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Abstract:  

Purpose: Estimate the maintenance efficiency in the Brown-Proschan model with 

the bathtub failure intensity. 

Design/methodology/approach: Empirical research through which we propose 

a framework to establish the characteristics of failure process and its influence on 

maintenance process. 

Findings: The main contribution of the present study is the reformulation of the 

Brown and Proschan model using the bathtub failure intensity 

Practical implications: Our model is defined by BP reformulation one using 

bathtub failure intensity. This form of intensity is presented like superposition of 

two NHPP and Homogeneous Poisson one. 

Originality/value: This is the follow on research on the study that employed the 

power-law-process type of failure intensity. 

Keywords: repairable system, reliability, bathtub failure intensity, virtual age, imperfect 

maintenance, estimation, likelihood 
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1 Introduction  

The totality of the significant industrial systems is subjected to the actions 

corrective and preventive maintenance which are supposed to prolong their 

functional life. The efficiency evaluation of these maintenance actions is of a great 

practical interest, but it was seldom studied. In the literature, several models of 

maintenance effect were proposed. That is to say for example, Wang (2002) and 

Baxter, Kijima and Tortorella (1996). The authors tried to classify various models of 

maintenance. Particularly, a very significant characteristic to consider is the 

evaluation of the system failure intensity, and primarily the discovery at the 

appropriate time of its degradation. Moreover, to optimize the maintenance 

programs respecting the availability and to reduce the maintenance costs using the 

maintenance optimization by reliability (MOR), as it was the case in Jiang, Ji and 

Xia (2003) and Finkelstein (2008). More clearly, it is a question on the one hand of 

building stochastic models of failures process and repairs of various systems, and 

on the other hand, of implementing the statistical methods to exploit the failures 

and maintenances data raised by experts with an aim to evaluate the performance 

of these systems such as Doyen (2004). 

The majority of these models consider only the corrective maintenance (CM) effect, 

known under the name of repair models. These models are useful to model the real 

systems which are supported by a constant repair. Several repair models, including 

those of Brown-Proschan, the Block, Borges and Savits model (1985), the Kijima 

model (1989), the most general models of Dorado, Hollander and Sethuraman 

(1997) and Last-Szekli model (1998), were all useful in this respect. Several 

theoretical properties, as well as the parameters estimators of fundamental failure 

intensity and their asymptotic intervals confidence studied by these authors, 

without evaluating the maintenance efficiency. The same claims of these models 

can be also used for the only preventive maintenance (PM). 

The idea of the Brown-Proschan model (1983) is that, the efficiency of the kth 

maintenance action is evaluated by a random variable Ek, independently and 

identically distributed according to the Bernoulli law with parameter p, such as: 

 

Knowing that maintenance is always minimal over all the improvement period and 

that of service life (i.e. for      ). We can show that at the time t after     the 
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duration passed since the last perfect maintenance (moreover, before the moment 

    all maintenances are supposed to be minimal) can be expressed in the form:  

 

where    
     represent the failures number (of maintenance action) will take 

place during, respectively the improvement and service life periods : i.e. before the 

instant   . Under these conditions, the failure intensity is written by the sample 

principle given in the study of Dijoux (2009):  

 

Being given that the virtual age just after the kth maintenance, noted ak, is equal to  

 

where the variable Xh indicate the hth duration of the between-failures. 

 

Figure 1. Reformulation of the Brown-Proschan model intensity 

The figure1 translated the trajectory of this intensity for an unspecified value of p 

between 0 and 1. In this figure, the instants of perfect and minimal maintenances 

are represented on the x-axis respectively by circles and squares. 
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Concerning the evaluation of the maintenance efficiency, we return to the same 

properties presented in Brown and Proschan (1983). The reformulation of the 

Block, Borges and Savits model is also a generalization of the preceding form of the 

Brown-Proschan model. Indeed, the probability that the CM is perfect depends to 

the instant to which is carried out. In this case, the failure intensity is equivalent to 

that of the Brown-Proschan model, with that the law of Ek is related to parameters 

       

2 Characteristics of the failures process 

The model Brown-Proschan (BP) is a particular case of the Kijima model (1989), 

making the two part of the whole models of repair. A generalization of such a model 

arises in Last and Szekli (1998) shows that the failures process, under certain 

conditions, tends to be stabilized. For our BP reformulated model, and in the 

degradation phase (obviously, the failure intensity is monotonous), the 

convergence property in law of the virtual age after maintenance (or effective age) 

and the waiting durations between two failures, is checked. This fact, the virtual 

age just after the kth maintenance, noted ak have a distribution function of the 

form:  

 

During the degradation period, and for a value of   strictly higher than zero, the 

random variables continuation of the ages {  }        converge in law towards a 

random variable a. Brown and Proschan (1983) proved that this variable follows a 

law having the failure rate      , and                 {     } as function of 

distribution. It is the same, as constantly, the virtual age is equal to the time 

passed since the last perfect maintenance. In Last and Szekli (1998), the authors 

showed the convergence of the continuation of the virtual ages expectation, and of 

the expectation of the between-failures durations. Within the framework of our BP 

reformulated model, and thanks to the convergence property of Brown-Proschan, 

we can obviously calculate these expectations and prove their tendency towards a 

finished and continuous limit. 
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The reformulation of the BP model using the failure intensity with bathtub form, 

characterize the failures process by the between-failures durations, for      
    

having the survival function as:  

 

And if moreover p is strictly positive, and that    {     }        then the survival 

function of the between-failures durations, for the values of      
   converge in 

law towards the random variable X with survival function:  

 

Thus, we deduce from these results, that the between-failures durations converge 

in law towards the random variable X of which the survival function as: 

 

Consequently, by using an integration by parts, we can write: 

 

 

And considering that   is an increasing function, then:  

 

Under these conditions, for our reformulation of the BP model by an intensity with 

bathtub form, if it exists an     so that:        {     }       then the expectation 

of the average waiting duration of the (k+1)th failure, with      
   is expressed 

by the following relation:  

 

(5) 
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Figure 2. Random rate of the consecutive between-failures durations of the BP reformulated 

model 

It appears that the most significant result of this section is, in the absence of any 

ambiguity, the relation (3) which offers the marginal laws of the consecutive 

between-failures durations. The figure 2 represents the simulated random rates of 

these between-failures durations of which the initial failure intensity in bathtub 

form  

(defined by the parameters                                                

and a maintenance efficiency equalizes to 0.3. 

We notice that after the maintenance action, the random rate of the next between-

failures duration is represented by a concave trajectory during the improvement 

period, and convex during the degradation period. The growth in k of the first 

values of this random rate is due to the fact that the effect of this maintenance 

action on the system is unknown. In other word, just after a maintenance action, 

the system tends moreover to weaken because what we don't know if the 

maintenance be effective or not. After being maintained, if the system survives long 

enough, the random rate takes the values almost identical to the initial intensity 

(it's extremely probable that this last maintenance is perfect). 

The chart of the asymptotic random rate of the between-failures durations 

(simulated with the same parameters values of the initial failure intensity of Fig.2) 

(Fig.3) illustrate the maintenance effect. It's obviously the form of the random rate 

associated to the variable X, already defined in the preceding paragraph, for 

various values of the efficiency parameter p. 
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Figure 3. Asymptotic random rate of the between-failures durations according to various 

values of p 

We see that during all the period before the beginning of the degradation phase, 

the form of the random rate keeps always the same pace whatever is the 

parameter value p. In fact the maintenanace effect is, by hypothesis, As Bad As Old 

(ABAO), and the maintenance action is carried out just to take again the system 

operation). The maintenance effect, through the degradation period, is to increase 

the first values of the random rate compared to that of the initial intensity. This 

increase is even higher than the parameter p is weak. So, more p is weak and more 

the maintenance is extremely probable that it's ABAO. 

3 Estimate of the maintenance efficiency 

Under the assumption that the maintenance effects are known (the maintenance is 

As Good As New (AGAN) or ABAO, and Ek are observed). Thus, the writing of the 

likelihood function is possible by using the equation (6). Therefore, we estimate the 

parameters of our model, such as the efficiency parameter p, and the parameters 

of the failure intensity  . It's noticed that the estimator of p is logically the 

percentage of the perfect maintenance actions among all actions carried out. In the 

case of failure intensity of the Power-Law-Process type, Whitaker and Samagniego 

(1989) studied the identifiability problem of the parameter p for a waiting duration 

of the first failure according to the exponential law. And so the between-failures 

durations law is independent of the parameter p. Considering that the maintenance 

actions are useless when the system is neither in improvement state nor in 

degradation state, the models of assumptions AGAN and ABAO are the same ones.  

 

(6) 
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If on the contrary, this first between-failure duration is supposed of non-

exponential law, the identifiability problem does not arise and it's possible then to 

estimate in prior the parameter p. In the same way, we estimate the other 

parameters of the model, without having the observed values of the external 

variables E. Several alternatives of estimation, always for the simple failure 

intensity, namely the idea to use the Expectation Maximization (EM) algorithm, 

gotten by Lim (1998). In their article Lim, Lu and Park (1998) presented another 

method, based on the bayesian analysis, and which is trying to give to p the prior 

law of the beta type. Another approach was proposed by Langseth and Lindqvist 

(2003), acted to calculate the model characterization without utilizing the external 

variables values E. 

In practice, and without maintenance, the systems are considered either in 

improvement or in degradation states (in view of the service life phase is practically 

short). Then, the initial intensity cannot coincide with an exponential law and the 

identifiability problem doesn't presented. Indeed, this is logical insofar as the 

exponential law is in mental blank. Nevertheless, if the first between-failure 

duration is supposed of non-exponential law, the maintenance efficiency parameter 

is identifiable. 

We interest thereafter, in the estimation of the parameters for our BP reformulated 

model by an intensity with bathtub form. The failures process depends on the 

external variables continuation of which we don't know their values. Subsequently, 

and even if the failures process is influenced by the external variables E, this can be 

in any event, also considered with a self-excited punctual process. The two 

following relations express the relationship between the failure intensities.  

 

We find in Andersen, Borgan and Gill (1993) the innovation theorem, allowing to 

note the failure intensity quite simply by         . As the failure process is 

considered as well as a self-excited punctual process. We can apply within the 

parametric approach framework various procedures of estimate. This process is 

characterized by a clean failure intensity which is calculated in an iterative way 

according to the intensity values and cumulative failure intensity at the preceding 

maintenance instants. This function is expressed by the following equation.  
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Obviously, through the degradation phase, this property formalizing the model BP. 

What is translated by the third restriction of the foregoing equation . For this fact, 

we condition the calculation compared to the instant of the last perfect 

maintenance action. Consequently, we note Ez,k, for     and   the next event: 

the kth maintenance is AGAN and the following ones, until the zth maintenance, are 

ABAO:  

 

(7) 

 

When the law of the failure instants is influenced by the maintenances process, M, 

and by the external variables, E, the failure intensity remains insufficient to 

characterize perfectly the failures process. For this fact, and using the formula of 

the probability law of next between-failures time, data by the equation (7), and of 

the innovation theorem of Andersen, Borgan and Gill (1993) it's possible to write: 

 
(8) 

We can deduce from this last relation the law of between-failures times, knowing 

the history of the failures process. In our reformulation case of the BP model, and 

through the degradation period, the failures process checks: 

 

Thus, during all its life, the system is characterized by a failures process, of which a 

law of the between-failures times is given by: 
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We hold to distinguish between this property and that from the survival function. 

The Interpretations of the two properties are considerably distinct. The property 

corresponding to the survival function transmitted the marginal law of the 

consecutive between-failures durations. What allows us to well understand the 

evolution of the failures process. Whereas, the property of the preceding equation 

presents the conditional law of the consecutive between-failures durations. These 

two laws entirely characterize the failures process. Remain the problem of 

complexity which meets us in their studies. 

We find in the figure 4 our reformulation with bathtub form of the self-excited 

failure intensity (in full feature),    and the failure intensity relating to the external 

process        . The AGAN maintenance actions are indicated on the instants axis 

by circles, and the ABAO maintenance actions by squares. Subsequent to a 

maintenance action, the self-excited failure intensity proves to be the form of the 

initial intensity (in bathtub form). When the duration passed since the preceding 

maintenance action is sufficiently long, the self-excited failure intensity is equal to 

the initial intensity at the instant      
. In consequence of a maintenance action, 

the pace of the self-excited failure intensity is dependent on the history of the 

failures process. Indeed, if the previous between-failures duration is sufficiently 

high then the length of the improvement period is less significant. 

By using the self-excited failure intensity defined, we can deduce the likelihood 

function associated to the observation of the maintenance instants. Under these 

conditions, our BP reformulated model allows to withdraw the likelihood function 

associated to only one observation of the failures process. By using the equation 

(6), this function is given by:  

 

This last function is equivalent to the likelihood function developed in the work of 

Doyen (2010). And that the restriction of this likelihood function over the two 

improvement and service life periods is equal to:  
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Figure 4. Reformulation in the bath-tub form of the self-excited and relative intensities of the 

BP model 

Whereas through the degradation period, the restriction of this likelihood function is 

expressed as: 

 

Then the restriction likelihood function is written: 

 

And owing to the fact that:  

 

 

Therefore, while associating to the nth observation, such that      
, we obtain:  
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Finally, the likelihood function of our reformulation of the BP model is overall 

definite by:  

 
(9) 

It appears that in our study, the fact of removing the logarithm of the likelihood 

function doesn't simplify calculations. Thereafter, we attach to the direct calculation 

of the first partial derivative of likelihood in p. This calculation is resulted in the 

following function:  

 

Given that the calculation of the partial derivative of likelihood in the parameters of 

the initial intensity is much more complex, we can then use their estimators without 

the maintenance process. Indeed, the estimate is carried out being given only the 

failures process and the maintenance actions are supposed as minimal. Moreover, 

the two estimate procedures presented (the direct maximum likelihood and the EM 

algorithm) get in their globally the best estimators, especially that of the EM 

algorithm. 

4 Conclusion 

In this study, we gave new results on our new reformulation of the Brown-Proschan 

model. Doyen (2010) proved that this model corresponds to systems for which the 

maintenance efficiency makes it possible to contain or to stabilize degradation. That 

enabled us to introduce the innovation theorem which makes it possible to treat our 

general model of maintenance efficiency including the hidden external variables, in 

a way similar to a self-excited punctual process. 
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In the simulation stage, it's noticed that the service life period was not taken into 

account, in the direction where the system state is stabilized during this period. 

Moreover, in practice the service life period is, in general, short compared to the 

total life period of the reparable systems. 

We can then, for this general model, to calculate a failure intensity known as clean 

and a clean likelihood function. Within the framework of the BP model, this failure 

intensity and this clean likelihood are complex and must be calculated recursively. 

Moreover, in spite of the complexity of the clean likelihood function, we showed 

that it was possible to calculate its partial derivative and thus to maximize it by 

numerical methods. 

By knowing the clean likelihood function, other methods of estimate can be used. 

Like a method of Newton or via groping by calculating all the clean likelihood values 

on a grid. 
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