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Abstract

This paper deals with the relationship between bounded pseudo-distances
and its associated Wϕ-indistinguishabilities, from which the idea of threshold
of transitivity comes. By the way, bounded pseudo-distances are character-
ized.
Keywords: T -indistinguishabilities, bounded-distances, threshold.

1 Introduction

1.1 Distance and indistinguishability, as well as threshold, are important concepts
in the experimental sciences and, in particular, in Computational Intelligence. Con-
cerning the concept of a threshold, for which there is not a completely satisfactory
definition, it can be said that:

• It is a fixed point or value where an abrupt change is observed,

• It is the point that must be exceeded to begin producing an effect or result
or to elicit a response,

• It is the lowest point at which a stimulus begins to produce a sensation,

• It is the minimal stimulus that produces excitation of any structure, eliciting
a motor response, etc.

These descriptions cover most of the cases where the concept of threshold ap-
plies. Following the Webster’s dictionary, a threshold is “the point at which a
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stimulus is of sufficient intensity to begin to produce an effect”. In that sense,
below a value t in a numerical scale measuring the intensity of some input, it does
not produce any effect, but as soon as the intensity surpasses the value t the input’s
effect is detected.

1.2 In many problems in Computational Intelligence concerning the similarity of
certain elements, when measured by a numerical index of similarity S(x, y) ∈ [0, 1]
associated to each pair of these elements (like in Case-Based Reasoning), it appears
the following question: What can be said on S(a, c) when it is 0 < S(a, b) and
0 < S(b, c)? Namely, when it does be 0 < S(a, c)? Equivalently, if 0 < r ≤ S(a, b)
and 0 < r ≤ S(b, c), when it exists t(r) > 0 such that 0 < t(r) ≤ S(a, c)? This
problem can be called that of “large transitivity”, and if RS is the set of values r
which satisfy large transitivity for S, then tS = inf RS is the minimum value for
which this last inequality holds. It can be called the large transitivity threshold for
S.

Sometimes S is taken to be S(x, y) = 1− d(x, y) with d a bounded distance. In
these cases 0 < r ≤ S(x, y) is equivalent to d(x, y) ≤ 1− r < 1.

1.3 When the index S : X×X −→ [0, 1] is either min-transitive or prod-transitive [7],
respectively,

• min(S(a, b), S(b, c)) ≤ S(a, c)

• S(a, b) · S(b, c) ≤ S(a, c),

for all a, b, c ∈ X, from 0 < r ≤ S(a, b), 0 < r ≤ S(b, c), follows

• 0 < r = min(r, r) ≤ min(S(a, b), S(b, c)) ≤ S(a, c)

• 0 < r2 ≤ S(a, b) · S(b, c) ≤ S(a, c),

and then tS = inf(0, 1] = 0 for min and tS = inf(0, 1] = 0 for prod, is the corre-
sponding threshold of large transitivity for the two kind of indexes, a threshold that
actually is non informative. If S is W -transitive, with W (x, y) = max(0, x+ y− 1)
the Lukasiewicz t-norm, from W (S(a, b), S(b, c)) ≤ S(a, c), for all a, b, c in X, what
follows is

W (r, r) = max(0, 2r − 1) ≤W (S(a, b), S(b, c)) ≤ S(a, c),

and it could be W (r, r) = 0 with r > 0. Since W (r, r) = 0 happens if and only
if r ≤ 0.5, a threshold only exists if r > 0.5. That is, if 0.5 < r ≤ S(a, b), and
0.5 < r ≤ S(b, c), it is 0 < t(r) = 2r − 1 ≤ S(a, c). If the intensity of the link
between a and b, and of that between b and c is greater than r, then t(r) = 2r−1 > 0
and is S(a, c) ∈ [2r − 1, 1]. In this case tS = inf( 1

2 , 1] = 1
2 .

It will be proved that S is a W -indistinguishability if and only if d = 1 − S
is a pseudo-distance bounded by 1. Hence, to every pseudo-distance bounded
by a > 0 it is associated the W -indistinguishability S = 1 − d

a , that allows to
define a threshold for d from that of S. At this point it should be noticed that
0 < r ≤ S(x, y) is equivalent to d(x, y)/a ≤ 1− r < 1.
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1.4 This paper tries to study the threshold of transitivity of Wϕ-indistinguish-
abilities, as well as the link between such indexes and bounded pseudo-distances
and, in particular, to define a threshold for this last coming from that of the Wϕ-
indistinguishabilities. By the way, bounded pseudo-distances are characterized.

2 Basic Tools

2.1 A pseudo-distance in a set X is a mapping d : X ×X −→ R+ such that

1. d(x, x) = 0, for all x in X,

2. d(x, y) = d(y, x), for all x, y in X,

3. d(x, y) + d(y, z) ≥ d(x, z), for all x, y, z in X.

A distance is a pseudo-distance such that d(x, y) = 0 if and only if x = y. A
pseudo-distance is bounded by a > 0 if d(X ×X) ⊂ [0, a]. Every bounded pseudo-
distance is equivalent to a pseudo-distance bounded by 1, in the sense of “d is
a pseudo-distance bounded by a if and only if the function 1/a · d is a pseudo-
distance bounded by 1”, whose proof is immediate. Hence given a pseudo-distance
d bounded by 1 and a > 0, the function a · d is a pseudo-distance bounded by a.

2.2 A strong-negation is a function N : [0, 1] −→ [0, 1] such that

1. N(0) = 1,

2. if x < y, then N(y) < N(x),

3. N(N(x)) = x, for all x in [0, 1].

An order-automorphism of [0, 1] is a function ϕ : [0, 1] −→ [0, 1] such that

1. ϕ(0) = 0, ϕ(1) = 1,

2. if x < y, then ϕ(y) < ϕ(x).

The functions Nϕ : [0, 1] −→ [0, 1] defined by Nϕ(x) = ϕ−1(1−ϕ(x)) are strong
negations and (see [6]) for all strong-negation N there are order-automorphisms ϕ
such that N = Nϕ. Of course, both functions N and ϕ are bijective, continuous
and N verifies N(1) = N(N(0)) = 0, and N−1 = N.

2.3 For what concerns the definitions and properties of t-norms (T ), and t-conorms
(S), see [1].

The three well known basic continuous t-norms are T = min, T = prod, and
T (x, y) = W (x, y) = max(0, x + y − 1) (Lukasiewicz t-norm). The t-norm min
is the biggest of all them, since T (x, y) ≤ T (x, 1) = x, T (x, y) ≤ T (1, y) = y
imply T (x, y) ≤ min(x, y). For all order-automorphism ϕ, the function Tϕ = ϕ−1 ◦
T ◦ (ϕ × ϕ) is a t-norm if and only if T is a t-norm, and Tϕ is continuous if and
only if T is continuous. Hence, for all continuous t-norm T there is the family of



192 E. Trillas & A.R. de Soto

continuous t-norms F (T ) = {Tϕ : ϕ an automorphism}, and in particular, there is
the Lukasiewicz family

Wϕ(x, y) = ϕ−1(W (ϕ(x), ϕ(y))) = ϕ−1(max(0, ϕ(x) + ϕ(y)− 1)).

Neither minϕ(= min), nor prodϕ(= ϕ−1(ϕ(x) · ϕ(y))), have zero-divisors, but
the t-norms Wϕ do have such kind of elements: it is, Wϕ(x, y) = 0 if and only if
ϕ(x) + ϕ(y)− 1 ≤ 0, or if and only if y ≤ Nϕ(x).

2.4 A function E : X ×X −→ [0, 1] is a T -indistinguishability (see [7, 10]) on the
set X,4 if it verifies

1. E(x, x) = 1, for all x in X,

2. E(x, y) = E(y, x), for all x, y in X,

3. T (E(x, y), E(y, z)) ≤ E(x, z), for all x, y, z in X.

If E is a T -indistinguishability on [0, 1], for any f : X −→ [0, 1], the function Ef

defined by Ef (x, y) = E(f(x), f(y)) is a T -indistinguishability on X.
Examples of T -indistinguishabilities are given by

ET (x, y) = min(JT (x, y), JT (y, x)),

with JT (x, y) = sup{z ∈ [0, 1] : T (z, x) ≤ y}. For example,

− From Jmin(x, y) =
{

1 if x ≤ y
y if x > y

, is Emin(x, y) =
{

1 if x = y
min(x, y) if x 6= y

− From Jprod(x, y) =
{

1 if x ≤ y
y
x if x > y

, is Eprod(x, y) =
{

1 if x = y
min(x

y ,
y
x ) if x 6= y

− From JWϕ
(x, y) = ϕ−1(min(1, 1− ϕ(x) + ϕ(y)), is

EWϕ(x, y) = ϕ−1(1− ϕ(|x− y|)).

Theorem 2.1. E : X ×X −→ [0, 1] is a T -indistinguishability if and only if there
exists a family F of functions f : X −→ [0, 1], such that

E(x, y) = inf{ET (f(x), f(y)) : f ∈ F}.

Proof. See [7, 10].

Hence, for all finite family F = {f1, . . . , fn} of functions fi : X −→ [0, 1], the
T -indistinguishability E(x, y) = min{ET (fi(x), fi(y) : 1 ≤ i ≤ n} is said to be a
finitely generated T -indistinguishability. For example,

E(x, y) = min{ϕ−1(1− ϕ(|fi(x)− fi(y)|)) : 1 ≤ i ≤ n}
= ϕ−1(1− max

1≤i≤n
(|fi(x)− fi(y)|)),

is a finitely generated Wϕ-indistinguishability.
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2.5 Remarks.

2.5.1 As it is easy to prove, an order-automorphism ϕ of [0, 1] is sub-additive
(ϕ(x + y) ≤ ϕ(x) + ϕ(y)), if and only if the order-automorphism ϕ−1 is super
additive (ϕ−1(x) + ϕ−1(y) ≤ ϕ−1(x+ y)).

2.5.2 If d is a pseudo-distance on X bounded by 1, and the order-automorphism
ϕ is sub-additive, the function dϕ = ϕ ◦ d is also a pseudo-distance on X bounded
by 1.

2.5.3 The order-automorphisms ϕ(x) = xn(n = 2, 3, . . .) are super-additive, and
consequently the order-automorphisms ϕ−1 = n

√
x(n = 2, 3, . . .) are sub-additive.

3 Bounded Pseudo-distances and Wϕ-indistingui-
shabilities

Theorem 3.1. Let it be a function d : X × X −→ [0, 1]. If for some super-
additive order-automorphism ϕ on [0, 1], the function Eϕ(x, y) = Nϕ(d(x, y)) is a
Wϕ-indistinguishability, d is a pseudo-distance bounded by 1.

Proof. It is d(x, y) = Nϕ(E(x, y)). Hence, d(x, x) = 0 and d(x, y) = d(y, x) for all
x, y in X. From,

Wϕ(Eϕ(x, y), Eϕ(y, z)) = ϕ−1(max(0, ϕ(Eϕ(x, y)) + ϕ(Eϕ(y, z))− 1))

= ϕ−1(max(0, 1− ϕ(d(x, y))− ϕ(d(y, z))))
≤ Eϕ(x, z)
= Nϕ(d(x, z))

= ϕ−1(1− ϕ(dϕ(x, z)),

follows max(0, 1− ϕ(d(x, y)) + ϕ(d(y, z))) ≤ 1− ϕ(dϕ(x, z)). Hence,

ϕ(d(x, z)) ≤ ϕ(d(x, y)) + ϕ(d(y, z)) ≤ ϕ(d(x, y) + d(y, z)),

since ϕ is super-additive. Finally, d(x, z) ≤ d(x, y) + d(y, z).

Theorem 3.2. Let it be ϕ a sub-additive order-automorphism of [0, 1], and d a
pseudo-distance on X bounded by 1. The function Eϕ(x, y) = Nϕ(d(x, y)) is a
Wϕ-indistinguishability.

Proof. Obviously, Eϕ(x, x) = 0, and Eϕ(x, y) = Eϕ(y, x). From d(x, z) ≤ d(x, y) +
d(y, z), follows

ϕ(d(x, z)) ≤ ϕ(d(x, y) + d(y, z)) ≤ ϕ(d(x, y)) + ϕ(d(y, z)),

since ϕ is sub-additive. Then, 1 − ϕ(d(x, y)) − ϕ(d(y, z)) ≤ 1 − ϕ(d(x, z)), and
max(0, 1− ϕ(d(x, y))− ϕ(d(y, z))) ≤ 1− ϕ(d(x, z)). Hence,

ϕ−1(max(0, 1− ϕ(d(x, y))− ϕ(d(y, z)))) ≤ ϕ−1(1− ϕ(d(x, z)))
= Nϕ(d(x, z))
= Eϕ(x, y)
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By the other side,

Wϕ(Eϕ(x, y), Eϕ(y, z)) = ϕ−1(max(0, ϕ(Eϕ(x, y)) + ϕ(Eϕ(y, z))− 1))
= ϕ−1(max(0, 1− ϕ(d(x, y))− ϕ(d(y, z)))).

That is, Wϕ(Eϕ(x, y), Eϕ(y, z)) ≤ Eϕ(x, z), for all x, y, z in X.

Corollary 1. d is a pseudo-distance bounded by 1 if and only if E = 1 − d is a
W -indistinguishability.

Proof. The order-automorphism ϕ = Id is both sub-additive and super-additive.
Hence, if E is a W -indistinguishability, with NId, is d = NId ◦ E = 1 − E a
pseudo-distance bounded by 1, by theorem 3.1 and if d is a pseudo-distance, then
E = NId ◦ d = 1− d is a W -indistinguishability by theorem 3.2.

Theorem 3.3 (Characterization of bounded pseudo-distances). The only pseudo-
distances bounded by a > 0 are those defined by

d(x, y) = a · sup{|fi(x)− fi(y)| : i ∈ I},

for some family of functions fi : X −→ [0, 1], i ∈ I.

Proof. Since 1
a ·d is a pseudo-distance bounded by 1, E = 1− d

a is aW -indistinguisha-
bility by corollary 1. Then, by theorem 2.1 there is a family of functions {fi : i ∈ I}
such that E(x, y) = infi∈I EW (fi(x), fi(y)) = infi∈I{1 − |fi(x) − fi(y)|} = 1 −
supi∈I |fi(x)− fi(y)|. Then,

d(x, y) = a · (1− E(x, y)) = a · sup
i∈I
|fi(x)− fi(y)|.

A bounded pseudo-distance is finitely generated if I is a finite set. Hence, the
only finitely-generated bounded pseudo-distances are those of the form

d(x, y) = a · max
1≤i≤n

|fi(x)− fi(y)|,

for all x, y in X. Notice that the euclidean distance in X = [0, 1], d(x, y) = |x− y|
is finitely generated by the single function f = Id.

The family {fi : i ∈ I} can be taken as giving some “measurements” of the
objects in X, relatively to the attributes or properties they can show. For example,
if X = {x1, x2, x3, x4}, and the attributes on considerations are A1 and A2, with

fi(xj) = degree up to which xj is Ai(1 ≤ i ≤ 2, 1 ≤ j ≤ 4),

the corresponding pseudo-distance can be obtained once known the 2× 4 numbers
fi(xj) ∈ [0, 1]. In the case given by the table 1, it results the distance bounded by 1:
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x1 x2 x3 x4

f1 0.7 0.5 0.7 0.4
f2 0.8 0.4 0.6 0.5

Table 1: Two generating functions

d(x1, x1) = d(x2, x2) = d(x3, x3) = d(x4, x4) = max(0, 0) = 0
d(x1, x2) = d(x2, x1) = max(|0.7− 0.5|, |0.8− 0.4|) = 0.4
d(x1, x3) = d(x3, x1) = max(0, 0.2) = 0.2
d(x1, x4) = d(x4, x1) = 0.3
d(x2, x3) = d(x3, x2) = 0.2
d(x2, x4) = d(x4, x2) = 0.1
d(x3, x4) = d(x4, x3) = 0.3

It is easy to check that d is a distance. For example, with the triplet (x2, x3, x4) is
d(x2, x3) + d(x3, x4) = 0.2 + 0.3 = 0.5 ≥ 0.2 = d(x2, x4). Notice that the function
f1 is not injective.

In particular, functions fi can be probabilities in which case, ifX = {x1, . . . , xn},
it should be

∑n
j=1 fi(xj) = 1, for all i ∈ I.

Theorem 3.4. A finitely generated bounded pseudo-distance with at least an in-
jective function, is a distance.

Proof. It is clear because d(x, y) = 0 = a · max1≤i≤n |fi(x) − fi(y)| if and only if
fi(x) = fi(y) for all i, and then x = y.

The reciprocal result of this theorem is not true, since it is possible to have dis-
tances from a family of non-injective functions. For example, with X = {x1, x2, x3}
and two non-injective functions f1, f2 with f1(x1) = f1(x2) = 0.5, f1(x3) = 0.6
and f2(x1) = 0.3, f2(x2) = f2(x3) = 0.4, it results the bounded distance given by
d(x1, x2) = d(x1, x3) = d(x2, x3) = 0.1.

3.1 Remark. To every pseudo-distance on X bounded by a > 0, it is associated
the family of Wϕ-indistinguishabilities on X, EWϕ = Nϕ ◦ ( d

a ), for all sub-additive
order-automorphism ϕ of [0, 1]. In each case, the more adequate ϕ for the problem
under consideration should be selected.

4 The Threshold of Transitivity of a Wϕ-Indistin-
guishability

If E : X × X −→ [0, 1] is T -transitive, from 0 < r ≤ E(x, y), 0 < r ≤ E(y, z), it
follows 0 ≤ T (r, r) ≤ T (E(x, y), E(y, z)) ≤ E(x, z). That is, 0 ≤ T (r, r) ≤ E(x, z).
For both T = min and T = prodϕ, it is 0 < T (r, r) ≤ E(x, z), but for T = Wϕ

it could be Wϕ(r, r) = 0, in which case E fails to be largely transitive. Since
Wϕ(r, r) = 0, is equivalent to 2ϕ(r) − 1, or r ≤ ϕ−1(0.5), it suffices to take r >
ϕ−1(0.5) to have,
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0 < r ≤ E(x, y), and 0 < r ≤ E(y, z), imply 0 < ϕ−1(2ϕ(r)− 1) ≤ E(x, z).

Let us call inf{r ∈ [0, 1] : r > ϕ−1(0.5)} = ϕ−1(0.5) the threshold of transitivity
of E. Notice that from r ≤ 1, or ϕ(r) ≤ 1, it follows 2ϕ(r) − 1 ≤ ϕ(r), that is
ϕ−1(2ϕ(r)− 1) ≤ r. Hence, ϕ−1(2ϕ(r)− 1) ∈ (0, r], provided r > ϕ−1(0.5).
Example. If X = {x1, . . . , x2}, and fs : X −→ [0, 1], with 1 ≤ s ≤ m, the function
(see [3]),

E(xi, xj) =
∑n

s=1 min(fs(xi), fs(xj))
max(

∑n
s=1 fs(xi),

∑n
s=1 fs(xj))

,

whose values are in [0, 1], is Wϕ-transitive with ϕ(x) = x2. Hence, its threshold
of transitivity is ϕ−1(0.5) =

√
0.5 = 0.7071 and, consequently, it suffices to take

r = 0.7072 to have ϕ−1(2ϕ(r)− 1) =
√

2 · 0.70722 − 1 = 0.000264, and

If 0.7072 ≤ E(x, y), and 0.7072 ≤ E(y, z), then 0.000264 ≤ E(x, z).

Observe that with r = 0.8 it results ϕ−1(2ϕ(r)− 1) =
√

0.28 = 0.529.

5 The Threshold of a Bounded Pseudo-Distance

If d : X ×X −→ R+ is a pseudo-distance bounded by a > 0, for each sub-additive
order-automorphism ϕ, the corresponding Wϕ-indistinguishability

Eϕ(x, y) = Nϕ(
d(x, y)
a

),

has the threshold of transitivity ϕ−1(0.5). Then it suffices to take r > ϕ−1(0.5) to
be sure that if 0 < r ≤ Eϕ(x, y), and 0 < r ≤ Eϕ(y, z), it is 0 < ϕ−1(2ϕ(r)− 1) ≤
Eϕ(x, z).

Hence, if d(x, y) ≤ aNϕ(r), and d(y, z) ≤ aNϕ(r), then

d(x, z) ≤ aNϕ(ϕ−1(2ϕ(r)− 1)) = aϕ−1(2(1− ϕ(r)).

Since, d(x, y) ≤ d(x, y) + d(y, z) ≤ 2aNϕ(r) and d(x, z) ≤ a, it follows

d(x, z) ≤ a ·min(1, 2Nϕ(r), ϕ−1(2(1− ϕ(r))).

Then, for each r > ϕ−1(0.5), the number

δ(ϕ, r) = a ·min(1, 2Nϕ(r), ϕ−1(2(1− ϕ(r))),

can be called the ϕ-threshold of the bounded pseudo-distance d.
Notice that with ϕ = Id and r > ϕ−1(0.5) = 0.5, is

δ(Id, r) = a ·min(1, 2(1− r), 2(1− r)) = amin(1, 2(1− r)) = 2a(1− r).

That is, if d(x, y) ≤ a(1− r) and d(y, z) ≤ a(1− r), is d(x, z) ≤ 2a(1− r).
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5.1 Remark. The function δ(ϕ, r) is decreasing for r : If r < s, since 2Nϕ(s) <
2Nϕ(r), and ϕ−1(2(1 − ϕ(s))) < ϕ−1(2(1 − ϕ(r))), it follows δ(ϕ, s) < δ(ϕ, r). In
particular, from ϕ−1(0.5) < r it follows

δ(ϕ, r) < δ(ϕ,ϕ−1(0.5))

= a ·min(1, 2Nϕ(ϕ−1(0.5)), ϕ−1(2(1− ϕ(ϕ−1(0.5)))))

= a ·min(1, 2ϕ−1(0.5), 1)

= 2aϕ−1(0.5).

Then, it is always δ(ϕ, r) < 2aϕ−1(0.5). Note that it is δ(ϕ, r) = 0 if and only
if r = 1.

Notice that 0 < r ≤ E(x, y) is equivalent to d(x, y) ≤ aNϕ(r) < a. Hence
ϕ−1(0.5) < Eϕ(x, y), is equivalent to d(x, y) ≤ a · ϕ−1(0.5).

5.2 Examples.

5.2.4 If d is a pseudo-distance bounded by 1, with ϕ(x) =
√
x, is ϕ−1(0.5) = 0.52 =

0.25. Taking, for example, r = 0.26 it results:

d(x, y) ≤ Nϕ(0.26) = (1−
√

0.26)2 = 0.2402
d(y, z) ≤ Nϕ(0.26) = 0.2402,

and

d(x, z) ≤ min(1, 2Nϕ(0.26), ϕ−1(2(1− ϕ(0.26))))
= min(1, 0.4804, 0.9608) = 0.4804.

That is, δ(ϕ, 0.26) = 0.4804, a value that is less than 2aϕ−1(0.5) = 0.5.

5.2.5 Take d(x, y) = |x − y| in [0, 1], with ϕ = Id. It is Nϕ = 1 − Id, and
2aϕ−1(0.5)=1.

With r = 0.6 it results d(x, y) ≤ 1 − 0.6 = 0.4, d(y, z) ≤ 0.4, and d(x, z) ≤
min(1, 0.8, 2(1 − 0.6)) = 0.8. With r = 0.51 is d(x, y) ≤ 1 − 0.51 = 0.49, d(y, z) ≤
0.49, and d(x, z) ≤ min(1, 0.98, 2(1− 0.51)) = 0.98. Notice that this value is, as it
was pointed out, less than 2aϕ−1(0.5) = 1.

5.2.6 With the same distance of 5, take ϕ(x) =
√
x. Then,

Eϕ(x, y) = Nϕ(|x− y|) = (1−
√
|x− y|)2,

and ϕ−1(0.5) = 0.52 = 0.25.
With r = 0.26,

d(x, y) ≤ (1−
√

0.26)2 = (1− 0.51)2 = 0.2401, d(y, z) ≤ 0.2401,

and d(x, z) ≤ min(2·0.2401, (2(1−
√

0.26))2) = 0.4802. With r = 0.6, d(x, y) ≤ (1−√
0.6)2 = 0.0506, d(y, z) ≤ 0.0506, and d(x, z) ≤ min(1, 2 ·0.2401, (2(1−

√
0.6))2) =

04802. Notice that this value is less than 2aϕ−1(0.5) = 2 · 1 · 0.25 = 0.5.
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5.2.7 What happens with r ≤ ϕ−1(0.5)? In example 5.2.5, take r = 0.4. It results
d(x, y) ≤ 1 − 0.4 = 0.6, d(y, z) ≤ 0.6, and d(x, z) ≤ min(1, 1.2, 2(1 − 0.4)) = 1,
an unfruitful result, since it is always d(x, z) ≤ 1. It results a non-informative
conclusion.

5.2.8 It should be pointed out that index E in the example of section 4, is also
W -transitive. Hence, it has also the threshold ϕ−1(0.5) = Id−1(0.5) = 0.5. Never-
theless, since E is applied (see [4]) with the threshold 0.7, that was found exper-
imentally, this means that E is used as Wϕ-transitive with ϕ(x) = x2. Then, in
such application the “separation or distinction” between the objects x1, . . . , xn, to
which E applies is measured with the pseudo-distance

d(xi, xj) = Nϕ(E(xi, xj))

= ϕ−1(1− ϕ(E(xi, xj)))

=

√
1− (

∑
s min(fs(xi), fs(xj))

max(
∑

s fs(xi),
∑

s fs(xj))
, )2.

Hence, 0.7 < E(xi, xj) means d(xi, xj) < Nϕ(0.7) =
√

1− 0.72 = 0.7142. That is,
two objects xi, xj are taken as indistinguishable as soon as its separation is less
than 0.7142.

5.2.9 In X = [0, 1], the distance d(x, y) = |x−y|
1+|x−y| ∈ [0, 1] is bounded by 0.5

since from |x − y| ≤ 1 follows 2|x − y| ≤ 1 + |x − y|. Hence, with ϕ = Id the
corresponding W -indistinguishability is E(x, y) = 1 − d(x, y) = 1

1+|x−y| . Then,
with r = 0.52 > ϕ−1(0.5) = 0.5, if d(x, y) < aNϕ(r) = 0.5(1 − 0.52) = 0.24, and
d(y, z) < 0.24, it results d(x, z) < 0.5 min(1, 2 · 0.52, 2(1 − 0.52)) = 0.48 that, of
course, is less than 2 · 0.5 · 0.5 = 0.5.

With r = 0.8, is d(x, y) < 0.5·0.2 = 0.1, d(y, z) < 0.1, and d(x, z) < 0.5 min(1, 2·
0.2, 2 · 0.2) = 0.2.

6 The Maximum Threshold of a Bounded Pseudo-
Distance

It was shown in section 5 that δ(ϕ, r), the threshold for a given ϕ and r, never
surpasses the value 2aϕ−1(0.5). But what if we consider all sub-additive order-
automorphisms of [0, 1]? Is there an upper bound for all the possible values δ(ϕ, r)
for each pseudo-distance bounded by a?

The set A = {ϕ−1(0.5) : ϕ ∈ SO}, with SO the set of all sub-additive order-
automorphism of [0, 1], has a supremum since it is always ϕ−1(0.5) < 1. Hence,
supA ≤ 1. Let us call α = supA.

Theorem 6.1. α = 0.5

Proof. It is evident than 0.5 ≤ α because Id ∈ SO. But also α ≤ 0.5 because if
ϕ ∈ SO, then ϕ−1 is super-additive, so

2ϕ−1(0.5) = ϕ−1(0.5) + ϕ−1(0.5) ≤ ϕ−1(2 · 0.5) = ϕ−1(1) = 1
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and hence for all ϕ ∈ SO it holds ϕ−1(0.5) ≤ 0.5 and then α ≤ 0.5.

Because of all this, the final supremum for δ(ϕ, r), for all ϕ ∈ SO and, each
time with r > ϕ−1(0.5), is sup{2aϕ−1(0.5) : ϕ ∈ SA} = 2aα = a, the “diameter”
of the pseudo-distance.

7 Conclusions

As it was said in section 1, the goal of this paper is to partially deal with large
transitivity, that is, to study when an index of similarity S : X × X −→ [0, 1]
verifies the property:

if 0 < S(x, y), and 0 < S(y, z), then it exists t > 0 such that t ≤ S(x, z),

for all x, y, z in X. When t is the minimum number verifying 0 < t ≤ S(x, z), it is
called the threshold of transitivity of S.

What is here considered is the special case of the indices S obtained by

S(x, y) = Nϕ(
d(x, y)
a

),

with Nϕ the strong negation given by an automorphism ϕ of [0, 1], and d a pseudo-
distance on X bounded by a > 0. In this case, from the threshold of transitivity of
S, the function indicating the degree of indistinguishability between x and y, it is
deduced a threshold for d, the function indicating the degree of separation between
x and y.

As a consequence of the equivalence between bounded pseudo-distances and
Wϕ-indistinguishabilities, and by means of the known characterization of these last
indexes of similarity, a characterization of bounded pseudo-distances is obtained
throughout a family of “measurements” in [0, 1] of the considerated objects.

References

[1] C. Alsina and M.J. Frank and B. Schweizer, Associative Functions: Triangular
Norms and Copulas World Scientific, Singapore, 2006.

[2] Claudi Alsina, Joan Jacas and Enric Trillas. Observability and the case of
probability, In Tsau Young and Yiyu Y. Yao and Lotfi A. Zadeh, editors,
Data mining, rough sets and granular computing, pages 249–264. Physica-
Verlag GmbH, Heidelberg, Germany, 2002.
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[5] Z. P. Mamuziĉ, Introduction to General Topology, Noordhoff Ltd., Groningen,
Holland, 1963

[6] E. Trillas, Sobre funciones de negación en la teoŕıa de conjuntos difusos,
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[9] Enric Trillas, Elena Castiñeira and Ana Pradera, On the equivalence between
distances and T-indistinguishabilities, In Proccedings of EUSFLAT-ESTYLF
Joint Conference 1999, pages 239–242, Palma de Mallorca, Spain, 1999.

[10] L. Valverde, On the structure of F-indistinguishability operators, Fuzzy Sets
and Systems, (17):313–328, 1985.


