
Mathware & Soft Computing 15 (2008) 21-40

Optimization of Fuzzy Rule Sets Using a Bacterial

Evolutionary Algorithm

M. Drobics1 and J. Botzheim2

1 eHealth systems / Biomedical Engineering
Austrian Research Centers GmbH - ARC

A-1220 Vienna, Austria
2 Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
H-1117 Budapest, Hungary

mario.drobics@arcsmed.at, botzheim@tmit.bme.hu

Abstract

In this paper we present a novel approach where we first create a large
set of (possibly) redundant rules using inductive rule learning and where we
use a bacterial evolutionary algorithm to identify the best subset of rules in a
subsequent step. This enables us to find an optimal rule set with respect to a
freely definable global goal function, which gives us the possibility to integrate
interpretability related quality criteria explicitly in the goal function and to
consider the interplay of the overlapping fuzzy rules.

1 Introduction

Inductive learning is concerned with finding a function f(x),X 7→ Y which best
fits a given data set X. As fuzzy rule bases are capable of fulfilling requirements
regarding interpretability and accuracy, they are often used in applications, where
expert knowledge is not available, but knowledge of the resulting system is essential
[9].

Most methods for learning fuzzy rule bases (or fuzzy regression/decision trees)
choose a stepwise approach to construct the rule base. Therefore, decisions are
based on local criteria like entropy gain, confidence and support, or improvement
in goodness of fit (e.g. mean squared error for regression problems or entropy gain
for classification problems). This approach has two shortcomings: Firstly, selecting
accurate rules individually is not sufficient, as the interaction of the rules is very
important for the overall performance of the rule base in the fuzzy case—especially
for regression problems. Secondly, it is usually not possible to define the goal
function freely. This becomes crucial, when global criteria—like interpretability
measures [15]—are involved.

21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41790119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

22 M. Drobics & J. Botzheim

Recent approaches which try to use more problem specific selection criteria
have been presented e.g. for regression trees, where a rough approximation of the
expected output is used. As at the time a node is split no results from the subtrees
are available, the quality of the split is measured by interpolating between the mean
values of each subgroup [17, 12].

MSEDT(P, z,X) =
∑

x∈X µX(x)(z̃P (x)− z(x))2

|X|
,

z̃P (x) = t(P (x))z̄(X|P) + t(¬P (x))z̄(X|¬P),

where X is the data set, P the predicate to be applied, z the actual goal function
and z̄(X|P) the average of z in X, weighted according to P . t(.) denotes the truth
evaluation function. Although this approach is an improvement over traditional
approaches and it might be adopted to other error measures easily, it still uses a
step wise approach and is therefore restricted to an approximation of the final tree
structure. Other approaches use subsequent optimization techniques like pruning
[17] or meta-optimization techniques like boosting [19].

Currently, only a few approaches like genetic programming [20] are capable
of optimizing a complete rule base. These approaches, however, are usually very
complex and time consuming, as the search space is extremely large.

We overcome these limitations by splitting the construction of the rules and
the construction of the final rule base. Namely we construct a large set of rules
first, where all rules fulfill only minimal requirements in terms of confidence and
support. Then we select a much smaller subset of these rules using a bacterial evo-
lutionary algorithm (BEA). As in the BEA we can define the goal function freely,
we finally obtain a rule set which perfectly fits the given requirements. Compa-
rable approaches limited to classification problems using genetic algorithms have
been presented in [14] and [22]. The main disadvantage of these approaches is their
complexity, caused by the use of GAs and a binary position related coding. Further-
more, the key advantage of this approach—its ability to find a good combination
of rules—is much more powerful when applied to regression learning.

Bacterial evolutionary algorithms are simpler then genetic algorithms and it is
possible to reach lower error levels within a short time. They comprise of two op-
erations inspired by the microbial evolution phenomenon. The bacterial mutation
operation which optimizes the chromosome of one bacterium, and the gene transfer
operation which transfers information between different bacteria within the popu-
lation. BEA have already been successfully applied to rule learning [8] and feature
selection [7].

In this paper we first define the underlying language and the rule induction
method used. Then we introduce the bacterial evolutionary algorithm and we show
how this method can be applied to the problem of rule selection. Afterward, some
simulation results are presented to illustrate the potential of this new approach.
Finally, the paper is closed with an outlook to future work.

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 23

2 Prerequisites

Before we discuss how to select an optimal subset of rules, we have to clarify some
prerequisites. First, we have to define the language used to construct the fuzzy
rules, i.e. how fuzzy sets and fuzzy predicates are composed. Then, we will define
the structure of the rules base and discuss, how minimal requirements concerning
quality and interpretability for these rules can be established. Finally, we will
describe, how the initial set of rules is generated.

2.1 Defining the underlying language

To define the underlying language for our fuzzy models, we have to consider the
different types of input attributes that can occur. Basically, we can distinguish
between three types of attributes:

Boolean categorical attributes: The domain Xi is a unstructured finite set of
labels, for instance, types of car engines (gasoline, Diesel, hydrogen, electric)
or classes of animals (birds, fish, mammals, etc.). The attribute values xi

r are
single elements of the label set Xi.

Fuzzy categorical attributes: There is again a unstructured finite set of labels,
but with possible overlaps. Therefore, values of such kinds of variables may
be fuzzy sets on this set of labels. For example, assume that we are given a
finite set consisting of different grape varieties. Then blended wines (cuvees)
cannot be assigned to single categories crisply.

Numerical attributes: The underlying domain Xi is the set of real numbers or
a subset thereof (e.g. an interval). The attribute values xi

r are real numbers,
e.g. pressures, temperatures, incomes, ratios, etc.

Note that Boolean categorical attributes are special cases of fuzzy categorical at-
tributes, since any crisp label can be considered as a fuzzy set of labels, too.

Fuzzy predicates for categorical attributes, boolean or fuzzy, can be defined
easily in a straight forward manner. Finding appropriate fuzzy predicates for
numerical attributes, however, is a subtle problem which has to be thought out
carefully.

2.1.1 Generating meaningful fuzzy sets

To generate k unevenly distributed fuzzy sets according to the distribution of nu-
meric values in the data set X , we developed an algorithm called CompFS [10].
First, the centers ci (1 ≤ i ≤ k) of the fuzzy sets are initialized according to the
data distribution. By initializing the fuzzy set centers with the according quan-
tiles (qi = i−0.5

k), we create an equi-frequent binning of the data set. To overcome
problems which can occur when using the quantiles, it is necessary to readjust the
fuzzy set centers by using a simple k-means algorithm. Of course, equal frequen-
cies can no longer be guaranteed. Usually a few iterations of this clustering step
suffice. Finally, the fuzzy sets are computed around these centers. The resulting

24 M. Drobics & J. Botzheim

families of fuzzy sets form a partition and are in a proper order—to ensure highest
interpretability of the results [5].

Although CompFS is capable of computing the fuzzy sets automatically with
respect to a given data distribution, it requires the actual number of fuzzy sets as
an input. In our experiments it has, however, turned out that the actual choice of
this number influences the performance of the resulting model only slightly as long
as a sufficiently large number of fuzzy sets is created. This is achieved by using
ordering-based predicates and by defining the underlying fuzzy sets according to the
actual distribution of the data such that there is a good chance, that a sufficiently
good split is found already with a low number of sets. A detailed discussion of our
experiments on this topic can be found in [12].

2.1.2 Defining appropriate predicates

After defining the underlying fuzzy sets, it is necessary to define appropriate pred-
icates using these fuzzy sets. A fuzzy predicate p on X is uniquely represented by
its truth function

t(p) : X → [0, 1] (1)

where t(p(x)) is interpreted as the degree to which the value x fulfills the predicate
p.

Suppose that the r-th attribute is numerical. This means that Xr ⊆ R and
the values in the r-th component are real numbers. We assume that, for attribute
r, a family of Nr linguistic labels Mr,1, . . . ,Mr,Nr

is defined. Depending on the
underlying context of the attribute under consideration, these labels can be natural
language expressions like very low, medium, and large. To each label Mr,j , we
assign a fuzzy set with membership function µMr,j

∈ F(Xr) (j = 1, . . . , Nr) using
CompFS. Furthermore, we can define the complement and the smallest superset
with non-decreasing / non-increasing membership function for these sets. These
new fuzzy sets correspond to the linguistic expressions is not, is at least, and is at
most, respectively.

Given a set of linguistic labels Mr,1, . . . ,Mr,Nr and their corresponding seman-
tics modeled by fuzzy sets, we can now define 4 ·Nr atomic fuzzy predicates. The
degrees to which a sample x ∈ X1 × · · · × Xn+m fulfills these predicates can be
computed as follows (j = 1, . . . , Nr):

t(x is Mr,j) = µMr,j
(xr)

t(x is not Mr,j) = 1− µMr,j
(xr)

t(x is at least Mr,j) = sup{µMr,j
(u) | u ≤ xr}

t(x is at most Mr,j) = sup{µMr,j
(u) | u ≥ xr}

(2)

Although the two latter ordering-based predicates are not absolutely necessary,
they help to improve compactness, expressiveness, and interpretability of the results
[3, 4, 5, 6].

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 25

2.2 Rule Structure

Before we start to discuss how to generate rule bases for a given learning problem,
we have to clarify the structure of the resulting rule base. For classification prob-
lems (i.e. where the output parameter is either boolean or fuzzy categorical) this
can be done in a straight forward manner:

Given a set of goal predicates Cg, g ∈ G, rules of the form

Ai → Cg, i ∈ Ig, g ∈ G,

are defined. Such a rule is as linguistic description of the rule consequence Cg,
which can be read as: “For all samples fulfilling Ai, Cg holds”. In this setting, Ai

is a filter on the set of samples and Cg is a classification.
In case that the goal parameter is numeric (i.e. for regression learning problems)

we have to compute the set of goal predicates Cg, g ∈ G first. Then we can proceed
as for the categorical case. If the desired result is a real value and not a fuzzy set,
the resulting fuzzy set has to be defuzzified to obtain the final result. In our tests,
we used center-of-gravity defuzzyfication for this purpose.

2.3 Performance Evaluation

Beside measuring the quality of prediction, comprehensibility of the resulting rule
base plays an important role in fuzzy systems. Thus, it is necessary to establish
numeric measures which allow to compare different rule sets with respect to their
interpretability. Such measures typically cover two aspects of the rule base: its
size (i.e. number of rules and/or predicates) and the conditioning of the underlying
fuzzy partitions [15]. Depending on the application domain, other aspects might
be included as well (e.g. a preference on certain variables). As in our approach the
underlying language is defined a-priori to the actual rule learning, we will restrict
ourself to the measurement of the size of the rule base.

When creating the rules involved in the final rule base, we have to specify which
rules are of potential interest. For a single rule, we will now specify two minimal
quality requirements, which are aimed to remove useless/uninteresting rules. To
ease notations we will restrict ourself to a single consequence parameter C.

Let Ai → C, i ∈ I be a rule set for a given learning problem, and let X be our
set of samples. The first requirement on a rule Ai → C is, that the antecedent
should only be fulfilled if the consequence is also fulfilled, i.e. each rule should be
confident.

Definition 2.1. Let A→ C be an arbitrary rule, and be X a given set of samples.
The confidence of A→ C with respect to X is defined according to:

confX(A→ C) :=
|A(X) ∩ C(X)|
|A(X)|

. (3)

The second requirement is, that the whole rulebase covers all possible states
(
⋃

i∈I Ai = C). This motivates the definition of the support measure:

26 M. Drobics & J. Botzheim

Definition 2.2. Let A→ C be an arbitrary rule, and be X a given set of samples.
The support of A→ C with respect to X is then defined according to:

suppX(A→ C) := simX(A,C) =
|A(X) ∩ C(X)|
|A(X) ∪ C(X)|

(4)

These two measures will be used to ensure a minimal performance of the rules.
Generally, though, these two criteria are contrary. The confidence measure prefers
local, more accurate rules, while the support measure prefers rules which involve
more samples and might have a higher rate of false classifications. It depends on
the actual problem definition and the learning algorithm used, how this conflicting
goals are balanced and how an optimal solution is found. This balance has to be
specified in the actual goal function used to find the optimal ruleset.

2.4 Rule Learning

To obtain the initial set of rules, we use a method which finds all rules fulfilling
minimal requirements in terms of confidence and support called FS-Miner [11].
Although it is possible to remove rules covering the same range of the data space
using a partial ordering structure, we do not use this mechanism as we want to
obtain the most comprehensive set of rules. Of course, other rule learning methods
might be used as well (e.g. association rule miners [1, 13]).

FS-Miner performs a single beam search to find all rules of interest. It starts
with the most general predicate >, the predicate that always gives a truth value
of 1 as the only element in the set of candidates. Then all rules within the set
of candidates are expanded with all available predicates by means of conjunction.
From this set of candidates all rules with a support below the minimum support
are removed. From the resulting set of candidates, all rules which have at least
minimum confidence are added to the set of potentially maximal rules. Then
overlapping rules might be removed from the set of candidates. The most promising
rules remaining in the set of candidates are then expanded with a further predicate.
This procedure is repeated until the set of candidates is empty, or the maximal
rule length is reached. Finally, all non maximal rules are removed from the set of
potentially maximal rules to obtain the set of all maximal rules.

3 Bacterial Evolutionary Algorithm

There are several optimization algorithms which were inspired by the processes of
evolution. These processes can be easily applied in optimization problems where
one individual corresponds to one solution of the problem. An individual can be
represented by a sequence of numbers that can be bits as well. This sequence
is called chromosome, which is nothing else than the individual itself. Bacterial
evolutionary algorithms are a recent variant of genetic algorithms based on bacte-
rial evolution rather than eukaryotic. Bacteria share chunks of their genes rather
than perform neat crossover in chromosomes, which means bacterial genomes can
grow or shrink. This mechanism is used both in the bacterial mutation and the

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 27

gene transfer operations. The latter substitutes the genetic algorithms crossover
operation, so information can be transferred between different individuals. As in
this approach many operations can be performed in parallel, it can be adopted to
a parallel computing environment in a straightforward manner. In the following,
we will restrict ourself to the case of rule selection, although the basic algorithm is
applicable to a much broader range of applications.

3.1 The encoding method

In bacterial evolutionary algorithms, one bacterium ξi, i ∈ I corresponds to one
solution of the problem under investigation. For the task of selecting mi rules
from a set of n rules (mi ≤ n), the bacterium consists of a vector of rule indices
ξi = {ξ1i , . . . , ξ

mi
i }, 1 ≤ ξk

i ≤ n with ξk
i being the index of the k-th rule and ξk

i 6= ξl
i

for k 6= l. As applying the same rule multiple times is not reasonable, we ensure that
each rule occurs only once in each bacterium. This is, however, only a matter of
efficiency and not absolutely necessary as by preferring smaller rule sets redundant
rules are likely to be removed anyway.

This encoding method, although more complex than a simple binary coding,
has strong benefits. First of all this encoding supports the implicit definition of
subgroups from not consecutive rules. When using a binary position coding (i.e. a
1 at the i-th position indicates the selection of the i-th rule), subgroups can only
evolve amongst neighboring rules. Having subgroups of rules is, however, very
important as these subgroups may contain interacting rules with a good overall
performance. Furthermore, the evolutionary operations perform block operations
which preserve these subgroups. Secondly, we have full control on the number of
rules in the rule base. By specifying the length of elements inserted or deleted
from the bacterium, we determine the overall number of rules involved. Thus, we
can control the broadness of the search. When using a binary position coding,
the number of rules is equivalent to the number of 1’s, making it much harder to
control the overall number of rules in a single step. Alternatively to an integer
based encoding one might also use a binary integer coding, where each integer is
encoded as a series of bits. Then, however, prevention for dealing with non existing
rule numbers have to be made.

3.2 The evaluation function

Similar to genetic algorithms the fitness of a bacterium ξi is evaluated using an
evaluation function φ(ξi). As this evaluation function is computed for all bacteria
after each mutation, its efficiency has a major influence on the overall runtime
performance of the algorithm.

When a regression problem is only optimized with respect to the overall error
the problem occurs, that the number of rules will increase rapidly. Although this
effect can be reduced by using a separate test data set, we might want to obtain
the best result involving a certain number of rules. As, however, defining the size
of the final rule base a-priory is quite restricting, we use a fuzzy predicate which is
incorporated in the target function to limit the size of the rule base. Doing so, we

28 M. Drobics & J. Botzheim

can compute the best result for a given threshold size while still allowing a certain
amount of flexibility in the size of the rule base [22].

3.3 The evolutionary process

The basic algorithm consists of three steps [16, 8]. First, an initial population has
to be created randomly. Then, bacterial mutation and gene transfer are applied,
until a stopping criteria is fulfilled. The evolution cycle is summarized below:

Bacterial Evolutionary Algorithm

1. create initial population
2. do
3. apply bacterial mutation
4. apply gene transfer
5. loop until stopping condition is not fulfilled
6. return best bacterium

3.4 Generating the initial population

First, an initial bacterium population of Nind bacteria {ξi, i ∈ I} is created ran-
domly (I = {1, . . . , Nind}). As we do not use a predefined bacteria size, the length
of each bacterium is chosen randomly within the range of 2 and m. Figure 1 shows
a bacterium ξi with n = 50 and length 5.

44 17 36 2 7

Ξi
1 Ξi

2 Ξi
3 Ξi

4 Ξi
5

Figure 1: A single bacterium

3.5 Bacterial mutation

To find a global optimum, it is necessary to explore new regions of the search
space not yet covered by the current population. This is achieved by adding new,
randomly generated information to the bacteria using bacterial mutation.

Bacterial mutation is applied to all bacteria ξi, i ∈ I. First, Nclones copies
(clones) of the bacterium are created. Then, a random segment of length lc is
mutated in each clone. After mutating the same segment in all clones, all the
clones and the original bacterium are evaluated using the evaluation function φ.
The bacterium with the best evaluation result transfers the mutated segment to the
other individuals. This step is repeated until each segment of the bacterium has
been mutated once. The mutation may not only change the content, but also the
length. The length of the new elements is chosen randomly as lc ∈ {l−l?, . . . , l+l?},
where l? ≥ 0 is a parameter specifying the maximal change in length. When
changing a segment of a bacterium, we must take care that the new segment is

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 29

unique within the selected bacterium. At the end, the best bacterium is kept and
the clones are discharged. Figure 2 shows an example mutation for Nclones = 3 and
lc = 1.

44 17 36 2 7

Φ HΞL = 0.8

ß

44 17 36 2 7

Φ HΞL = 0.8

44 17 20 2 7

Φ HΞL = 0.5

44 17 35 2 7

Φ HΞL = 0.9

44 17 40 2 7

Φ HΞL = 0.7

ß

44 17 20 2 7

Φ HΞL = 0.5

44 17 20 2 7

Φ HΞL = 0.5

44 17 20 2 7

Φ HΞL = 0.5

44 17 20 2 7

Φ HΞL = 0.5

ß

44 17 20 2 7

Φ HΞL = 0.5

33 17 20 2 7

Φ HΞL = 0.7

16 17 20 2 7

Φ HΞL = 0.4

21 17 20 2 7

Φ HΞL = 0.9

ß

etc.
ß

16 17 20 2 19

Φ HΞL = 0.3

Figure 2: Bacterial mutation

3.6 Gene transfer

The bacterial mutation operator optimizes the bacteria in the population individ-
ually. To ensure that information from effective bacteria spreads over the whole
population, gene transfer is applied.

First, the population must be sorted and divided into two halves according to
their evaluation results. The bacteria with a higher evaluation are called superior
half, the bacteria with a lower evaluation are referred to as inferior half. Then,
one bacterium is randomly chosen from the superior half and another from the
inferior half. These two bacteria are called the source bacterium, and the desti-
nation bacterium, respectively. A segment from the source bacterium is randomly
chosen and this segment is used to overwrite a random segment of the destination
bacterium, if the source segment is not already in the destination bacterium. These
two segments may vary in size up to a given length. This ensures—together with
the variable length in the bacterial mutation step—that the bacteria are automat-
ically adjusted to the optimal length. Gene transfer is repeated Ninf times, where
Ninf is the number of “infections” per generation. Figure 3 shows an example for
the gene transfer operations (Nind = 4, Ninf = 3).

30 M. Drobics & J. Botzheim

16 17 36 2 19

Φ HΞL = 0.3

33 31 20 7 4

Φ HΞL = 0.5

21 18 5 39 25

Φ HΞL = 0.6

30 3 9 27 32

Φ HΞL = 0.8

ß

16 17 36 2 19

Φ HΞL = 0.3

33 31 20 7 4

Φ HΞL = 0.5

21 18 36 39 25

Φ HΞL = 0.7

30 3 9 27 32

Φ HΞL = 0.8

ß

16 17 36 2 19

Φ HΞL = 0.3

21 31 36 39 25

Φ HΞL = 0.4

33 31 20 7 4

Φ HΞL = 0.5

30 3 9 27 32

Φ HΞL = 0.8

ß

16 17 36 2 19

Φ HΞL = 0.3

21 31 36 39 25

Φ HΞL = 0.4

33 31 20 7 4

Φ HΞL = 0.5

30 3 9 2 32

Φ HΞL = 0.6

Figure 3: Gene transfer

3.7 Stopping condition

If the maximum number of generations Ngen is reached, the algorithm ends, oth-
erwise it returns to the bacterial mutation step. Typically, a small number of
generations (below 10) already leads to good results. If a target value for evalua-
tion function exists, a threshold value might be defined alternatively.

4 Simulation results

4.1 Comparison to Genetic Algorithms

To compare the performance of bacterial evolutionary algorithms (BEA) to those
of traditional genetic algorithms (GA), we applied both approaches to an artificial
learning problem. Given the function (see Fig. 4)

f(x) =
1
2

(1 + sin(10πx2) + x), x ∈ [0, 1],

and using a simple binary encoding xi = {x1
i , . . . , x

n
i }, x

j
i ∈ {0, 1}, the fitness

function

φ(xi) = f

(∑n
j=1 x

j
i 2j−1

2n − 1

)
was defined. For our tests we used bacteria with a fixed length of n = 10, allowing
multiple occurrences of the same element within one bacterium. For comparison,
we used the genetic algorithm package for Mathematica from Mats G. Bengts-
son. It uses simple crossover, selection based on the fitness values, and supports
synchronous as well as asynchronous update of the population.

To compare the performance of the two approaches, we generated for the BEA
50 generations of 4 bacteria with 2 clones, mutation length 2 and gene transfer
length 2. For the GA we generated 50 generations of 50 genes with a mutation

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 31

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4: Signal f(x) used for comparison

rate of 2%. The performance was measured as the average performance over all
individuals. The performance evaluation is shown in Figure 6. While the BEA
reached a high quality level within the first 10 iterations, the GA took significantly
longer. All three algorithms made approximatelly 2500 calls to the fitness function.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5: Resulting populations for BEA and GA sync., and GA async.

0 10 20 30 40 50

0.6

0.8

1

1.2

1.4

GA-Sync

GA-ASync

BEA

Figure 6: Comparison of BEA and GA

We can see, that the asynchronous genetic algorithm took longer to reach a
good overall result, while the synchronous GA failed to reach a higher fitness level.
This is mainly due to the large number of individuals in different regions of the
search space. The bacterial evolutionary algorithm has a somehow different search
strategy, as it explores new regions by creating mutations and selects the best

32 M. Drobics & J. Botzheim

no. of generations 5
no. of individuals 4
no. of clones 5
mutation length 3 ± 2
no. of gene transfers 20
gene transfer length 2 ± 2
max. length 20

Table 1: Parameter setting for the BEA

individuals and transfers their information to the other bacteria. Thus, a higher
increase of the fitness functions can be reached within shorter time. By increasing
the size of the population, the diversification can be increased to handle more
complex problems, too.

4.2 Regression Learning

4.2.1 Performance Comparison

To compare the performance of our approach with other methods, we used seven
data sets from the UCI repository [2]. We compared the results obtained with
a fuzzy rule base learner FS-FOIL, a fuzzy decision tree learner FS-ID3, and a
fuzzy regression tree learner FS-LiRT —all using the same sets of predicates as
used in the BEA rules, where for each attribute, a partition into five fuzzy sets
was created automatically. Furthermore, we used three methods from the WEKA
3-4 toolkit [21], namely M5-Prime [18], M5-Rules, and SMOreg. M5-Prime and
M5-Rules generate decision trees and decision rules to solve the regression learning
problem. SMOreg is an implementation of Alex J.Smola and Bernhard Scholkopf
sequential minimal optimization algorithm for training a support vector regression
using polynomial or RBF kernels. The methods from the WEKA toolkit do not use
a predefined set of predicates/decisions. Furthermore, FS-FOIL and FS-ID3 use
predefined linguistic output classes, while all other methods compute individual
numeric output values for each rule/leaf. For all these methods we disabled local
linear models to ensure equal expressiveness of the underlying language. All tests
have been carried out using 5-fold cross validation with identical subsets for all test
runs. The results of these tests are shown in Tab. 2 where the average normalized
mean error, the average ratio of null predictions, and the average number of rules
are printed for each test run. For the BEA we used the parameter setting shown
in Table 1.

The evaluation function was defined as follows: For a given data set S? ⊂ S we
compute the error estimate of a rule set ξi as the normalized mean squared error
of the corresponding output function f . To ensure that we do not obtain infinitely
large rule sets we define a fuzzy predicate LE(s,m) according to:

LE(s,m) =

{
1 s <= m

e−
1
2 (m−s

m/2)2

otherwise
, (5)

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 33

with s = MS(f) being the actual model size, and m the desired maximum number
of rules. The overall error measure φ(f, S?) is then computed as:

φ(f, S?) =
mseN(f, S?)

(1− RoNP(f, S?))4 ∗ LE(MS(f),m)
, (6)

where

mseN(f, S?) =
∑

x∈S? (z(x)− f(x))2

(maxx∈S?z(x)−minx∈S?z(x))2
,

and RoNP(f) is the ratio of null predictions.
The results obtained using the BEA are in four of seven cases equal or better

than those of all other methods. The trade-off, however, is a decreased coverage
(i.e. a higher ratio of null predictions). This is caused by the design of the evaluation
function φ in Equ. 6, where the ratio of null predictions is a divisor of the normalized
mean squared error. A high ratio of null predictions as for the servo data set
indicates, that a large portion of the data (approx. 30%), shows an “untypical”
behaviour and should be analyzed further. Using a different design of the evaluation
function could, however, be used to obtain a rule base with a higher coverage, but
also a higher MSE.

NMSE

RoNP

Size

FS-FOIL FS-ID3 FS-LIRT M5P M5Ru SMOreg BEA

autoMpg

0.019

0.357
16.6

0.017

0
36.

0.014

0
22.8

0.012

0
16.

0.013

0
11.8

0.009

0
-

0.016

0.096
21.2

autoPrice

0.018

0.071
20.8

0.021

0
34.

0.017

0
12.

0.023

0
8.6

0.023

0
7.4

0.014

0
-

0.014

0.013
20.2

bodyFat
0.003

0.012
7.

0.006

0
5.

0.008

0
3.6

0.007

0
18.6

0.01

0
17.6

0.002

0
-

0.008

0.032
18.6

cloud

0.042

0.038
28.8

0.031

0
25.4

0.044

0
8.2

0.039

0
7.2

0.044

0
6.2

0.013

0
-

0.025

0.048
17.6

housing

0.015

0.154
21.8

0.014

0
21.

0.012

0
17.

0.012

0
18.2

0.016

0
13.

0.013

0
-

0.011

0.048
19.8

servo

0.017

0.364
19.2

0.023

0
44.

0.012

0
9.6

0.028

0
10.6

0.042

0
6.8

0.033

0
-

0.006

0.309
23.

veteran

0.116

0.185
22.

0.084

0
65.4

0.161

0
19.6

0.053

0
1.8

0.055

0
1.8

0.053

0
-

0.051

0.185
20.6

Table 2: Comparison of regression results for 7 UCI data sets

34 M. Drobics & J. Botzheim

4.2.2 Housing data

Let us take a closer look at the results obtained for the housing data set. Initially
120, 98, 429, 232, and 50 rules (929 in total) were created for each of the five goal
classes using FS-Miner. The partitioning of the input domains and the definition
of the corresponding fuzzy predicates were done using CompFS. The partitioning
of the goal attribute is shown Fig. 7.

10 20 30 40 50

Class

Figure 7: Partitioning of the class parameter in the housing data set

Afterward we applied the BEA to obtain the final rule set. In the first of
five trial runs 4, 4, 9, 2, and 1 rules (total 20 rules) involving only two or three
predicates have been selected. The resulting rule base is shown in Fig. 8. The
additional columns show the number of correctly classified samples (tt), the number
of misclassified samples (tf), the number of unclassified samples of the goal class
(rt), together with the corresponding confidence and support. Computation took
about 90 seconds for each validation cycle, involving about 800 evaluations of the
error measure function.

4.3 Classification

4.3.1 Performance Comparison

We also applied the BEA to different classification problems using seven data sets
from the UCI repository [2]. The results were compared to five other methods,
namely FS-FOIL, FS-ID3, J48, a naive-Bayes classifier, and the SMO algorithm
for training a support vector classifier using polynomial kernels. FS-FOIL and FS-
ID3 use the same set of predicates as the BEA rules, while J48, the naive-Bayes
classifier, and the SMO algorithm were taken from the WEKA 3.4 toolkit [21].
All test were made using 5-fold cross validation with identical splits for all test
runs, except for the SMO algorithm, which was run separately using 10-fold cross
validation.

The error measure was defined in a similar manner as for the regression prob-
lem: Given data set S? ⊂ S we compute the error estimate of a rule set ξi as the
reciprocal of the percentage of correctly classified samples (FC) from the corre-
sponding output function f . Again, we use the fuzzy predicate LE(s,m) to restrict

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 35

Class tt tf rt conf supp Condition

class_Is_0_VL 73.38 23.26 31.54 0.76 0.15
82.24 28.48 22.78 0.75 0.16

9.36 2.32 95.34 0.82 0.02
26.98 4.97 77.55 0.85 0.05

LSTAT_IsAtLeast_H && CRIM_IsAtLeast_L
LSTAT_IsAtLeast_H && PTRATIO_IsAtLeast_H

CRIM_IsAtLeast_H && RM_IsAtLeast_H
TAX_Is_VH && B_Is_VL

class_Is_1_L 69.5 43.28 76.85 0.63 0.14

26.72 10.26 118.2 0.73 0.05
22.43 10.03 122.66 0.71 0.04

61.41 39.59 85.01 0.62 0.12

RM_IsAtMost_L && NOX_IsAtMost_M

RM_Is_L && DIS_IsAtLeast_H
LSTAT_Is_M && TAX_Is_H

LSTAT_Is_M && INDUS_IsAtLeast_L

class_Is_2_M 58.82 32.67 90.87 0.66 0.12
60.26 36.72 89.35 0.63 0.12

23.3 11.28 124.78 0.68 0.05
8.72 4.03 139.09 0.7 0.02

26.52 11.25 122.11 0.72 0.05
5.62 2.65 142.57 0.73 0.01

8.81 6.08 139.48 0.62 0.02
54.85 28.96 93.47 0.66 0.11

50. 19.18 99.22 0.74 0.1

RM_Is_M && NOX_IsAtMost_M
RM_Is_M && CRIM_Is_VL

LSTAT_IsAtMost_L && RM_IsAtMost_H && ZN_Is_L

TAX_Is_L && CHAS_Is_1
LSTAT_Is_L && TAX_Is_L && NOX_IsAtMost_L
LSTAT_Is_L && CRIM_Is_L

LSTAT_IsAtLeast_M && AGE_Is_L && B_Is_VH
TAX_Is_L && AGE_IsAtMost_M && RM_IsAtMost_H

RM_Is_M && PTRATIO_IsAtMost_M && DIS_IsAtLeast_L

class_Is_3_H 13.31 2.07 60.12 0.89 0.03

31.61 16.75 42.21 0.66 0.06

ZN_IsAtLeast_L && RM_Is_H && TAX_Is_VL

LSTAT_Is_VL && RM_Is_H && RAD_IsAtMost_H

class_Is_4_VH 9.33 5.69 22.37 0.62 0.02 RM_IsAtLeast_H && PTRATIO_Is_VL && DIS_IsAtMost_L

Figure 8: Result obtained for the housing data set

the size of the rule base. The overall error measure φ(f, S?) is then computed as:

φ(f, S?) = 1− FC(f, S?)(1− RoNP(f, S?))4LE(MS(f),m). (7)

The results of the comparison are shown in Tab. 3.
Not surprisingly, the SMO method gave in all but one case the best results as it

can cope with much more complex decision boundaries then the (fuzzy) rule based
approaches. The BEA, however, obtained (slightly) better results than the other
methods in four out of seven cases. This illustrates, that the method is capable
of finding at least equally good solutions as other rule based methods, even when
a very straight forward error measure is used. Much more interesting, however, is
the result for the balance-scale data set, where the BEA found a solution having a
comparable fraction of correct classifications, but with a significantly lower number
of rules. Here, the combination of predictive accuracy and model complexity has
resulted in a better overall performance of the BEA. On the other hand, the number
of rules which have been allowed without a “penalty” have been also used for the
iris data set, although the larger number of rules does not increase the performance
of the rule base.

4.3.2 Hepatitis Analysis

This test was carried out to illustrate the ability of the proposed approach to
solve specific optimization problems. For this study we selected 562 case records
of adult hepatitis patients and 231 case records of non-infected patients. The
patients received stationary treatment at the Vienna General Hospital (AKH-Wien)
between 1976 and 1986. Each patients’ clinical diagnoses was serologically verified
and thus considered to be a gold standard.

36 M. Drobics & J. Botzheim

Frac.Corr.

Size

FS-FOIL FS-ID3 J48 Bayes SMO BEA

balance-scale
0.63
13.

0.781
54.

0.787
35.6

0.878
-

0.877
-

0.771
14.

breast-cancer
0.698
23.2

0.733
18.6

0.73
5.6

-

-

0.696
-

0.744
16.2

diabetes
0.741
9.2

0.731
3.6

0.733
22.2

0.599
-

0.773
-

0.749
14.

hepatitis
0.742
11.4

0.832
12.8

0.819
6.8

-

-

0.852
-

0.806
14.4

iris
0.947
4.6

0.947
5.

0.94
4.8

0.667
-

0.96
-

0.92
13.

pima
0.741
9.2

0.731
3.6

0.733
22.2

0.599
-

0.773
-

0.749
14.

wine
0.914
8.

0.92
6.6

0.926
5.2

0.651
-

0.983
-

0.949
15.4

Table 3: Comparison of classification results for 7 UCI data sets

For each patient a detailed laboratory analysis was carried out including 11
laboratory measurement and two personal attributes of the patient (gender and
age).

For the current experiment, we did not distinguish between the different types
of hepatitis, but only between infected (positive) and non-infected (negative) cases
to obtain a binary decision problem. From a medical point of view, the goal in
this setting is then to optimize the performance of the predictor with respect to
specificity and sensitivity under the constraint that the number of rules is limited.

Formally speaking, we compute the error estimate of a rule set ξi, i ∈ I for
a given data set S? ⊂ S as the harmonic mean of sensitivity and specificity. To
ensure that we do not obtain infinitely large rule sets we define a fuzzy predicate
“s is not greater than m” LE(s,m) according to Equ. 5. The overall error measure
F (f, S?) is then computed as:

F (f, S?) =
1

LE(MS(f),m)

(
1− 2

sens(f, S?) + spec(f, S?)
sens(f, S?) · spec(f, S?)

)
,

Other error measure can be used as well, depending on the problem under in-
vestigation. For the remaining we will, however, stick to this rather simple error
measure to ease interpretation.

We created a rule base of 466 rules having a minimum support of 0.01 and a
minimum confidence of 0.6. We then used the BEA to select the optimal subset of
these rules using the parameter set shown in Tab. 1.

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 37

We also tried out other parameter setting (higher number of generations, in-
dividuals, clones), but with no significant increase in the quality of the obtained
rule sets. A resulting rule base is shown in Fig. 9. In each iteration, the evaluation
function was evaluated approximately 200 times.

We compared the results to those of three different learning algorithms which
involve the same set of predicates. This enables us to eliminate influences caused
from different definitions of the underlying fuzzy predicates. While FS-ID3 is
a fuzzy decision tree learning method, FS-FOIL and FS-Miner are rule learning
algorithms. We compared the results of the three algorithms using 5-fold cross
validation with similar splits for all algorithms. The means of the according quality
measures are shown in Tab. 4.

Class Condition

HEP2_Is_NEG Ü ALKPHOS_IsAtLeast_M && GPT_IsAtMost_L && GAMMA_GT_IsAtMost_L && GAMMA_IsAtMost_L && LDH_IsAtLeast_L

SERBILI_Is_VL && ALKPHOS_Is_VL && BETA_Is_M

ALKPHOS_IsAtMost_L && LDH_Is_VL && ALBUMIN_IsAtLeast_M

ALKPHOS_IsAtMost_L && LDH_Is_VL && SEX_Is_W

ALKPHOS_IsAtLeast_M && GAMMA_GT_Is_VL && GPT_Is_VL && SEX_Is_W && GAMMA_IsAtMost_M

GPT_Is_VL && ALKPHOS_Is_VL && SERBILI_IsAtMost_L

HEP2_Is_POS Ü ALKPHOS_IsAtLeast_M

LDH_IsAtLeast_M

GOT_IsAtLeast_M

ALKPHOS_IsAtLeast_H

ALKPHOS_Is_VL && AGE_IsAtLeast_L && LDH_IsAtLeast_L && ALPHA2_IsAtMost_L

ALKPHOS_Is_VL && GAMMA_GT_IsAtMost_H && SEX_Is_M && AGE_IsAtLeast_L && ALPHA1_IsAtMost_H
GAMMA_GT_IsAtLeast_L && ALBUMIN_IsAtMost_H

ALKPHOS_Is_VL && GAMMA_GT_IsAtMost_H && AGE_IsAtMost_L && ALPHA2_IsAtMost_L && ALPHA1_IsAtMost_H
SERBILI_IsAtLeast_L && LDH_IsAtLeast_L

ALKPHOS_Is_VL && GAMMA_GT_IsAtMost_H && SEX_Is_M && ALPHA2_IsAtMost_L && ALBUMIN_IsAtMost_H

ALKPHOS_Is_VL && GAMMA_GT_IsAtMost_H && SEX_Is_M && AGE_IsAtLeast_L && ALPHA2_IsAtMost_M && GPT_IsAtMost_H
ALKPHOS_Is_VL && GAMMA_GT_IsAtMost_H && SEX_Is_M && AGE_IsAtLeast_L && GPT_IsAtMost_H

Figure 9: Rule set obtained using Bacterial Evolutionary Algorithm

>> 5x Cross.Val. << BEA FS-ID3 FS-FOIL FS-MINER

F 0.234 0.28 0.473 1.

Sensitivity 0.759 0.791 0.755 0.861

Specificity 0.781 0.695 0.424 0

PosVals 0.927 0.87 0.915 0.891

NegVals 0.606 0.59 0.651 0

FractionCorrect 0.798 0.766 0.844 0.891

ChiSquared 49.305 34.349 39.533 0

PLevel 0 0 0 0

MutualInformation 0.259 0.167 0.237 0

NormalizedMutualInformation 0.297 0.189 0.304 0

ModelSize 18.2 19.8 7.2 36.

RatioOfNullPredictions 0.038 0 0.219 0.32

Table 4: Comparison of results

38 M. Drobics & J. Botzheim

We can see, that FS-Miner failed to produce reasonable results, as only positive
cases have been predicted. This results in a high sensitivity, but no specificity of
the resulting rule base. FS-ID3 has a slightly better performance than the BEA
with respect to sensitivity, but with a significantly lower performance regarding
specificity. FS-FOIL, finally, is comparable to the BEA in terms of sensitivity, but
fails in terms of specificity. The measures PosVals, NegVals, and FractionCorrect
show comparable results for all three approaches. Only the χ2 statistics and the
mutual information measure, computed on the predicted and the original output
values, are significantly better for the BEA. The main problem of FS-FOIL is
its high ratio of negative null predictions (nullNeg). This all together leads to a
significantly better result of the bacterial evolutionary algorithms with respect to
the F measure, the actual goal function of this optimization process.

5 Conclusions

In this paper we have shown how bacterial evolutionary algorithms can be applied
to identify the optimal subset of rules for a given learning problem. While tradi-
tional top-down approaches usually lack an explicit goal function, separating the
rule induction and the rule set definition process enables us to find the optimal
combination of rules with respect to a freely definable global goal function. A
global goal function has two important benefits: On the one hand side it allows to
incorporate global quality criteria like interpretability measures, while on the other
hand the interaction of overlapping fuzzy rules can be considered, too. We have
shown, that although the underlying language (i.e. the predicates used) is rather
simple, we are capable of finding equally good or even better solutions than with
traditional top-down approaches.

Although the bacterial evolutionary algorithm (BEA) is quite efficient, the main
drawback of this approach is its high computational effort, caused by the complex-
ity of evaluating the according fitness function. Future work will therefore be
concerned with implementing a parallel version of the BEA. We hope, that using a
parallel implementation we can also solve large real-world applications within rea-
sonable time. Furthermore, we want to target special application areas like medical
reasoning, by investigating domain-specific evaluation functions.

Optimization of Fuzzy Rule Sets Using a Bacterial Evolutionary Algorithm 39

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. on Very
Large Data Bases, pages 487–499. Morgan Kaufmann, 1994.

[2] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
Univ. of California, Irvine, Dept. of Information and Computer Sciences, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[3] U. Bodenhofer. The construction of ordering-based modifiers. In G. Brewka,
R. Der, S. Gottwald, and A. Schierwagen, editors, Fuzzy-Neuro Systems ’99,
pages 55–62. Leipziger Universitätsverlag, 1999.

[4] U. Bodenhofer. A Similarity-Based Generalization of Fuzzy Orderings, vol-
ume C 26 of Schriftenreihe der Johannes-Kepler-Universität Linz. Univer-
sitätsverlag Rudolf Trauner, 1999.

[5] U. Bodenhofer and P. Bauer. A formal model of interpretability of linguistic
variables. In J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, editors,
Interpretability Issues in Fuzzy Modeling, volume 128 of Studies in Fuzziness
and Soft Computing, pages 524–545. Springer, Berlin, 2003.

[6] U. Bodenhofer, M. De Cock, and E. E. Kerre. Openings and closures of fuzzy
preorderings: Theoretical basics and applications to fuzzy rule-based systems.
Int. J. General Systems, 32(4):343–360, 2003.

[7] J. Botzheim, M. Drobics, and L. T. Kóczy. Feature selection using bacterial
optimization. In Proc. 10th Int. Conf. on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems, pages 797–804, Perugia,
July 2004.

[8] J. Botzheim, B. Hámori, L. T. Kóczy, and A. E. Ruano. Bacterial algorithm
applied for fuzzy rule extraction. In Proc. Int. Conf. on Information Processing
and Management of Uncertainty in Knowledge-Based Systems, pages 1021–
1026, Annecy, FR, 2002.

[9] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, editors. Interpretabil-
ity Issues in Fuzzy Modeling, volume 128 of Studies in Fuzziness and Soft
Computing. Springer, Berlin, 2003.

[10] M. Drobics. Choosing the best predicates for data-driven fuzzy modeling. In
Proc. 13th IEEE Int. Conf. on Fuzzy Systems, pages 245–249, Budapest, July
2004.

[11] M. Drobics. Data Analysis Using Fuzzy Expressions, volume C 48 of
Schriftenreihe der Johannes-Kepler-Universität Linz. Universitätsverlag
Rudolf Trauner, 2005.

40 M. Drobics & J. Botzheim

[12] M. Drobics and J. Himmelbauer. Creating comprehensible regression models—
inductive learning and optimization of fuzzy regression trees using comprehen-
sible fuzzy predicates. Soft Computing, 11:421–438, 2007.

[13] T.-P. Hong, K.-Y. Lin, and S.-L. Wang. Fuzzy data mining for interesting
generalized association rules. Fuzzy Sets and Systems, 138(2):255–269, 2003.

[14] H. Ishibuchi and T. Yamamoto. Fuzzy rule selection by data mining criteria
and genetic algorithms. In Proc. of Genetic and Evolutionary Computation
Conf., pages 399–406, 2002.

[15] D. Nauck. Measuring interpretability in rule-based classification systems. In
Proc. 12th IEEE Int. Conf. on Fuzzy Systems, pages 196–201, St. Louis, USA,
2003.

[16] N. E. Nawa and T. Furuhashi. Fuzzy system parameters discovery by bacterial
evolutionary algorithm. IEEE Trans. Fuzzy Syst., 7:608–616, 1999.

[17] C. Olaru and L. Wehenkel. A complete fuzzy decision tree technique. Fuzzy
Sets and Systems, 138(2):221–254, 2003.

[18] J. R. Quinlan. Learning with Continuous Classes. In
Proc. 5th Austr. Joint Conf. on Artificial Intelligence, pages 343–348,
1992.

[19] G. Ridgeway, D. Madigan, and T. Richardson. Boosting methodology for
regression problems. In Proc. Artificial Intelligence and Statistics, pages 152–
161, 1999.

[20] M. Setnes and H. Roubos. GA-fuzzy modeling and classification: Complexity
and performance. IEEE Trans. Fuzzy Systems, 8(5):509–522, October 2000.

[21] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools
with Java implementations. Morgan Kaufmann, 2000.

[22] Y. Yi and E. Hüllermeier. Learning complexity-bounded rule-based classifiers
by combining association analysis and genetic algorithms. In Proc. Joint 4th
Int. Conf. in Fuzzy Logic and Technology and 11th French Days on Fuzzy Logic
and Applications, pages 47–52, Barcelona, September 2005.

