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Abstract

The Bayesian approach to statistics has been growing rapidly in popularity as an alternative to
the classical approach in the economic evaluation of health technologies, due to the significant
benefits it affords. One of the most important advantages of Bayesian methods is their incorpora-
tion of prior information. Thus, use is made of a greater amount of information, and so stronger
results are obtained than with frequentist methods. However, since Stevens and O’Hagan (2002)
showed that the elicitation of a prior distribution on the parameters of interest plays a crucial role
in a Bayesian cost-effectiveness analysis, relatively few papers have addressed this issue.
In a cost-effectiveness analysis, the parameters of interest are the mean efficacy and mean cost
of each treatment. The most common prior structure for these two parameters is the bivariate
normal structure. In this paper, we study the use of a more general (and flexible) family of prior
distributions for the parameters. In particular, we assume that the conditional densities of the pa-
rameters are all normal.
The model is validated using data of a real clinical trial. The posterior distributions have been
simulated using Markov Chain Monte Carlo techniques.
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1 Introduction

Spiegelhalter, Feedman and Parmar (1994) argued the use of Bayesian methodology as a

formal basis for applying external evidence in cost-effectiveness analysis (CEA). Since

then, many authors have discussed the advantages of this methodology versus the classi-

cal or frequentist approach (Briggs, 1999; Heitjan, Moskowitz and William, 1999; Fry-
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back, Chinnis and Ulvila, 2001; O’Hagan, Stevens and Montmartin, 2001; Vázquez-

Polo and Negrı́n, 2004; among others).

The incorporation of prior information allows Bayesian methods to access more

information and so to produce stronger inferences. Stevens and O’Hagan (2002) discuss

the advantages of incorporating prior information in cost-effectiveness analysis of

clinical trial data, exploring mechanisms to safeguard scientific rigour in the use of

prior information. Since it has become available, a number of different techniques have

been developed to elicit or extract prior information from experts (O’Hagan, Buck,

Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley and Rakow, 2006). However, few

studies have addressed these techniques in the area of health economics (Fenwick,

Palmer, Claxton, Sculpher, Abrams and Sutton, 2006; Smith and Marshall, 2006; Leal,

Wordsworth, Legood and Blair, 2007). In the present paper we aim to collaborate in

promoting the use of Bayesian analysis by proposing a general and flexible method to

incorporate prior information by means of conditionally specified distributions.

CEA is a form of economic evaluation that examines both the costs and health

outcomes of alternative health technologies or treatments. The most prevalent measures

for the comparison of treatments are the incremental cost-effectiveness ratio (ICER), the

incremental net benefit (INB) and the cost-effectiveness acceptability curve (CEAC).

The ICER is defined by:

ICER =
γ1 −γ0

µ1 −µ0

=
∆γ

∆µ
, (1)

where γ j and µ j are the average cost and effectiveness under treatment j (1, new; and 0,

for the current or control treatment), respectively.

The INB of treatment 1 versus treatment 0 is defined as

INB(Rc) = Rc ·∆µ−∆γ, (2)

for each Rc, which is interpreted by O’Hagan and Stevens (2001) as the cost that

decision-makers are willing to accept in order to increase the effectiveness of the

treatment applied by one unit. Thus, analyzing whether the alternative treatment is more

cost effective than the control treatment is equivalent to determining whether INB(Rc)

is positive.

In practice, it is not a simple matter for the decision-maker to determine a single

Rc, and so a CEAC is constructed. This curve provides a graphical representation of

the probability of the alternative treatment being preferred (Pr(INB(Rc) > 0)) for each

value Rc.

We focus on the normal case. Classical cost-effectiveness analysis and most pu-

blished Bayesian studies assume normality in the distributions of cost and effectiveness

(Willan and O’Brien, 1996; Laska, Meisner and Siegel, 1997; Stinnett and Mullahy,

1998; Tambour, Zethraeus and Johannesson, 1998; Heitjan et al., 1999; Briggs, 1999).



M. Martel, M. A. Negrı́n and F. J. Vázquez-Polo 195

Although efficacy outcome data can be binary and patient cost data are likely to be

right skewed, the central limit theorem guarantees for sufficiently large sample sizes

that the means will be normally distributed. Löthgren and Zethraeus (2000) affirm that

“the normal distribution result is valid whether or not the individual cost and effect

distributions are normal. The more skewed and non-normal the individual distribution is,

the larger sample sizes are needed for the normal distribution approximation to be valid”.

A Bayesian analysis of the normal case was examined by O’Hagan et al. (2001),

who considered the patient level data {xi j : i = 1,2, . . . ,n j; j = 0,1} from a clinical trial,

where xi j = (ei j,ci j) consists of an effectiveness measures ei j and an associated cost ci j.

The index j is used to denote the treatment and n j denotes the sample size for each

treatment j.

We denote by f (xi j|µ j,γ j,Σ j) the parametric distribution generating data xi j from

treatment j. The parameters of this function are the mean cost (γ j), the mean efficacy

(µ j) and the variance-covariance matrix Σ j. Then the likelihood is:

ℓ(x̄|µ0,γ0,Σ0;µ1,γ1,Σ1) =
1

∏
j=0

n j

∏
i=1

f (xi j|µ j,γ j,Σ j). (3)

It is assumed that f (xi j|µ j,γ j,Σ j) is a bivariate normal distribution for each trea-

tment j

f (xi j|α j,Σ j) = (2π|Σ j|)
−1/2

exp

{

−
1

2
(xi j −α j)

T
Σ−1

j (xi j −α j)

}

, (4)

where α j = (µ j,γ j), i.e. the mean effectiveness and cost for treatment j, respectively.

A Bayesian analysis of model (4) requires the specification of a prior distribution

on the parameters. Quantifying the expert’s opinion as a probability distribution is a

difficult task, and the method presented is intended to help the expert perform the task

in a way that is as easy, rigorous and computationally allowable as possible.

A convenient class of prior distributions is a general conditional-conjugate prior.

Specifically, O’Hagan et al. (2001) assume a bivariate normal distribution for α j and an

inverse Wishart prior distribution for the variance matrices Σ j.

Although the bivariate normal prior distribution is general and convenient it does

present some limitations. For example, the correlation between variables is independent

of the values of the variables and it is a unimodal distribution. In this paper, we study

the use of a more general family of prior distributions for the parameters of interest. In

particular, we assume that the conditional density of µ j for a given γ j and the conditional

density of γ j for a given µ j are both normal. This assumption is manifestly different

from one of classical bivariate normality with its familiar elliptical contours. The utility

of conditionally specified priors has been explored in other areas, such as the analysis

of insurance claims (Sarabia and Gómez-Déniz, 2008; Sarabia, Castillo, Gómez-Déniz

and Vázquez-Polo, 2005).
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The paper is organized as follows: Section 2 presents the normal case of cost-

effectiveness analysis with prior distributions based on a conditional specification. In

Section 3 some examples are given to show that the methodology is readily applicable.

We use a practical application with real data from a clinical trial, comparing two

alternative treatments for asymptomatic HIV patients. Markov Chain Monte Carlo

(MCMC) procedures are used to simulate the posterior distribution. Section 4 presents

a discussion of the results obtained and some conclusions are then drawn.

2 Bayesian cost-effectiveness analysis with prior distributions
based on conditional specification

Our basic prior formulation for model (4) assumes that the joint distribution factorizes

as

π(α0,α1,Σ0,Σ1) = π(α0) ·π(α1) ·π(Σ0) ·π(Σ1). (5)

That is, we assume independence between treatments and between the means (α j)

and the variance matrices (Σ j). Inverse Wishart prior distributions are assumed for the

variance matrices Σ0 and Σ1. Specifically, we take Σ j ∼ IW (A j, f j) the prior density of

which is

π(Σ j) ∝ |Σ j|
(− f j+3)/2 exp

{

tr(Σ−1
j A j)/2

}

,

over the space of positive-definite 2×2 matrices. Thus f j is the prior degrees of freedom

parameter and the prior expectation of Σ j is ( f j −3)−1A j, provided f j > 3.

It is reasonable to assume a prior normal distribution of µ j for a given γ j and of γ j

for a given µ j. A bivariate normal distribution was proposed by O’Hagan et al. (2001),

but that is only a particular case with normal conditionals.

Castillo and Galambos (1989) showed the specification of the class of all bivariate

densities with normal conditionals. We seek to obtain all joint densitiesπ(µ,γ) such that

every conditional density of µ given γ is normal with mean δ1(γ) and variance σ2
1(γ)

(which may depend on γ) and every conditional density of γ given µ with mean δ2(µ)

and variance σ2
2(µ) (which may depend on µ).

The above authors found that all the bivariate densities with normal conditionals are

those of the form

π(µ,γ) = exp







(

1,µ,µ2
)





m00 m01 m02

m10 m11 m12

m20 m21 m22









1

γ

γ2











. (6)
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The conditional expectations and variances are:

E[µ|γ] =−
m10 +m11 ·γ+m12 ·γ

2

2(m20 +m21 ·γ+m22 ·γ2)
,

Var[µ|γ] =−
1

2(m20 +m21 ·γ+m22 ·γ2)
,

E[γ|µ] =−
m01 +m11 ·µ+m21 ·µ

2

2(m02 +m12 ·µ+m22 ·µ2)
,

Var[γ|µ] =−
1

2(m02 +m12 ·µ+m22 ·µ2)
.

(7)

The distribution with density of the form (6) is an eight-parameter family of den-

sities. The coefficient m00 is a normalizing constant that is determined by the other

coefficients m and the requirement that the density should integrate to 1. Additionally,

some restrictions on the coefficients m should be considered to ensure a positive value

for the variances. This point is well illustrated by Arnold, Castillo and Sarabia (2001b).

This family of prior densities is very flexible and contains, as particular cases, many

other distributions similar to that proposed in Bayesian literature for cost-effectiveness

analysis. Thus, this family represents a significant extension to the usual priors consid-

ered. Its interest is twofold. Firstly, due to its conditioned-conjugancy property, it is very

easy to simulate MCMC samples from posterior densities using Gibbs sampling. The

practical application of the procedure presented in this paper is in accordance with Win-

kler (2001), as regards ease of use and ready acceptance, bearing in mind that the factors

of expertise and prior knowledge can be incorporated into the computations (Malakoff,

1999). Secondly, this class of prior distributions contains a huge catalogue of highlighted

prior densities (Spiegelhalteret al., 1994 and Spiegelhalter, Myles, Jones and Abrams,

2000a). For instance, if we are willing to accept improper priors, then conditions for the

above parameters (m00 among others) are not required. Sceptical priors about treatment

effects are also easily elicited by making E[µ|γ] equal to zero and allowing a high degree

of spread using the expression of the variances.

Thus, we encounter a great variety of distributions for different values of the m

parameters. Some of these distributions are markedly different from classical bivariate

normal densities. We now show the values of the m parameters for some particular cases.

• Independence: If we assume prior independence between the mean of the effec-

tiveness (µ) and the mean of the costs (γ) for a given treatment, the conditional

distributions do not depend on the other parameter, and the conditional expecta-

tions and variances will be of the form:



198 Eliciting expert opinion for cost-effectiveness analysis: a flexible family of prior distributions

E[µ|γ] = E[µ] =−
m10

2 ·m20

,

Var[µ|γ] = Var[µ] =−
1

2 ·m20

,

E[γ|µ] = E[γ] =−
m01

2 ·m02

,

Var[γ|µ] = Var[γ] =−
1

2 ·m02

.

(8)

Thus, the conditions for independence are that the m’s satisfy the following

conditions:

m11 = m12 = m21 = m22 = 0, m20 < 0, m02 < 0. (9)

• Bivariate normal distribution

Another important case of bivariate distribution with normal conditional is that

of the bivariate normal distribution. The bivariate normal prior distribution in

Bayesian CEA was proposed by O’Hagan et al. (2001) and it is included as a

particular case of the conditionally specified prior.

For the terms µ and γ this can be expressed as

π(µ,γ|δµ,δγ,σµ,σγ,ρ) =
1

2πσµσγ
√

1−ρ2
exp

{

Q

2(1−ρ2)

}

,

where σµ and σγ are the expectations of the mean effectiveness and mean

cost respectively, σµ and σγ are the standard deviation, ρ is the Spearman rho

correlation coefficient, and Q is the quadratic expression

Q =
(µ−δµ)

2

σ2
µ

−
2ρ(µ−δµ)(γ−δγ)

σµσγ
+

(γ−δγ)
2

σ2
γ

.

The conditional distributions are normal with mean and variance

E(µ|γ) = δµ+
ρσµ

σγ
(γ−δγ),

Var(µ|γ) = σ2
µ(1−ρ

2),

E(γ|µ) = δγ+
ρσγ

σµ
(µ−δµ),

Var(γ|µ) = σ2
γ(1−ρ

2).

(10)
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The prior information can be elicited from expressions (7) and (10). Thus, the

condition for the bivariate normal distribution is that the m’s satisfy the following

conditions (Arnold et al., 2001a,b).

m12 = m21 = m22 = 0,m20 < 0,m02 < 0 and m2
11 < 4m02m20. (11)

Of course the use of conditional normal distributions is not the only way to elicit a

bivariate normal distribution. In this sense Sarmanov (1966) and Ting Lee (1996)

propose a family of bivariate distributions that can be elicited taking into account

the marginal distributions.

• A more general case:

The improvement obtained from the use of conditionally specified priors is the

wide range of prior information that may be elicited. For example, there are

some combinations of m’s that have non-normal marginal densities. In particular,

bimodal or even trimodal densities may be encountered. These distributions must

satisfy the conditions for integrability of (6) (Gelman and Meng, 1991, Arnold et

al., 2000, Arnold, Castillo and Sarabia, 2001a).

m22 < 0, 4m22m02 > m2
12, 4m22m20 > m2

21. (12)

However, there is a price to be paid for the flexibility of our prior structure, namely

that there are eight hyperparameters to assess. Given the difficulties of eliciting a

high-dimensional joint probability distribution, we concentrate on eliciting some

important summaries of the distribution, such as means and variances. We recom-

mend the method for matching conditional moments proposed by Arnold, Castillo

and Sarabia (1998). For a conditionally specified prior such as (6-7), we can try to

match conditional moments, whose approximate values will be supplied by expert

opinion. In our analysis, at least eight conditional moments are needed to deter-

mine all the hyperparameters. However, this might not be enough to determine the

prior information and so it is preferable for the expert to supply more than eight

conditional moments. We recognize that it is unlikely that such prior values will

be consistent and what we propose is to select a prior of the form (6) that will have

conditional moments that are minimally disparate from those provided a priori by

the experts.

Let us assume that prior assessed values for the conditional means and variances

of the effectiveness and cost are obtained for several different given values of the

cost and effectiveness, respectively.
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E[µ|γp1
] = ep1

∀p1 = 1,2, . . . ,P1.

Var[µ|γp2
] = var(e)p2

∀p2 = 1,2, . . . ,P2.

E[γ|µp3
] = cp3

∀p3 = 1,2, . . . ,P3.

Var[γ|µp4
] = var(c)p4

∀p4 = 1,2, . . . ,P4.

(13)

where P1 +P2 +P3 +P4 ≥ 8.

A unique solution for this system of equations is unlikely to be possible for any choice

of the eight hyperparameters. A possible solution is to allow any deviance between the

prior conditional moment and the knowledge of the expert. We define as the objective

function the sum of the squared deviances (Arnold, Castillo and Sarabia, 1999).

The hyperparameters are obtained by minimizing the objective function subject

to constraints (12). A LINGOr code containing the procedure used in this article

is available from the authors upon request. The prior distribution obtained must be

checked by the experts so as not to obtain local minima in the optimization.

The choice of subjective priors is thus a difficult one, and requires the expert to

take into account both psychological and behavioural aspects in order to obtain

a coherent prior distribution (Baranski and Petrusic, 1994; Yates, 1990; Yaniv,

Yates and Smith, 1991; among others). On the one hand, psychological studies

have shown how well subjects make estimates and how different techniques of

elicitation may produce different responses (Winkler, 1967; Staël von Holstein,

1970. An excellent review of this question was performed by Hogarth, 1975).

Furthermore, many pioneering empirical studies (Kahneman and Tversky, 1972;

Chesley, 1978; among others) have shown that training and maturity help an expert

quantify prior probabilities.

Systematic methods of elicitation are presented in Kadane, Dickey, Winkler, Smith

and Peters (1980), Garthwaite, Kadane and O’Hagan (2005) and a recent review

of the question was provided by O’Hagan et al. (2006). We present a plausible

alternative procedure from which it may be realistic to expect the elicitation of the

(conditioned) prior mean and variance or other quantities; the specification based

conditioned distribution theory may then be used to obtain a full specification of

the prior distribution. Inspired by Berger (1994), we propose to use a class of

plausible priors to ensure that as many reasonable priors as possible are included.

Such a class does not require a strong mathematical training to be elicited and the

priors are computationally manageable.

One practical situation where this more general prior distribution can be useful

is that of the bimodal case. A bimodal distribution (or in general multimodal

distribution) typically indicates that the distribution is in fact the sum of two

or more different distributions, each with a single notable peak. Suppose that

the treatment involves some risk, and there is a probability that complications
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may appear. In that case, the effectiveness could be lower and the costs higher

(McIntosh, Ramsey, Berry and Urban, 2001; Viviane and Barkun, 2008). If it is

possible to distinguish and to record which patients suffer complications during

the study, it would be plausible to propose as the likelihood of the data a mixture

of bivariate normal distributions where the weight of each distribution is the

probability of complications (Negrı́n and Vázquez-Polo, 2006). However it is not

often easy to define a complication. Two possible solutions would be either to

fix an arbitrary threshold cost (or effectiveness) to define the complication, or to

approximate the probability of a complication using finite-mixture distributions

(Diebolt and Robert, 1994). Conditionally specified distribution can be useful

when the presence of complications is not clearly delimited. In this case the

prior information can be modelled by a bimodal bivariate distribution, using

conditionally specified prior distributions.

3 An example with real data

The data used in this section were obtained from a real clinical trial developed in

1999 in which a comparison was made between various highly active antiretroviral

treatment protocols applied to asymptomatic HIV patients (Pinto, López, Badı́a, Corna

and Benavides, 2000).

We only considered the direct costs (of drugs, medical visits and diagnostic tests),

and as the effectiveness we considered the improvement in the quality of life, measured

using the visual analogue scale (VAS) of the EQ-5D instrument (Brooks, 1996). In par-

ticular, we used the variation in the VAS by the end of the study. Cost and effectiveness

values were recorded six months after the beginning of the study.

In this exercise, two three-way treatment protocols were compared. The first of

these (d4T + 3TC + IND) combined the drugs estavudine (d4T), lamivudine (3TC) and

indinavir (IND); the second treatment protocol (d4T + ddl + IND) combined estavudine

(d4T), didanosine (ddl) and indinavir (IND).

Table 1 summarizes the statistical data. The d4T + ddl + IND treatment was more

costly than the d4T + 3TC + IND treatment, by an average of 164.82 euros. The d4T +

ddl + IND treatment was on average more effective, with an improvement in the patients’

quality of life of 4.94 units, while those who were given the d4T + 3TC + IND treatment

only experienced a VAS improvement of 4.56 units.

Table 1: Statistical summary of costs (in thousands of euros) and effectiveness (change in VAS).

d4T + 3TC + IND d4T + ddl + IND

Statistical measure Cost Change in VAS Cost Change in VAS

Mean 7.142 4.56 7.307 4.94
s.d. 0.001573 15.17 0.001720 13.98

n n0 = 268 n1 = 93
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For a fully Bayesian analysis, priors for the parameters of interest must be specified.

Prior information was obtained from three experts who participated in the study and

reflects the reasoning behind the design of the trial. The elicitation method was imple-

mented in an interactive computer program. The computer displays assessment ques-

tions and the expert types in answers that reflect his opinion. At any point in the elici-

tation process, the expert can review the coherence of his probability judgments. Prior

distributions derived from experts’ consensus are displayed graphically to be reviewed.

Our Bayesian experiment requires the elicitation of normal distributions. A univari-

ate normal distribution is characterized by two parameters, the mean and the variance.

The mean (which coincides with the median) and the first and third quartile were re-

quested of the experts in an elicitation process to obtain the prior mean and variance

of the parameters of interest. Kadane and Wolfson (1998) suggest that the expert is

only comfortable providing the mean and quartiles. Normal distributions were fitted to

similar fitting procedures using percentile judgements in Cooke and Slijkhuis (2003),

Denham and Mengersen (2007) and Kennedy, Anderson, O’Hagan, Lomas, Woodward,

Gosling and Heinemeyer (2008).

• Independence

The first analysis shows the independence case. For the purpose of this analysis,

we took the design of the study to imply prior expectations for the parameters of

interest. The experts’ expectations show an average of 4.5 units of effectiveness

for the control treatment (d4T + 3TC + IND), with a prior variance of 2.25.

For the same treatment, the design anticipates an average cost of 5000 euros,

with a variance of 4. The value of the m parameters is calculated directly, in the

knowledge of the prior mean and variance of effectiveness and cost. For this prior

information, the values are:

m01 = 1.25,m02 =−0.125,m10 = 2,m11 = 0,

m12 = 0,m20 =−0.2222,m21 = 0,m22 = 0.

The elicitation process is very similar for the new treatment (d4T + ddl + IND). In

this case, the experts considered this treatment to be less effective, with an average

of 4 units of effectiveness and a prior variance of 2.5. They also expected it to be

more expensive, with a prior mean cost of 6000 euros, and a variance of 6.25. The

values of the m parameters for this treatment are

m01 = 0.96,m02 =−0.08,m10 = 1.6,m11 = 0,

m12 = 0,m20 =−0.2,m21 = 0,m22 = 0.

We assume a diffuse prior distribution for the variance-covariance matrix Σi. Under

the assumption of noninformative priors, we set A0 = A1 = diag(1,1), f0 = f1 = 2,
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where diag(ai) is the n× n diagonal matrix with ai elements. This assumption is

repeated in the following analysis.

Figure 1 shows the contour plot of the joint distribution of the prior information

of effectiveness and cost for each treatment, and the contour plot of the joint

distribution of the prior incremental effectiveness and cost between treatments.

The posterior distribution was simulated using WinBUGS (Spiegelhalter, Thomas

and Best, 2000b). A total of 100000 iterations were carried out (after a burn-

in period of 50000 simulations). Convergence was evaluated for all parameters

using several tests provided within the WinBUGS Convergence Diagnostics and

Output Analysis software (CODA). The constant m00 is not required to ensure

convergence.

Table 2 shows the posterior analysis for the independence case. The posterior

incremental effectiveness is estimated at -0.02928 units with a standard deviation

of 1.328. The incremental cost is estimated at 0.162 units.

Figure 1: Contour plots of the joint prior distribution of µ and γ.
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Table 2: Posterior moments: mean and standard deviation.

Independence Bivariate-Normal distribution Bimodal case

µ0 4.540 (0.7911) 4.45 (0.7862) 3.359 (0.777)

γ0 7.137 (0.09542) 7.137 (0.0952) 7.128 (0.09661)

µ1 4.507 (1.069) 4.422 (1.06) 2.152 (0.8683)

γ1 7.302 (0.1784) 7.301 (0.1784) 7.293 (0.1824)

∆µ -0.02956 (1.328) -0.02397 (1.318) -1.207 (1.165)

∆γ 0.1628 (0.2028) 0.1613 (0.2023) 0.1643 (0.2063)

Figure 2: Contour plots of the joint posterior distribution of µ and γ

and the cost-effectiveness acceptability curves.
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Figure 2 shows the cost-effectiveness plane and the cost-effectiveness acceptabil-

ity curve. It is apparent that the treatment (d4T + ddl + IND) will never be prefer-

able to the treatment (d4T + 3TC + IND), as the probability of a positive INB is

always below 50%.

• Bivariate normal distribution:

The previous analysis was repeated under the assumption of a correlation between

cost and effectiveness for each treatment. We asked the experts to assess the

correlation directly by specifying a value between −1 and 1. Although many

researchers have suggested that the direct assessment of moments is a poor

method of quantifying opinion, Clemen, Fischer and Winkler (2000) found that

this method performed best for eliciting a correlation. The experts considered a

prior correlation of ρ = −0.2. By incorporating this information into the prior

information described in the previous subsection, we calculated the following prior

parameters:

m01 = 1.6146,m02 =−0.1302,m10 = 2.4306,m11 =−0.0694,

m12 = 0,m20 =−0.2315,m21 = 0,m22 = 0,

for the (d4T + 3TC + IND) treatment, and

m01 = 1.2108,m02 =−0.0833,m10 = 1.9829,m11 =−0.0527,

m12 = 0,m20 =−0.2083,m21 = 0,m22 = 0,

for the (d4T + ddl + IND) treatment.

Figure 1 includes the joint distribution of the prior information on the effectiveness

and cost for each treatment, and the joint distribution of the prior incremental

effectiveness and cost between treatments. It also shows the negative correlation

between effectiveness and cost. Figure 2 shows the cost-effectiveness plane and

the cost-effectiveness acceptability curve. The results are similar to those reached

in the independence case. The treatment (d4T + 3TC + IND) is always preferred

for any willingness to pay.

• A more general case:

This example shows a prior bimodal density for the effectiveness and cost of each

treatment. The experts agreed that effectiveness and cost depend on the presence

of complications during the treatment, mainly due to the existence of concomitant

illnesses. In this paper, the dependence between effectiveness and cost is specified

by a conditional probability among the elicitation variables of interest. We asked

the experts for the conditional median and first and third quartiles to elicit the mean

and the variance of the normal distributions.
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If there were no complications during the study, the mean effectiveness of the

(d4T + 3TC + IND) treatment would be close to 8 units, and the mean cost would

be about 2000 euros. The mean effectiveness decreases to 1, and the mean cost

increases to 8000 euros with the presence of complications.

The presence of complications has more costly consequences for the (d4T +

ddl + 3TC) treatment. The mean cost increases to 10000 euros and the mean

effectiveness is reduced to 0. Under favourable conditions, the mean effectiveness

is about 8 units and the mean cost is about 3000 euros.

This prior information was elicited through a conditionally specified prior distri-

bution, compiling information about the conditional moments. Descriptions of the

conditions were given to the experts in written form. An example of a verbal state-

ment of a conditional event (Garthwaite and Al-Awadhi, 2001) is

– Suppose that a large number of patients are examined and their average cost

is 2000 euros. What is your median estimate of their effectiveness?

– Consider the situation in which we know that your median value is true. In

the light of this, assess your quartiles for effectiveness.

Table 3 shows the conditional moments employed in the elicitation process.

Table 3: Prior conditional moments.

Moment Condition (d4T+3TC+IND) (d4T+ddl+IND)

E(µ|γ) γ= 2 8 8

γ= 5 4 3.5

γ= 8 2 0

Var(µ|γ) γ= 2 2.5 2.5

γ= 5 2.25 2

γ= 8 1.75 1.5

E(γ|µ) µ= 0 8 10

µ= 4 5 6

µ= 8 2 3

Var(γ|µ) µ= 0 6 4.5

µ= 4 4.5 7.5

µ= 8 2.5 7

By using this prior information we can calculate the values of the hyperparameters,

applying them to the optimization problem explained in the previous section:

m01 = 9.3931,m02 =−0.6198,m10 = 8.1442,m11 =−1.8114,

m12 = 0.1012,m20 =−0.5241,m21 = 0.1412,m22 =−0.0147



M. Martel, M. A. Negrı́n and F. J. Vázquez-Polo 207

for the (d4T + 3TC + IND) treatment, and

m01 = 7.5074,m02 =−0.4014,m10 = 67.0746,m11 =−1.0390,

m12 = 0.0231,m20 =−0.4792,m21 = 0.1209,m22 =−0.0165

for the (d4T + ddl + IND) treatment.

Figure 1 shows the joint distribution of the prior information on the effective-

ness and cost of each treatment, together with the joint distribution of the prior

incremental effectiveness and cost between treatments. There was found to be a

bimodal joint distribution for cost and effectiveness. This joint distribution, and

the marginal distributions of effectiveness and cost were shown to the experts to

assess the adequacy of the elicitation.

It is important to note that the mean of the marginal distributions of effectiveness

and cost for both treatments coincides with the prior mean elicited in the “inde-

pendent” section. However, this more general model opens up a wide range of

possibilities for incorporating different prior beliefs far removed from those of the

conventional bivariate normal distribution.

Figure 2 shows the measures used to take decisions. The analysis shows a pref-

erence for the treatment (d4T + 3TC + IND) for all the scenarios. In fact, the

CEAC is always lower than the critical value 50%. It is important to point out that,

although we have considered similar prior means of effectiveness and costs, the

uncertainty about the right decision is different for the independence scenario, the

bivariate normal distribution and the bimodal prior distribution. If we considered

a willingness to pay of 5 euros, the probability of preferring the (d4T + 3TC +

IND) for the first two scenarios is only 52%. This probability increases to 85% for

the more general case. This is due to the fact that the latter model includes in the

analysis the prior information that any complication arising during the treatment

would have more important consequences with the (d4T + ddl + 3TC) treatment

than with the control treatment.

4 Conclusions and discussion

The Bayesian approach allows the incorporation of prior information. In a fully Bayesian

analysis, the procedures used to elicit expert opinion are an active research issue. This

paper studies the use of a general family of prior distributions for the mean of the ef-

fectiveness and cost. In particular, we assume that the conditional density of the mean

effectiveness for a given mean cost and the conditional density of the mean cost for a

given mean effectiveness are both normal.
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The improvement gained over the use of conditionally specified priors is the wide

range of prior information that may be elicited. Prior information from more than one

source, or different structures of effectiveness and costs depending on whether com-

plications occur, are some cases whereby a conventional bivariate prior distribution is

not enough to specify the prior information. Conventional cases, such as the indepen-

dence case and bivariate prior information, are included as particular cases of this more

general analysis. The posterior distribution is easily simulated using MCMC techniques

(Gelman, Carlin, Stern and Rubin, 1995; Gilks, Richardson and Spiegelhalter, 1996;

Gamerman and Lopes, 2006).

The practical application shows the sensitivity of the results to the prior distribution.

The more general case, in which experts provide a bimodal prior distribution for mean

effectiveness and mean cost, the probability of preference for the conventional treatment

(d4T + 3TC + IND) varies from 85% to 89% in a willingness to pay range of Rc ∈ (0,5).

For the more conventional prior structure, bivariate or independent normal distributions,

this probability varies from 65% to 52% for the same range of Rc.

However, this methodology also present some disadvantages. Psychological research

has shown that conditional assessments can be affected by biases such as conservatism

(Edwards and Phillips, 1964) and, intuitively, making assessments conditionally on hy-

pothetical data is a more difficult task than making unconditional assessments. Besides,

the large number of parameters present in high-dimensional conditionally specified pri-

ors is the source of their flexibility but, in practice, poses elicitation problems. In this

context, the sensitivity analysis may play a crucial role (Stevens and O’Hagan, 2002).

In our opinion, conditionally specified priors are not a panacea but certainly, for many

classical data analysis situations, they offer a manageable and more flexible alternative

to the usual, rather restrictive, priors.
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Clı́nica, 114, 62-67.

Saltelli, A., Chan, K. and Scott, E. M. (2000). Sensitivity Analysis. Wiley, Chichester.
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