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Abstract

The aim of this paper is to study a special type of fuzzy relations, the α-
equivalences, as well as to consider the relation that connects these with the
family of ε-partitions of the referential. Some classic equivalences between
set, partitions and fuzzy relations are also studied.
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1 Introduction

Since Zadeh [22] introduced the definition of fuzzy set, numerous authors [6], [16],
[19], ..., have studied the fuzzy relations, having awoken special interest the study
of the fuzzy binary relations.

A very important type of crisp binary relations are the relations of equivalence
R, that is, the subsets of the cartesian product of the crisp set X with himself,
formed by the elements

{(x, y) ∈ X ×X/xRy}

that verify the following properties:
- Reflexive: xRx;∀x ∈ X.
- Symmetrical: xRy ⇐⇒ yRx;∀x, y ∈ X.
- Transitive: If xRy and yRz then xRz;∀x, y, z ∈ X.

Various extensions of these properties [9] have been given in the theory of fuzzy
sets, and consequently there are different extensions of the relations of equivalence
[7], [19], [23], etc.

As in the crisp case, every equivalence relation remains thoroughly characterized
by the partition that generates, and conversely, in the fuzzy case it has also been
attempted to match the binary relations of “equivalence” and the fuzzy partitions
[1], [3], [4], [5], [11], [13], [16], [21], etc. In most cases the resulting partition is
given by Ruspini definition[18], or some modification of it [2].

The present work defines and studies the α-equivalences, a type of fuzzy binary
relations that will generate and characterize in certain sense the ε-partitions [14],
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fuzzy partitions that extend the crisp partitions and collect the idea of “covering”
of the total by “two by two disjoint” subsets , and the fuzziness that exists in the
family of sets that form the partition.

2 Preliminary

2.1 fuzzy ε-partitions

Definition 2.1 Let Ã be a fuzzy set on a referential X . It is said that the family
{Ã1, Ã2, . . . , Ãn} of fuzzy subsets of Ã is a fuzzy ε-partition of Ã, with ε in[0, 1], if
it verifies that:

(Ãi ∩ Ãj)α = ∅,∀i, j = 1, 2, . . . , n, con i 6= j, ∀α > ε

(
n⋃

i=1

Ãi)α = (Ã)α,∀α ∈ (ε, 1− ε)

where (D̃)α is the α-cut of the set D̃ according to the traditional definition of this
concept [8].

Therefore, the previous conditions can be written as:

{x ∈ X/Ãi ∩ Ãj(x) ≥ α} = ∅ ∀i, j = 1, 2, . . . , n, con i 6= j,∀α > ε

{x ∈ X/ ∪n
i=1 Ãi(x) ≥ α} = {x ∈ X/Ã(x) ≥ α} ∀α ∈ (ε, 1− ε)

When we considered the classic operations of union and intersection [12] (that
is maximum and minimum of the membership functions), it is immediate that such
conditions lead the following, more illustrative of the importance of the value of ε
in this definition of fuzzy partition:

(Ãi ∩ Ãj)(x) ≤ ε,∀i, j = 1, 2, . . . , n, i 6= j ∀x ∈ X∪n
i=1Ãi(x) ≥ 1− ε ∀x ∈ X/Ã(x) ≥ 1− ε

∪n
i=1Ãi(x) = Ã(x) ∀x ∈ X/ε < Ã(x) < 1− ε

∪n
i=1Ãi(x) ≤ ε ∀x ∈ X/Ã(x) ≤ ε

Throughout this paper, it will be used the classic union and intersection ope-
rations previously considered, as well as the classic inclusion of fuzzy sets defined
by:

Ã ⊂ B̃ ⇐⇒ µÃ(x) ≤ µB̃(x),∀x ∈ X

In general it will be also considered that ε is a number lower than 0.5, to avoid
problems as those of the definition of Ruspini, in which a set repeated n times can
be a partition of other set totally different from it.

On working with finite referentials, the proximity between two partitions can
be measured by means of the distance of Hamming [10].
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Definition 2.2 [14] Let ΠÃ = {Ã1, Ã2, . . . , Ãn} and ΠB̃ = {B̃1, B̃2, . . . , B̃n} be
two partitions formed by the same number of elements, within a finite referential
X. The distance between ΠÃ and ΠB̃ is defined as:

d(ΠÃ,ΠB̃) = min
σ∈Sn

n∑
i=1

dH(Ãi, B̃σ(i)) = min
σ∈Sn

n∑
i=1

∑
x∈X

|µÃi
(x)− µB̃σ(i)

(x)|

where Sn denotes the set of all permutations of the set {1, 2, . . . , n} and dH the
distance of Hamming between two fuzzy subsets.

It can be proved in a simple way that the application d defined in 2.2 verifies
the three axioms that define a distance, therefore it receives correctly this name.

2.2 Binary fuzzy relations

As it has already been commented in the introduction, the classic properties (refle-
xive, symmetrical and transitive) are studied in the fuzzy case leading to different
extensions. Some of these extensions are formulated below:
A relation binary R̃ ⊂ X ×X is said:
- Reflexive: If xR̃x = 1,∀x ∈ X
- Reflexive of order δ: If xR̃x = δ,∀x ∈ X
- α-Reflexive: If xR̃x ≥ α, ∀x ∈ X
- Strongly reflexive: If xR̃x ≥ maxy{xR̃y},∀x ∈ X

- Absolutely reflexive: If xR̃x > 0,∀x ∈ X
- Symmetrical: xR̃y = yR̃x,∀x, y ∈ X
- Transitive: xR̃z ≥ maxy{min{xR̃y, yR̃z}}
- MP-Transitive: xR̃z ≥ maxy{xR̃y · yR̃z}
- Luk-Transitive: xR̃z ≥ max{xR̃y + yR̃z − 1, 0},∀y ∈ X

- T-Transitive: xR̃z ≥ max{xR̃y + yR̃z − 1, 0},∀y ∈ X

where xR̃y denotes the membership function of R̃ in the point (x, y), that is,

xR̃y ≡ R̃(x, y),∀x, y ∈ X

One of the most common forms of extending the relations of crisp equivalence
is through the similarity relations.

Definition 2.3 Let X be a referential and R̃ a fuzzy subset of X × X. R̃ is a
relation of similarity if R̃ is reflexive, symmetrical and transitive.

Definition 2.4 Let R̃ be a fuzzy relation, the λ-cut of R̃ is defined as the crisp
relation R̃λ given by

R̃λ = {(x, y) ∈ X × Y/xR̃y ≥ λ}

As consequence of the following proposition, the relations of similarity remain
characterized by theirs α-cuts.

Proposition 2.5 Let X be a referential and let R̃ be a fuzzy subset of X ×X. R̃
is a relation of similarity if and only if R̃λ is a crisp equivalence for all λ in [0, 1].
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3 α-Equivalences

Definition 3.1 Let X be a referential, and let R̃ be a fuzzy subset of the cartesian
product of X ×X. R̃ is a fuzzy relation of α-equivalence, with α ∈ [0, 1], if

R̃ is α-reflexive:[21] xR̃x ≥ α, ∀x ∈ X (1)

R̃ is symmetrical: xR̃y = yR̃x, ∀x, y ∈ X (2)

R̃ is α-transitive: If xR̃y ≥ α and yR̃z ≥ α =⇒ xR̃z ≥ α with x, y, z ∈ X (3)

Proposition 3.2 If R̃ is a relation of fuzzy α-equivalence, then its α-cut is a
relation of crisp equivalence.

The proof is immediate from the definition of α-equivalence. However, the
reciprocal with this definition of α-equivalence is not certain, but, it would be
verified modifying the condition 2, by the following

R̃ is α-symmetrical: xR̃y ≥ α ⇐⇒ yR̃x ≥ α,∀x, y ∈ X (4)

Definition 3.3 Let X be a referential, and R̃ a fuzzy subset of the cartesian pro-
duct of X ×X. R̃ is a fuzzy relation of weak α-equivalence, with α ∈ [0, 1], if R̃ is
α-reflexive, α-symmetrical and α-transitive.

In all this paper α-equivalences have been considered instead of weak α-equiva-
lences, but all the development would be made in a totally analogous way for the
latter.

In the following proposition, these two definitions are related to the usually
used for similarity.

Proposition 3.4 Let X be a referential, and R̃ a fuzzy subset of the cartesian
product of X ×X. Then:

R̃ similarity =⇒ R̃ α-equivalence =⇒ R̃ weak α-equivalence

The prove of this proposition is immediate, considering the characterizations of
these relations through their α-cuts and the properties of these.

The concept of “class of equivalence” that is going to be studied below, it will
be very important in the paragraph 5, in which the classes of α-equivalence will be
related to the ε-partitions.

Definition 3.5 Let X be a referential and R̃ a fuzzy relation of α-equivalence on
it. The class of α-equivalence of any element a ∈ X is defined as the fuzzy set [̃a]
defined by

[̃a](x) = max
{b∈X/aR̃b≥α}

(bR̃x)
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4 ε-Equalities

Below we define “almost” equal subsets, partitions and fuzzy relations. These
definitions are necessary for the following paragraph.

Definition 4.1 Let X be the referential and Ã and B̃ fuzzy subsets in X. It is
said that:
1) Ã is ε-equal to B̃, and it will be denoted by Ã ≡ε B̃, if and only if

(Ã)δ = (B̃)δ,∀δ > ε (5)

2) Ã is weak ε-equal to B̃, and it will be denoted by Ã ≡ε B̃, if and only if

(Ã)δ = (B̃)δ,∀δ ∈ (ε, 1− ε) (6)

Therefore it will be said that two fuzzy subsets are ε-equal if they are differen-
tiated only in the points that “almost do not belong” to them. In the case in which
a certain freedom (ε) is allowed in the points that “almost belong” to the sets as
well as in those which “almost do not belong” , then it will be said to exit a weak
ε-equality.

Definition 4.2 Let Ã and B̃ be two fuzzy subsets of the referential X. They are
ε-different (weak ε-different), and is denoted 6≡ε (6≡ε), if they do not verify the
condition 5 (6).

Proposition 4.3 Let X be a referential and let P̃ (X) be the set formed by all the
fuzzy subsets of X. Then both ≡ε and ≡ε are relations of classic equivalence on
P̃ (X), that is, verify the reflexive, symmetrical and transitive properties.

The proof is because the equality between crisp sets is a equivalence relation.
From the equality between sets, it can be defined an equality between partitions.

Definition 4.4 Let X be the referential and let Π and Π
′
be fuzzy partitions in X.

It is said that:
1) Π is ε-content in Π

′
, and it will be denoted by Π ⊆ε Π

′
, if and only if

∀Ãi ∈ P with Ãi 6≡ε ∅,∃B̃j ∈ Π
′
/Ãi ≡ε B̃j

2) Π is weak ε-content in Π
′
, and it will be denoted by Π ⊆ε Π

′
if and only if

∀Ãi ∈ P with Ãi 6≡ε ∅,∃B̃j ∈ Π
′
/Ãi ≡ε B̃j

Definition 4.5 Let X be the referential and let Π and Π
′
be fuzzy partitions of it.

It is said that:
1) Π is ε-equal to Π

′
, and it will be denoted by Π 'ε Π

′
, if and only if

Π ⊆ε Π
′
y Π

′
⊆ε Π

2) Π is weak ε-equal to Π
′
, and it will be denoted by Π 'ε Π

′
, if and only if

Π ⊆ε Π
′
y Π

′
⊆ε Π
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From the proposition 4.3 formulated for sets, a similar result for the partitions
can be established.

Corollary 4.6 The relations 'ε and 'ε defined in 4.5 verify the reflexive, sym-
metrical and transitive properties, therefore they are a true relation of equivalence
in the classic sense, on the set of fuzzy partitions of the referential.

Finally, since a binary relation is a fuzzy set, from definition 4.1 it follows:

Definition 4.7 Let X be the referential and let R̃ and R̃
′
be fuzzy binary relations

on X. It is said that:
1) R̃ is ε-equal to R̃

′
, and it will be denoted by R̃ ≡ε R̃

′
, if and only if

(R̃)δ = (R̃
′
)δ,∀δ > ε

2) R̃ is weak ε-equal to R̃
′
, and it will be denoted by R̃ ≡ε R̃

′
, if and only if

(R̃)δ = (R̃
′
)δ,∀δ ∈ (ε, 1− ε)

that is, that {a, b ∈ X/aR̃b ≥ α} = {a, b ∈ X/aR̃
′
b ≥ α} for any δ > ε and

δ ∈ (ε, 1− ε) respectively.

As it happened with sets and fuzzy partitions:

Corollary 4.8 The relations ≡ε and ≡ε defined in 4.7 are relations of equivalence
in the classic sense, on the set of fuzzy binary relations of the referential.

5 α-Equivalences and ε-Partitions

In the following result the α-equivalences are related with the ε-partitions of refe-
rential.

Theorem 5.1 Let X be a referential, and let {Ã1, Ã2, . . . , Ãn} be a ε-partition of
this set. The fuzzy subset R̃ ⊆ X ×X defined by

xR̃y = max
Ãi

{min{Ãi(x), Ãi(y)}}

is a (1− ε)-equivalence.

Proof Let x, y and z be three elements in X, then:
i) (1− ε)-reflexive: xR̃x = maxÃi

{Ãi(x)} = ∪n
i=1Ãi(x) ≥ 1− ε.

ii) Symmetrical: As min{Ãi(x), Ãi(y)} = min{Ãi(y), Ãi(x)} then xR̃y = yR̃x.
iii) (1 − ε)-transitive: If xR̃y and yR̃z ≥ 1 − ε then ∃Ãi0 and Ãi1 such that
min{Ãi0(x), Ãi0(y)} ≥ 1 − ε and min{Ãi1(y), Ãi1(z)} ≥ 1 − ε =⇒ Ãi0(x), Ãi0(y),
Ãi1(x), Ãi1(z) ≥ 1− ε. But i0 = i1 because if i0 6= i1 then Ãi0 ∩ Ãi1(y) ≥ 1− ε and
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this is not possible. So Ãi0(x), Ãi0(z) ≥ 1− ε =⇒
xR̃z = maxÃi

{min{Ãi(x), Ãi(z)} } ≥ 1− ε.

Since this theorem relates the (1 − ε)-equivalences with the ε-partitions, as it
happened with the partitions and crisp relations of equivalence, it can be wondered
that will happen to the crisp relation that it generates R̃ through its (1 − ε)-cut.
The solution to this question is given in the following proposition:

Proposition 5.2 Let X be a referential finite, and let Π = {Ã1, Ã2, . . . , Ãn} be
a ε-partition of this set. If it is considered the relation of (1 − ε)-equivalence ob-
tained from Π in the previous theorem, and it is obtained the relation from crisp
equivalence R̃1−ε, the crisp partition formed by the classes of equivalence of R̃1−ε

is the crisp partition closest to Π , measuring this proximity through the distance
of Hamming 2.2.

In the proof we have to prove that d(Π,ΠR̃1−ε
) is lower or equal than n|X|ε

and lower or equal than d(Π,Π
′
), being Π

′
any other crisp partition of X.

If an element Ãi0 that take the value ε in all element x of the referential is
added to the fuzzy partition, the new family continues being a ε-partition, but the
resulting relation is more restrictive.

Proposition 5.3 Let X be a referential, and let Π = {Ã1, Ã2, . . . , Ãn} be a ε-
partition of this set that verifies that

∃i0 ∈ {1, 2, . . . , n}/Ãi0(x) = ε,∀x ∈ X (7)

Then the relation of (1− ε)-equivalence defined in 5.1 is furthermore transitive.

When besides the condition of the proposition 5.3 it is verified that
n⋃

i=1

Ãi = X,

then the relation of (1− ε)-equivalence that generates is a similarity.
In this paragraph it has been studied as a ε-partition generates a relation of

(1 − ε)-equivalence. Reciprocally, if we have a α-equivalence relation, a fuzzy
partition can be generated .

Proposition 5.4 Let X be a referential and R̃ a relation of α-equivalence defined
on it, verifying the condition

xR̃y ≥ α ó xR̃y ≤ 1− α,∀x, y ∈ X, α > 0.5 (8)

then the subsets family of X formed by the different classes of α-equivalence is a
(1− α)-partition of X .

Proof
i)

(
∪m

i=1 [̃ai]
)

δ
= (X)δ = X for all δ ∈ (1− α, α).
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An inclusion is evident, so we are going to see the other: let ai be an element
in X =⇒ [̃ai](ai) ≥ α =⇒ ∪m

i=1 [̃ai](ai) ≥ [̃ai](ai) ≥ α.
ii) ([̃ai] ∩ [̃aj ])1−α = ∅ ⇐⇒ [̃ai] ∩ [̃aj ](x) ≤ 1 − α, ∀x ∈ X, we are going to study
this intersection set:

[̃ai]∩ [̃aj ](x) = min{[̃ai](x), [̃aj ](x)} = min{b0R̃x, b1R̃x} with b0R̃ai, b1R̃aj ≥ α.
If [̃ai] ∩ [̃aj ](x) > 1 − α =⇒ b0R̃x, b1R̃x > 1 − α =⇒ b0R̃x, b1R̃x ≥ α, as R̃

is α-transitive and symmetrical =⇒ b0R̃b1 ≥ α. With this, we have that {b ∈
X/bR̃ai ≥ α} = {b ∈ X/bR̃aj ≥ α}, and so, [̃ai](x) = max{b∈X/bR̃ai≥α}(bR̃x) =

max{b∈X/bR̃aj≥α}(bR̃x) = [̃aj ](x) =⇒ [̃ai] = [̃aj ] and this is a contradiction, so

b0R̃x ≤ 1− α or b1R̃x ≤ 1− α =⇒ min{b0R̃x, b1R̃x} = [̃ai] ∩ [̃aj ](x) ≤ 1− α.

As consequence of the theorem 5.1 and the proposition 5.4, together with the
definitions of ε-equal partitions and relations given in the paragraph 4, the following
theorem is obtained.

Theorem 5.5 Let X be a referential, the set P = { set of the ε-partitions of
X} and the set R = { set of the α-equivalences on X that verify the condition 8}.
Under these hypothesis, the application

f : P −→ R

Π −→ R̃Π

where R̃Π is the fuzzy binary relation defined in the theorem 5.1 is inyective.

Proof The first is to prove that f is actually an application and after to prove that
furthermore it is inyective.
• Application: If Π = {Ã1, Ã2, . . . , Ãn} 'ε Π

′
= {B̃1, B̃2, . . . , B̃m} =⇒ f(Π) =

R̃Π ≡ε R̃Π′ = f(Π
′
)?, that is, (R̃Π)δ = (R̃Π′ )δ,∀δ > ε?

Let δ be greater than ε, then if (x, y) ∈ (R̃Π)δ =⇒ xR̃Πy = maxÃi
{min{Ãi(x),

Ãi(y)}} ≥ δ =⇒ ∃io/ maxÃi
{min{Ãi(x), Ãi(y)}} = min{Ãio

(x), Ãio
(y)} ≥ δ > ε,

as (Ãi)δ = (B̃j)δ because Π 'ε Π
′
, then ∃jo/Bjo

(x), Bjo
(y) ≥ δ =⇒ xR̃Π′ y =

maxB̃i
{min{B̃i(x), B̃i(y)}} ≥ min{B̃jo

(x), B̃jo
(y)} ≥ δ =⇒ x, y ∈ (R̃Π′ )δ =⇒

(R̃Π)δ ⊂ (R̃Π′ )δ. The other content is proved symmetrically.
• Inyective: If f(Π) = R̃Π ≡ε R̃Π′ = f(Π

′
) then Π 'ε Π

′
?

Let Ãi ∈ Π be with Ãi 6≡ε ∅ then ∀x ∈ (Ãi)δ with δ > ε, as xR̃Πx =
maxÃk

{Ãk(x)} = Ãi(x) because Π is a ε-partition, so, there are only a subset with
membership function greater than ε in x (because the intersection is “empty”). As
R̃Π ≡ε R̃Π′ =⇒ xR̃Πx = xR̃Π′x = B̃j(x) > ε =⇒ x ∈ (B̃j)δ, so (Ãi)δ ⊂ (B̃j)δ. If
we suppose that (Ãi)δ 6= (B̃j)δ then ∃xo ∈ X/

(a) xo ∈ (Ãi)δ and xo /∈ (B̃j)δ, or
(b) xo /∈ (Ãi)δ and xo ∈ (B̃j)δ.
We are going to prove the case (a), the other is identical:
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xR̃Πxo ≥ min{Ãi(x), Ãi(xo)} ≥ δ > ε but xR̃Π′xo = maxBk
{min{B̃k(x), B̃k(xo)}};

as Bj(x) ≥ δ > ε and Π
′

is ε-partition, then ∀k 6= j, B̃k(x) ≤ ε < δ and as
xo /∈ (B̃j)δ =⇒ B̃j(xo) < δ, then xR̃Π′xo < δ, but (R̃Π)δ = (R̃Π′ )δ, so it is not
possible, and it is necessary that (Ãi)δ = (B̃j)δ. In the same form, if we fix a
subset B̃i ∈ Π

′
with B̃i 6≡ε ∅ =⇒ ∃Ãj ∈ Π/B̃j ≡ε Ãj . So Π = Π

′
because we have

the two contents and f is a inyective application.

Proposition 5.6 If a relation of weak ε-equality is considered in the theorem 5.5
instead of a ε-equality, then the application f is a biyection.

Proof The prove that f is application and inyective is totally analogous to the
previous theorem. We are now to prove that in this case f is also surjective, that
is, ∀R̃ ∈ R,∃Π ∈ P/f(Π) ≡ε R̃?

The family Π = {[̃ai]/ai ∈ X} is a ε-partition as we can see in the proposition
5.4, but f(Π) ≡ε R̃?. If we denote f(Π) = R̃

′
, then we are going to see that

R̃ ≡ε R̃
′
. Let x and y be two elements in X, we have three cases:

i) If xR̃y ≥ 1−ε, then xR̃
′
y = max

[̃ai]
{min{[̃ai](x), [̃ai](y)}} ≥ min{[̃x](x), [̃x](y)} ≥

1− ε, because, as R̃ is a 1− ε-equivalence then:{
[̃x](x) = maxb∈X/bR̃x≥1−ε(bR̃x) ≥ xR̃x ≥ 1− ε;

[̃x](y) = maxb∈X/bR̃x≥1−ε(bR̃y) ≥ xR̃y ≥ 1− ε.

So, if xR̃y ≥ 1− ε =⇒ xR̃
′
y ≥ 1− ε.

To see the other implication, if xR̃
′
y ≥ 1 − ε =⇒ ∃i/ min{[̃ai](x), [̃ai](y)} =

{bR̃x, cR̃y} ≥ 1 − ε with b and c such that bR̃ai, cR̃ai ≥ 1 − ε =⇒ xR̃y ≥ 1 − ε

because R̃ is ε-transitive. So ∀x, y ∈ X, xR̃y ≥ 1− ε ⇐⇒ xR̃
′
y ≥ 1− ε.

ii) If xR̃y ≤ ε, then xR̃
′
y = min{[̃ai](x), [̃ai](y)}. If [̃ai](x) ≥ 1− ε =⇒ [̃ai](y) ≤ ε,

because they are not in the same class of (1−ε)-equivalence. In other case [̃ai](x) ≤
ε because Π is a ε-partition of X; so if xR̃y ≤ ε =⇒ xR̃

′
y ≤ ε.

To see the other implication, we can have a similar way to the previous point.
We have proof than (R̃)α = (R̃

′
)α, for all α ∈ (ε, 1− ε), that is, R̃ and R̃

′
are

weak ε-equals, and so f is a biyection.

6 Concluding remarks

In this work it has been attempted to find the class of fuzzy binary relations that
generate the ε-partitions, that is, the “equivalence” relations as well as to obtain an
identification between “equivalence relations” and “partitions” analogous to that of
crisp case. Evidently, this is only a first approach to the problem, in future studies
we will attempt to analyze the relations that generate partitions of any subset
of the referential. It is also between our purposes to study the resulting relation



210 S.Montes, J. Jiménez & P. Gil

of a refinement, of product partitions, as well as the relation that connects the
“equivalences” generated by independent partitions [15], etc. In inverse sense, we
would also like to study the resulting partition of the composition of two relations,
of the union, of the intersection, etc.
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