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Abstract

Explicit inclusion of logic in the process of aggregation (information fu-
sion) is very important in real problems from many points of view such as
adequacy and transparency. In this paper aggregation is treated as a logi-
cal and/or pseudo-logical operation based on interpolative Boolean algebra
(IBA). IBA is a real-valued ([0, 1]-valued) realization of Boolean algebra.
As classical two-valued realization of Boolean algebra is the base of classical
two-valued logic, IBA is the base of real-valued logic.
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1 Introduction

A very important problem in many fields of applications1 is the aggregation (fusion)
of many partial aspects – attributes (characteristics, demands, goals, symptoms,
criteria, perceptions. . . ) into one global representative aspect. In the existing prac-
tice the weighted sum of partial aspects is used most often as an aggregation tool.
From logical point of view this approach is trivial. The weighted sum is additive
and for all effects of interest which are not additive in their nature it is inadequate.
In multi-attribute decision making community this problem was recognized [2, 9]
and as a solution they use techniques of capacity theory [1] known in fuzzy com-
munity as fuzzy measure and fuzzy integrals [9]. In these approaches additivity is
relaxed by monotonicity. As a consequence, the possible domain of application of
this approach from logical point of view is much wider. But monotonicity is still
a superfluously strong constraint since many of logical functions are non mono-
tone in their nature. A generalized discrete Choquet integral [5] is defined for a
generalized measure – non monotone in a general case. This approach includes

1Information fusion, decisions making, negotiation, classification, pattern recognition, scene
analyze, data mining, machine learning, diagnostics, forecasting, intelligent agents, financial en-
gineering, information retrieval, intelligent information system, intelligent systems,. . .
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all logical and/or pseudo-logical functions but for only one arithmetic operator for
interpolation intention, min function.

In this paper logical aggregation based on interpolative Boolean algebra [7]
(IBA) is introduced. IBA is real-valued ([0, 1]-valued) realization of Boolean alge-
bra. As a consequence, all logical and/or pseudo-logical functions can be treated
as well as with generalized Choquet integral but with all possible interpolative
operators.

IBA is based on structure functionality principle as the new paradigm. To any
element of finite Boolean algebra there corresponds uniquely its structure (content,
relation of inclusion). Structure of any attribute - element of Boolean algebra
domain determines which atomic Boolean elements are included in it and/or which
are not included in it. Structure functional principle says that the structure of any
combined element of Boolean algebra can be determined (computed) directly on
the base of structures of its components. Structure functional is an algebraic (value
irrelevant) principle. Truth functional principle is a value realization of structure
functional principle (its figure on a value level) which is valid (in the sense that
it preserves all Boolean axioms and theorems) only for a two-valued realization of
Boolean algebra.

Technically IBA is based on generalized Boolean polynomials (GBP) [6, 7]. GBP
uniquely corresponds to any element of Boolean algebra and/or any Boolean func-
tion can be transformed into corresponding GBP. Atomic GBPs correspond to
atomic elements of analyzed Boolean algebra of attributes. GBP of any element
of analyzed Boolean algebra is equal to the sum of relevant atomic GBPs. Which
atomic elements are relevant for combined attribute – element of Boolean algebra
of attributes is defined by its structure.

Linear convex combination of GBP – pseudo GBP is in the new approach the
most general aggregation function.

GBP is described in Section 2. In section 3 is described pseudo GBP. A repre-
sentative example of logical aggregation is given in Section 4.

2 Generalized Boolean Polynomial

GBP is a polynomial whose variables are free elements of Boolean algebra and
operators are standard + and –, and generalized product⊗. A set of feasible
generalized product is a subclass of T-norms which satisfies an additional constraint
– probability consistence. In the new approach a generalized product has a crucially
different role; it is only an arithmetic operator, contrary to conventional fuzzy
approaches where T-norms have the role of algebraic operator. IBA determines
the procedure of transforming an analyzed element of Boolean algebra and/or a
Boolean function into GBP directly.

Generalized Boolean polynomial (GBP) in logical aggregation has a role of
logical combined attribute (property, characteristic, aspect. . . ). Variables of GBP
are elements from the analyzed set of primary attributes Ω = {a1, ..., an}. Primary
attributes have the following characteristic: no one of primary attributes can be
expressed as a Boolean function of the remaining primary attributes from Ω.



Logical Aggregation Based on Interpolative Boolean Algebra 127

Boolean algebraic domain is the set BA (Ω) of all the possible logical combined
attributes generated by the set of primary attributes Ω using two binary operators⋃
,
⋂

join and meet, respectively, and one unary operator C complementation or
negation. The following structure is Boolean algebraic structure of attributes:

〈BA (Ω) ,∪,∩, C〉 .

Set BA (Ω) is defined by the following expression:

BA (Ω) = P (P (Ω)) .

Boolean algebra domain of attributes BA (Ω)is a partially ordered set. A partial
order is based on the algebraic (value irrelevant) relation of inclusion.

Definition 1 Element ϕ ∈ BA (Ω) of analyzed Boolean algebra is included in an-
other elementψ ∈ BA (Ω),ϕ ⊂ ψ , if and only if ϕ ∩ ψ = ϕ, or concisely:

ϕ ⊂ ψ ⇔ ϕ ∩ ψ = ϕ. (1)

Relation of inclusion as algebraic (value irrelevant) property has its following
implication on all possible value realizations:

ϕ ⊂ ψ ⇒ ϕv ≤ ψv. (2)

Where: ϕv, ψv ∈ [0, 1] are generalized value realizations ofϕ,ψ ∈ BA (Ω).

Definition 2 Atomic attributes α (S) , (S ∈ P (Ω)) are the simplest elements of
Boolean algebra domain of attributes BA (Ω) in the sense that they do not in-
clude in themselves anything except for a trivial Boolean constant 0. The atomic
attributes of BA (Ω) are described by the following expressions:

α (S) =
⋂
ai∈S

ai
⋂

aj∈Ω\S

Caj , (3)

(S ∈ P (Ω)).

Example 1 Atomic attributes of Boolean algebra generated by Ω = {a, b}are given
in the following table:

S α (S)
∅ Ca ∩ Cb
{a} a ∩ Cb
{b} Ca ∩ b
{a, b} a ∩ b

Atomic elements α (S) , S ∈ P (Ω) of analyzed Boolean algebra have the following
properties:
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1. they are mutually disjoint :

α (Si) ∩ α (Sj) =
{

0 i 6= j
α (Si) i = j

;

2. they cover universe 1̄:

⋃
S∈P(Ω)

α (S) = 1̄,

(0, 1̄, α (S) ∈ BA (Ω) , S ∈ P (Ω)).

Any combined attribute – element of Boolean algebra domain of attributes
includes in itself relevant attributes. Which attributes are relevant for analyzed
combined attribute determines its structure (content, relation of inclusion of atomic
attributes).

Definition 3 Structural function σϕof analyzed attribute (element of Boolean al-
gebra domain of attributes) ϕ ∈ BA (Ω), is set function which maps: σϕ : P (Ω)→
{0, 1} and it is defined by the following expression:

.

σϕ (S) =
{

1, α (S) ⊆ ϕ; (α (S) ∩ ϕ = α (S))
0, α (S) 6⊂ ϕ; (α (S) ∩ ϕ = 0) ; (4)

(S ∈ P (Ω) ; 0, ϕ ∈ BA (Ω)) .

Example 2 The structural functions of atomic attributes of Boolean algebra,
which is generated by the following set of primary attributes Ω = {a, b}are given in
the following table:

S α (S) σα(S) (∅) σα(S) ({a}) σα(S) ({b}) σα(S) ({a, b})
∅ Ca ∩ Cb 1 0 0 0
{a} a ∩ Cb 0 1 0 0
{b} Ca ∩ b 0 0 1 0
{a, b} a ∩ b 0 0 0 1

From definition of structural function it follows that structural function of pri-
mary attribute ai ∈ Ω is given by the following expression

σai (S) =
{

1, ai ∈ S
0, ai /∈ S

; (5)

(ai ∈ Ω, S ∈ P (Ω)) .
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Example 3 The structural functions of primary variables Ω = {a, b}are given in
the following table:

ai σai (∅) σai ({a}) σai ({b}) σai ({a, b})
a 0 1 0 1
b 0 0 1 1

For structure as an algebraic characteristic (value irrelevant), the structure
functional principle is valid:

Definition 4 Structure of any combined element of finite Boolean algebra can be
determined (calculated) directly on the basis of structures of its components using
the following equations:

σϕ∪ψ (S) = σϕ (S) ∨ σψ (S)
σϕ∩ψ (S) = σϕ (S) ∧ σψ (S)
σCϕ (S) = ¬σϕ (S)

(6)

Where: (ϕ,ψ ∈ BA (Ω) , S ∈ P (Ω))

∧ 0 1
0 0 0
1 0 1

;
∨ 0 1
0 0 1
1 1 1

;
¬

0 1
1 0

.

Any element of Boolean algebra ϕ ∈ BA (Ω) is a logical combined attribute and
it can be represented by the corresponding disjunctive normal form:

ϕ (a1, ..., an) =
⋃

S∈P(Ω)|σϕ(S)=1

α (S) (a1, ..., an)

=
⋃

S∈P(Ω)|σϕ(S)=1

( ⋂
ai∈S

ai
⋂

aj∈Ω\S
Caj

)
, (7)

(S ∈ Ω, ϕ, ψ ∈ BA (Ω)) .

From structural functionality principle it follows that:

(ϕ ∪ ψ) (a1, ..., an) =
⋃

S∈P(Ω)|σϕ∪ψ(S)=1

α (S) (a1, ..., an)

=
⋃

S∈P(Ω)|σϕ(S)∨σψ(S)=1

α (S) (a1, ..., an) (8)

(ϕ ∩ ψ) (a1, ..., an) =
⋃

S∈P(Ω)|σϕ∩ψ(S)=1

α (S) (a1, ..., an)

=
⋃

S∈P(Ω)|σϕ(S)∧σψ(S)=1

α (S) (a1, ..., an) (9)

(Cϕ) (a1, ..., an) =
⋃

S∈P(Ω)|σCϕ(S)=1

α (S) (a1, ..., an)

=
⋃

S∈P(Ω)|σϕ(S)=0

α (S) (a1, ..., an)

= 1− ϕ (a1, ..., an)

(10)
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Any attribute has its value realization on a valued level. Values of primary
attributes reflect initial (or primary) perception of analyzed problem and they take
values from a real unit interval [0, 1]. Any logical combined property is defined by
corresponding generalized Boolean polynomial – GBP.

In atomic and as a consequence in any GBP figurate as operators standard
addition (+); standard subtraction (–) and generalized product ( ⊗).

The generalized product is defined as a subclass of T-norms [4] by the following
definition.

Definition 5 Generalized product ⊗ is any function which maps

⊗ : [0, 1]× [0, 1]→ [0, 1]

and it satisfies the following axioms:

1. avi ⊗ avj = avj ⊗ avi

2. avi ⊗
(
avj ⊗ avk

)
=
(
avi ⊗ avj

)
⊗ avk

3. avi ≤ avj ⇒ avi ⊗ avk ≤ avj ⊗ avk

4. avi ⊗ 1 = avi

5.
∑

K∈P(Ω\S)

(−1)|K|
⊗

ai∈S∪K
avi ≥ 0, ∀S ∈ P (Ω)

(Ω = {a1, ..., an} , avi ∈ [0, 1] , i = 1, . . . , n)

Analyzed GBP is equal to the sum of relevant atomic GBP-s. Atomic GBP is
defined by the following definition:

Definition 6 Atomic generalized Boolean polynomials are defined by the following
expressions:

α⊗ (S) (av1, ..., a
v
n) =

∑
K∈P(Ω\S)

(−1)|K|
⊗

ai∈K∪S
avi (11)

(S ∈ P (Ω) , ai ∈ Ω, avi ∈ [0, 1] , i = 1, .., n) .

Example 4 : Atomic Boolean polynomials for the case when set of primary at-
tributes is Ω = {a, b}, are given in the following table:

Table 1: Example of Atomic Boolean polynomials
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S α (S) α⊗ (S) (av, bv)
∅ Ca ∩ Cb 1− av − bv + av ⊗ bv
{a} a ∩ Cb av − av ⊗ bv
{b} Ca ∩ b bv − av ⊗ bv
{a, b} a ∩ b av ⊗ bv

Axiom number 5 in Definition 5 is additional to the set of axioms (1.-4.) im-
manent to T-norms and it has a role to ensure that the values of atomic Boolean
polynomials are non-negative: α⊗ (S) ≥ 0, (S ∈ P (Ω)) . As a consequence
Boolean polynomials of all other elements of Boolean algebra are non negative in
any value realization.

Example 5 In the case Ω = {a, b} generalized product, according to axioms of
non-negativity can be in the following interval:

max (a+ b− 1, 0) ≤ a⊗ b ≤ min (a, b) .

Claim: In spite of formal similarity between T-norms and generalized products,
their roles are crucially different: while a T-norm in conventional fuzzy approaches
has the role of a logical (and/or algebraic) operator a generalized product ⊗ is only
an arithmetic operator on a value level without any influence on algebra.

Any element ϕ ∈ BA (Ω) of Boolean algebra of attributes can be represented
by a corresponding generalized Boolean polynomialϕ⊗ (av1, ..., a

v
n), which can be

defined in the following way:

Definition 7 GBP which corresponds to ϕ analyzed element of Boolean algebra
BA (Ω) is equal to the sum of relevant atomic GBP-s:

ϕ⊗ (av1, ..., a
v
n) =

∑
S∈P(Ω)|σϕ(S)=1

α⊗ (S) (av1, ..., a
v
n) ,

=
∑

S∈P(Ω)

σϕ (S) α⊗ (S) (av1, ..., a
v
n) , (12)

(avi ∈ [0, 1] , ai ∈ Ω).
Which atoms are relevant for analyzed element of Boolean algebra domain is
determined by its structural function.

A generalized Boolean polynomial ϕ⊗ (av1, ..., a
v
n) enables calculation of the value of

a corresponding attribute ϕ ∈ BA (Ω) (element of Boolean algebra) for an analyzed
object.

A generalized Boolean polynomial given by the expression (3) can be repre-
sented in the following way:

ϕ⊗ (av1, ..., a
v
n) =

∑
S∈P(Ω)

σϕ (S)
∑

K∈P(Ω\S)

(−1)|K|
⊗

ai∈K∪S
avi , (13)

(ϕ ∈ BA (Ω) , avi ∈ [0, 1] , ai ∈ Ω) .
A generalized Boolean polynomial can be represented as a scalar product of

the following two vectors: (a) structural vector and (b) vector of atomic Boolean
polynomials, which are defined by the following two definitions:
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Definition 8 Structural vector ~σϕ of analyzed Boolean algebra elementϕ ∈ BA (Ω)
– logical attribute is the following 1×Nvector:

~σϕ = [σϕ (S) |S ∈ P (Ω) ] (14)

Where: Ω = {a1, ..., an} , N = 2|Ω|, and σϕ (S) , (S ∈ P (Ω))is defined by Defi-
nition 3.

Definition 9 Vector of atomic Boolean polynomials ~α⊗ (av1, ..., a
v
n)is the following

N × 1 vector:

~α⊗ (av1, ..., a
v
n) =

[
α⊗ (S) (av1, ..., a

v
n) |S ∈ P (Ω)

]T (15)

Where:
(
ai ∈ Ω, avi ∈ [0, 1] , i = 1, .., n; N = 2|Ω|

)
.

So, a generalized Boolean polynomial is a scalar product of the above defined
two vectors:

ϕ⊗ (av1, ..., a
v
n) = ~σϕ~α

⊗ (av1, ..., a
v
n) , (16)

where: ϕ ∈ BA (Ω) , avi ∈ [0, 1] , ai ∈ Ω.
For structural vectors all Boolean axioms are valid: Associativity, Commuta-

tivity, Absorption, Distributivity, Excluded middle and Contradiction

~σϕ∪(ψ∪φ) = ~σ(ϕ∪ψ)∪φ, ~σϕ∩(ψ∩φ) = ~σ(ϕ∩ψ)∩φ;
~σϕ∪ψ = ~σψ∪ϕ, ~σϕ∩ψ = ~σψ∩ϕ;
~σϕ∪(ϕ∩ψ) = ~σϕ, ~σϕ∩(ϕ∪ψ) = ~σϕ;
~σϕ∪(ψ∩φ) = ~σ(ϕ∪ψ)∩(ϕ∪φ), ~σϕ∩(ψ∪φ) = ~σ(ϕ∩ψ)∪(ϕ∩φ);
~σϕ∪Cϕ = ~1, ~σϕ∩Cϕ = ~0.

respectively; and all Boolean theorems: Idempotency, Boundedness, 0 and 1 are
complements, De Morgan’s laws and Involution:

~σϕ∪ϕ = ~σϕ, ~σϕ∩ϕ = ~σϕ;
~σϕ∪0 = ~σϕ, ~σϕ∩1 = ~σϕ;
~σϕ∪1 = ~1, ~σϕ∩0 = ~0;
~σC0 = ~1, ~σC1 = ~0;
~σC(ϕ∪ψ) = ~σCϕ∩Cψ, ~σC(ϕ∩ψ) = ~σCϕ∪Cψ;

~σCCϕ = ~σϕ;

respectively; where: ϕ,ψ, φ ∈ BA (Ω).
So, the structure of a Boolean algebra element preserves Boolean properties in

a generalized case described by Boolean polynomials.
As a consequence for any two elements of Boolean algebra ϕ, ψ ∈ BA (Ω) the

following equations are valid:

(ϕ ∩ ψ)⊗ (av1, ..., a
v
n) = ~σϕ∩ψ~α

⊗ (av1, ..., a
v
n) ,

= (~σϕ ∧ ~σψ) ~α⊗ (av1, ..., a
v
n) .

(17)
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(ϕ ∪ ψ)⊗ (av1, ..., a
v
n) = ~σϕ∪ψ~α

⊗ (av1, ..., a
v
n) ,

= (~σϕ ∨ ~σψ) ~α⊗ (av1, ..., a
v
n) .

(18)

(Cϕ)⊗ (av1, ..., a
v
n) = ~σCϕ~α

⊗ (av1, ..., a
v
n) ,

=
(
~1− ~σϕ

)
~α⊗ (av1, ..., a

v
n) ,

= 1− (ϕ)⊗ (av1, ..., a
v
n) .

(19)

Actually, Boolean polynomial maps a corresponding element of Boolean algebra
into its value from the real unit interval [0, 1] on the value level so that a partial
order on the value level is preserved. Since a partial order is based on Boolean
laws, they are preserved on the value level in a general case too, contrary to other
approaches.

3 Generalized Pseudo-Boolean Polynomial

Pseudo-Boolean polynomial is defined on the following way:

Definition 10 A pseudo-Boolean polynomial is a linear convex combination of
analyzed elements of IBA – generalized Boolean polynomials

π⊗µ (av1, ..., a
v
n) =

m∑
i=1

wiϕ
⊗
i (av1, ..., a

v
n) ,

m∑
i=1

wi = 1; wj ≥ 0, j = 1, ...,m.
(20)

(ai ∈ Ω, avi ∈ [0, 1] , i = 1, .., n; ϕj ∈ BA (Ω) j = 1, ...,m) .

From the definition of generalized Boolean polynomials, an interpolative pseudo-
Boolean polynomial is given by the following expression:

π⊗µ (av1, ..., a
v
n) =

m∑
i=1

wi
∑

S∈P(Ω)

σϕi (S)
∑

C∈P(Ω\S)

(−1)|C|
⊗

ai∈S∪C
avi

=
∑

S∈P(Ω)

µ (S)
∑

C∈P(Ω\S)

(−1)|C|
⊗

ai∈S∪C
avi .

(21)

Definition 11 Generalized measure µ of interpolative pseudo-Boolean polynomial
π⊗µ is a set function

µ : P (Ω)→ [0, 1] , Ω = {a1, ..., an}
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defined by the following expression, [8]:

µ (S) =
m∑
i=1

wiσϕi (S) , . (22)

(
S ∈ P (Ω) , ϕi ∈ BA (Ω) ;

m∑
j=1

wj = 1, wi ≥ 0, i = 1, ...,m

)
.

σϕi , i = 1, ...,m are structure functions of the corresponding Boolean functions
ϕi ∈ BA (Ω) , i = 1, ...,m.

Vector of generalized measure is a linear convex combination of corresponding
structural functions:

~µ =
m∑
i=1

wi~σϕi . (23)

Interpolative pseudo-Boolean polynomial can be represented as a scalar product of
the following two vectors:

π⊗µ (av1, ..., a
v
n) = ~µ~α⊗ (av1, ..., a

v
n)

=
m∑
i=1

wi~σϕi~α
⊗ (av1, ..., a

v
n) (24)

The characteristics of pseudo-Boolean polynomial depend on the generalized
product, and its structure function. Structure functions can be classified into: (a)
additive, (b) monotone and (c) generalized ((a) ⊂ (b) ⊂ (c)).

4 Logical Aggregation

A starting point is a finite set of primary attributes Ω = {a1, ..., an}. The task
of logical aggregation (LA) [8] is the fusion of primary quality attribute values into
one resulting globally representative value using logical tools. In a general case LA
has two steps: (1) Normalization of primary attributes’ values:

·v : Ω→ [0, 1] .

The result of normalization is a generalized logical and/or [0, 1] value of analyzed
primary attribute, and
(3) Aggregation of normalized values of primary attributes into one resulting value
by a pseudo-logical function as a logical aggregation operator:

Aggr : [0, 1]n → [0, 1] .

A Boolean logical function ϕ is transformed into a corresponding generalized
Boolean polynomial (GBP), [7], ϕ⊗ : [0, 1]n → [0, 1]. Actually, to any ele-
ment of Boolean algebra of attributes ϕi ∈ BA (Ω) there corresponds uniquely
GBPϕ⊗i (av1, ..., a

v
n). GBP is defined by expression (3) and/or (11).
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A pseudo-logical function is a linear convex combination of generalized Boolean
polynomials [7], defined by expression (12) and/or (13).

Definition 12 Operator of logical aggregation in a general case is a pseudo-logical
function:

Agg⊗µ (av1, ..., a
v
n) = π⊗µ (av1, ..., a

v
n) (25)

or

Agg⊗µ (av1, ..., a
v
n) =

∑
S∈P(Ω)

µ (S)
∑

C∈P(Ω\S)

(−1)|C|
⊗

ai∈S∪C
avi (26)

Aggregation measure is a structural function of pseudo-logical function – logical
aggregation operator (14). So, Aggregation measure is a set function µ : P (Ω) →
[0, 1] , which in a general case is not a monotone function (generalized capacity),
defined by the following expression:

µ (S) =
m∑
i=1

wiσϕi (S) , (27)

(
S ∈ P (Ω) ,

m∑
i=1

wi = 1, wi ≥ 0, ϕi ∈ BA (Ω) , i = 1, ...,m
)
.

As a consequence, a logical aggregation operator depends on the chosen: (a) mea-
sure of aggregation and (b) operator of generalized product. By a corresponding
choice of the measure of aggregation µ and generalized product ⊗ the known ag-
gregation operators can be obtained as special cases:
Weighted sum
For the aggregation measure and generalized product:

µadd (S) =
n∑
i=1

wiσ
v
ai (S) , S ∈ P (Ω) ; ⊗ := min .

Logical aggregation operator is a weighted sum:

Aggmin
µadd

(av1, ..., a
v
n) =

∑
ai∈Ω

wia
v
i

Arithmetic mean
For the aggregation measure and generalized product:

wi =
1
n
, µmean (S) =

|S|
|Ω|

; ⊗ := min

Logical aggregation operator is the arithmetic mean:

Aggmin
µmean (av1, ..., a

v
n) =

1
n

∑
ai∈Ω

avi
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K-th attribute only
For the aggregation measure and generalized product:

wi =
{

1 i = k
0 i 6= k

; µk (S) =
{

1 ak ∈ S
0 ak /∈ S

; ⊗ := min

Logical aggregation operator is the k-th attribute only:

Agg⊗µk (av1, ..., a
v
n) = avk

Minimal value of attributes
For the aggregation measure and generalized product:

µAND (S) =
{

1, S = Ω
0, S 6= Ω ; ⊗ := min .

Logical aggregation operator is the min function

Aggmin
µAND (av1, ..., a

v
n) = min {av1, ..., avn} .

Maximal value of attributes
For the aggregation measure and generalized product:

µOR (S) =
{

1, S 6= ∅
0, S = ∅ ; ⊗; = min

Logical aggregation operator is the max function

Aggmin
µOR (av1, ..., a

v
n) = max {av1, ..., avn} .

OWA-ordered weight aggregation
For the aggregation measure and generalized product:

µOWA (S) =

 0, S = ∅
m∑
i=1

wi, |S| = m
; ⊗ := min

Logical aggregation operator is an OWA aggregation operator

Aggmin
µOWA

(av1, ..., a
v
n) = OWA (av1, ..., a

v
n) .

OWA is defined by the following expression:

OWA (av1, ..., a
v
n) =

n∑
i=1

wia
v
(i)
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av(1) ≤ a
v
(2) ≤ ... ≤ a

v
(n),

n∑
i=1

wi = 1, wi ≥ 0.

k-th order statistics
For the aggregation measure and generalized product:

µkth (S) =
{

0, |S| < k
1, |S| ≥ k ; ⊗ := min

Logical aggregation operator is the k-th order statistics

Aggmin
µ
kth

(av1, ..., a
v
n) = av(k),

where:

av(1) ≤ a
v
(2) ≤ ... ≤ a

v
(n).

Discrete Choquet integral
For any monotone aggregation measure µmon and generalized product:

µmon, ⊗ := min

Logical aggregation operator is a discrete Choquet integral:

Agg⊗µmon (av1, ..., a
v
n) = Cµmon (av1, ..., a

v
n) .

A discrete Choquet integral is defined by the following expression:

Cµmon (av1, ..., a
v
n) =

n∑
k=1

(
av(k) − a

v
(k−1)

)
µmon

(
A(k)

)
,

where:

av(1) ≤ ... ≤ a
v
(n); A(k) =

{
av(k), ..., a

v
(n)

}
.

Comment: All above mention kinds of logical aggregation are special case of dis-
crete Choquet integral.
Generalized Discrete Choquet integral
For a measure which can be nonmonotone µ and min for generalized product:

µ, ⊗ := min

Logical aggregation operator is a generalized discrete Choquet integral:

Agg⊗µ (av1, ..., a
v
n) = GCµ (av1, ..., a

v
n) .

A generalized discrete Choquet integral [5] is defined by the following expression:
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GCµ (av1, ..., a
v
n) =

n+1∑
k=1

(
av(k) − a

v
(k−1)

)
µ
(
A(k)

)
where:

0 = a(0) ≤ av(1) ≤ ... ≤ a
v
(n) ≤ a

v
(n+1) = 1;

A(k) =
{
av(k), ..., a

v
(n)

}
, A(n+1) = ∅, (µ (∅) 6= 0, in general case)

.

5 Example of Logical Aggregation Application

In this section a modified example from [3] is analyzed.

Example 6 Objects A, B, C and D are described by quality attributes, whose
values are from a real unit interval [0, 1], given in the following table:

Table 2: Values of quality attributes

Object a b c
A .75 .9 .3
B .75 .8 .4
C .3 .65 .1
D .3 .55 .2

An object should be compared on the base of a global quality. A global quality
is actually the aggregation of attributes so the following aspects should be incor-
porated: (a) the average value of quality attributes and (b) if the analyzed object
is good by attribute a then attribute c is more important than b and if analyzed
object is not good by attribute a then attribute b is more important than c.
A partial demand (a) is given by the following trivial expression:

a+ b+ c

3
A partial demand (b) is given by the following logical expression:

ϕ (a, b, c) = (a ∩ c) ∪ (Ca ∩ b) (28)

A generalized Boolean polynomial of logical expression (16) is:

ϕ⊗ (a, b, c) = ((a ∩ c) ∪ (Ca ∩ b))⊗
= b+ a⊗ c− a⊗ b (29)

A possible logical aggregation operator is:

Aggr⊗ (a, b, c) =
1
2
a+ b+ c

3
+

1
2
ϕ⊗ (a, b, c)

=
1
2
a+ b+ c

3
+

1
2

(b+ a⊗ c− a⊗ b)
(30)
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A corresponding measure of aggregation is:

µ =
1
6

(σa + σb + σc) +
1
2

(σa ∧ σc) ∨ (Cσa ∧ σb) .

or given as a table:

Table 3: Measure of aggregation

S µ (S)
∅ 0
{a} 1/6
{b} 2/3
{c} 1/6
{a, b} 5/6
{a, c} 5/6
{b, c} 1/3
{a, b, c} 1

It is clear that the measure is non-monotone sinceµ ({b}) ≥ µ ({b, c}), and as a
consequence it is not possible to use a standard Choquet integral.
In the case ⊗ := min function ϕmin (a, b, c) is actually a generalized discrete Cho-
quet integral and its values are given in the following table:

Table 4: Values for ⊗ := min

Object ϕmin (a, b, c)
A .45
B .45
C .45
D .45

So, these results without discrimination are not adequate.
In the case when a generalized product is an ordinary product,⊗ := ∗, quitting

conventional approaches, the corresponding values of function ϕ∗ (a, b, c) are given
in the following table:

Table 5: Values for ⊗ := ∗

Object ϕ∗ (a, b, c)
A .450
B .500
C .485
D .445

The values of aggregation function, for given aggregation measure, table 1, and
for ⊗ := ∗, are presented in the following table:
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Table 6: Values of resulting aggregation function

Object Aggr∗ (a, b, c)
A .5500
B .5750
C .4175
D .3725

These results completely reflect all specified demands.

6 Conclusion

The aggregation of different attributes, aspects, partial goals - into one represen-
tative global criterion is a very important task in many fields of real applications
as well as for theoretical purposes. Conventional aggregation tools are very often
inadequate. Logical aggregation in a general case is a weighted sum of partial de-
mands. Partial demands for aggregation usually are logical demands which can be
adequately described only by logical expressions. Therefore, aggregation in a gen-
eral case is a generalized pseudo-logic function. In this paper logical aggregation is
based on interpolative Boolean algebra (IBA). IBA is a real valued ([0, 1]-valued)
realization of Boolean algebra. The new approach treats logical functions – partial
aggregation demand, as a generalized Boolean polynomial (GBP). GBP can pro-
cess values from the whole real unit interval [0, 1]. Logical aggregation has multiple
advantages among others from the stand point of its possibility and interpretability.
It is interesting that conventional aggregation operators are only a special case of
logical aggregation operators and, as a consequence of using LA, one can do much
more in an adequate direction than before.
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