
AN APPLICATION EXAMPLE OF THE BREEDER 
GENETIC ALGORITHM TO FUNCTION OPTIMIZATION 

Lluis A. Belanche 

Secció d '/nrel·ligencia Artificial 
Dept. de Llenguatges i Sistemes /nformntics 

Ulliversitat Politecll ica de Catalullya 
belanche@lsi.upc.es 

ABSTRACT 

Evolutionary Algorithms (EA) have demonstrated 
their abiLity to solve optimization tasks in a wide range of 
applications. In thi s paper, after outlining the basics of 
such algorithms, the possibilities of one of the latest to 
emerge, the Breeder Genetic Algorithm (BGA) are 
exemplied by addressing a c1ass ical numerical opti
mization problem: the Fletcher-Powell pseudo-random 
function . 

1. INTRODUCTION 

Since the earl y days of computer science, function 
optimjzation has been one of the topics of more active 
research, because of the enormous potential of appli
cation to solve engineeri ng or mathemati cal problems. For 
di screte solution spaces, traditional Articial Intelligence 
(Al) techniques for solving constrained combinatorial 
optimization tasks, such as theA * or IDA * al gori thms and 
deri vations [1] have proven to be useful for certai n 
applications. However, these methods rely on heuri stics to 
guide the search process that are not always easy to fi nd 
or to express. In addi tion, if tbe search space is big, the 
computati ona l cos t of the a lgo rithm can beco me 
unacceptably high. 

An alternative to these methods are Evolutionary 
Algorithms (EAs) [2], among which Genetic Algorithms 
(GAs) [3] have been extensively used for dis-crete as wel l 
as continuous optimization tasks, although they were not 
conceived for thi s [4]. Their main advantages over other 
methods are the coarsegrained global search mechanism, 
the neat tradeoff between exploration of the search space 
for new solutions and exploitation of the promising ones, 
the lack of an explicit heuri stics, and the easiness of 
paralleli zation. In addition , no knowledge of the problem 
has lo be coded apart from te lling the algorithm how good 
(how fit, in EA jargon) a potenti al solution is. 

Among the latest algori thms we find the Breeder 
Genetic Algorithm (BGA) [5]. lt is characteri zed by a 
truncation selection procedure and direct representati on 
of continuous variables. Truncatí on selection is a simple 
u e of rank-based selection, proven to be very useful in 
traditional GAs [6] . The direct representati on of variables 
eliminates the need for a coding scheme -that usually 
changes the search space- and permits to develop new, 
continuous genetic operators. The BGA has been shown 
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to be superior to trad itional GAs for classical continuous 
optimization test problems [7]. 

We show in thi s paper how a rel atí vely simple algo
rithm like the BGA ís able to cope with the Fletcher
Powell function, an extremely difficult optimization 
problem, often used for benchmarking. Our intention is 
not to solve thi s problem to a full , achieving the best 
attainable solution, because thi s would require a more 
thorough study and much higher computational demands 
than those used here. Rather, we use it to illustrate the 
possibilities of EAs as black-box and robust techniques 
for optimization . 

In the next two sections, the basics of EAs are out
lined, and in particular the BGA is briefly introduced. It 
then follows a descríption of the selected problem. Next, 
a small experimental setup is devised and the results on it 
are commented on, together with a compari son to other 
EAs. The paper ends with so rne conc lusions and 
afterthoughts. 

2. BASICS OF AN 
EVOLUTIONARY ALGORITHM 

The term Evolutionary Algorithms refers to a big 
family of search methods based on concepts taken from 
Darwinian evolution of spec ies and natural selection of 
the fittest. Sorne concepts from genetics are also present. 
Gi ven a problem to be sol ved EAs maintain a population 
of individuals that represent potential so lulions to it. Each 
individuaJ in the population is represented by achromosome 
consisting of a string of atomic elements ca ll ed genes. 
Each gene contai ns (represents) a variable, either for the 
problem or for the algori thm itself. The possib le values of 
a gene are called aUe/es and the gene' s position in the 
chromosome is called locus (pI. loci). There is aJso a 
di stinction between the genorype, the geneti c materi al of 
an individual, and the phenorype, the indi vidual result of 
genotype development (that is, the born li ving thing). In 
EAs the genotype coincides wi th the chromosome, and the 
phenotype is si mulated via a fitness function, a scalar 
value -si milar to a reinJorcement- express ing how well 
and individual has come out of a given genotype. 

An EA can be formalJ y described by the conceptual 
algorithm in g. 1, parameterized by a tuple: 

< EA-Setup >=< D o, (¡.t,A), 1 ,0 , 'f', e, <1>, :=: > 
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where n, = Ci'" ¡'2' ... ¡'I') is the population at time t and 
thus no is the, usually random, initial population, /J. the 
population size, A the offspring size (out of /1 ), Y the 
selection operator, n the recombination operator, \fl the 
mutation operator, e the termination cri terion, :=: the 
replacement cri terion and <1> the fitness function. In this 
algorithm, operator sequencing on the popula-tion is as 
follows: n, represents the populati on at time (i.e. , 
generation) t, nT

, the population after selection, n·, after 
recombination and n", after mutati on, to end in a new 

population n'+I . 

The search process usuall y starts with a randornly 
generated popul ation no and evolves over time in a 
quest for better and be tte r individuals where , from 
generation to generation , new populati ons are formed 
by appl ication of three fundamental kinds of operato rs 
to the indi v idual s of a population , forming a 
characteris ti c three-step procedure: 

l . Seleetion of the fittest indi viduals, yielding the socall ed 
gene pool; 

2. Reeombination of (some of) the previously se- lected 
individuals forming the gene pool, giving ri se 10 an o 
spring of new indi viduals; 

3. Mutation of (so me of) the newly created individuals. 

Procedure Evolut iona.ry- Algoritbm 
( 

t : =0; 

create n~ ; 

evaluate <I> (i), V'i E n t ; 

while not (e (n
t
» do 

( 

/ - Create the gene pool n\ 'Ir / 

select: n T
t 

:= T (n
t
); 

/* Apply genetic operators "' / 

recombine: n t := n (nT
l
); 

mutate: n' l := o/ In t ); 

/ ,. Evaluate their effect fr / 

evaluate <I> (i) , 'Vi E n t ; 

; '" Forro the new generatian "" 

replace: n,O¡ := .:: (n t v nT
t
); 

t : = t+l 

Figure J: Evohaionary ALgorilhm. 

By iterating thi s three-step mechanism, it is hoped 
that increasingly better individuals will be found (that is , 
will appear in the population). This reasoning is based on 
the fo llowing ideas: 

l . The selection of the fittest indi viduals ensures that only 
the best ones 1 will be allowed to have o spring, dri ving 
the search towards good sol utions, mi micking the natu-

1 Or the luckiesl in sorne EA instances, like most GAs. 
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ral process of selection, in which onl y the more adapted 
species are to survive. 

2. By recombining the geneti c material of these selected 
individuals, the possibility of obtaining an offspring 
where al least one chi ld is better than any of its parents 
is high. 

3. Mutation is meant 10 introduce new trai ts, not present in 
any of the parents. It is usually performed on freshJy 
obtai ned individuals by slightly altering some of thei r 
geneti c materi al. 

Hence, an EA may be seen as a non-empty sequence 
of ordered operator applicati ons: fitness evaluati on, 
selection, recombination, mutation and replacement. 

Theentire process iterates until one ofthe following 
criteri a is fullfil ed: 

l . Convergenee: it happens because the individuals are 
too similar. Fresh and new ideas are needed, but 
recombination i incapable of providing them because 
the individuals are very close to one another, and 
mutation alone is not powerful enough to introduce the 
desired variability. Convergence can be monitored by 
on- line (average of the best indi viduals) and off-line 
(average of average indi viduals) throughout the 
generations; 

2. Problem solved: the g lobal optimum is found up to a 
satisfactory accuracy (if optimum known); 

3. End of resourees: the max imum number of function 
evaluati ons has been reached. 

Evolutionary Algorithms are effecti ve mainl y be
cause their search mechanism keeps a well-balanced 
tradeoff between exploration (trying to always dri ve the 
search to the discovery of new, more useful , geneti c 
material) and exploitation (trying to fine-tune good already
fo und solutions). Exploration is mai nl y dealt with by the 
mutation operalor. Exploitation is carried oul by the 
selection process and Ihe use of recombi nati on operators, 
although mutation may a1so playa role in the neruning of 
solutions. The tness function is built out of the fun ction lo 
be optimized (called the objeetive funetion) . AlI EAs 
represent the deci sion variables in the chromosome in one 
way or another, eilher directly as real values or resorti ng 
to a di screte coding, usually binary (Iike most GAs). The 
particular coding scheme is the classical knowledge 
representati on problem in Al , and completely condilions 
the results. In add ition , some algori thms (like the Evo
lution Strategies, ES) append their own variables lO the 
representation in the form of auxiliary information that 
evolves with time li ke the other variables . 

An excellent state-of-the-art and review ofEAs, and 
a useful departure point because of its rich set of references 
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is [8]. There is also a very complete F AQ with pointers to 
papers, books, software and the main groups working on 
EAs all over the world [9]. 

3. THE BREEDER GENETIC ALGORITHM 

In traditional GAs, selection is stochastic and meant 
to rnimic -to sorne degree- Darwinian evolution; instead, 
BGA selection (named truncation selection) is a 
deterministic and articial procedure driven by a breeding 
mechanism (as used in livestock), where only the best 
individuals -usually afixed percentage of'r total population 
size ¡.1- are selected and enter the gene pool to be 
recombined and mutated, as the basis to form a new 
generation. Genetic (recombination and mutation) 
operators are applied by randomly and uniforml y selecting 
two parents until the number of offspring equals ¡.1-q. 
Then, the former q best elements are re-inserted into the 
population, forming a new generation of ¡.1 indi viduals that 
replaces the previous one. This guaranteed survival of 
sorne of the best individuals is called q-elitism. For the 
BGA, the typical value is q = 1. The BGA selection 
mechanism is then deterministic (there are no probabilities), 
extinctive (the best elements are guaranteed to be selected 
and the worst are guaranteed not to be selected) and 1-
elitist( the bestelementis always to survive fromgeneration 
to generation). 

The BGA chromosomes are potential solution vec
tors 'it of n components, where n is the problem size, the 
number of free variables of the function to be op-tirnized. 
The common aspect of BGAs with ordinary GAs is the 
fact that both are mainly driven by recombination, with 
mutation regarded as an important but background operator, 
in the double role of solution fine-tuner (for very small 
mutations) and as the main discovery force (for moderate 
ones). We will now briefly describe the different 
possibilities for the genetic operators. The reader is referred 
to [10] for a detailed description. 

3.1 Recombination 

Any operator Q combining the genetic material of 
the parents is called a recombination operator. In BGAs, 
recombination is applied unconditionally, Pr(Q) = 1. Let 
~ ~ 
x = (x , ... , x ), Y = (y , ... , y ) be two selected gene-pool 

¡ ~ ~ ¡ -"4' ~ ~ 
individuals x , Y such that x :;t: y . Let z = (z¡, ... , z.) be 
the result of recombination and 1 ::;; i ::;; n. The following 
are some of the more common possibilities to obtain an o 

. ~ 
spnng z: 

1. Discrete Recombination (DR). 

Z¡E {x¡,y) (chosenwithequalprobability) 

2. Line Recombination (LR). 

with a fixed a E [O, 1]. Typically, a= 0.5. 
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3. Extended Intermediate Recombination (EIR). 

with a [-b, l+b] chosen with uniform probabilify. The 
param~ter b expresses to what degree an offspring can be 
generated out of the parents' s scope, the imaginary line 
that joins them in 9\ . More precisely, it works by controlling 
the maximum fraction a = b[y¡ - x¡ ]of the distance between 
parents where the offspring can be placed, either left to the 
leftmost parent or right to the rightmost parent. A typical 
value for b= 0.25, although any non-negativereal number 
not exceeding 0.5 is a potential value. The bigger the , the 
more the effect of the parents is dirninished in creating 
offspring. A method for dynarnically setting its value 
called range, was introduced in [10] and shown to have a 
remarkable effect in performance. It works as follows: 

such that a¡ E [-b¡-, 1 + bt] with uniform probability and, 

Y¡ -r¡ 
1);-=-+--

r¡ - r¡ 

+ r. -x. 
1)+=_1 __ 1 

1 + 
r¡ -r¡ 

This procedure assigns different values for the left 
(b-) andright(b+) lirnits ofthe interval from which a¡ is to 
b~ selected, anct does never generate a value outside the 
range [r.- , r+] forthe variable i, an aspectnotfullled by the 
other ~ethods that otherwise has to be dealt with a 
posteriori. 

4. Fuzzy Recombination (FR). This operator, introduced 
in [11], basically replaces the uniformpdj(probability 
distribution function) by a bimodal one, where the two 
modes are located at x¡ and y¡. The label "fuzzy" comes 
from the fact that the two parts Pr .(t); Pr(t) of the 

XI yl 

probability distribution resemble triangular fuzzy 
numbers. 

3.2 Mutation 

A mutation operator 'P is applied to each gene with 
some probability Pr('P) = l/n so that, on average, one gene 
is mutated for each individual. Let -:¿ = (z¡, ... , z) denote 
the result of mutation of an individual 'it. The elements of 
-:¿ are formed as follows: 

1. Discrete Mutation (DM). 

z. = x. + signo range .. b 
l l l 

with signE {-1, + 1} chosen with equal probability, 
range¡=p(r¡+ - r), PE [0.1, 0.5] and 
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k-l . 
D= L <p.T l 

i=O l 

where C{J¡E {O,l} from a Bernouilli probability 
distribution where Pr( C{J¡ = 1) = l/k.In this setting k 
E N+ is a parameter originally related to the precision 
with which the optimum was to be located, a machine
dependent constant. In practice, however, the value 
of k is related to the expected value of mutation 
steps: the higher k is, the more fine-grained is the 
resultant mutation operator. The factor p is the 
range ratio, related to the maximum step that 
mutation is allowed to produce as a ratio of variable 
range. 

2. Continuous Mutation (CM). Same as DM but with 

where PE [O, 1] with uniform probability. 

4 THE FLETCHER-POWELL FUNCTION 

This highly multimodal function was introduced 
in 1963 as a regression problem [12], where a collection 
of parameters have to be estimated such thata quadratic 
error term, depending on a non-linear expression, has 
to be minimized. Let us denote the n parameters as a 

~ 
vector x . Let A = (a . .), B = (b .. ) be two n x n real 

--? lJ lJ 
matrices and a a fixed real vector of dimension n. 
Define the two terms A and B as: 

1 1 

n 

A¡(a) = l.Ja¡jsina j +b¡j cosaj) 
H 
n 

B¡ (x) = ¿ (a¡jsinxj + b¡j COSX j ) 

j=1 

Then, the function is defined as: 

n 

FP(i) = 2: (A¡(a) - B¡ (i))2 
j=1 

The solution is FP( t') = O, wheret *= ~ . The 
function is c1early non-syrnmetric (which would make it 
easier) and non-separable (it cannot be optimized on each 
x. separately). The sinusoidal factors lead to a high 

J 
number of hills and valleys, making a gradient-based 
method unfeasible. There are up to 2n extrema located in 
the subspace IX}$;1t, the one usually selected to constrain 
the solution space. The vector ~ (the position of the 
absolute minimum) is chosen atrandom from this subspace 
ajE [-1t, 1t]. Moreover, the matrices A, B are also chosen 
at random with a .. , b.. E [-100, 100]. This makes the 

lJ lJ 
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suboptimal extrema to be randomIy distributed over the 
search space. In our case, a value of n = 30 is chosen, so 
that the function inc1udes a total ofl ,830 random numbers. 

5. EXPERIMENTAL RESULTS 

An execution with the BGA involves the choice 
of a mutation operator \f and its parameters p and k and 
of a recombination operator Q and its parameter o 
(only for EIR). The truncation threshold 1" and 
population size ¡.t are also to be set. These last two 
values are of great importance because they are strongly 
interelated. For the sake of c1arity and simplicity we do 
not discuss them here. Instead, an educated guess is 
made just in order to obtain reasonable results within 
low computing resources. To this end, a value of 1" = 
15 is set, to ensure a high selective pressure so as to 
enforce the quick discovery of fairly good solutions. 
The low value of entails a moderate-to-high population 
size in correspondence, to account for enough diversity. 
We set then Ji = 100. 

The choice of .genetic operators is more 
elaborated. To begin with, p is set to 0.5, a value 
that stands for high average mutation steps, needed 
to broad-tune rather than to rene solutions. In 
addition, a low value of k (lower than 16) is in 
favour of this scheme, and known to have a much 
deeper impact on performance [10] than , so we 
carried out sorne preliminary runs with k E {6, 8, 10, 
12, 16} that lead to the selection of k = 10. In 
addition, the continuous operator showed to be 
better. 

All this tuning runs take only a few seconds 
(always less than a minute) in a shared SUNtm Ultra-
60 System. The stopping criterion is based on the 
number of function evaluations permitted (given by 
the vari-able FFEvals). In particular, given a nite 
number of FFEvals, the algorithm will stop each 
run whenever [FFEvals / J..l] generations are reached. 
This stopping criterion allows to compare different 
general settings in a fair way, since, for example, a 
smaller population would be allotted more 
generations, but always keeping the number of 
evaluations in similar values. For each conguration, 
a number of independent runs are performed -
denoted by NRuns- keeping track of the mean and 
best solutions found. In these initial experiments, 
FFEvals=50,000 and NRuns=5. 

Regarding the recombination operator, ten pos si
bilities are tested from within the set {DR, LR with a 
= 0.5, EIR with 0= Oto 0.30, EIR with rangeoandFR}. 
Among them, the EIR operator quickly stand s out over 
the rest, with varying performance that depends on its 
parameter D. The results for this last operator are 
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presented in a single table for ease of reading -Table 1-
summarizing the information as a function of the sample 
values for tested. For each conguration, average and 
best solutions found are shown. 

EIRO Average Best 
0.05 51,541 18,296 
0.10 28,837 23,151 
0.15 25,368 2,265 
0.20 32,459 11,798 
0.25 41,262 14,017 
0.30 47,356 20,561 
range

d 
25,953 9,030 

Table 1: Resultsfor the E1R (o) recombination operator. 
Each entry shows the average and best results across five 
runs. 

As it can be seen, EIR (0.15) shows to be the best 
setting, both on average and in terms of the best solution 
found. Note that the curve of performance across is 
concave, with EIR (0.15) at the bottom. The operator with 
the modication range shows to have a performance almost 
equal than the best one achieved with a fixed o. This is 
remarkable because it means that a comparable perfor
mance can be obtained without the need of a search along 
. Both settings (O = 0.15 and range~ are selected for 
further experiments. It has to be said that the already 
obtained results are quite good. The initial function 
evaluations are in the order of millions (between one and 
five, depending on the run). 

Once the algorithm has been roughly tuned to the 
problem landscape, a series of runs are performed to 
assess its potential to a deeper degree. Operators are then 
set to continuous mutation with p= 0.5, k = 10 for 
mutation, and the two choÍCes EIR ( 0= 0.15), EIR 
(range ~ for recombination, using the knowledge gained 
so far; this time, however, NRuns=100 runs of 
FFEvals=100, 000 are carried out. The results are 
presented collectively in Table 2, along with sorne other 
results present in the literature. 

Biick [2] (p. 157), for example, reports results on 
this function with a standard genetic algorithm (SGA), an 
evolutionary prograrnming algorithrn (EP) and the powerful 
evolution strategies (ES), reproduced in the table for 

Algorithm Average Best 
SGA 4.581.10 4 1.032 .10 4 

EP 1.107 . 10 5 2.997.10 4 

BGA-1 1.987. 10 4 8.165.10 2 

BGA-2 9.238 .10 3 8.649 .10 2 

ES 1.749 .10 3 3.190 ·10·\ 

Table 2: Comparative results found by some evolu-tionary 
algorithms. BGA-1 is with EIR (0.15), and BGA-2 with EIR 
(range) 

2 Crossover is a form of recombination used in discrete GAs. 

60 

convenience. The frrst notable point is the inferior perfor
mance oftheSGAandEP compared to the otheralgorithms. 
Eiben and van Kemenade [14] report also sorne results for 
a GA, product of their study on diagonal and n-point 
crossover2 operators. They show these operators to be 
generally superior to traditional 2-parent, 1- or 2-point 
crossover. Although they do not provide numerical results, 
this improvement seems to make the GA vary between 
30,000 and 10,000 on average, occasionally going below 
this mark. Altogether then, the binary GA is not likely to 
go beyond this order of magnitude, unless heavily modied 
or tailored to the problem. 

With respect to the BGAs, both have improved their 
average performance, due to the double number of 
evaluations they have been allowed. Also noteworthy is 
the superior average performance ofEIR (range) over EIR 
(0= 0.15). We believe that, in the long run, the firstmethod 
is likely to widen the gap because of its adaptive nature. 

4.1943e+06 ,----,-___r----.---.---.--,--,--~-___r-__, 
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----...¡..----: ---. ..J----+---..... --+-.. -----+.-.-----1.----+----+---
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Figure 2: Performance curvefor BGA-2 (EIR with range). 
The x-axis shows the number of generations (in multiples of 
ten). The y-axis shows the tness in a log2 scale. Note the 
quasilinear slope and the fact that further progress was still 
being achieved. The error decrease from the initial random 
guess to the final solution is in four orders of magnitude. 

Note that, very roughly, both departing from similar 
average values, doubling the number of function 
evaluations has re ected in an average result for EIR 
(range~ that is twice as good as that ofEIR (0= 0.15). 
However, the best absolute result is very similar for both, 
possibly indicating a limitin whatcan be achieved with the 
allowed resources and the selected ~, 't setting. A plot of 
the run nding the best solution for BGA-2 is shown in 
Figure 2. 

The results reported by Biick for the ES are by far the 
best, both on average and, especially, in the best solution 
found, which is excellent. This can be explained in several 
ways. First, ES [13] is a far more complicated algorithrn 
that takes into account the interactions between variables 
more explicitly by selfoptimizing the amount of mutation 
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necessary. Itis nonetheless very sensitive to its parameters 
so that tuning it is a more dicult task. However, once these 
are correctly set, ES performance is often superior to other 
algorithms. Second, itis interesting to note that the data for 
Back' s experiments were obtained in sim-ilar conditions 
(~= 100, 't = 15 and 100 runs) but resorting to 200,000 
evaluations. The random initialization for the function is 
also a different one, which could well result in an overall 
easier or more complicated landscape. Back also reports 
the great variability found: of the 100 runs, only 44 were 
"success-fuI runs", defined as those reaching anal value 
under 400.0 (compare it with the best result obtained: 
0.319). In our case, for example, the n deviation was 
computed to be 16792.8 for BGA-l, and 6563.7 for 
BGA-2. To see whetherthe BGA would be able to better 
its performance, we carried out a last experiment, a single 
run of BGA-2 with 200,000 evaluations. The result was 
358.379, a value qualifying as successfu!. 

6 CONCLUDING REMARKS 

The quest for general-purpose search mechanisms 
is still an open and very active field. Since the 70's, new 
and powerful heuristic methods have emerged that are 
particularly well suited forfunction optirnization -although 
this was not exactly their original purpose- mainly because 
of their generality, robustness, and conceptual (though 
not necessarily analytical) simplicity. Three of these 
methods are Simulated Annealing (SA), Tabu Search 
(TS) and Evolutionary Algorithms (EA). In the last decade, 
these properties and their remarkable successes have 
boosted their widespread use. The EA family is the 
biggest and subject of continuous improvement. In 
addition, many c1assical and modern problems are being 
reinstantiated and explored under the light of these 
methods. Articial neural networks are a good 
representative of this. In particular, the training process 
of a supervised feed-forward network can be easily cast 
as a function optirnization problem. 

In this paper we have given an impression of how 
different EAs can cope with a well-known task, one for 
which methods of non-linear optirnization are prone to 
end up in local rninima of the function. Among the former, 
the Breeder Genetic Algorithm (BGA) is relatively sim
ple and yields reasonably good solutions in a very lirnited 
time. Note that although it has not been our intention to 
solve the task at hand, and only a small experiment setup 
has been devised for it, the quality of the solutions and the 
promise of better ones show the BGA (and EAs in 
general) as fe asible alternatives for a great variety of 
tasks, ranging from the mentioned neural network training 
problem [15] to aerofoil design in Aerodynamics [16]. 
W ork is in progress toward a thorough application of 
these methods in a principled way. 
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