On the Threshold of Bounded Pseudo-Distances

E. Trillas^{1*} and A.R. de Soto^{2†}

 ¹ European Centre for Soft Computing, Spain enric.trillas@softcomputing.es
 ² Industrial and Computer Science Engineering School University of León, Spain adolfo.rdesoto@unileon.es

Abstract

This paper deals with the relationship between bounded pseudo-distances and its associated W_{φ} -indistinguishabilities, from which the idea of threshold of transitivity comes. By the way, bounded pseudo-distances are characterized.

Keywords: T-indistinguishabilities, bounded-distances, threshold.

1 Introduction

1.1 Distance and indistinguishability, as well as threshold, are important concepts in the experimental sciences and, in particular, in Computational Intelligence. Concerning the concept of a threshold, for which there is not a completely satisfactory definition, it can be said that:

- It is a fixed point or value where an abrupt change is observed,
- It is the point that must be exceeded to begin producing an effect or result or to elicit a response,
- It is the lowest point at which a stimulus begins to produce a sensation,
- It is the minimal stimulus that produces excitation of any structure, eliciting a motor response, etc.

These descriptions cover most of the cases where the concept of threshold applies. Following the Webster's dictionary, a threshold is "the point at which a

 $^{^{*}}$ This author has been partially supported by spanish CYCIT with the project TIN2005-08943-C02-01

 $^{^\}dagger$ This author has been partially supported by spanish CYCIT with the project TIN2005-08943-C02-01 and the Regional Council of the Junta de Castilla y León with the project LE051A05

stimulus is of sufficient intensity to begin to produce an effect". In that sense, below a value t in a numerical scale measuring the intensity of some input, it does not produce any effect, but as soon as the intensity surpasses the value t the input's effect is detected.

1.2 In many problems in Computational Intelligence concerning the similarity of certain elements, when measured by a numerical index of similarity $S(x, y) \in [0, 1]$ associated to each pair of these elements (like in Case-Based Reasoning), it appears the following question: What can be said on S(a, c) when it is 0 < S(a, b) and 0 < S(b, c)? Namely, when it does be 0 < S(a, c)? Equivalently, if $0 < r \le S(a, b)$ and $0 < r \le S(b, c)$, when it exists t(r) > 0 such that $0 < t(r) \le S(a, c)$? This problem can be called that of "large transitivity", and if R_S is the set of values r which satisfy large transitivity for S, then $t_S = \inf R_S$ is the minimum value for which this last inequality holds. It can be called the large transitivity threshold for S.

Sometimes S is taken to be S(x, y) = 1 - d(x, y) with d a bounded distance. In these cases $0 < r \le S(x, y)$ is equivalent to $d(x, y) \le 1 - r < 1$.

1.3 When the index $S: X \times X \longrightarrow [0, 1]$ is either min-transitive or prod-transitive [7], respectively,

- $\min(S(a,b), S(b,c)) \le S(a,c)$
- $S(a,b) \cdot S(b,c) \leq S(a,c),$

for all $a, b, c \in X$, from $0 < r \le S(a, b)$, $0 < r \le S(b, c)$, follows

- $0 < r = \min(r, r) \le \min(S(a, b), S(b, c)) \le S(a, c)$
- $0 < r^2 \leq S(a, b) \cdot S(b, c) \leq S(a, c),$

and then $t_S = \inf(0, 1] = 0$ for min and $t_S = \inf(0, 1] = 0$ for prod, is the corresponding threshold of large transitivity for the two kind of indexes, a threshold that actually is non informative. If S is W-transitive, with $W(x, y) = \max(0, x + y - 1)$ the Lukasiewicz t-norm, from $W(S(a, b), S(b, c)) \leq S(a, c)$, for all a, b, c in X, what follows is

$$W(r,r) = \max(0, 2r - 1) \le W(S(a,b), S(b,c)) \le S(a,c),$$

and it could be W(r,r) = 0 with r > 0. Since W(r,r) = 0 happens if and only if $r \le 0.5$, a threshold only exists if r > 0.5. That is, if $0.5 < r \le S(a, b)$, and $0.5 < r \le S(b, c)$, it is $0 < t(r) = 2r - 1 \le S(a, c)$. If the intensity of the link between a and b, and of that between b and c is greater than r, then t(r) = 2r - 1 > 0and is $S(a, c) \in [2r - 1, 1]$. In this case $t_S = \inf(\frac{1}{2}, 1] = \frac{1}{2}$.

It will be proved that S is a W-indistinguishability if and only if d = 1 - S is a pseudo-distance bounded by 1. Hence, to every pseudo-distance bounded by a > 0 it is associated the W-indistinguishability $S = 1 - \frac{d}{a}$, that allows to define a threshold for d from that of S. At this point it should be noticed that $0 < r \le S(x, y)$ is equivalent to $d(x, y)/a \le 1 - r < 1$.

1.4 This paper tries to study the threshold of transitivity of W_{φ} -indistinguishabilities, as well as the link between such indexes and bounded pseudo-distances and, in particular, to define a threshold for this last coming from that of the W_{φ} -indistinguishabilities. By the way, bounded pseudo-distances are characterized.

2 Basic Tools

2.1 A pseudo-distance in a set X is a mapping $d: X \times X \longrightarrow \mathbb{R}^+$ such that

- 1. d(x, x) = 0, for all x in X,
- 2. d(x, y) = d(y, x), for all x, y in X,
- 3. $d(x,y) + d(y,z) \ge d(x,z)$, for all x, y, z in X.

A distance is a pseudo-distance such that d(x, y) = 0 if and only if x = y. A pseudo-distance is bounded by a > 0 if $d(X \times X) \subset [0, a]$. Every bounded pseudo-distance is equivalent to a pseudo-distance bounded by 1, in the sense of "d is a pseudo-distance bounded by a if and only if the function $1/a \cdot d$ is a pseudo-distance bounded by 1", whose proof is immediate. Hence given a pseudo-distance d bounded by 1 and a > 0, the function $a \cdot d$ is a pseudo-distance bounded by a.

2.2 A strong-negation is a function $N: [0,1] \longrightarrow [0,1]$ such that

- 1. N(0) = 1,
- 2. if x < y, then N(y) < N(x),
- 3. N(N(x)) = x, for all x in [0, 1].

An order-automorphism of [0,1] is a function $\varphi:[0,1] \longrightarrow [0,1]$ such that

- 1. $\varphi(0) = 0, \varphi(1) = 1,$
- 2. if x < y, then $\varphi(y) < \varphi(x)$.

The functions $N_{\varphi} : [0,1] \longrightarrow [0,1]$ defined by $N_{\varphi}(x) = \varphi^{-1}(1-\varphi(x))$ are strong negations and (see [6]) for all strong-negation N there are order-automorphisms φ such that $N = N_{\varphi}$. Of course, both functions N and φ are bijective, continuous and N verifies N(1) = N(N(0)) = 0, and $N^{-1} = N$.

2.3 For what concerns the definitions and properties of t-norms (T), and t-conorms (S), see [1].

The three well known basic continuous t-norms are $T = \min, T = \text{prod}$, and $T(x, y) = W(x, y) = \max(0, x + y - 1)$ (Lukasiewicz t-norm). The t-norm min is the biggest of all them, since $T(x, y) \leq T(x, 1) = x$, $T(x, y) \leq T(1, y) = y$ imply $T(x, y) \leq \min(x, y)$. For all order-automorphism φ , the function $T_{\varphi} = \varphi^{-1} \circ T \circ (\varphi \times \varphi)$ is a t-norm if and only if T is a t-norm, and T_{φ} is continuous if and only if T is continuous. Hence, for all continuous t-norm T there is the family of

continuous t-norms $F(T) = \{T_{\varphi} : \varphi \text{ an automorphism}\}$, and in particular, there is the Lukasiewicz family

$$W_{\varphi}(x,y) = \varphi^{-1}(W(\varphi(x),\varphi(y))) = \varphi^{-1}(\max(0,\varphi(x)+\varphi(y)-1)).$$

Neither $\min_{\varphi}(=\min)$, nor $\operatorname{prod}_{\varphi}(=\varphi^{-1}(\varphi(x)\cdot\varphi(y)))$, have zero-divisors, but the t-norms W_{φ} do have such kind of elements: it is, $W_{\varphi}(x,y) = 0$ if and only if $\varphi(x) + \varphi(y) - 1 \leq 0$, or if and only if $y \leq N_{\varphi}(x)$.

2.4 A function $E: X \times X \longrightarrow [0,1]$ is a *T*-indistinguishability (see [7, 10]) on the set X,4 if it verifies

- 1. E(x, x) = 1, for all x in X,
- 2. E(x,y) = E(y,x), for all x, y in X,
- 3. $T(E(x,y), E(y,z)) \leq E(x,z)$, for all x, y, z in X.

If E is a T-indistinguishability on [0, 1], for any $f : X \longrightarrow [0, 1]$, the function E_f defined by $E_f(x, y) = E(f(x), f(y))$ is a T-indistinguishability on X.

Examples of T-indistinguishabilities are given by

$$E_T(x,y) = \min(J_T(x,y), J_T(y,x)),$$

with $J_T(x, y) = \sup\{z \in [0, 1] : T(z, x) \le y\}$. For example,

- From $J_{\min}(x,y) = \begin{cases} 1 & \text{if } x \le y \\ y & \text{if } x > y \end{cases}$, is $E_{\min}(x,y) = \begin{cases} 1 & \text{if } x = y \\ \min(x,y) & \text{if } x \ne y \end{cases}$

- From
$$J_{\text{prod}}(x,y) = \begin{cases} 1 & \text{if } x \le y \\ \frac{y}{x} & \text{if } x > y \end{cases}$$
, is $E_{\text{prod}}(x,y) = \begin{cases} 1 & \text{if } x = y \\ \min(\frac{x}{y}, \frac{y}{x}) & \text{if } x \ne y \end{cases}$

- From
$$J_{W_{\varphi}}(x,y) = \varphi^{-1}(\min(1,1-\varphi(x)+\varphi(y)))$$
, is
 $E_{W_{\varphi}}(x,y) = \varphi^{-1}(1-\varphi(|x-y|)).$

Theorem 2.1. $E: X \times X \longrightarrow [0,1]$ is a *T*-indistinguishability if and only if there exists a family \mathcal{F} of functions $f: X \longrightarrow [0,1]$, such that

$$E(x,y) = \inf\{E_T(f(x), f(y)) : f \in \mathcal{F}\}.$$

Proof. See [7, 10].

Hence, for all finite family $\mathcal{F} = \{f_1, \ldots, f_n\}$ of functions $f_i : X \longrightarrow [0, 1]$, the *T*-indistinguishability $E(x, y) = \min\{E_T(f_i(x), f_i(y) : 1 \le i \le n\}$ is said to be a finitely generated *T*-indistinguishability. For example,

$$E(x,y) = \min\{\varphi^{-1}(1 - \varphi(|f_i(x) - f_i(y)|)) : 1 \le i \le n\}$$

= $\varphi^{-1}(1 - \max_{1 \le i \le n} (|f_i(x) - f_i(y)|)),$

is a finitely generated W_{φ} -indistinguishability.

2.5 Remarks.

2.5.1 As it is easy to prove, an order-automorphism φ of [0,1] is sub-additive $(\varphi(x+y) \leq \varphi(x) + \varphi(y))$, if and only if the order-automorphism φ^{-1} is super additive $(\varphi^{-1}(x) + \varphi^{-1}(y) \leq \varphi^{-1}(x+y))$.

2.5.2 If d is a pseudo-distance on X bounded by 1, and the order-automorphism φ is sub-additive, the function $d_{\varphi} = \varphi \circ d$ is also a pseudo-distance on X bounded by 1.

2.5.3 The order-automorphisms $\varphi(x) = x^n (n = 2, 3, ...)$ are super-additive, and consequently the order-automorphisms $\varphi^{-1} = \sqrt[n]{x}(n = 2, 3, ...)$ are sub-additive.

3 Bounded Pseudo-distances and W_{φ} -indistinguishabilities

Theorem 3.1. Let it be a function $d : X \times X \longrightarrow [0,1]$. If for some superadditive order-automorphism φ on [0,1], the function $E_{\varphi}(x,y) = N_{\varphi}(d(x,y))$ is a W_{φ} -indistinguishability, d is a pseudo-distance bounded by 1.

Proof. It is $d(x,y) = N_{\varphi}(E(x,y))$. Hence, d(x,x) = 0 and d(x,y) = d(y,x) for all x, y in X. From,

$$W_{\varphi}(E_{\varphi}(x,y), E_{\varphi}(y,z)) = \varphi^{-1}(\max(0, \varphi(E_{\varphi}(x,y)) + \varphi(E_{\varphi}(y,z)) - 1))$$

$$= \varphi^{-1}(\max(0, 1 - \varphi(d(x,y)) - \varphi(d(y,z))))$$

$$\leq E_{\varphi}(x,z)$$

$$= N_{\varphi}(d(x,z))$$

$$= \varphi^{-1}(1 - \varphi(d_{\varphi}(x,z)),$$

follows $\max(0, 1 - \varphi(d(x, y)) + \varphi(d(y, z))) \leq 1 - \varphi(d_{\varphi}(x, z))$. Hence,

$$\varphi(d(x,z)) \leq \varphi(d(x,y)) + \varphi(d(y,z)) \leq \varphi(d(x,y) + d(y,z)),$$

since φ is super-additive. Finally, $d(x, z) \leq d(x, y) + d(y, z)$.

Theorem 3.2. Let it be φ a sub-additive order-automorphism of [0,1], and d a pseudo-distance on X bounded by 1. The function $E_{\varphi}(x,y) = N_{\varphi}(d(x,y))$ is a W_{φ} -indistinguishability.

Proof. Obviously, $E_{\varphi}(x,x) = 0$, and $E_{\varphi}(x,y) = E_{\varphi}(y,x)$. From $d(x,z) \le d(x,y) + d(y,z)$, follows

$$\varphi(d(x,z)) \leq \varphi(d(x,y) + d(y,z)) \leq \varphi(d(x,y)) + \varphi(d(y,z)),$$

since φ is sub-additive. Then, $1 - \varphi(d(x, y)) - \varphi(d(y, z)) \leq 1 - \varphi(d(x, z))$, and $\max(0, 1 - \varphi(d(x, y)) - \varphi(d(y, z))) \leq 1 - \varphi(d(x, z))$. Hence,

$$\varphi^{-1}(\max(0, 1 - \varphi(d(x, y)) - \varphi(d(y, z)))) \leq \varphi^{-1}(1 - \varphi(d(x, z)))$$

= $N_{\varphi}(d(x, z))$
= $E_{\varphi}(x, y)$

By the other side,

$$W_{\varphi}(E_{\varphi}(x,y), E_{\varphi}(y,z)) = \varphi^{-1}(\max(0,\varphi(E_{\varphi}(x,y)) + \varphi(E_{\varphi}(y,z)) - 1))$$

= $\varphi^{-1}(\max(0, 1 - \varphi(d(x,y)) - \varphi(d(y,z)))).$

That is, $W_{\varphi}(E_{\varphi}(x,y), E_{\varphi}(y,z)) \leq E_{\varphi}(x,z)$, for all x, y, z in X.

Corollary 1. d is a pseudo-distance bounded by 1 if and only if E = 1 - d is a W-indistinguishability.

Proof. The order-automorphism $\varphi = \text{Id}$ is both sub-additive and super-additive. Hence, if E is a W-indistinguishability, with N_{Id} , is $d = N_{\text{Id}} \circ E = 1 - E$ a pseudo-distance bounded by 1, by theorem 3.1 and if d is a pseudo-distance, then $E = N_{\text{Id}} \circ d = 1 - d$ is a W-indistinguishability by theorem 3.2.

Theorem 3.3 (Characterization of bounded pseudo-distances). The only pseudodistances bounded by a > 0 are those defined by

$$d(x,y) = a \cdot \sup\{|f_i(x) - f_i(y)| : i \in I\},\$$

for some family of functions $f_i: X \longrightarrow [0,1], i \in I$.

Proof. Since $\frac{1}{a} \cdot d$ is a pseudo-distance bounded by 1, $E = 1 - \frac{d}{a}$ is a W-indistinguishability by corollary 1. Then, by theorem 2.1 there is a family of functions $\{f_i : i \in I\}$ such that $E(x, y) = \inf_{i \in I} E_W(f_i(x), f_i(y)) = \inf_{i \in I} \{1 - |f_i(x) - f_i(y)|\} = 1 - \sup_{i \in I} |f_i(x) - f_i(y)|$. Then,

$$d(x,y) = a \cdot (1 - E(x,y)) = a \cdot \sup_{i \in I} |f_i(x) - f_i(y)|.$$

A bounded pseudo-distance is finitely generated if I is a finite set. Hence, the only finitely-generated bounded pseudo-distances are those of the form

$$d(x,y) = a \cdot \max_{1 \le i \le n} |f_i(x) - f_i(y)|,$$

for all x, y in X. Notice that the euclidean distance in X = [0, 1], d(x, y) = |x - y| is finitely generated by the single function f = Id.

The family $\{f_i : i \in I\}$ can be taken as giving some "measurements" of the objects in X, relatively to the attributes or properties they can show. For example, if $X = \{x_1, x_2, x_3, x_4\}$, and the attributes on considerations are A_1 and A_2 , with

$$f_i(x_j) =$$
degree up to which x_j is $A_i(1 \le i \le 2, 1 \le j \le 4),$

the corresponding pseudo-distance can be obtained once known the 2×4 numbers $f_i(x_j) \in [0, 1]$. In the case given by the table 1, it results the distance bounded by 1:

	x_1	x_2	x_3	x_4
f_1	0.7	0.5	0.7	0.4
f_2	0.8	0.4	0.6	0.5

Table 1: Two generating functions

$$\begin{aligned} d(x_1, x_1) &= d(x_2, x_2) = d(x_3, x_3) = d(x_4, x_4) = \max(0, 0) = 0\\ d(x_1, x_2) &= d(x_2, x_1) = \max(|0.7 - 0.5|, |0.8 - 0.4|) = 0.4\\ d(x_1, x_3) &= d(x_3, x_1) = \max(0, 0.2) = 0.2\\ d(x_1, x_4) &= d(x_4, x_1) = 0.3\\ d(x_2, x_3) &= d(x_3, x_2) = 0.2\\ d(x_2, x_4) &= d(x_4, x_2) = 0.1\\ d(x_3, x_4) &= d(x_4, x_3) = 0.3\end{aligned}$$

It is easy to check that d is a distance. For example, with the triplet (x_2, x_3, x_4) is $d(x_2, x_3) + d(x_3, x_4) = 0.2 + 0.3 = 0.5 \ge 0.2 = d(x_2, x_4)$. Notice that the function f_1 is not injective.

In particular, functions f_i can be probabilities in which case, if $X = \{x_1, \ldots, x_n\}$, it should be $\sum_{j=1}^n f_i(x_j) = 1$, for all $i \in I$.

Theorem 3.4. A finitely generated bounded pseudo-distance with at least an injective function, is a distance.

Proof. It is clear because $d(x, y) = 0 = a \cdot \max_{1 \le i \le n} |f_i(x) - f_i(y)|$ if and only if $f_i(x) = f_i(y)$ for all *i*, and then x = y.

The reciprocal result of this theorem is not true, since it is possible to have distances from a family of non-injective functions. For example, with $X = \{x_1, x_2, x_3\}$ and two non-injective functions f_1, f_2 with $f_1(x_1) = f_1(x_2) = 0.5, f_1(x_3) = 0.6$ and $f_2(x_1) = 0.3, f_2(x_2) = f_2(x_3) = 0.4$, it results the bounded distance given by $d(x_1, x_2) = d(x_1, x_3) = d(x_2, x_3) = 0.1$.

3.1 Remark. To every pseudo-distance on X bounded by a > 0, it is associated the family of W_{φ} -indistinguishabilities on X, $E_{W_{\varphi}} = N_{\varphi} \circ (\frac{d}{a})$, for all sub-additive order-automorphism φ of [0, 1]. In each case, the more adequate φ for the problem under consideration should be selected.

4 The Threshold of Transitivity of a W_{φ} -Indistinguishability

If $E: X \times X \longrightarrow [0,1]$ is T-transitive, from $0 < r \leq E(x,y)$, $0 < r \leq E(y,z)$, it follows $0 \leq T(r,r) \leq T(E(x,y), E(y,z)) \leq E(x,z)$. That is, $0 \leq T(r,r) \leq E(x,z)$. For both $T = \min$ and $T = \operatorname{prod}_{\varphi}$, it is $0 < T(r,r) \leq E(x,z)$, but for $T = W_{\varphi}$ it could be $W_{\varphi}(r,r) = 0$, in which case E fails to be largely transitive. Since $W_{\varphi}(r,r) = 0$, is equivalent to $2\varphi(r) - 1$, or $r \leq \varphi^{-1}(0.5)$, it suffices to take $r > \varphi^{-1}(0.5)$ to have, $0 < r \le E(x, y)$, and $0 < r \le E(y, z)$, imply $0 < \varphi^{-1}(2\varphi(r) - 1) \le E(x, z)$.

Let us call inf $\{r \in [0,1] : r > \varphi^{-1}(0.5)\} = \varphi^{-1}(0.5)$ the threshold of transitivity of E. Notice that from $r \leq 1$, or $\varphi(r) \leq 1$, it follows $2\varphi(r) - 1 \leq \varphi(r)$, that is $\varphi^{-1}(2\varphi(r) - 1) \leq r$. Hence, $\varphi^{-1}(2\varphi(r) - 1) \in (0, r]$, provided $r > \varphi^{-1}(0.5)$. **Example.** If $X = \{x_1, \ldots, x_2\}$, and $f_s : X \longrightarrow [0, 1]$, with $1 \leq s \leq m$, the function (see [3]),

$$E(x_i, x_j) = \frac{\sum_{s=1}^{n} \min(f_s(x_i), f_s(x_j))}{\max(\sum_{s=1}^{n} f_s(x_i), \sum_{s=1}^{n} f_s(x_j))}$$

whose values are in [0, 1], is W_{φ} -transitive with $\varphi(x) = x^2$. Hence, its threshold of transitivity is $\varphi^{-1}(0.5) = \sqrt{0.5} = 0.7071$ and, consequently, it suffices to take r = 0.7072 to have $\varphi^{-1}(2\varphi(r) - 1) = \sqrt{2 \cdot 0.7072^2 - 1} = 0.000264$, and

If $0.7072 \le E(x, y)$, and $0.7072 \le E(y, z)$, then $0.000264 \le E(x, z)$.

Observe that with r = 0.8 it results $\varphi^{-1}(2\varphi(r) - 1) = \sqrt{0.28} = 0.529$.

5 The Threshold of a Bounded Pseudo-Distance

If $d: X \times X \longrightarrow \mathbb{R}^+$ is a pseudo-distance bounded by a > 0, for each sub-additive order-automorphism φ , the corresponding W_{φ} -indistinguishability

$$E_{\varphi}(x,y) = N_{\varphi}(\frac{d(x,y)}{a}),$$

has the threshold of transitivity $\varphi^{-1}(0.5)$. Then it suffices to take $r > \varphi^{-1}(0.5)$ to be sure that if $0 < r \le E_{\varphi}(x, y)$, and $0 < r \le E_{\varphi}(y, z)$, it is $0 < \varphi^{-1}(2\varphi(r) - 1) \le E_{\varphi}(x, z)$.

Hence, if $d(x, y) \leq aN_{\varphi}(r)$, and $d(y, z) \leq aN_{\varphi}(r)$, then

$$d(x,z) \le aN_{\varphi}(\varphi^{-1}(2\varphi(r)-1)) = a\varphi^{-1}(2(1-\varphi(r))).$$

Since, $d(x,y) \le d(x,y) + d(y,z) \le 2aN_{\varphi}(r)$ and $d(x,z) \le a$, it follows

$$d(x,z) \le a \cdot \min(1, 2N_{\varphi}(r), \varphi^{-1}(2(1-\varphi(r)))).$$

Then, for each $r > \varphi^{-1}(0.5)$, the number

$$\delta(\varphi, r) = a \cdot \min(1, 2N_{\varphi}(r), \varphi^{-1}(2(1 - \varphi(r)))),$$

can be called the φ -threshold of the bounded pseudo-distance d. Notice that with $\varphi = \text{Id}$ and $r > \varphi^{-1}(0.5) = 0.5$, is

$$\delta(\text{Id}, n) = \alpha \min(1, 2(1, -n), 2(1, -n)) = \alpha \min(1, 2(1, -n)) = 2\alpha(1, -n)$$

$$\delta(\mathrm{Id}, r) = a \cdot \min(1, 2(1-r), 2(1-r)) = a \min(1, 2(1-r)) = 2a(1-r).$$

That is, if $d(x, y) \le a(1 - r)$ and $d(y, z) \le a(1 - r)$, is $d(x, z) \le 2a(1 - r)$.

5.1 Remark. The function $\delta(\varphi, r)$ is decreasing for r: If r < s, since $2N_{\varphi}(s) < 2N_{\varphi}(r)$, and $\varphi^{-1}(2(1-\varphi(s))) < \varphi^{-1}(2(1-\varphi(r)))$, it follows $\delta(\varphi, s) < \delta(\varphi, r)$. In particular, from $\varphi^{-1}(0.5) < r$ it follows

$$\delta(\varphi, r) < \delta(\varphi, \varphi^{-1}(0.5))$$

= $a \cdot \min(1, 2N_{\varphi}(\varphi^{-1}(0.5)), \varphi^{-1}(2(1 - \varphi(\varphi^{-1}(0.5)))))$
= $a \cdot \min(1, 2\varphi^{-1}(0.5), 1)$
= $2a\varphi^{-1}(0.5).$

Then, it is always $\delta(\varphi, r) < 2a\varphi^{-1}(0.5)$. Note that it is $\delta(\varphi, r) = 0$ if and only if r = 1.

Notice that $0 < r \leq E(x, y)$ is equivalent to $d(x, y) \leq aN_{\varphi}(r) < a$. Hence $\varphi^{-1}(0.5) < E_{\varphi}(x, y)$, is equivalent to $d(x, y) \leq a \cdot \varphi^{-1}(0.5)$.

5.2 Examples.

5.2.4 If d is a pseudo-distance bounded by 1, with $\varphi(x) = \sqrt{x}$, is $\varphi^{-1}(0.5) = 0.5^2 = 0.25$. Taking, for example, r = 0.26 it results:

$$d(x,y) \le N_{\varphi}(0.26) = (1 - \sqrt{0.26})^2 = 0.2402$$

$$d(y,z) \le N_{\varphi}(0.26) = 0.2402,$$

and

$$d(x,z) \le \min(1, 2N_{\varphi}(0.26), \varphi^{-1}(2(1-\varphi(0.26))))$$

= min(1, 0.4804, 0.9608) = 0.4804.

That is, $\delta(\varphi, 0.26) = 0.4804$, a value that is less than $2a\varphi^{-1}(0.5) = 0.5$.

5.2.5 Take d(x,y) = |x - y| in [0,1], with $\varphi = \text{Id.}$ It is $N_{\varphi} = 1 - \text{Id}$, and $2a\varphi^{-1}(0.5)=1$.

With r = 0.6 it results $d(x, y) \le 1 - 0.6 = 0.4$, $d(y, z) \le 0.4$, and $d(x, z) \le \min(1, 0.8, 2(1 - 0.6)) = 0.8$. With r = 0.51 is $d(x, y) \le 1 - 0.51 = 0.49$, $d(y, z) \le 0.49$, and $d(x, z) \le \min(1, 0.98, 2(1 - 0.51)) = 0.98$. Notice that this value is, as it was pointed out, less than $2a\varphi^{-1}(0.5) = 1$.

5.2.6 With the same distance of 5, take $\varphi(x) = \sqrt{x}$. Then,

$$E_{\varphi}(x,y) = N_{\varphi}(|x-y|) = (1 - \sqrt{|x-y|})^2,$$

and $\varphi^{-1}(0.5) = 0.5^2 = 0.25$. With r = 0.26,

$$d(x,y) \le (1 - \sqrt{0.26})^2 = (1 - 0.51)^2 = 0.2401, d(y,z) \le 0.2401,$$

and $d(x, z) \leq \min(2 \cdot 0.2401, (2(1 - \sqrt{0.26}))^2) = 0.4802$. With $r = 0.6, d(x, y) \leq (1 - \sqrt{0.6})^2 = 0.0506, d(y, z) \leq 0.0506$, and $d(x, z) \leq \min(1, 2 \cdot 0.2401, (2(1 - \sqrt{0.6}))^2) = 04802$. Notice that this value is less than $2a\varphi^{-1}(0.5) = 2 \cdot 1 \cdot 0.25 = 0.5$.

5.2.7 What happens with $r \leq \varphi^{-1}(0.5)$? In example 5.2.5, take r = 0.4. It results $d(x, y) \leq 1 - 0.4 = 0.6, d(y, z) \leq 0.6$, and $d(x, z) \leq \min(1, 1.2, 2(1 - 0.4)) = 1$, an unfruitful result, since it is always $d(x, z) \leq 1$. It results a non-informative conclusion.

5.2.8 It should be pointed out that index E in the example of section 4, is also W-transitive. Hence, it has also the threshold $\varphi^{-1}(0.5) = \text{Id}^{-1}(0.5) = 0.5$. Nevertheless, since E is applied (see [4]) with the threshold 0.7, that was found experimentally, this means that E is used as W_{φ} -transitive with $\varphi(x) = x^2$. Then, in such application the "separation or distinction" between the objects x_1, \ldots, x_n , to which E applies is measured with the pseudo-distance

$$d(x_i, x_j) = N_{\varphi}(E(x_i, x_j)) = \varphi^{-1}(1 - \varphi(E(x_i, x_j))) = \sqrt{1 - (\frac{\sum_s \min(f_s(x_i), f_s(x_j))}{\max(\sum_s f_s(x_i), \sum_s f_s(x_j))},)^2}.$$

Hence, $0.7 < E(x_i, x_j)$ means $d(x_i, x_j) < N_{\varphi}(0.7) = \sqrt{1 - 0.7^2} = 0.7142$. That is, two objects x_i, x_j are taken as indistinguishable as soon as its separation is less than 0.7142.

5.2.9 In X = [0,1], the distance $d(x,y) = \frac{|x-y|}{1+|x-y|} \in [0,1]$ is bounded by 0.5 since from $|x-y| \leq 1$ follows $2|x-y| \leq 1 + |x-y|$. Hence, with $\varphi = \text{Id}$ the corresponding W-indistinguishability is $E(x,y) = 1 - d(x,y) = \frac{1}{1+|x-y|}$. Then, with $r = 0.52 > \varphi^{-1}(0.5) = 0.5$, if $d(x,y) < aN_{\varphi}(r) = 0.5(1-0.52) = 0.24$, and d(y,z) < 0.24, it results $d(x,z) < 0.5 \min(1, 2 \cdot 0.52, 2(1-0.52)) = 0.48$ that, of course, is less than $2 \cdot 0.5 \cdot 0.5 = 0.5$.

With r = 0.8, is $d(x, y) < 0.5 \cdot 0.2 = 0.1$, d(y, z) < 0.1, and $d(x, z) < 0.5 \min(1, 2 \cdot 0.2, 2 \cdot 0.2) = 0.2$.

6 The Maximum Threshold of a Bounded Pseudo-Distance

It was shown in section 5 that $\delta(\varphi, r)$, the threshold for a given φ and r, never surpasses the value $2a\varphi^{-1}(0.5)$. But what if we consider all sub-additive orderautomorphisms of [0, 1]? Is there an upper bound for all the possible values $\delta(\varphi, r)$ for each pseudo-distance bounded by a?

The set $A = \{\varphi^{-1}(0.5) : \varphi \in SO\}$, with SO the set of all sub-additive orderautomorphism of [0, 1], has a supremum since it is always $\varphi^{-1}(0.5) < 1$. Hence, $\sup A \leq 1$. Let us call $\alpha = \sup A$.

Theorem 6.1. $\alpha = 0.5$

Proof. It is evident than $0.5 \leq \alpha$ because Id \in SO. But also $\alpha \leq 0.5$ because if $\varphi \in$ SO, then φ^{-1} is super-additive, so

$$2\varphi^{-1}(0.5) = \varphi^{-1}(0.5) + \varphi^{-1}(0.5) \le \varphi^{-1}(2 \cdot 0.5) = \varphi^{-1}(1) = 1$$

and hence for all $\varphi \in SO$ it holds $\varphi^{-1}(0.5) \leq 0.5$ and then $\alpha \leq 0.5$.

Because of all this, the final supremum for $\delta(\varphi, r)$, for all $\varphi \in SO$ and, each time with $r > \varphi^{-1}(0.5)$, is $\sup\{2a\varphi^{-1}(0.5) : \varphi \in SA\} = 2a\alpha = a$, the "diameter" of the pseudo-distance.

7 Conclusions

As it was said in section 1, the goal of this paper is to partially deal with large transitivity, that is, to study when an index of similarity $S : X \times X \longrightarrow [0, 1]$ verifies the property:

if 0 < S(x, y), and 0 < S(y, z), then it exists t > 0 such that $t \leq S(x, z)$,

for all x, y, z in X. When t is the minimum number verifying $0 < t \le S(x, z)$, it is called the threshold of transitivity of S.

What is here considered is the special case of the indices S obtained by

$$S(x,y) = N_{\varphi}(\frac{d(x,y)}{a}),$$

with N_{φ} the strong negation given by an automorphism φ of [0, 1], and d a pseudodistance on X bounded by a > 0. In this case, from the threshold of transitivity of S, the function indicating the degree of indistinguishability between x and y, it is deduced a threshold for d, the function indicating the degree of separation between x and y.

As a consequence of the equivalence between bounded pseudo-distances and W_{φ} -indistinguishabilities, and by means of the known characterization of these last indexes of similarity, a characterization of bounded pseudo-distances is obtained throughout a family of "measurements" in [0, 1] of the considerated objects.

References

- C. Alsina and M.J. Frank and B. Schweizer, Associative Functions: Triangular Norms and Copulas World Scientific, Singapore, 2006.
- [2] Claudi Alsina, Joan Jacas and Enric Trillas. Observability and the case of probability, In Tsau Young and Yiyu Y. Yao and Lotfi A. Zadeh, editors, *Data mining, rough sets and granular computing*, pages 249–264. Physica-Verlag GmbH, Heidelberg, Germany, 2002.
- [3] Elena Castiñeira, Susana Cubillo and Enric Trillas, On a similarity ratio. In Proceedings of 1999 Eusflat-Estylf Joint Conference, pages 417–420, Palma de Mallorca. September 22-25 1999.
- [4] E. Chouraqui and C. Inghilterra, A model of case-based reasoning for solving problems of geometry in a tutoring system, In J-M. Laborde, editor *Intelligent Learning Environments: The Case of Geometry*, pages 1–16. Springer-Verlag, Berlin-Heidelberg, 1996.

- [5] Z. P. Mamuziĉ, Introduction to General Topology, Noordhoff Ltd., Groningen, Holland, 1963
- [6] E. Trillas, Sobre funciones de negación en la teoría de conjuntos difusos, Stochastica, III(1):47–60, 1979. In Spanish.
- [7] E. Trillas and L. Valverde, An inquiry on indistinguishability operators, In S. Termini, H.J. Skala and E. Trillas, editors, *Aspects of Vagueness*, pages 231-256. Reidel, 1984.
- [8] Enric Trillas and Claudi Alsina, Introducción a los espacios métricos generalizados. Fundación Juan March, Serie Universitaria, 49, Madrid, 1978. In Spanish.
- [9] Enric Trillas, Elena Castiñeira and Ana Pradera, On the equivalence between distances and T-indistinguishabilities, In *Proceedings of EUSFLAT-ESTYLF Joint Conference 1999*, pages 239–242, Palma de Mallorca, Spain, 1999.
- [10] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets and Systems, (17):313–328, 1985.