On the Threshold of Bounded Pseudo-Distances

E. Trillas ${ }^{1 *}$ and A.R. de Soto ${ }^{2 \dagger}$
${ }^{1}$ European Centre for Soft Computing, Spain
enric.trillas@softcomputing.es
${ }^{2}$ Industrial and Computer Science Engineering School
University of León, Spain
adolfo.rdesoto@unileon.es

Abstract

This paper deals with the relationship between bounded pseudo-distances and its associated W_{φ}-indistinguishabilities, from which the idea of threshold of transitivity comes. By the way, bounded pseudo-distances are characterized.

Keywords: T-indistinguishabilities, bounded-distances, threshold.

1 Introduction

1.1 Distance and indistinguishability, as well as threshold, are important concepts in the experimental sciences and, in particular, in Computational Intelligence. Concerning the concept of a threshold, for which there is not a completely satisfactory definition, it can be said that:

- It is a fixed point or value where an abrupt change is observed,
- It is the point that must be exceeded to begin producing an effect or result or to elicit a response,
- It is the lowest point at which a stimulus begins to produce a sensation,
- It is the minimal stimulus that produces excitation of any structure, eliciting a motor response, etc.

These descriptions cover most of the cases where the concept of threshold applies. Following the Webster's dictionary, a threshold is "the point at which a

[^0]stimulus is of sufficient intensity to begin to produce an effect". In that sense, below a value t in a numerical scale measuring the intensity of some input, it does not produce any effect, but as soon as the intensity surpasses the value t the input's effect is detected.
1.2 In many problems in Computational Intelligence concerning the similarity of certain elements, when measured by a numerical index of similarity $S(x, y) \in[0,1]$ associated to each pair of these elements (like in Case-Based Reasoning), it appears the following question: What can be said on $S(a, c)$ when it is $0<S(a, b)$ and $0<S(b, c)$? Namely, when it does be $0<S(a, c)$? Equivalently, if $0<r \leq S(a, b)$ and $0<r \leq S(b, c)$, when it exists $t(r)>0$ such that $0<t(r) \leq S(a, c)$? This problem can be called that of "large transitivity", and if R_{S} is the set of values r which satisfy large transitivity for S, then $t_{S}=\inf R_{S}$ is the minimum value for which this last inequality holds. It can be called the large transitivity threshold for S.

Sometimes S is taken to be $S(x, y)=1-d(x, y)$ with d a bounded distance. In these cases $0<r \leq S(x, y)$ is equivalent to $d(x, y) \leq 1-r<1$.
1.3 When the index $S: X \times X \longrightarrow[0,1]$ is either min-transitive or prod-transitive [7], respectively,

- $\min (S(a, b), S(b, c)) \leq S(a, c)$
- $S(a, b) \cdot S(b, c) \leq S(a, c)$,
for all $a, b, c \in X$, from $0<r \leq S(a, b), 0<r \leq S(b, c)$, follows
- $0<r=\min (r, r) \leq \min (S(a, b), S(b, c)) \leq S(a, c)$
- $0<r^{2} \leq S(a, b) \cdot S(b, c) \leq S(a, c)$,
and then $t_{S}=\inf (0,1]=0$ for \min and $t_{S}=\inf (0,1]=0$ for prod, is the corresponding threshold of large transitivity for the two kind of indexes, a threshold that actually is non informative. If S is W-transitive, with $W(x, y)=\max (0, x+y-1)$ the Lukasiewicz t-norm, from $W(S(a, b), S(b, c)) \leq S(a, c)$, for all a, b, c in X, what follows is

$$
W(r, r)=\max (0,2 r-1) \leq W(S(a, b), S(b, c)) \leq S(a, c)
$$

and it could be $W(r, r)=0$ with $r>0$. Since $W(r, r)=0$ happens if and only if $r \leq 0.5$, a threshold only exists if $r>0.5$. That is, if $0.5<r \leq S(a, b)$, and $0.5<r \leq S(b, c)$, it is $0<t(r)=2 r-1 \leq S(a, c)$. If the intensity of the link between a and b, and of that between b and c is greater than r, then $t(r)=2 r-1>0$ and is $S(a, c) \in[2 r-1,1]$. In this case $t_{S}=\inf \left(\frac{1}{2}, 1\right]=\frac{1}{2}$.

It will be proved that S is a W-indistinguishability if and only if $d=1-S$ is a pseudo-distance bounded by 1. Hence, to every pseudo-distance bounded by $a>0$ it is associated the W-indistinguishability $S=1-\frac{d}{a}$, that allows to define a threshold for d from that of S. At this point it should be noticed that $0<r \leq S(x, y)$ is equivalent to $d(x, y) / a \leq 1-r<1$.
1.4 This paper tries to study the threshold of transitivity of W_{φ}-indistinguishabilities, as well as the link between such indexes and bounded pseudo-distances and, in particular, to define a threshold for this last coming from that of the $W_{\varphi^{-}}$ indistinguishabilities. By the way, bounded pseudo-distances are characterized.

2 Basic Tools

2.1 A pseudo-distance in a set X is a mapping $d: X \times X \longrightarrow \mathbb{R}^{+}$such that

1. $d(x, x)=0$, for all x in X,
2. $d(x, y)=d(y, x)$, for all x, y in X,
3. $d(x, y)+d(y, z) \geq d(x, z)$, for all x, y, z in X.

A distance is a pseudo-distance such that $d(x, y)=0$ if and only if $x=y$. A pseudo-distance is bounded by $a>0$ if $d(X \times X) \subset[0, a]$. Every bounded pseudodistance is equivalent to a pseudo-distance bounded by 1 , in the sense of " d is a pseudo-distance bounded by a if and only if the function $1 / a \cdot d$ is a pseudodistance bounded by 1 ", whose proof is immediate. Hence given a pseudo-distance d bounded by 1 and $a>0$, the function $a \cdot d$ is a pseudo-distance bounded by a.
2.2 A strong-negation is a function $N:[0,1] \longrightarrow[0,1]$ such that

1. $N(0)=1$,
2. if $x<y$, then $N(y)<N(x)$,
3. $N(N(x))=x$, for all x in $[0,1]$.

An order-automorphism of $[0,1]$ is a function $\varphi:[0,1] \longrightarrow[0,1]$ such that

1. $\varphi(0)=0, \varphi(1)=1$,
2. if $x<y$, then $\varphi(y)<\varphi(x)$.

The functions $N_{\varphi}:[0,1] \longrightarrow[0,1]$ defined by $N_{\varphi}(x)=\varphi^{-1}(1-\varphi(x))$ are strong negations and (see [6]) for all strong-negation N there are order-automorphisms φ such that $N=N_{\varphi}$. Of course, both functions N and φ are bijective, continuous and N verifies $N(1)=N(N(0))=0$, and $N^{-1}=N$.
2.3 For what concerns the definitions and properties of t -norms (T), and t -conorms (S), see [1].

The three well known basic continuous t -norms are $T=\min , T=$ prod, and $T(x, y)=W(x, y)=\max (0, x+y-1)$ (Lukasiewicz t-norm). The t-norm min is the biggest of all them, since $T(x, y) \leq T(x, 1)=x, T(x, y) \leq T(1, y)=y$ imply $T(x, y) \leq \min (x, y)$. For all order-automorphism φ, the function $T_{\varphi}=\varphi^{-1} \circ$ $T \circ(\varphi \times \varphi)$ is a t-norm if and only if T is a t-norm, and T_{φ} is continuous if and only if T is continuous. Hence, for all continuous t-norm T there is the family of
continuous t-norms $F(T)=\left\{T_{\varphi}: \varphi\right.$ an automorphism $\}$, and in particular, there is the Lukasiewicz family

$$
W_{\varphi}(x, y)=\varphi^{-1}(W(\varphi(x), \varphi(y)))=\varphi^{-1}(\max (0, \varphi(x)+\varphi(y)-1))
$$

Neither $\min _{\varphi}(=\min)$, nor $\operatorname{prod}_{\varphi}\left(=\varphi^{-1}(\varphi(x) \cdot \varphi(y))\right)$, have zero-divisors, but the t-norms W_{φ} do have such kind of elements: it is, $W_{\varphi}(x, y)=0$ if and only if $\varphi(x)+\varphi(y)-1 \leq 0$, or if and only if $y \leq N_{\varphi}(x)$.
2.4 A function $E: X \times X \longrightarrow[0,1]$ is a T-indistinguishability (see $[7,10]$) on the set $X, 4$ if it verifies

1. $E(x, x)=1$, for all x in X,
2. $E(x, y)=E(y, x)$, for all x, y in X,
3. $T(E(x, y), E(y, z)) \leq E(x, z)$, for all x, y, z in X.

If E is a T-indistinguishability on $[0,1]$, for any $f: X \longrightarrow[0,1]$, the function E_{f} defined by $E_{f}(x, y)=E(f(x), f(y))$ is a T-indistinguishability on X.

Examples of T-indistinguishabilities are given by

$$
E_{T}(x, y)=\min \left(J_{T}(x, y), J_{T}(y, x)\right)
$$

with $J_{T}(x, y)=\sup \{z \in[0,1]: T(z, x) \leq y\}$. For example,

- From $J_{\min }(x, y)=\left\{\begin{array}{ll}1 & \text { if } x \leq y \\ y & \text { if } x>y\end{array}, ~\right.$ is $E_{\min }(x, y)=\left\{\begin{array}{cl}1 & \text { if } x=y \\ \min (x, y) & \text { if } x \neq y\end{array}\right.$
- From $J_{\text {prod }}(x, y)=\left\{\begin{array}{ll}1 & \text { if } x \leq y \\ \frac{y}{x} & \text { if } x>y\end{array}, ~\right.$ is $E_{\text {prod }}(x, y)=\left\{\begin{array}{cl}1 & \text { if } x=y \\ \min \left(\frac{x}{y}, \frac{y}{x}\right) & \text { if } x \neq y\end{array}\right.$
- From $J_{W_{\varphi}}(x, y)=\varphi^{-1}(\min (1,1-\varphi(x)+\varphi(y))$, is

$$
E_{W_{\varphi}}(x, y)=\varphi^{-1}(1-\varphi(|x-y|))
$$

Theorem 2.1. $E: X \times X \longrightarrow[0,1]$ is a T-indistinguishability if and only if there exists a family \mathcal{F} of functions $f: X \longrightarrow[0,1]$, such that

$$
E(x, y)=\inf \left\{E_{T}(f(x), f(y)): f \in \mathcal{F}\right\}
$$

Proof. See [7, 10].
Hence, for all finite family $\mathcal{F}=\left\{f_{1}, \ldots, f_{n}\right\}$ of functions $f_{i}: X \longrightarrow[0,1]$, the T-indistinguishability $E(x, y)=\min \left\{E_{T}\left(f_{i}(x), f_{i}(y): 1 \leq i \leq n\right\}\right.$ is said to be a finitely generated T-indistinguishability. For example,

$$
\begin{aligned}
E(x, y) & =\min \left\{\varphi^{-1}\left(1-\varphi\left(\left|f_{i}(x)-f_{i}(y)\right|\right)\right): 1 \leq i \leq n\right\} \\
& =\varphi^{-1}\left(1-\max _{1 \leq i \leq n}\left(\left|f_{i}(x)-f_{i}(y)\right|\right)\right)
\end{aligned}
$$

is a finitely generated W_{φ}-indistinguishability.

2.5 Remarks.

2.5.1 As it is easy to prove, an order-automorphism φ of $[0,1]$ is sub-additive $(\varphi(x+y) \leq \varphi(x)+\varphi(y))$, if and only if the order-automorphism φ^{-1} is super additive $\left(\varphi^{-1}(x)+\varphi^{-1}(y) \leq \varphi^{-1}(x+y)\right)$.
2.5.2 If d is a pseudo-distance on X bounded by 1 , and the order-automorphism φ is sub-additive, the function $d_{\varphi}=\varphi \circ d$ is also a pseudo-distance on X bounded by 1 .
2.5.3 The order-automorphisms $\varphi(x)=x^{n}(n=2,3, \ldots)$ are super-additive, and consequently the order-automorphisms $\varphi^{-1}=\sqrt[n]{x}(n=2,3, \ldots)$ are sub-additive.

3 Bounded Pseudo-distances and W_{φ}-indistinguishabilities

Theorem 3.1. Let it be a function $d: X \times X \longrightarrow[0,1]$. If for some superadditive order-automorphism φ on $[0,1]$, the function $E_{\varphi}(x, y)=N_{\varphi}(d(x, y))$ is a W_{φ}-indistinguishability, d is a pseudo-distance bounded by 1.
Proof. It is $d(x, y)=N_{\varphi}(E(x, y))$. Hence, $d(x, x)=0$ and $d(x, y)=d(y, x)$ for all x, y in X. From,

$$
\begin{aligned}
W_{\varphi}\left(E_{\varphi}(x, y), E_{\varphi}(y, z)\right) & =\varphi^{-1}\left(\max \left(0, \varphi\left(E_{\varphi}(x, y)\right)+\varphi\left(E_{\varphi}(y, z)\right)-1\right)\right) \\
& =\varphi^{-1}(\max (0,1-\varphi(d(x, y))-\varphi(d(y, z)))) \\
& \leq E_{\varphi}(x, z) \\
& =N_{\varphi}(d(x, z)) \\
& =\varphi^{-1}\left(1-\varphi\left(d_{\varphi}(x, z)\right)\right.
\end{aligned}
$$

follows $\max (0,1-\varphi(d(x, y))+\varphi(d(y, z))) \leq 1-\varphi\left(d_{\varphi}(x, z)\right)$. Hence,

$$
\varphi(d(x, z)) \leq \varphi(d(x, y))+\varphi(d(y, z)) \leq \varphi(d(x, y)+d(y, z))
$$

since φ is super-additive. Finally, $d(x, z) \leq d(x, y)+d(y, z)$.
Theorem 3.2. Let it be φ a sub-additive order-automorphism of $[0,1]$, and d a pseudo-distance on X bounded by 1. The function $E_{\varphi}(x, y)=N_{\varphi}(d(x, y))$ is a W_{φ}-indistinguishability.

Proof. Obviously, $E_{\varphi}(x, x)=0$, and $E_{\varphi}(x, y)=E_{\varphi}(y, x)$. From $d(x, z) \leq d(x, y)+$ $d(y, z)$, follows

$$
\varphi(d(x, z)) \leq \varphi(d(x, y)+d(y, z)) \leq \varphi(d(x, y))+\varphi(d(y, z))
$$

since φ is sub-additive. Then, $1-\varphi(d(x, y))-\varphi(d(y, z)) \leq 1-\varphi(d(x, z))$, and $\max (0,1-\varphi(d(x, y))-\varphi(d(y, z))) \leq 1-\varphi(d(x, z))$. Hence,

$$
\begin{aligned}
\varphi^{-1}(\max (0,1-\varphi(d(x, y))-\varphi(d(y, z)))) & \leq \varphi^{-1}(1-\varphi(d(x, z))) \\
& =N_{\varphi}(d(x, z)) \\
& =E_{\varphi}(x, y)
\end{aligned}
$$

By the other side,

$$
\begin{aligned}
W_{\varphi}\left(E_{\varphi}(x, y), E_{\varphi}(y, z)\right) & =\varphi^{-1}\left(\max \left(0, \varphi\left(E_{\varphi}(x, y)\right)+\varphi\left(E_{\varphi}(y, z)\right)-1\right)\right) \\
& =\varphi^{-1}(\max (0,1-\varphi(d(x, y))-\varphi(d(y, z))))
\end{aligned}
$$

That is, $W_{\varphi}\left(E_{\varphi}(x, y), E_{\varphi}(y, z)\right) \leq E_{\varphi}(x, z)$, for all x, y, z in X.
Corollary 1. d is a pseudo-distance bounded by 1 if and only if $E=1-d$ is a W-indistinguishability.

Proof. The order-automorphism $\varphi=$ Id is both sub-additive and super-additive. Hence, if E is a W-indistinguishability, with N_{Id}, is $d=N_{\mathrm{Id}} \circ E=1-E$ a pseudo-distance bounded by 1 , by theorem 3.1 and if d is a pseudo-distance, then $E=N_{\mathrm{Id}} \circ d=1-d$ is a W-indistinguishability by theorem 3.2.

Theorem 3.3 (Characterization of bounded pseudo-distances). The only pseudodistances bounded by $a>0$ are those defined by

$$
d(x, y)=a \cdot \sup \left\{\left|f_{i}(x)-f_{i}(y)\right|: i \in I\right\}
$$

for some family of functions $f_{i}: X \longrightarrow[0,1], i \in I$.
Proof. Since $\frac{1}{a} \cdot d$ is a pseudo-distance bounded by $1, E=1-\frac{d}{a}$ is a W-indistinguishability by corollary 1 . Then, by theorem 2.1 there is a family of functions $\left\{f_{i}: i \in I\right\}$ such that $E(x, y)=\inf _{i \in I} E_{W}\left(f_{i}(x), f_{i}(y)\right)=\inf _{i \in I}\left\{1-\left|f_{i}(x)-f_{i}(y)\right|\right\}=1-$ $\sup _{i \in I}\left|f_{i}(x)-f_{i}(y)\right|$. Then,

$$
d(x, y)=a \cdot(1-E(x, y))=a \cdot \sup _{i \in I}\left|f_{i}(x)-f_{i}(y)\right|
$$

A bounded pseudo-distance is finitely generated if I is a finite set. Hence, the only finitely-generated bounded pseudo-distances are those of the form

$$
d(x, y)=a \cdot \max _{1 \leq i \leq n}\left|f_{i}(x)-f_{i}(y)\right|
$$

for all x, y in X. Notice that the euclidean distance in $X=[0,1], d(x, y)=|x-y|$ is finitely generated by the single function $f=\mathrm{Id}$.

The family $\left\{f_{i}: i \in I\right\}$ can be taken as giving some "measurements" of the objects in X, relatively to the attributes or properties they can show. For example, if $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and the attributes on considerations are A_{1} and A_{2}, with

$$
f_{i}\left(x_{j}\right)=\text { degree up to which } x_{j} \text { is } A_{i}(1 \leq i \leq 2,1 \leq j \leq 4)
$$

the corresponding pseudo-distance can be obtained once known the 2×4 numbers $f_{i}\left(x_{j}\right) \in[0,1]$. In the case given by the table 1 , it results the distance bounded by 1 :

	x_{1}	x_{2}	x_{3}	x_{4}
f_{1}	0.7	0.5	0.7	0.4
f_{2}	0.8	0.4	0.6	0.5

Table 1: Two generating functions

$$
\begin{aligned}
& d\left(x_{1}, x_{1}\right)=d\left(x_{2}, x_{2}\right)=d\left(x_{3}, x_{3}\right)=d\left(x_{4}, x_{4}\right)=\max (0,0)=0 \\
& d\left(x_{1}, x_{2}\right)=d\left(x_{2}, x_{1}\right)=\max (|0.7-0.5|,|0.8-0.4|)=0.4 \\
& d\left(x_{1}, x_{3}\right)=d\left(x_{3}, x_{1}\right)=\max (0,0.2)=0.2 \\
& d\left(x_{1}, x_{4}\right)=d\left(x_{4}, x_{1}\right)=0.3 \\
& d\left(x_{2}, x_{3}\right)=d\left(x_{3}, x_{2}\right)=0.2 \\
& d\left(x_{2}, x_{4}\right)=d\left(x_{4}, x_{2}\right)=0.1 \\
& d\left(x_{3}, x_{4}\right)=d\left(x_{4}, x_{3}\right)=0.3
\end{aligned}
$$

It is easy to check that d is a distance. For example, with the triplet $\left(x_{2}, x_{3}, x_{4}\right)$ is $d\left(x_{2}, x_{3}\right)+d\left(x_{3}, x_{4}\right)=0.2+0.3=0.5 \geq 0.2=d\left(x_{2}, x_{4}\right)$. Notice that the function f_{1} is not injective.

In particular, functions f_{i} can be probabilities in which case, if $X=\left\{x_{1}, \ldots, x_{n}\right\}$, it should be $\sum_{j=1}^{n} f_{i}\left(x_{j}\right)=1$, for all $i \in I$.
Theorem 3.4. A finitely generated bounded pseudo-distance with at least an injective function, is a distance.

Proof. It is clear because $d(x, y)=0=a \cdot \max _{1 \leq i \leq n}\left|f_{i}(x)-f_{i}(y)\right|$ if and only if $f_{i}(x)=f_{i}(y)$ for all i, and then $x=y$.

The reciprocal result of this theorem is not true, since it is possible to have distances from a family of non-injective functions. For example, with $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and two non-injective functions f_{1}, f_{2} with $f_{1}\left(x_{1}\right)=f_{1}\left(x_{2}\right)=0.5, f_{1}\left(x_{3}\right)=0.6$ and $f_{2}\left(x_{1}\right)=0.3, f_{2}\left(x_{2}\right)=f_{2}\left(x_{3}\right)=0.4$, it results the bounded distance given by $d\left(x_{1}, x_{2}\right)=d\left(x_{1}, x_{3}\right)=d\left(x_{2}, x_{3}\right)=0.1$.
3.1 Remark. To every pseudo-distance on X bounded by $a>0$, it is associated the family of W_{φ}-indistinguishabilities on $X, E_{W_{\varphi}}=N_{\varphi} \circ\left(\frac{d}{a}\right)$, for all sub-additive order-automorphism φ of $[0,1]$. In each case, the more adequate φ for the problem under consideration should be selected.

4 The Threshold of Transitivity of a W_{φ}-Indistinguishability

If $E: X \times X \longrightarrow[0,1]$ is T-transitive, from $0<r \leq E(x, y), 0<r \leq E(y, z)$, it follows $0 \leq T(r, r) \leq T(E(x, y), E(y, z)) \leq E(x, z)$. That is, $0 \leq T(r, r) \leq E(x, z)$. For both $T=\min$ and $T=\operatorname{prod}_{\varphi}$, it is $0<T(r, r) \leq E(x, z)$, but for $T=W_{\varphi}$ it could be $W_{\varphi}(r, r)=0$, in which case E fails to be largely transitive. Since $W_{\varphi}(r, r)=0$, is equivalent to $2 \varphi(r)-1$, or $r \leq \varphi^{-1}(0.5)$, it suffices to take $r>$ $\varphi^{-1}(0.5)$ to have,
$0<r \leq E(x, y)$, and $0<r \leq E(y, z)$, imply $0<\varphi^{-1}(2 \varphi(r)-1) \leq E(x, z)$.
Let us call $\inf \left\{r \in[0,1]: r>\varphi^{-1}(0.5)\right\}=\varphi^{-1}(0.5)$ the threshold of transitivity of E. Notice that from $r \leq 1$, or $\varphi(r) \leq 1$, it follows $2 \varphi(r)-1 \leq \varphi(r)$, that is $\varphi^{-1}(2 \varphi(r)-1) \leq r$. Hence, $\varphi^{-1}(2 \varphi(r)-1) \in(0, r]$, provided $r>\varphi^{-1}(0.5)$.
Example. If $X=\left\{x_{1}, \ldots, x_{2}\right\}$, and $f_{s}: X \longrightarrow[0,1]$, with $1 \leq s \leq m$, the function (see [3]),

$$
E\left(x_{i}, x_{j}\right)=\frac{\sum_{s=1}^{n} \min \left(f_{s}\left(x_{i}\right), f_{s}\left(x_{j}\right)\right)}{\max \left(\sum_{s=1}^{n} f_{s}\left(x_{i}\right), \sum_{s=1}^{n} f_{s}\left(x_{j}\right)\right)},
$$

whose values are in $[0,1]$, is W_{φ}-transitive with $\varphi(x)=x^{2}$. Hence, its threshold of transitivity is $\varphi^{-1}(0.5)=\sqrt{0.5}=0.7071$ and, consequently, it suffices to take $r=0.7072$ to have $\varphi^{-1}(2 \varphi(r)-1)=\sqrt{2 \cdot 0.7072^{2}-1}=0.000264$, and

$$
\text { If } 0.7072 \leq E(x, y) \text {, and } 0.7072 \leq E(y, z) \text {, then } 0.000264 \leq E(x, z)
$$

Observe that with $r=0.8$ it results $\varphi^{-1}(2 \varphi(r)-1)=\sqrt{0.28}=0.529$.

5 The Threshold of a Bounded Pseudo-Distance

If $d: X \times X \longrightarrow \mathbb{R}^{+}$is a pseudo-distance bounded by $a>0$, for each sub-additive order-automorphism φ, the corresponding W_{φ}-indistinguishability

$$
E_{\varphi}(x, y)=N_{\varphi}\left(\frac{d(x, y)}{a}\right)
$$

has the threshold of transitivity $\varphi^{-1}(0.5)$. Then it suffices to take $r>\varphi^{-1}(0.5)$ to be sure that if $0<r \leq E_{\varphi}(x, y)$, and $0<r \leq E_{\varphi}(y, z)$, it is $0<\varphi^{-1}(2 \varphi(r)-1) \leq$ $E_{\varphi}(x, z)$.

Hence, if $d(x, y) \leq a N_{\varphi}(r)$, and $d(y, z) \leq a N_{\varphi}(r)$, then

$$
d(x, z) \leq a N_{\varphi}\left(\varphi^{-1}(2 \varphi(r)-1)\right)=a \varphi^{-1}(2(1-\varphi(r))
$$

Since, $d(x, y) \leq d(x, y)+d(y, z) \leq 2 a N_{\varphi}(r)$ and $d(x, z) \leq a$, it follows

$$
d(x, z) \leq a \cdot \min \left(1,2 N_{\varphi}(r), \varphi^{-1}(2(1-\varphi(r)))\right.
$$

Then, for each $r>\varphi^{-1}(0.5)$, the number

$$
\delta(\varphi, r)=a \cdot \min \left(1,2 N_{\varphi}(r), \varphi^{-1}(2(1-\varphi(r)))\right.
$$

can be called the φ-threshold of the bounded pseudo-distance d.
Notice that with $\varphi=\operatorname{Id}$ and $r>\varphi^{-1}(0.5)=0.5$, is

$$
\delta(\mathrm{Id}, r)=a \cdot \min (1,2(1-r), 2(1-r))=a \min (1,2(1-r))=2 a(1-r)
$$

That is, if $d(x, y) \leq a(1-r)$ and $d(y, z) \leq a(1-r)$, is $d(x, z) \leq 2 a(1-r)$.
5.1 Remark. The function $\delta(\varphi, r)$ is decreasing for r : If $r<s$, since $2 N_{\varphi}(s)<$ $2 N_{\varphi}(r)$, and $\varphi^{-1}(2(1-\varphi(s)))<\varphi^{-1}(2(1-\varphi(r)))$, it follows $\delta(\varphi, s)<\delta(\varphi, r)$. In particular, from $\varphi^{-1}(0.5)<r$ it follows

$$
\begin{aligned}
\delta(\varphi, r) & <\delta\left(\varphi, \varphi^{-1}(0.5)\right) \\
& =a \cdot \min \left(1,2 N_{\varphi}\left(\varphi^{-1}(0.5)\right), \varphi^{-1}\left(2\left(1-\varphi\left(\varphi^{-1}(0.5)\right)\right)\right)\right) \\
& =a \cdot \min \left(1,2 \varphi^{-1}(0.5), 1\right) \\
& =2 a \varphi^{-1}(0.5)
\end{aligned}
$$

Then, it is always $\delta(\varphi, r)<2 a \varphi^{-1}(0.5)$. Note that it is $\delta(\varphi, r)=0$ if and only if $r=1$.

Notice that $0<r \leq E(x, y)$ is equivalent to $d(x, y) \leq a N_{\varphi}(r)<a$. Hence $\varphi^{-1}(0.5)<E_{\varphi}(x, y)$, is equivalent to $d(x, y) \leq a \cdot \varphi^{-1}(0.5)$.

5.2 Examples.

5.2.4 If d is a pseudo-distance bounded by 1 , with $\varphi(x)=\sqrt{x}$, is $\varphi^{-1}(0.5)=0.5^{2}=$ 0.25. Taking, for example, $r=0.26$ it results:

$$
\begin{aligned}
& d(x, y) \leq N_{\varphi}(0.26)=(1-\sqrt{0.26})^{2}=0.2402 \\
& d(y, z) \leq N_{\varphi}(0.26)=0.2402
\end{aligned}
$$

and

$$
\begin{aligned}
d(x, z) & \leq \min \left(1,2 N_{\varphi}(0.26), \varphi^{-1}(2(1-\varphi(0.26)))\right) \\
& =\min (1,0.4804,0.9608)=0.4804
\end{aligned}
$$

That is, $\delta(\varphi, 0.26)=0.4804$, a value that is less than $2 a \varphi^{-1}(0.5)=0.5$.
5.2.5 Take $d(x, y)=|x-y|$ in $[0,1]$, with $\varphi=\mathrm{Id}$. It is $N_{\varphi}=1-\mathrm{Id}$, and $2 a \varphi^{-1}(0.5)=1$.

With $r=0.6$ it results $d(x, y) \leq 1-0.6=0.4, d(y, z) \leq 0.4$, and $d(x, z) \leq$ $\min (1,0.8,2(1-0.6))=0.8$. With $r=0.51$ is $d(x, y) \leq 1-0.51=0.49, d(y, z) \leq$ 0.49 , and $d(x, z) \leq \min (1,0.98,2(1-0.51))=0.98$. Notice that this value is, as it was pointed out, less than $2 a \varphi^{-1}(0.5)=1$.
5.2.6 With the same distance of 5 , take $\varphi(x)=\sqrt{x}$. Then,

$$
E_{\varphi}(x, y)=N_{\varphi}(|x-y|)=(1-\sqrt{|x-y|})^{2}
$$

and $\varphi^{-1}(0.5)=0.5^{2}=0.25$.
With $r=0.26$,

$$
d(x, y) \leq(1-\sqrt{0.26})^{2}=(1-0.51)^{2}=0.2401, d(y, z) \leq 0.2401
$$

and $d(x, z) \leq \min \left(2 \cdot 0.2401,(2(1-\sqrt{0.26}))^{2}\right)=0.4802$. With $r=0.6, d(x, y) \leq(1-$ $\sqrt{0.6})^{2}=0.0506, d(y, z) \leq 0.0506$, and $d(x, z) \leq \min \left(1,2 \cdot 0.2401,(2(1-\sqrt{0.6}))^{2}\right)=$ 04802. Notice that this value is less than $2 a \varphi^{-1}(0.5)=2 \cdot 1 \cdot 0.25=0.5$.
5.2.7 What happens with $r \leq \varphi^{-1}(0.5)$? In example 5.2 .5 , take $r=0.4$. It results $d(x, y) \leq 1-0.4=0.6, d(y, z) \leq 0.6$, and $d(x, z) \leq \min (1,1.2,2(1-0.4))=1$, an unfruitful result, since it is always $d(x, z) \leq 1$. It results a non-informative conclusion.
5.2.8 It should be pointed out that index E in the example of section 4 , is also W-transitive. Hence, it has also the threshold $\varphi^{-1}(0.5)=\operatorname{Id}^{-1}(0.5)=0.5$. Nevertheless, since E is applied (see [4]) with the threshold 0.7 , that was found experimentally, this means that E is used as W_{φ}-transitive with $\varphi(x)=x^{2}$. Then, in such application the "separation or distinction" between the objects x_{1}, \ldots, x_{n}, to which E applies is measured with the pseudo-distance

$$
\begin{aligned}
d\left(x_{i}, x_{j}\right) & =N_{\varphi}\left(E\left(x_{i}, x_{j}\right)\right) \\
& =\varphi^{-1}\left(1-\varphi\left(E\left(x_{i}, x_{j}\right)\right)\right) \\
& =\sqrt{1-\left(\frac{\sum_{s} \min \left(f_{s}\left(x_{i}\right), f_{s}\left(x_{j}\right)\right)}{\max \left(\sum_{s} f_{s}\left(x_{i}\right), \sum_{s} f_{s}\left(x_{j}\right)\right)},\right)^{2}} .
\end{aligned}
$$

Hence, $0.7<E\left(x_{i}, x_{j}\right)$ means $d\left(x_{i}, x_{j}\right)<N_{\varphi}(0.7)=\sqrt{1-0.7^{2}}=0.7142$. That is, two objects x_{i}, x_{j} are taken as indistinguishable as soon as its separation is less than 0.7142.
5.2.9 In $X=[0,1]$, the distance $d(x, y)=\frac{|x-y|}{1+|x-y|} \in[0,1]$ is bounded by 0.5 since from $|x-y| \leq 1$ follows $2|x-y| \leq 1+|x-y|$. Hence, with $\varphi=$ Id the corresponding W-indistinguishability is $E(x, y)=1-d(x, y)=\frac{1}{1+|x-y|}$. Then, with $r=0.52>\varphi^{-1}(0.5)=0.5$, if $d(x, y)<a N_{\varphi}(r)=0.5(1-0.52)=0.24$, and $d(y, z)<0.24$, it results $d(x, z)<0.5 \mathrm{~min}(1,2 \cdot 0.52,2(1-0.52))=0.48$ that, of course, is less than $2 \cdot 0.5 \cdot 0.5=0.5$.

With $r=0.8$, is $d(x, y)<0.5 \cdot 0.2=0.1, d(y, z)<0.1$, and $d(x, z)<0.5 \mathrm{~min}(1,2$. $0.2,2 \cdot 0.2)=0.2$.

6 The Maximum Threshold of a Bounded PseudoDistance

It was shown in section 5 that $\delta(\varphi, r)$, the threshold for a given φ and r, never surpasses the value $2 a \varphi^{-1}(0.5)$. But what if we consider all sub-additive orderautomorphisms of $[0,1]$? Is there an upper bound for all the possible values $\delta(\varphi, r)$ for each pseudo-distance bounded by a ?

The set $A=\left\{\varphi^{-1}(0.5): \varphi \in \mathrm{SO}\right\}$, with SO the set of all sub-additive orderautomorphism of $[0,1]$, has a supremum since it is always $\varphi^{-1}(0.5)<1$. Hence, $\sup A \leq 1$. Let us call $\alpha=\sup A$.
Theorem 6.1. $\alpha=0.5$
Proof. It is evident than $0.5 \leq \alpha$ because Id \in SO. But also $\alpha \leq 0.5$ because if $\varphi \in \mathrm{SO}$, then φ^{-1} is super-additive, so

$$
2 \varphi^{-1}(0.5)=\varphi^{-1}(0.5)+\varphi^{-1}(0.5) \leq \varphi^{-1}(2 \cdot 0.5)=\varphi^{-1}(1)=1
$$

and hence for all $\varphi \in \mathrm{SO}$ it holds $\varphi^{-1}(0.5) \leq 0.5$ and then $\alpha \leq 0.5$.
Because of all this, the final supremum for $\delta(\varphi, r)$, for all $\varphi \in \mathrm{SO}$ and, each time with $r>\varphi^{-1}(0.5)$, is $\sup \left\{2 a \varphi^{-1}(0.5): \varphi \in \mathrm{SA}\right\}=2 a \alpha=a$, the "diameter" of the pseudo-distance.

7 Conclusions

As it was said in section 1, the goal of this paper is to partially deal with large transitivity, that is, to study when an index of similarity $S: X \times X \longrightarrow[0,1]$ verifies the property:

$$
\text { if } 0<S(x, y) \text {, and } 0<S(y, z) \text {, then it exists } t>0 \text { such that } t \leq S(x, z)
$$

for all x, y, z in X. When t is the minimum number verifying $0<t \leq S(x, z)$, it is called the threshold of transitivity of S.

What is here considered is the special case of the indices S obtained by

$$
S(x, y)=N_{\varphi}\left(\frac{d(x, y)}{a}\right)
$$

with N_{φ} the strong negation given by an automorphism φ of $[0,1]$, and d a pseudodistance on X bounded by $a>0$. In this case, from the threshold of transitivity of S, the function indicating the degree of indistinguishability between x and y, it is deduced a threshold for d, the function indicating the degree of separation between x and y.

As a consequence of the equivalence between bounded pseudo-distances and W_{φ}-indistinguishabilities, and by means of the known characterization of these last indexes of similarity, a characterization of bounded pseudo-distances is obtained throughout a family of "measurements" in $[0,1]$ of the considerated objects.

References

[1] C. Alsina and M.J. Frank and B. Schweizer, Associative Functions: Triangular Norms and Copulas World Scientific, Singapore, 2006.
[2] Claudi Alsina, Joan Jacas and Enric Trillas. Observability and the case of probability, In Tsau Young and Yiyu Y. Yao and Lotfi A. Zadeh, editors, Data mining, rough sets and granular computing, pages 249-264. PhysicaVerlag GmbH, Heidelberg, Germany, 2002.
[3] Elena Castiñeira, Susana Cubillo and Enric Trillas, On a similarity ratio. In Proccedings of 1999 Eusflat-Estylf Joint Conference, pages 417-420, Palma de Mallorca. September 22-25 1999.
[4] E. Chouraqui and C. Inghilterra, A model of case-based reasoning for solving problems of geometry in a tutoring system, In J-M. Laborde, editor Intelligent Learning Enviroments: The Case of Geometry, pages 1-16. Springer-Verlag, Berlin-Heidelberg, 1996.
[5] Z. P. Mamuziĉ, Introduction to General Topology, Noordhoff Ltd., Groningen, Holland, 1963
[6] E. Trillas, Sobre funciones de negación en la teoría de conjuntos difusos, Stochastica, $\operatorname{III}(1): 47-60,1979$. In Spanish.
[7] E. Trillas and L. Valverde, An inquiry on indistinguishability operators, In S. Termini, H.J. Skala and E. Trillas, editors, Aspects of Vagueness, pages 231-256. Reidel, 1984.
[8] Enric Trillas and Claudi Alsina, Introducción a los espacios métricos generalizados. Fundación Juan March, Serie Universitaria, 49, Madrid, 1978. In Spanish.
[9] Enric Trillas, Elena Castiñeira and Ana Pradera, On the equivalence between distances and T-indistinguishabilities, In Proccedings of EUSFLAT-ESTYLF Joint Conference 1999, pages 239-242, Palma de Mallorca, Spain, 1999.
[10] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets and Systems, (17):313-328, 1985.

[^0]: *This author has been partially supported by spanish CYCIT with the project TIN2005-08943-C02-01
 ${ }^{\dagger}$ This author has been partially supported by spanish CYCIT with the project TIN2005-08943-C02-01 and the Regional Council of the Junta de Castilla y León with the project LE051A05

