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Abstract

We consider the problem of using the points a given team has in the First Division Spanish Soccer
League to estimate its probabilities of achieving a specific objective, such as, for example, staying
in the first division or playing the European Champions League. We started thinking about this
specific problem and how to approach it after reading that some soccer coaches indicate that a
team in the first division guarantees its staying in that division if it has a total of 42 points at the
end of the regular season. This problem differs from the typical probability estimation problem
because we only know the actual cumulative score a given team has at some point during the
regular season. Under this setting a series of different assumptions can be made to predict the
probability of interest at the end of the season. We describe the specific theoretical probability
model using the multinomial distribution and, then, introduce two approximations to compute the
probability of interest, as well as the exact method. The different proposed methods are then
evaluated and also applied to the example that motivated them. One interesting result is that the
predicted probabilities can then be dynamically evaluated by using data from the current soccer
competition.
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1. Introduction

The Liga de F́utbol Profesional(LFP) stated that, starting at the regular season 1997-
1998, there will be twenty teams competing in the First Division Spanish Soccer League.
During the regular season, each team should play two games against each one of the
remaining nineteen teams, one game at its own field and the other one at the other team’s
field. Therefore, during the regular season there will be a total of thirty-eight games
played by each one of the teams participating in this league.After the 1995-1996 regular
season the LFP stated the actual scoring system: a win gets a team three points, a draw
one point and a defeat, no points. In this way, at the end of theregular season (i.e., after
the thirty-eight games have been played), teams classified in the last three positions in
the table (i.e., positions eighteenth to twentieth) will lose their place in the first division
and will have to play the next regular season in the Second Division Spanish Soccer
League. In addition, teams classified in the first four positions will play the European
Champions League, the most prestigious soccer tournament in Europe (i.e., the one that
only “the best” soccer teams in Europe will play), while teams classified in the fifth and
sixth positions will play the UEFA tournament (nowadays called Europa League), an
important soccer tournament for the so called “next-to-the-best” teams in Europe.

Soccer is the most important sport in Spain and there are several sports-related (TV
and radio) programs that concentrate most of their attention and efforts on the Spanish
soccer league. It is a fact that sports-related programs in Spain can very well be labelled
as “soccer-centred programs.” In the past few years, it has been very frequent to hear
sport broadcasters indicating that “soccer coaches training teams in the first division
believe that if a team obtains a total of 42 points at the end ofthe regular season, the
team will remain in this division for the next regular season.”1 That is, the 42 points
figure somehow represents the barrier that will determine ifa team plays in the first or
second division for the next regular season. In fact, after reading a specialized and well
known sports newspaper, the first author’s older son asked him the question of why some
specific soccer coaches indicate that a team in the first division guarantees its staying
in that division if it has a total of 42 points at the end of the regular season. This very
simple and straightforward question originated our curiosity as to how one can propose
some kind of approach to answer it. It also made us ask ourselves whether the question
had been raised before by someone else.

A very simple analysis of the available data for the last twelve regular seasons reveals
that only in three occasions a team obtaining a total of 42 points at the end of the regular
season lost its right to play in the first division for the nextseason. More specifically,
during the 1999-2000 and the 2008-2009 regular seasons, Betis, a soccer team from
Seville and, during the 2007-2008 regular season, Zaragoza, another soccer team from a
city with the same name, were both sent to play the corresponding next regular season in

1. For more details on this see, for example: http://bit.ly/biPsGx, http://bit.ly/maportugal, http://bit.ly/brindis-
osasuna, or http://bit.ly/racing42.
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the second division. Even though there are some statisticalpapers that propose to model
scores in soccer leagues (see, e.g., Lee, 1997; Karlis and Ntzoufras, 2000; Rue and
Salvensen, 2000; Brillinger, 2008; and Karlis and Ntzoufras, 2009), we are not aware
of any scientific study or attempt that has tried to find out theactual probability that a
team playing in the first division with 42 points at the end of the regular season stays
in that division during the next season. Along the same lines, we do not know of any
attempt that has been able to establish, using a rigorous statistical reasoning or tool, the
total number of points a team should obtain during the regular season, so that it can stay
in the first division for the next season. These represent twoof the main objectives that
have led us to put forward some of the proposals included in the next sections.

The rest of the paper is organized as follows. Section 2 introduces some basic
notation and contains a brief description of all of the possible classifications at the
end of a regular season for a four and a twenty team league. Section 3 describes
the use of the multinomial distribution in the context of thesoccer league under
study, as well as the normal approximation, Monte Carlo simulations approximation
and the exact probability computation for the different probabilities of interest. In
Section 4, we include the proposed method to compute the probability of a team staying
in the first division for the next regular season. Section 5 puts forward a dynamic
probability computation method that allows the researcheror individual to compute
different probabilities of interest during the regular season. Finally, Section 6 ends with
some conclusions and practical recommendations. All of theproposals contained in the
different sections of the paper are illustrated and evaluated with data from the First
Division Spanish Soccer League.

2. Basic notation and possible classifications settings

Let Ai represent each of thei (i = 1, . . . ,N) teams participating in a given league. That
is, all teams will be denoted byA1, . . . ,AN. The order of the team is not relevant and
it could be, in fact, alphabetical, per region, or sorted by any other criteria. LetEik

represent the points obtained by teami on its k-th game during the regular season
(k= 1, . . . ,2(N−1)). In this way, the result of the game played by teamsAi andA j in the
k-th of the regular season can be easily summarized by the 2×1 score vector(Eik,E jk)

′.
In the following sections we will analyze these results for the case of a league of four
and twenty teams, which is the actual size of the First Division Spanish Soccer League
under study.

As we will see in later sections and without loss of generality, we assume equiprob-
ability. That is, in each game we assume that the probabilitythat the local team wins,
loses or that the result is a draw are all equal. This implies that all possible final classi-
fications have the same probability. This assumption implies that no additional a priori
information is needed to be able to compute, for example, theprobability that a team
loses its category when having 42 points at the end of the regular season, or the probabil-
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ity of winning the league with a given number of points at the end of the regular season.
In this sense, all of the results reported here could be applied not only to the First Divi-
sion Spanish Soccer League, but also to any second division or to any other division or
league using the scoring system proposed in this league. In any case and given that it is
very unlikely that all teams in this league have the same constant probability of winning
a given soccer game, this is clearly a restrictive hypothesis that may be considered too
strong in some cases for practical reasons but, at the same time, it may also be consid-
ered simple enough to be interesting from a didactic point ofview. In fact, this is the
main reason to start analyzing this problem under this assumption because, in our view,
it clearly simplifies its solution and, in addition, it will also provide reference values for
the probabilities of interest that may then be useful for theanalysis of any other soccer
league one wishes to study in the future.

A less restrictive assumption that also allows us to obtain interesting statistical
results, can be that ofequal strength. In order for this assumption to hold, the probability
that the local team wins and the probability that it loses should be the same. That is, if
we let p1 be the probability that the local team wins,p2 the probability that the result
is a draw, andp3 the probability that the local team loses the game,equal strength
will occur if p1 = p3 = (1− p2)/2. One interesting fact about this assumption is that it
includes the equiprobability case as a particular case (i.e., if p1 = p2 = p3 = 1/3), but
it also includes additional possibilities that could also be analyzed. Along these lines,
if we consider the First Division Spanish Soccer League historical data for the 11,242
games played from the 1976-1977 up to the 2008-2009 seasons,the estimated value we
obtain for p2, if we use the relative frequency for the event that the result of the game
is a draw is, approximately, ˆp2 = 0.25. In the following sections, we will use both the
equiprobability and theequal strengthassumptions. Finally, we should also mention
that the equiprobability and equal strength assumptions imply that the probability that
a given team wins, loses or that the result of its game is a draw, does not depend on
which team it is playing against and that, therefore, there is an underlying independence
assumption between games. This may also be a restrictive assumption but, in our view,
it simplifies the solution to the problem of interest and, in addition, it provides the reader
some very useful insights about the solution to a more complex problem.

2.1. A four-team soccer league

If we have four teams in the league,A1,A2,A3,A4, there will be three games in which a
given team plays at home and three games in which it plays awayfrom it, as a visiting
team. That is, the regular season will have a total of six games. In this case, each date for
which games are scheduled will have two games being played atthe same time. If we let
a= (E11,E21)

′ be the score for the game played by teamsA1 andA2, andb= (E31,E41)
′

be the game played by teamsA3 andA4, the possible scores for the first set of games
to be played is listed in Table 1. After this first set of games is played, there are 32 = 9
possible score vectors that are listed in the correspondingcolumns of Table 2. In order
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Table 1: Possible score vectors for a two-team soccer league.

Possibilities 1 2 3

Score vector a: (3,0)′ (1,1)′ (0,3)′

Score vector b: (3,0)′ (1,1)′ (0,3)′

Table 2: Possible scores for a four-team soccer league after the firstset of games have been played.

Result a1b1 a1b2 a1b3 a2b1 a2b2 a2b3 a3b1 a3b2 a3b3

TeamA1 3 3 3 1 1 1 0 0 0
TeamA2 0 0 0 1 1 1 3 3 3
TeamA3 3 1 0 3 1 0 3 1 0
TeamA4 0 1 3 0 1 3 0 1 3

to better understand both the notation and contents in Table2, let us describe one of
the results provided therein (i.e., axby). The result in thefourth column of Table 2 (i.e.,
a2b1) indicates that in the game between teamsA1 andA2 the result was a draw (i.e., the
second possible result for the score vector a in Table 1, or a2), and in the game between
teamsA3 andA4 the result was that teamA3 won (i.e., the first possible result for the
score vector b in Table 1, or b1). For this specific case, the final scores obtained by
each of the teamsA1, A2, A3 andA4 after the two games have been played would be of
1, 1, 3, and 0 points, respectively and, thus, the score vector would then be(1,1,3,0)′

(see the fourth column in Table 2). In summary, after the regular season ends (i.e., after
each team has played its six corresponding games), there could be 32×6 = 96 = 531,441
different2 results that will, in turn, generate their corresponding score vectors for these
four teams.

The aforementioned number of possible results is clearly quite large. However, it
can be easily managed by a computer. As the reader may have already guessed, this is
exactly the situation in the first round of the Champions League competition, where only
the first two teams in each group of four teams advance to the next round. Therefore, it
would not be difficult to compute, for example, what would be the exact probability, for
each possible score, that a team finishes the competition in the first two positions (i.e.,
the probability that the team advances to the next round in the Champions League):

Score: ≤ 6 7 8 9 ≥ 10

Prob(next round): 0 0.0047477 0.18593 0.97050 1

That is, in all of the possible 531,441differentresults, we look for all results where
a team having a given score finishes the competition in the first two positions (i.e., these

2. These results are different in the sense that, even though the scores could end up being equal for some of the
cases, they were generated from different results in the games the teams have played.
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will the favourable cases) and divide this absolute frequency by the total number of cases
where teams had obtained this score (i.e., these will be the possible cases).

2.2. The twenty-team or first division Spanish soccer league

The Spanish First Division Soccer League, as well as, for example, the ones in France
or the United Kingdom, has a total of twenty teams (i.e.,N = 20), so that every round
there will be ten different games played at the same time. In addition, every team should
play nineteen games at home and another nineteen games as a visiting team, so that the
regular season will have a total of thirty-eight different rounds.

If we let (Eik,E jk)
′ be the score vector representing the result of the game between

teamsAi andA j in thek-th round of games during the regular season, we have that:

(Eik,E jk) =











(3,0) if Ai wins

(1,1) if the result is a draw

(0,3) if A j wins

Therefore, after thek-th round of games is over (i.e., after the ten scheduled
games have been played by the twenty teams in the league), we will have thatEk =

(E1k,E2k, . . . ,E20k)
′ represents the score vector assigned to all teams for the games

played that date. Moreover and given that for each one of the ten games played that
date there are only three possible different results, the number of different score vectors
that one can obtain for that specific date is equal to 310 = 59,049.

Let Ck be the 20×1 score vector containing the sum of the scores from the first up
to thek-th round of games, so that

Ck =
k

∑
l=1

El ,

andCk = (C1k, . . . ,C20k)
′. Therefore,Cik, i = 1, . . . ,20; k= 1, . . . ,38 represents the score

teamAi has after playingk games. If we place the elements ofCk in descending order
and denote this new score vector byCo

k = (C(1)k, . . . ,C(20)k)
′ = (Co

1k, . . . ,C
o
20k)

′, we will
have in the elements of the ordered score vectorCo

k the complete information about
teams classification or standings after k games have been played, which will be very
relevant to compute the probabilities of interest.

If, for example, we wish to analyze the number of vectors withpossibledifferent
scores after two rounds of games have been played (i.e.,C2), we have to consider that
each one of the 59,049 resulting score vectors for the seconddate for which games
were scheduled can be added to each one of the 59,049 score vectors for the first date
for which games were also scheduled, making a total of 310×2 = 59,049× 59,049=
3,486,784,401 possible results, even though we know that a large numberof them will
be basically equal. If we follow the same reasoning, we can find out that the number of
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vectors with possibledifferentscores for the score vectorC38 at the end of the regular
season would then be 310×38 = 3380≃ 2.023376E+181.

In order to be able to compute the exact probability of losingthe category for a
team having 42 points, just as we did in Section 2.1 for the probability of advancing
to the next round in the Champions League for the four teams’ case, we would have
to find out for how many of these 2.023376E+ 181 score vectors a team having 42
points stays away from the last three positions in the table (i.e., stays away from the
last three positions in the ordered score vectorCo

38). It is clear that, even with the current
capabilities large computers have to compute this probability, it is not reasonable to think
about working with such a large number of possibilities. Forexample, if the computer
is able to compute 1,000 score vectors per second, after a year of computations, the
computer would have only computed about 3.1536E+10 score vectors. Therefore, there
is a need to look for efficient and reasonable proposals that can make such a complicated
computation of probabilities possible.

3. Multinomial distribution

The settings we have introduced in the previous sections allow us to state that, for each
game and team, the set of possible results can be classified inthe disjoint events:R1

(winning the game),R2 (game ends in a draw) orR3 (losing the game). We now define
the probabilities for these events as follows:

Pr(Rj) = p j with 0< p j < 1, j = 1,2,3 and p1+ p2+ p3 = 1

To start with a simple setting, we can consider a discrete uniform probability
distribution for the three alternatives, so that it is assumed thatp1 = p2 = p3 = 1/3.
That is, we start with the initial aforementioned equiprobability assumption. Under this
assumption, for any team in the league, the random variableX = (X1,X2,X3)

′, describing
the event that aftern dates for which games were scheduled during the regular season,
there werex1 times where the eventR1 occurred,x2 times where the eventR2, andx3

times where the eventR3 occurred, follows a multinomial distribution with probability
mass function given by (see, e.g., Morris, 1975)

Pr(X1 = x1,X2 = x2,X3 = x3) =
n!

x1!x2!x3!
px1

1 px2
2 px3

3 , (1)

x1+x2+x3 = n, 0< p j < 1, j = 1,2,3 and p1+ p2+ p3 = 1

It is well known that the marginal distribution of each of theXj variables from a
multinomial distribution follows a binomial distributionwith parametersn andp j ; that
is,Xj ∼B(n, p j), j = 1,2,3 with E(Xj) = npj ,Var(Xj) = npj(1− p j) andCov(Xi ,Xj) =



188 On the use of simulation methods to compute probabilities

−npi p j , i, j = 1,2,3, i 6= j. As we have already mentioned, we are under the equiprob-
ability assumption. However, the distribution of the random variableX = (X1,X2,X3)

′

is multinomial as long as the assumed probabilitiesp1, p2 and p3 remain unchanged
for all games in the league. This implies that, for example, under theequal strength
assumption, the distribution of the random variableX is also multinomial.

3.1. Normal distribution approximation

If we use the multivariate normal central limit (see, e.g., Agresti, 1990, p. 424; or Rao,
1973, p. 128), we can see that the multinomial distribution converges to the multivariate
normal distribution, so thatX = (X1,X2,X3)

′ converges in distribution to a multivariate
normal distribution with mean vector given byµX = (np1,np2,np3)

′ and variance-
covariance matrixΣX with elements given by:

ΣXi j =

{

npi(1− pi) if i = j

−npi p j if i 6= j
(2)

The score a given teamAi obtains after playingn games isCin = 3X1+X2, a linear
combination of the components of the asymptotic multivariate normal random variable
X, which can be written asCin = d′X, with d′ = (3,1,0). Therefore,Cin converges to the
univariate normal distributionN(d′

µX,d′ΣXd).
For the specific case under study, we have thatn= 38 andp1 = p2 = p3 = 1/3, so

that the standard conditions (i.e.,npi > 5 andn(1− pi) > 5, see, e.g., Hogg and Tanis,
1988 or Cryer and Miller, 1991) for a valid approximation hold and, therefore, we have
that

Ci38 ≈ N(50.67,59.11) (3)

The probability that a given team in the league loses its category is the probability
that its ordered position after the regular season ends in one of the last three out of the
twenty possible positions. Thus, we are interested in computing the critical score value,
sayC38c, such that there would be three teams below it (around 15% or 3out of 20
teams) or three teams having a score smaller thanC38c. In other words,C38c should be
such that Pr(Ci38 ≤ C38c) ≥ 0.15. In order to computeC38c and using the result in (3),
we have that

Ci38−50.67√
59.11

≈ N(0,1)

Therefore,

Pr

(

Ci38−50.67√
59.11

≤−z0.15 =−1.0364

)

= 0.15 (4)
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being−z0.15=−1.0364, the 15-th percentile of the standard normal distribution,N(0,1).
Solving for Ci38 in the left hand side inside the parenthesis, leads us to obtain that

Pr
[

Ci38 ≤ 50.67− (1.0364)
√

59.11
]

= 0.15

and, thus, Pr(Ci38 ≤ 42.70) = 0.15.
If we apply a standard continuity correction3, we would have that theC38c value

we are searching for isC38c = 43. This value leads us to obtain that Pr(Ci38 ≤ 43) =
0.1755. Moreover, we can also easily verify that Pr(Ci38 ≤ 42) = 0.1439. Therefore,
the objective score for any team wishing not to lose its category in the First Division
Spanish Soccer League should be of 43 points.

In addition, if we use theequal strengthassumption with a probability that the
result of a draw isp2 = 0.25, we have thatCi38 ≈ N(52.25,65.92) and, therefore,
Pr(Ci38 ≤ 43.83) = 0.15. If we use again the aforementioned continuity correction and
given that we can easily compute Pr(Ci38 ≤ 44) = 0.1699 and Pr(Ci38 ≤ 43) = 0.1406,
we would now have thatC38c = 44.

3.2. Monte Carlo simulations approximation

A second alternative approach to obtain the distribution ofCi38 consists of using a
simulations approach. Let us begin by recalling that we are assuming equal probabilities
for each one of the three possible results than a given game can have; that is,R1 (winning
the game),R2 (game ends in a draw) andR3 (losing the game):

Pr(Rj) = p j =
1
3

for j = 1,2,3.

Most statistical packages include random number generators based on the uniform
distribution and, thus, it is quite simple to simulate the result of a given game with the
use of this software4. In this sense, if we assume independence among the games played
at each round during the regular season, the results for ten independent games can be
easily simulated in order to obtain the scores for all twentyteams after that specific date.
We also assume that the probabilitiesp j remain constant for each game so that, under the
previous assumptions, the results for the different round of games are also independent.
We can then repeat the whole simulation process thirty-eight times in order to be able to
simulate the results for the final standings for all twenty teams in the league at the end
of the regular season. The whole process can be easily summarized as follows:

3. We consider that for anyx∈ {0,1, . . . ,n}, if the conditions to consider the normal approximation a valid one
hold, then Pr(X ≤ x) = Pr(X < x+1) can be well approximated by Pr(Y ≤ x+ 1

2), whereY is a normal random
variable having the same mean and variance as the random variableX.

4. We have used the open source software packagegretl (see, e.g.,http://gretl.sourceforge.net
or Cottrell and Lucchetti, 2009).
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1. Based on the uniform distribution, we generate the results of the game between
teamsAi andA j in the first date for which games are scheduled, and obtain the
corresponding score vector(Ei1,E j1)

′.

2. Repeat step 1 ten times and obtain the results for all ten games played in the first
date for which games are scheduled. At the end of this step, weobtain the 20×1
score vectorE1 = (E11, . . . ,E20,1)

′.

3. Repeat steps 1 and 2 for each one of the thirty-eight dates for which games are
scheduled, generating the corresponding 20×1 score vectorsEk = (E1k, . . . ,E20k)

′,
k = 1, . . . ,38, and obtain the sum of the scores for all twenty teams afterthe
“simulated” regular season ends; that is, obtain the 20× 1 final scores vector
C38 = ∑38

l=1El .

4. Finally, repeat steps 1 to 3 a large number of times, sayM, and obtain the
simulated frequency distribution forC38 = (C1,38, . . . ,C20,38)

′, an approximation
of the probability distribution for this random variable and, accordingly, of its
individual componentsCi38.

If we follow the procedure described in Dı́az-Emparanza (2002, equation (8)), we
see that, with a 95% confidence level,M =10,000 replications will suffice to guarantee
a precision of±0.007 in the estimation of the 15% distribution percentile of interest.

After these simulations are performed, we can straightforwardly obtain that
Pr(Ci38 ≤ 43) = 0.1770 and Pr(Ci38 ≤ 42) = 0.1448, values that, as can be easily veri-
fied, are very close to those obtained in Section 3.1 with the use of the normal approxi-
mation.

However, it is also possible to consider an alternative interpretation of the results
obtained in this simulation approach. In Section 2.2 we haveindicated that there is a
large number ofdifferentpossibilities for values in the final score vectorC38. Statistics
usually tells us that if we wish to learn about the specific characteristics of a given
population that is impossible to measure or compute, we can use statistical inferential
methods. That is, based on the values obtained from a random sample of a “reasonable
size” from the population under study, we can always extractinformation that allows us
to estimate the characteristics of interest and, thus, be able to generalize the obtained
conclusions to the population under study. In this specific case, we can interpret our
proposed procedure as one that randomly extracts or samplespossible final scores (or
standings) among the set of all final scores (or standings) that we have in the First
Division Spanish Soccer League. The use of the assumption ofequal probabilities for
the three possible resultsR1, R2 andR3 in the simulations guarantees that, in the random
extraction or sampling, all possible score or standing vectors will be equally likely or
have the same probability of being selected in the sample.

In addition, if we use theequal strengthassumption with a probability that the
result of a draw isp2 = 0.25, and also usingM =10,000 replications, we obtain that
Pr(Ci38 ≤ 44) = 0.1728 and Pr(Ci38 ≤ 43) = 0.1427.
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3.3. Exact probability computation

The specific probability computation under study does not require the use of either
the normal approximation or the Monte Carlo simulation approaches proposed in the
previous sections. More specifically, if we use enumerationtechniques it is possible to
find the exact probability distribution forCi38.

In Section 3 we have seen that the random variableX = (X1,X2,X3)
′ follows a multi-

nomial distribution, with probability mass function givenby equation (1). Therefore, as
n= 38, each one of its individual components,Xi , i = 1,2,3 will take on values in the
set{0,1,2, . . . ,38}, and the set of possible values for the random variableX is finite
(i.e., there are(n+1)(n+2)/2= 780 possible values), so that the probability for each
one of its possible values can be easily computed by using (1). Once these probabili-
ties have been obtained, for each one of them, we can computeCi38 = 3X1+X2 and the
probabilities for each one of the(3n+1) = 115 possible different values forCi38 can be
easily added up together. We have done this inGretl and list both the possible values
and corresponding probabilities forCi38 (see Table 3, column withp2 = 1/3). Table 3
includes the values Pr(Ci38 ≤ 43) = 0.1768 and Pr(Ci38 ≤ 42) = 0.1444, values that are
very close to those reported in the approximation methods proposed in Sections 3.1
and 3.2 and, thus, these results confirm the conclusion (see the results reported in Sec-
tions 3.1 and 3.2) that a team wishing to stay in the first division should obtain at least
43 points at the end of the regular season. One of the anonymous reviewers suggested
an alternative procedure to compute the exact probabilities by means of the probability
generating function (pgf) of the random variableX, that measures the number of points
gained in a match. That is,

g(t) = p1+ p2t + p3t
3

In this sense, the sum of 38 such random variables has a pgf given byg(t)38 and,
thus, the probability values associated to each score in thedistribution function is given
by the coefficients of this polynomial.

The previously reported results have used the equiprobability assumption, something
that may be a very restrictive assumption in the view of some researchers. However,
as we have already mentioned in Section 3, under theequal strengthassumption,
the distribution of the random variableX is also multinomial. As above, from this
resulting distribution and with the use of enumeration methods, we can obtain the exact
probability distribution forCi38= 3X1+X2 as well. Moreover, we can easily compute the
probability distribution function forCi38 for different values ofp2 (i.e., the probability
that the result of the game is a draw). Figure 1 includes the probability distribution
functions for different values ofp2 (i.e., for p2 = 0.1, . . . ,0.9). In addition, Table 3 only
includes the probability values for the so called central values of the distribution of the
Score variable, also as a function ofp2. As can be seen in Table 3, we have included the
corresponding probability values for several cases of theequal strengthmodel, which
contains two of its special cases we have been studying so far: the equiprobability case
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Figure 1: Team final scores probability distributions as a function ofthe probability p2 that the result of
the game is a draw.

Table 3: Final scores cumulative probability values Ci38 = 3X1+X2 as a function of the probability of a
draw, p2. Reported results correspond to final scores ranging from36 to 50 after the regular season has
ended and for a twenty-team league. Boldfaced numbers indicate the required final score a team should
have at the end of the regular season for not losing the category under the assumed p2 probability.

Probability of a draw:p2

Score 0.10 0.20 0.25 0.30 1/3 0.40 0.50 0.60 0.70 0.80 0.90

36 0.0167 0.0217 0.0246 0.0281 0.0306 0.0364 0.0474 0.0617 0.0804 0.1039 0.1252
37 0.0223 0.0290 0.0331 0.0378 0.0414 0.0496 0.0653 0.0867 0.1162 0.1586 0.2232
38 0.0292 0.0382 0.0437 0.0501 0.0550 0.0661 0.0879 0.11810.1614 0.2274 0.3442
39 0.0379 0.0496 0.0569 0.0654 0.0717 0.0866 0.11560.1564 0.2157 0.3082 0.4765
40 0.0484 0.0636 0.0730 0.0838 0.0920 0.1112 0.1488 0.2016 0.2784 0.3974 0.6057
41 0.0613 0.0804 0.0922 0.1059 0.1162 0.14030.1875 0.2533 0.3479 0.4901 0.7164

42 0.0765 0.1002 0.1148 0.1317 0.14440.1740 0.2315 0.3106 0.4218 0.5814 0.8103

43 0.0944 0.1233 0.14100.1614 0.1768 0.2122 0.2803 0.3724 0.4976 0.6669 0.8754
44 0.1152 0.1498 0.1709 0.1951 0.2132 0.2548 0.3334 0.4370 0.5726 0.7431 0.9260
45 0.1389 0.1797 0.2044 0.2326 0.2535 0.3011 0.3896 0.5029 0.6442 0.8080 0.9549
46 0.1657 0.2131 0.2415 0.2736 0.2973 0.3507 0.4480 0.5682 0.7103 0.8609 0.9761
47 0.1957 0.2497 0.2818 0.3178 0.3441 0.4028 0.5071 0.6311 0.7694 0.9023 0.9863
48 0.2286 0.2893 0.3250 0.3646 0.3932 0.4564 0.5658 0.6904 0.8207 0.9335 0.9935
49 0.2643 0.3316 0.3705 0.4133 0.4440 0.5106 0.6228 0.7447 0.8637 0.9560 0.9965
50 0.3027 0.3760 0.4178 0.4633 0.4955 0.5645 0.6769 0.7933 0.8987 0.9718 0.9985
51 0.3432 0.4220 0.4663 0.5137 0.5470 0.6170 0.7274 0.8356 0.9265 0.9824 0.9992
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(i.e., p2 = 1/3) and the case for whichp2 = 0.25. For this latter case, we can clearly see
that Pr(Ci38 ≤ 44) = 0.1709 and Pr(Ci38 ≤ 43) = 0.1410, so that,Ci38c = 44.

4. Probability of not losing the category

In order to compute the probability of not losing the category for a given team having a
final scorec, we would have to check the joint distribution of the scores for all twenty
teams in the league at the end of the regular season and see in how many cases a
team havingc points has not lost the category. This implies working with the joint
distribution of a 20× 1 vector of random variables, in which each of its individual
components would have a similar distribution to that described forCi38 in Section 3.3.
In addition, we have to point out that these individual variables (i.e.,C1,38, . . . ,C20,38) are
not independent random variables, which makes this a complicated theoretical problem
to solve. However, it is not difficult to obtain an approximation of this distribution by
using a Monte Carlo simulation approximation, such as the one previously described in
Section 3.2.

In order to describe this new approach, we define a binary random variableD1, taking
value one if the scorec appears as part of the final standings score vectorC38 and if, in
addition, it is larger than the score obtained by the team appearing in the eighteenth final
standings ordered position vectorCo

38, and zero otherwise. That is,

D1 =

{

1 if c∈C38andc>Co
18,38

0 otherwise

Therefore, in the simulation process described in step 3 of Section 3.2, each time
a simulated final score vectorC38 is obtained, the random variableD1 takes on two
possible values, one or zero. After a sufficiently large number of replicationsM has been
simulated, and if we letmc be the number of occasions in which the random variable
D1 has taken value one, andMc be the total number of occasions in which the valuec
appeared in the final standings score vectorC38, then, for a team obtainingc points at the
end of the regular season,mc/Mc would be an approximation of the probability of not
losing the categorypnlc(c). We should indicate that in a simulation with a finite number
of replications we could have two easy to handle types of indetermination showing up:
cases with very low scores or cases with very high scores. More specifically, none of
the 50,000 replications performed to obtain the results reported in Figure 2 included
scores lower than 15 points or higher than 88 points. The problem is solved by assigning
probability zero to the very low values and probability one to the very high values
obtained in the simulation process. These simulations werecarried out forM = 50,000,
and values ofc= 0,1,2, . . . ,114 were considered, with the results reported in Figure 2.
In this specific case, the probabilities of not losing the category for a team having 42
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Figure 2: Probability of not losing the category, pnlc for each final score. Probabilities were computed by
simulations and with M=50,000 replications, with p1 = p3 and two different values for the probability of
a draw, p2 = 1/3 (i.e., equiprobability assumption) and p2 = 0.25 (i.e., equal strength assumption).

and 43 points are 0.3673 and 0.5259, respectively, under the equiprobability assump-
tion, and 0.2307 and 0.3581, respectively, under theequal strengthassumption with
p2 = 0.25. If one wishes to compute instead the probability of playing the European
Champions League or the Europa League tournament, the binary variable should be
defined accordingly.

5. Dynamic computation of probabilities during the regular season

From a practitioners’ point of view, it would be very interesting to have the possibility
of computing, after a given number of rounds of games have been played (sayk) and
conditioned on the current score vector (sayCk), the probability that a given team wins
the league, plays the European Champions League or ends in a position that will make
that team not to lose its category at the end of the regular season. These probabilities
can then be used by the teams to make strategic decisions during the regular season
and not at the end of it when things cannot be changed. For example, a team whose
main objective at the end of the current regular season is to stay in the first division,
would be able to determine that, if the probability of not losing the category, say at mid-
season, is smaller than 0.10, the team will change its coach at mid-season. However,
another team whose main objective at the end of the regular season is to win the league
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could decide that it would change its coach if the probability of winning the league at
mid-season is lower that 0.75. That is, conditions and decision are highly linked to the
team’s objectives during the regular season. We should alsomention that, depending on
the specific conditions of the league under study, it is very likely that our equiprobability
or equal strength assumptions provide a solution that may not be too realistic. In fact,
if there are reasons that lead us to believe that these hypotheses do not hold, we should
probably propose a more complex or general probability model that allows us to improve
the reported results. In any case, we do believe that for any soccer league it would be
interesting and useful to have the reference values that canbe easily obtained from the
model under the aforementioned assumptions.

Therefore, our aim is to be able to compute, for a given teamAi , a given datek for
which games were scheduled during the regular season (k < 38), and conditioned on
the current score vectorCk, the dynamic conditioned probability that at the end of the
regular season the teamAi loses its category (plays the European Champions League,
plays the Europa League tournament or wins the league).

The method proposed in Section 3.3, in which we now haven= 38−k can be used to
compute the exact probability distribution for each team’sscore at the end of the regular
season, conditioned on the score each team has at thek-th round of games,Cik. That is,
we would be able to find the marginal distribution of the random variableCi38 (team’sAi

score at the end of the regular season), conditioned on the current information we have
for the k-th round of games. However, in order to compute the probability that, at the
end of the regular season, a given team does not lose its category, conditioned on the
current information we have (sayCk), it is necessary to take into account the complete
structure the score vectorCk has; that is, the score all twenty teams have at that specific
date. From this information, the computation of the probability of a team not losing
its category means, as we saw in Section 4 above, working withthe joint probability
distribution of the scores for all twenty teams. Moreover, if we consider that those scores
are not independent we will soon arrive at the conclusion that the analytical computation
of this probability is a complicated probability problem, just as we had in Section 4.

As one can see, this is also a very simple problem if we decide to use Monte Carlo
simulation techniques to solve it. There are differences, however, with the solution
we proposed in Section 4, which will be described in detail below. In this case, the
simulation process would start by taking the scores in thek-th date as given or known
(i.e.,Ck is assumed to be known) and, thus, we would only need to simulate the results
for the remaining 38− k dates for which games are scheduled. The whole process can
be easily summarized as follows:

• We assume that the 20×1 current score vector for thek-th round of games,Ck, is
known.

• For a given teamAi , we define a binary random variableD2, taking value one if,
at the end of the regular season, the team’s position in the final standings ordered
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score vectorCo
38 is in one of its first seventeenth places, and zero otherwise.That

is, D2 will take value one if teamAi ’s score valuec=Ci38 at the end of the regular
season is larger that the score obtained by the team at the eighteenth position in
the final standings ordered score vectorCo

38 (i.e.,Co
18,38), and zero otherwise. We

should point out that we are not taking into account any additional criteria such
as, for example, goal differences that would decide the finalposition of two teams
(i.e., the ones in positions seventeenth and eighteenth) incase of two teams having
the same score, mainly because after thirty-eight games this is not so likely to
occur. That is,

D2 =

{

1 if Ci38 >Co
18,38

0 if Ci38 ≤Co
18,38

which can be easily done simultaneously for all twenty teams, so that we would
now have a 20×1 vector of binary indicator variables.

• For the remaining 38−k rounds of games, repeat step 3 in the simulation process
described in Section 3.2, so that we obtain the final standings ordered score vector
Co

38 at the end of the regular season. The binary variableD2 will then take on values
one or zero.

• Repeat the whole process of generating the remaining 38− k dates for which
games are scheduled for a sufficiently large number of replicationsM. In each
replication, the binary variable will take on values one or zero. If we letm be the
number of occasions in which the binary variableD2 has taken value one, then
m/M would be an approximation of the probability of team’sAi not losing its
categorypnlc(c), conditioned on the current score vectorCk.

We now apply this to the soccer league motivating our proposals (see Table 4). The
third column in Table 4 (labelled asCo

19 in the left-hand side of the table), includes
the standings for the First Division Spanish Soccer League after thek = 19-th round
of games (January 24, 2010). Using the method just describedin this section andM =

10,000 replications, we have computed the probabilities, conditioned on the scores at
k= 19, of not losing the category, playing at least the “Europa League” (formerly UEFA
tournament), playing the European Champions League, and winning the league for all
twenty teams in the 2009-2010 regular season. These resultsare listed on the right-hand
side of Table 4. In order to compare this prediction, based onthe information available
when about 50% of the regular games were played, with the actual final standings for
the last regular season, it is probably worth noting that Barcelona won the league and
that, in addition, Real Madrid, Valencia, and Sevilla classified to play the European
Champions League. Furthermore, Mallorca and Getafe classified to play the “UEFA
Europa League”, and Valladolid, Tenerife and Xerez lost their category. There were
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Table 4: Teams’ classification in the First Division Spanish Soccer League and probabilities computed
with the Monte Carlo simulations approximation. In this case, we were in the k= 19-th date for which
games were scheduled-January 24, 2010 (for Pr(Win), if two or more teams have the same number of points
at the end of the regular season, a tie-breaking mechanism that uses a uniform random variable has been
applied).

Team Co
19 pnlc Pr(Europa) Pr(Champ) Pr(Win)

1 Barcelona 49 1.0000 0.9983 0.9899 0.6812

2 Real Madrid 44 1.0000 0.9870 0.9452 0.2318

3 Valencia 39 1.0000 0.9190 0.7570 0.0591

4 Mallorca 34 0.9989 0.7043 0.3838 0.0088

5 Deportivo 34 0.9992 0.6916 0.3758 0.0093

6 Sevilla 33 0.9976 0.6370 0.3068 0.0055

7 Getafe 30 0.9900 0.3876 0.1471 0.0022

8 Athletic 30 0.9900 0.4016 0.1525 0.0022

9 Villarreal 26 0.9399 0.1580 0.0425 0.0001

10 Sporting 24 0.9037 0.0829 0.0175 0.0001

11 Atlético 23 0.8894 0.0671 0.0160 0.0002

12 Osasuna 23 0.8867 0.0653 0.0212 0.0001

13 Ŕacing 23 0.8825 0.0738 0.0244 0.0001

14 Espanyol 20 0.7389 0.0317 0.0062 0.0000

15 Almeŕıa 18 0.5951 0.0148 0.0018 0.0000

16 Málaga 17 0.5120 0.0084 0.0011 0.0000

17 Valladolid 17 0.5234 0.0083 0.0012 0.0000

18 Tenerife 17 0.5089 0.0068 0.0006 0.0000

19 Zaragoza 14 0.3021 0.0009 0.0001 0.0000

20 Xerez 8 0.0689 0.0001 0.0001 0.0000

two relevant issues that provided not expected results for the 2009-2010 regular season:
Zaragoza did not lose its category and Deportivo did not playthe Europa League.
Zaragoza’s performance during the second half of the regular season was quite better
than that in the first half of the regular season (obtaining 27points out of 57 possible
points), a fact that allowed the team to stay in the first division. Deportivo’s performance
during the second half of the regular season was quite unexpectedly bad (obtaining only
13 points out of the possible 57 points, while in the first halfit had obtained 34 out of
57 points). As can be clearly seen, this is a fact the proposedmethod clearly did not take
into account because its prediction was based on past data. Of course, it is clear that
dynamic predictions would be better as we approach the end ofthe regular season.

6. Conclusions and practical recommendations

We have proposed an approximate method to compute the probability that a team
having 42 points has of losing its right to play in the first division the next regular
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season. Under the assumption that all possible classifications are equally likely, this
method allows us to obtain an estimated value of 0.3673 for this probability, and, an
estimated value of 0.2307 under theequal strengthassumption with probability of a
draw of p2 = 0.25.

We have described the normal and Monte Carlo simulated approximations, as well
as the exact method, to estimate what would be the objective score a team should aim
for in order to stay in the first division of the Spanish soccerLeague. All three methods
have concluded that the objective score for such a team should be of at least 43 points.

Finally, we have also proposed a simulation-based method that allows us to compute,
in a dynamic form and after thek-th round of games has ended, the probability,
conditioned on the scores it has up to and including thatk-th date, of a team not losing
its category (or winning the league, of playing the EuropeanChampions League or the
Europa League tournament)

As we have already mentioned in previous sections, the equiprobability and equal
strength assumptions, even after being considered too simplistic or not too realistic hy-
potheses, have two fundamental and very relevant advantages: under these assumptions,
computations are quite simple because of their underlying independence assumption be-
tween games, and, in addition, they do not require of any additional a priori information
to be able to compute the probabilities of interest. In practice, if one wishes to study the
problem of a “real” league, just like the First Division Spanish Soccer League in which
there are real reasons to believe that the probability of winning a game, losing a game or
that the result of the game is a draw for each team is different(i.e., large or even extreme
differences in the budgets for the different teams), then the results reported here can be
only considered as upper or lower bounds for the probabilities of interest. For example,
it is quite reasonable to believe that a team in the first (or last) position in the league will
have a probability larger (or smaller) than 1/3 of winning most of its games and this can
clearly result in the fact that the probability values reported here for winning the league
or winning a place to compete in the Champions League (or losing its category) for this
specific team can be then considered as lower (or upper) bounds for the real probability
of interest.

Future research includes the possibility of not having equally likely classifications
or adding some additional information, such as some differential characteristics the
different teams in the league have. For example, teams having a larger budget (i.e.,
richer teams) have more possibilities of bringing better players to their teams. One
way of approaching this new problem could be, for example, toestablish ana priori
probability of winning each game that somehow depends on theteam’s budget. An
additional possibility would be to establish this probability taking previous results as
the basis for it. In any case, this is out of the scope of this paper and it will be the
objective of future research.
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