can infer yi for all
i = 1, 2, ..., n, from the aggregation h(x1, x2, ..., xn), the aggregation h(y1, y2, ..., yn)
can be inferred.

If xi ≤ yi for all i = 1, 2, ..., n, then the property is satisfied trivially (1 ≤ 1).
If xi ≥ yi for all i = 1, 2, ..., n, then the property coincides with EpT -Lipschitzianity
(see Section 4).

Proposition 3.12 states that a t-norm T is a
→
T -Lipschitzian aggregation opera-

tor.

Lemma 3.11. Let T be a continuous t-norm. Then, for all x, y ∈ [0, 1] with x ≥ y

T (x,
→
T (x|y)) = y.

Proposition 3.12. Let T be a continuous t-norm. Then T is a
→
T -Lipschitzian

aggregation operator.

Proof. We must prove

T (
→
T (x1|y1), ...,

→
T (xn|yn)) ≤

→
T (T (x1, ..., xn)|T (y1, ..., yn))

or, equivalently,

T (
→
T (x1|y1), ...,

→
T (xn|yn), x1, ..., xn) ≤ T (y1, ..., yn).

But,
if xi ≤ yi, then T (

→
T (xi|yi), xi) ≤ yi and

If xi ≥ yi, then T (
→
T (xi|yi), xi) = yi.

Note that if xi ≥ yi for all i = 1, ...n, then T (
→
T (x1|y1), ...,

→
T (xn|yn)) =

→
T

(T (x1, ..., xn)|T (y1, ..., yn)). Since for every t-norm different from the Minimum
→
T
p

<
→
T
q

if p > q, we have that T 6= Min is not
→
T
p

-Lipschitzian for p < 1.
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4 ET -Lipschitzian aggregation operators

Lipschitzian aggregation operators with respect to the natural T - indistinguishabil-
ity operator ET and their powers are a special kind of aggregation operators that
generalize the definition of [16]. Their interest lays in the fact that they are stable
operators in the sense that the similarity between the aggregation of two n-tuples
is bounded by the similarity between them.

It is interesting to point out that the Lipschitzian condition is equivalent to
extensionality (Proposition 5.6).

Among other results, it will be proved that a t-norm T is ET -Lipschitzian.
Also quasi-arithmetic means are proved to be the most stable aggregation op-

erators.

Definition 4.1. The natural T -indistinguishability operator ET associated to a
given t-norm T is the fuzzy relation on [0,1] defined by

ET (x, y) = T (
→
T (x|y),

→
T (y|x)) = Min(

→
T (x|y),

→
T (y|x)).

Note that
→
T (x|y) = ET (x, y) if and only if x ≥ y.

Example 4.2.

1. If T is an Archimedean t-norm with additive generator t, then ET (x, y) =
t−1(|t(x)− t(y)|) for all x, y ∈ [0, 1].

2. If T is the Lukasiewicz t-norm, then ET (x, y) = 1−|x−y| for all x, y ∈ [0, 1].

3. If T is the Product t-norm, then ET (x, y) =

{
Min(x,y)
Max(x,y) if x 6= y

1 otherwise.

4. If T is the Minimum t-norm, then ET (x, y) =

{
Min(x, y) if x 6= y

1 otherwise.

ET is indeed a special kind of (one-dimensional) T -indistinguishability operator
(Definition 4.3) [4] and in a logical context where T plays the role of the conjunction,
ET is interpreted as the bi-implication associated to T [8].

The general definition of T -indistinguishability operator is as follows.

Definition 4.3. Given a t-norm T , a T -indistinguishability operator E on a set
X is a fuzzy relation E : X ×X → [0, 1] satisfying for all x, y, z ∈ X

1. E(x, x) = 1 (Reflexivity)

2. E(x, y) = E(y, x) (Symmetry)

3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).
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Proposition 4.4. Let E be a T indistinguishability operator on a set X. The fuzzy
relation En defined by

En(x, y) = T (

n times︷ ︸︸ ︷
E(x, y), ..., E(x, y)) ∀x, y ∈ X

is a T -indistinguishability operator.

Proposition 4.5. [11] Let E be a T -indistinguishability operator on a set X. E
1
n

is a T -indistinguishability operator on X.

Corollary 4.6. Let E be a T -indistinguishability operator on a set X. E
m
n is a

T -indistinguishability operator on X.

Proof. Propositions 4.4. and 4.5.

Corollary 4.7. Let ET be the natural T -indistinguishability operator on [0,1] as-
sociated to T . E

m
n

T is a T -indistinguishability operator.

Continuity of the t-norm T allows us to extend the powers of a T - indistinguisha-
bility operator to positive irrational numbers in the same way as in Definition 2.3.

Example 4.8.

1. If T is a continuous Archimedean t-norm with additive generator t, then
EpT (x, y) = t[−1](p|t(x)− t(y)|) for all x, y ∈ [0, 1].

2. If T is the Lukasiewicz t-norm, then EpT (x, y) = Max(0, 1− p|x− y|) for all
x, y ∈ [0, 1].

3. If T is the Product t-norm, then EpT (x, y) =

{
Min(xp,yp)
Max(xp,yp) if x 6= y

1 otherwise.

4. If T is the Minimum t-norm, then EpT (x, y) = ET (x, y) for all x, y ∈ [0, 1].

Proposition 4.9. Let T -be a t-norm and p, q > 0. EpT ≤ E
q
T if and only if p ≥ q.

The Lipschitzian condition for an aggregation operator with respect to a T -
indistinguishability operator E is defined as follows.

Definition 4.10. Let E be a T -indistinguishability operator on [0, 1]. h is E-
Lipschitzian if and only if ∀n ∈ N , ∀x1, ..., xn, y1, ..., yn ∈ [0, 1]

T (E(x1, y1), ..., E(xn, yn)) ≤

ET (h(x1, ..., xn), h(y1, ..., yn)).

Next Proposition shows that a t-norm T is an ET -Lipschitzian aggregation
operator.

Proposition 4.11. Let T be a continuous t-norm. Then T is an ET -Lipschitzian
aggregation operator.
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Proof. It is a consequence of 4.1 and Proposition 3.12

If T is a continuous Archimedean t-norm, the EpT -Lipschitzian property trans-
lates to a classical Lipschitzian condition.

Proposition 4.12. Let T be a continuous Archimedean t-norm with additive gen-
erator t, p ∈ [0, 1] and h an aggregation operator. h is EpT -Lipschitzian if and only
if ∀n ∈ N , ∀x1, ..., xn, y1, ..., yn ∈ [0, 1]

p|t(x1)− t(y1)|+ ...+ p|t(xn)− t(yn)| ≥

|t (h(x1, ..., xn))− t (h(y1, ..., yn)) | (1).

Last Proposition says that for all n ∈ N the map H : [0, t(0)]n → [0, t(0)]
defined by

H(x1, ..., xn) = t(h(t−1(x1), ..., t−1(xn)))

is a p-Lipschitzian map.
Also note that if T is the Lukasiewicz t-norm, then (1) is the definition of the

Lipschitz property in [16], so that Definition 4.10 contains the one in [16] as a
particular case.

If an aggregation operator h is EpT -Lipschitzian, it may happen that for different
values of n the corresponding n-ary operators h(n) may satisfy the Lipschitzian
conditions for different values of p ([5] p. 12).

Definition 4.13. An aggregation operator is sub idempotent if and only if for all

x ∈ [0, 1] and n ∈ N , h(
n times︷ ︸︸ ︷
x, ..., x) ≤ x

Proposition 4.14. Let T 6= Min be a t-norm, h a sub idempotent aggregation
operator and n ∈ N . If h(n) is EpT -Lipschitzian, then p ≥ 1

n .

Proof. If h(n) is EpT -Lipschitzian, then in particular, for x ∈ X

T ((

n times︷ ︸︸ ︷
EpT (1, x), ..., EpT (1, x) ≤ ET (h(

n times︷ ︸︸ ︷
1, ..., 1), h(

n times︷ ︸︸ ︷
x, ..., x))

and so

x
(pn)
T ≤ h(

n times︷ ︸︸ ︷
x, ..., x) ≤ x

which holds if and only if pn ≥ 1 or equivalently, if and only of p ≥ 1
n

If T is a non-strict continuous Archimedean t-norm the sub idempotent property
can be dropped.

Proposition 4.15. Let T be a non-strict continuous Archimedean t-norm with ad-
ditive generator t, h an aggregation operator and n ∈ N . If h(n) is EpT -Lipschitzian,
then p ≥ 1

n .
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Proof. Putting xi = 1 and yi = 0 for all i = 1, ..., n in Proposition 4.12, we get

p|t(1)− t(0)|+ ...+ p|t(1)− t(0)| ≥ |t(1)− t(0)|.

npt(0) ≥ t(0)

or
p ≥ 1

n
.

In [5] it has been proved that the arithmetic mean is the only aggregation
operator h whose n-ary maps h(n) are 1

n -Lipschitzian. Proposition 4.18 generalizes
this result to arbitrary quasi-arithmetic means.

Next Proposition is well known.

Proposition 4.16. [1], [15] m is a quasi-arithmetic mean in [0,1] if and only if
there exists a continuous monotonic map t : [0, 1] → [−∞,∞] such that for all
n ∈ N and x1, ..., xn ∈ [0, 1]

m(x1, ...xn) = t−1

(
t(x1) + ...+ t(xn)

n

)
.

m is continuous if and only if Ran t 6= [−∞,∞].

t will be called a generator of m and if m is generated by t we will denote it by
mt.

Proposition 4.17. [11] The map assigning to every continuous Archimedean t-
norm T with generator t the mean mt generated by t is a bijection between the
set of continuous Archimedean t-norms and the set of continuous quasi-arithmetic
means.

Proposition 4.18. Let T be a continuous Archimedean t-norm with additive gen-
erator t and mt the quasi-arithmetic mean generated by t.

• (a) For every n ∈ N mt(n) is EpT -Lipschitzian if and only if p ≥ 1
n .

• (b) mt is the only aggregation operator fulfilling (a)

5 The Lipschitzian condition

As it is pointed out in the introduction, the Lipschitzian condition is interesting
not only for aggregation operators, but it appears naturally in many branches of
fuzzy reasoning. Many important properties like the extensionality with respect
to a fuzzy relation, the definition of fuzzy maps [8], vague operations [7] or the
extensionality of a crisp map [7], only to mention a few of them, have a nice
Lipschitzian interpretation. Also Lipschitzian conditions on linguistic modifiers
and t-norms have been studied in [17], [18].

Let us have a look at some of these interpretations.
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Proposition 5.1. [21] Let µ be a fuzzy subset of X and T a continuous t-norm.
The fuzzy relation Eµ on X defined for all x, y ∈ X by

Eµ(x, y) = ET (µ(x), µ(y))

is a T -indistinguishability operator on X.

Definition 5.2. Let E be a T -indistinguishability operator on a set X. A fuzzy
subset µ of X is extensional with respect to E if and only if for all x, y ∈ X

T (E(x, y), µ(y)) ≤ µ(x).

Proposition 5.3. Let E be a T -indistinguishability operator on a set X. A fuzzy
subset µ of X is extensional with respect to E if and only if for all x, y ∈ X

E(x, y) ≤ Eµ(x, y).

This is a Lipschitzian condition and if T is Archimedean with additive generator
t, then we get the following result.

Corollary 5.4. Let T be an Archimedean t-norm with additive generator t and E
a T -indistinguishability operator on a set X. A fuzzy subset µ of X is extensional
with respect to E if and only if for all x, y ∈ X

t(E(x, y)) ≥ |t(µ(x))− t(µ(y))|.

In particular, if X = [0, 1] and E = EpT , then µ is extensional if an only if

p|t(x)− t(y)| ≥ |t(µ(x))− t(µ(y))|.

The Lipschitzian condition of an aggregation operator can also be translated to
extensionality with respect to a T -indistinguishability operator.

If E1, ..., En are T -indistinguishability operators defined on the universes X1, ...,
Xn respectively, a T -indistinguishability operator on X1 × ...×Xn can be defined
in the following way.

Proposition 5.5. Let E1, ..., En be T -indistinguishability operators on X1, ..., Xn

respectively. Then the fuzzy relation T (E1, ..., En) on X1 × ...×Xn defined for all
(x1, ..., xn), (y1, ..., yn) ∈ X1 × ...×Xn by

T (E1, ..., En)((x1, ..., xn), (y1, ..., yn)) = T (E1(x1, y1), ..., En(xn, yn))

is a T -indistinguishability operator on X1 × ...×Xn.

Proposition 5.6. Let E be a T -indistinguishability on [0, 1] and h an aggregation
operator. h is E-Lipschitzian if and only if h(n) (as a fuzzy subset of [0, 1]n) is

extensional with respect to T (

n times︷ ︸︸ ︷
E, ..., E) for all n ∈ N .

Proof. Proposition 5.3.
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Fuzzy maps fuzzify the concept of map between two universes X and Y in which
two T -indistinguishability operators are defined. A fuzzy map R is compatible with
the two T -indistinguishability operators in the following sense.

Definition 5.7. Let E,F be two T -indistinguishability operators on X and Y
respectively and R a fuzzy set of X × Y (i.e.: R : X × Y → [0, 1]). R is a fuzzy
map from X to Y if and only if for all x, x′ ∈ X, y, y′ ∈ Y

• (a) T (E(x, x′), F (y, y′), R(x, y)) ≤ R(x′, y′)

• (b) T (R(x, y), R(x, y′)) ≤ F (y, y′).

Property (a) says that R is a fuzzy subset of X × Y extensional with respect
to the T -indistinguishability T (E,F ) on X × Y and therefore it is a Lipschitzian
condition.

T(n) can be seen as a fuzzy map from [0, 1]n−1 into [0, 1].

Proposition 5.8. Let T be a continuous t-norm. T(n) is a fuzzy map from [0, 1]k

to [0, 1]n−k endowed with the T indistinguishability operators T (

k times︷ ︸︸ ︷
ET , ..., ET ) and

T (

n−k times︷ ︸︸ ︷
ET , ..., ET ) respectively.

Extensional crisp maps f : X → Y with respect to two T -indistinguishability
operators E and F defined on X and Y respectively are interesting since they
generate a fuzzy map from X to Y in a very natural way [8].

Definition 5.9. A crisp map f : X → Y is called extensional with respect to E
and F , T -indistinguishability operators on X and Y respectively, if and only if

E(x1, x2) ≤ F (f(x1), f(x2)).

This is again a Lipschitzian condition.

Corollary 5.10. Let T be an Archimedean t-norm with additive generator t, X =
Y = [0, 1], and EpT and EqT powers of the natural T -indistinguishability operator
ET . f : [0, 1]→ [0, 1] is extensional with respect to EpT and EqT if and only if

p

q
|t(x1)− t(x2)| ≥ |t(f(x1))− t(f(x2))|.

T(n) is also a fuzzy point of [0, 1]n

Definition 5.11. Let E be a T -indistinguishability operator on a set X and µ a
fuzzy subset of X. µ is a fuzzy point of X with respect to E if and only if for all
x, y ∈ X

T (µ(x), µ(y)) ≤ E(x, y).

Proposition 5.12. Let T be a continuous t-norm. T(n) is a fuzzy point of [0, 1]n

with respect to T (

n times︷ ︸︸ ︷
ET , ..., ET ).
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Proof. We have to prove that

T (T (x1, ..., xn), T (y1, ..., yn))

≤ T (ET (x1, y1), ..., ET (xn, yn))

which is an immediate consequence of

T (xi, yi) ≤ ET (xi, yi) for all i = 1, ..., n.

6 Concluding Remarks

In this paper Lipschitzian aggregation operators with respect to the natural T -
indistinguishability operator ET and their powers, and with respect to the residu-
ation

→
T and its powers have been studied.

It has been proved that a t-norm T is
→
T - and ET -Lipschitzian, and a fuzzy

point and a fuzzy map as well.
Quasi-arithmetic means mt play an important role since they are the most

stable aggregation operator with respect to T , meaning that the corresponding
n-ary operators mt(n) are E

1
n

T -Lipschitzian maps.
Lipschitzian properties are not only interesting for aggregation operators, but

in almost any part of fuzzy reasoning (see the references of section 5 and [14]
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