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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Key performance indicators (KPIs) are used to monitor and improve manufacturing performance. A plethora of manufacturing KPIs are currently 
in use, with others continually being developed to meet organizational needs. However, obtaining the optimum KPI values at different 
organizational levels is challenging due to complex interactions between manufacturing decisions, variables, and desired targets. A Bayesian 
network is developed to characterize the interrelationships between manufacturing decisions, variables, and selected KPIs. For an additive 
manufacturing case, it is shown that the approach enables appropriate value estimation for decisions and variables for achieving desired KPI 
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1. Introduction 

Manufacturing exists as a cornerstone of modern economic 
systems. Throughout the history of industrialization, society 
has progressed towards more efficient resource utilization with 
the help of technological advancements. Manufacturing 
enterprises, as they exist today, require transparent and 
integrated departments, such as sales, marketing, design, 
manufacturing, and quality control, which communicate from 
idea conceptualization to final product realization. Such 
integrated product development processes increase the number 
of stakeholders associated with each new product and, in turn, 
increase the number of decisions made across the production 
enterprise. Decisions on design constraints, choice of raw 
materials, choice of manufacturing processes, and required 
manufacturing process parameters are challenging to make 

and, at times, can be counterintuitive due to unforeseen 
tradeoffs. Thus, for efficient operation of a manufacturing 
enterprise, production decision (type of product, type of 
manufacturing process, manufacturing location and material 
supplier location, etc.), design decision (part dimensions and 
shape complexity), and manufacturing decision variables 
(process parameters) need to be identified, modeled, and 
compared against key performance indicators (KPIs) and 
manufacturing targets, such as production cost. 

Manufacturing industry and academia have worked towards 
developing different KPIs to measure and monitor the success 
of an enterprise based on objectives of performance [1]. KPIs 
have been identified and developed for measuring performance 
in various domains, e.g., economic, environmental, social, 
product design, production, quality, and labour [2]–[4]. To 
efficiently measure, record, and monitor KPIs, decision makers 
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developing different KPIs to measure and monitor the success 
of an enterprise based on objectives of performance [1]. KPIs 
have been identified and developed for measuring performance 
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must understand how individual stakeholder actions affect the 
various KPIs. However, the number of decisions, variables, and 
their interactions within an enterprise make it difficult to 
simultaneously observe and control changes in KPIs. Hence, 
mapping the interrelationships between KPIs, manufacturing 
decisions, manufacturing variables, and manufacturing targets 
is required to optimize KPI values and improve overall 
manufacturing performance. Towards that goal, a Bayesian 
network (BN) based monitoring strategy is proposed, which is 
well-suited to characterizing the complex interrelationships 
between manufacturing decisions, product design variables, 
manufacturing parameters, KPIs, and manufacturing targets 
(here, we choose production cost as the target) [5], [6].  

A process-based cost model is used in this study [7]. The 
cost model is translated into a BN to estimate the most 
favourable manufacturing decisions, manufacturing variables, 
and process parameters for the chosen process for achieving 
specific KPI values, including cost targets. The approach is 
then used to estimate manufacturing variables (e.g., annual 
production ratio, product build time, and material use 
efficiency) to optimize specific KPI values. The BN strategy is 
demonstrated for production of a shell and a tailpipe for a 
turbine assembly [8], using wire and arc additive 
manufacturing (WAAM) and electron beam melting (EBM). 

The manuscript is organized into several sections. Section 2 
provides an overview of Bayesian networks. Section 3 
describes the application of the BN methodology for the 
additive manufacturing case study. Section 4 discusses the 
results from the developed BN for the case study. Section 5 
presents the conclusions of the work. Section 6 discusses 
limitations of the current model and future development efforts. 

2. Bayesian Networks 

Bayes’ theorem describes the probability of occurrence of 
an event based on the prior knowledge of conditions that might 
have some relation to the event [9]. A BN uses this Bayesian 
inference to assign and update probabilities for a hypothesis as 
it is exposed to more evidence or information. A BN is often 
used as an inference tool, which is capable of using available 
information from a subset of variables in a system, to predict 
the behaviour of other parts of the same system [9]. In recent 
times, BNs have been employed in various disciplines such as 
engineering, natural sciences, medicine, sports, and economics, 
largely due to their advantages, as explained by Heckerman 
[10]: 1) ability to handle incomplete datasets by encoding 
statistical dependencies between the variables, 2) ability to 
learn causal relationships between the variables within a 
system to perform interventions and investigate predicted 
results, and 3) ability to model domain knowledge and data 
simultaneously, making it a sophisticated package for data 
analysis. 

A BN uses Directed Acyclic Graphs (DAGs) to represent 
the dependencies within a system (comprising all the variables 
and decisions). Each manufacturing variable or decision is 
represented as a node in the BN. The dependency between 
variables or decisions are represented by arcs (unidirectional 
arrows) connecting the respective nodes. Parent nodes feed 
dependencies into the dependent child nodes, forming a 

hierarchy of decisions. Based on the dependencies between 
different variables, their joint probability distribution can be 
factorized into a set of conditional and marginal probability 
tables. The network uses these probability tables at each node 
to make inferences during simulations [11].  

The causal relationships between nodes in a BN can be 
created using empirical data and machine-learning techniques. 
Alternately, knowing the interactions between variables from 
expert knowledge or literature, this information can be fed to 
the network in the form of connections (arcs) between nodes 
and the probability tables. In this research, cost models for 
products produced using additive manufacturing are translated 
into a causal graph using Dimensional Analysis Conceptual 
Modeling Framework (DACM) [12]. The resultant causal 
graph is used as a DAG for implementing the BN to provide 
interaction capabilities. The emphasis given to cause-effect 
relationships via the use of a causal graph provides an intuitive 
approach to explicitly evaluate the uncertainties in potential 
decisions and their outcomes with the use of probability tables. 
The rationale for implementing cost models in a BN is to 
leverage its ability of characterizing the impact of intrinsic and 
extrinsic factors on the different cost categories. Factors such 
as market forecasts, supply chain uncertainties, and market 
fluctuations can be modeled into the BN as extrinsic factors 
under certain boundary conditions. This approach will reduce 
the effective person-hours and effort required to estimate 
production costs for possible scenarios. 

The different nodes of the BN are connected and their 
interactions are modeled using mathematical equations and 
conditional statements. Several cost modeling strategies, such 
as activity-based costing, product-based costing, process-based 
costing, bottom up costing, and top-down costing, have been 
developed for characterizing production cost [5], [13]–[15]. 
For the current case, a bottom-up, process-based costing 
method is used to evaluate the two manufacturing choices 
(WAAM and EBM) [7]. The methodology for translating 
deterministic cost models into a BN is explained in Section 3 
using the additive manufacturing case, but the approach also 
applies for other processes. 

3. Methodology and Case Study 

The methodology developed herein facilitates modelling the 
manufacturing performance metrics for a product during early 
design by using a BN.  The model herein characterizes 
manufacturing decisions, design and manufacturing variables, 
and KPIs into quantifiable production cost metrics for additive 
manufacturing processes. Production cost is modelled using six 
cost components: facility cost, capital cost, utilities costs, raw 
material cost, labour cost, and maintenance cost. Consumables 
cost is not considered in this study. Raw material transportation 
cost is added to examine the influence of raw material supplier 
location on production cost. The six cost components are 
dependent upon factors such as manufacturing location, type of 
manufacturing process, raw materials used, source of raw 
materials, and transportation modes, to name a few. 

The first step in implementing a BN is to develop a holistic 
system model in which design and manufacturing variables, 
constraints, and decisions are defined. As noted above, the case 
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study considers the manufacture of a shell and tailpipe for a 
turbine assembly using WAAM and EBM. The functionality of 
the two additive manufacturing technologies have been 
discussed in prior studies [16]. WAAM uses an electric arc as 
the heat source and wire as the feedstock. The equipment 
considered in this study is a collaborative setup consisting of a 
six-axis ABB robot arm for the welding torch and Fronius 
welding equipment based on cold metal transfer (CMT) 
technology. In comparison, EBM is a powder bed fusion 
process, wherein an electron beam is used as the heat source 
and metal powder is used as feedstock. The electron beam 
scans over the powder following a pre-defined toolpath for 
each layer, heating it to a temperature at which the powder 
fuses based on tool path and layer profile information.  

The geometries of the shell and tailpipe are predefined. Six 
KPIs are used to evaluate the performance of the system by 
considering social performance (labour productivity), 
environmental performance (energy intensity and percentage 
of recycled materials in manufacturing), production 
performance (order-to-delivery lead-time and setup rate), and 
production quality (scrap ratio) metrics. The different decisions 
for the system, KPIs, and key manufacturing variables and their 
values are reported in Table 1. The defined system model and 
cost models are translated into a DAG (Fig. 1) using DACM, 
and the BN is implemented using BayesiaLab 8 modelling 
software [17]. The network represents all variables, decisions, 
and targets as nodes. The decision nodes (green) are connected 
to manufacturing variables with arrows, which represent the 
interactions between each decision and the connected variable. 
The KPIs (blue) and cost categories (red) represent target 
nodes. Each manufacturing variable node’s interaction with 
decisions and targets are modelled using system constraints and 
the deterministic cost models.  

The probability tables are obtained using a sampling 
technique similar to the Monte Carlo method. The governing 
equations obtained through DACM are used to propagate 
several samples from the independent variable nodes (parent 
nodes) to the dependent variable nodes (child nodes). Sampling 
starts with defining the domain (value range) of the child nodes 
based on the domain of the parent nodes and the governing 
equations that determine the relationship between the parent 
and child nodes. The domains of the parent nodes and child 
nodes are then divided into multiple states. The user has the 
freedom to set multiple states and the range of each state can 
be normalized or set freely. The granularity of the results 
depends on the number of states and the ranges within these 
states. Next, a number of random sample values from each 
defined state of a parent node are obtained and the resultant 
value for each child node are calculated using the governing 
equations. A counting method is then used to count the number 
of samples that lie within each state of the child node. This 
count is used to calculate the conditional probability that a 
sample from a specific state of the parent node will result in the 
value of the child node being in a specific state.  For example, 
we take 1000 samples from the first defined state of the parent 
node. Then, the corresponding values of the child node are 
calculated based on the sample values from the parent node and 
the governing equations. 

 
Fig. 1. Directed acyclic graphs (DAGs) with causal relationships between 
A) manufacturing decisions (green) and KPIs (blue) and B) manufacturing 
decisions (green) and cost targets (red). 

Now, if 800 calculated values for the child node lie within 
the range of the first state of the child node, then the probability 
that the calculated value for a child node will be in the first state 
for a sample taken from the first state of the parent node is 80%. 
Using this method, conditional probability tables are computed 
for all the nodes in the network.  

The final computed network allows the user to compare the 
impacts of different decisions on KPI values and production 
cost. For instance, selection of different production processes 
will result in use of different manufacturing equipment. This 
will in turn affect the facility cost, capital cost, maintenance 
cost, utilities costs, labour cost, production performance, and 
environmental performance of the system. Similarly, each of 
the other decisions is linked to several or all cost and 
performance metrics. Hence, it is important to measure, record, 
and visualize the impact of these decisions on cost and other 
performance metrics to make better choices. Based on the level 
of accuracy and granularity that is required for the BN, the 
production cost targets can be represented as a range or as 
precise cost estimates.  

The usability of the developed method is demonstrated for 
estimating production cost and the above-mentioned KPIs for 
different manufacturing decisions. Two scenarios are chosen to 
evaluate BN performance and estimate target values. The 
results are presented and discussed in Section 4. 

A)

B)



	 Suraj Panicker  et al. / Procedia CIRP 81 (2019) 500–505� 503
4 Suraj Panicker et al. / Procedia CIRP 00 (2019) 000–000 

4. Results and Discussion 

The developed BN is evaluated under two scenarios to 
understand how the decisions made (in green), the key 
performance indicators (in blue), and cost categories (in red) 
interact with each other. Scenario 1 defines the product type 
and type of manufacturing process; its impact on the cost and 
the performance indicators are observed by simulating the 
network. In the Scenario 2, the user is allowed to set target cost 
ranges for total production cost and labour cost; fix the range 
for one manufacturing variable, build time; and fix one KPI, 
order-to-delivery lead-time. The model responds to Scenario 2 
by providing the user with the necessary decisions that should 
be made in order to attain the desired targets. In both the 
scenarios, with each decision made, the system computes the 
joint probability for the whole network based on the likelihood 
of occurrence of that particular choice. On the condition that 
evidence is introduced in any of the nodes, the system will then 
compute the posterior probabilities for all nodes within the 
network. The extent to which the nodes are affected by changes 
made to corresponding nodes depends upon the relationship 
between the nodes. 

In the BN, prior to manually making any decisions for the 
decision nodes, the system autonomously presents an initial 
probability for choices of the decisions and variable nodes. 
This initial probability is the result of the probability 
distributions of the nodes, which propagate through the 
network. It is dependent on the interactions between the 
different nodes, the joint probability of the network, and the 
conditional probability table within each node.  

Table 1. Bayesian model decisions, KPIs, and variable descriptions. 

Decisions  Choices 
Product Shell and Tailpipe 
Manufacturing process WAAM and EBM 
Raw material Titanium and Aluminium 
Manufacturing location USA and China 
Raw material supplier 
location 

USA, China, and India 

Transport mode Rail, Road, and Sea  
KPI Description 
Scrap ratio  Ratio between scrap quantity and processed 

product quantity 
Setup rate Ratio between actual unit setup time and 

actual unit processing time 
Recycled material use Percentage of materials used that are 

recycled input materials 
Energy intensity  Ratio of electricity generation and 

transmission losses (based on locational 
electricity mix) to the total direct energy 
required to manufacture the product [7] 

Order-to-delivery lead 
time  

Latency between the initiation and 
execution of process 

Labour productivity Ratio between value of monthly product 
shipped and monthly labour expenditures 

Variable 
 

Unit 
 

Ranges / Discrete 
values 
EBM WAAM 

Material processing rate kilograms/hour 0.2 2.9 
Equipment floor space square meters 4.46 24.15 
Setup time hours 1.3 4 

This results in the choice of product as tailpipe (54.42%) 
compared to shell (45.58%) because the conditional probability 
that the shape complexity is two (2) corresponds more to the 
product tailpipe. Similarly, the choice of manufacturing 
process node favours EBM (54.42%) over WAAM (45.58%) 
for both products. EBM is capable of producing highly 
complex parts with better accuracy than WAAM and hence, a 
higher probability for EBM is calculated by the network for a 
shape complexity value of two (2) or higher. 

For Scenario 1, we set the product type as tailpipe and the 
type of manufacturing process to be WAAM by providing 
evidence to the BN that the probability is 100% for tailpipe and 
WAAM. This evidence is provided solely for the sake of 
simulation. Users may make other similar choices, depending 
on their needs and the type of analysis required. Based on the 
provided evidence, we can see that the values for facility cost, 
capital cost, labour cost, and maintenance cost increase (Fig. 
2). The increase in facility cost, capital cost, and maintenance 
cost is due to the larger equipment floor space and high 
equipment cost associated with the WAAM machine. The 
major change was seen in the medium (M) state range for 
capital cost ($1,900-$3,800) and maintenance cost ($400-$800) 
with increases in likelihood of occurrence of the medium state 
for the two cost components from the original values of 21.71% 
and 23.13% to 34.59% and 37.75%, respectively. 

Manufacturing process selection is followed by the choice 
of raw material, which is chosen to be aluminium due to its low 
cost. Lack of granularity in the defined state ranges for the cost 
of raw materials node, however, prevents users from making 
inferences related to the raw material cost. It is prematurely set 
to be in the low (L) state range due to the prior decisions 
(product type and manufacturing process). 

Nevertheless, based on the model, the unit price of the raw 
materials is low for aluminium, which is priced at an average 
of $56.60/kg, compared to titanium with an average of 
$410.00/kg. Hence, with better granularity in the states, the 
effect of raw material unit cost would be visible on the total 
raw material cost for the product. 

The next decision is regarding the raw material supplier 
location and the manufacturing location. The choices with the 
highest probability are USA for the raw material supplier 
location and China for manufacturing location. For these two 
choices, the constraint nodes in the network ensure that the 
transport mode chosen is by sea. The immediate effect (Fig. 3) 
was observed in the increase in transportation time (736 hours 
or 30 days) and the cost of raw material transportation, which 
now lies in the high (H) state range ($40-$90 per product). In 
addition, choosing the manufacturing location as China reduces 
the labour cost significantly; the hourly labour rate for skilled 
labour in China is $3.22 versus $16.60 in the USA [18]. 

The total cost of manufacturing the goods in China with raw 
materials sourced from the USA has a likelihood occurrence of 
87.95% in the low (L) state range (up to $21,897) and a mean 
value of $13,647.  The alternative of having the manufacturing 
facility in the USA, sourcing materials from within the USA, 
and having the transport mode as rail results in an increased 
mean value for overall total cost ($13,835) (Fig. 4). This 
change is again due to the higher labour rates in the USA 
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compared to China. Therefore, the savings in transportation 
cost are dominated by increased labour costs, for this case. 

In Scenario 2, an inverse evaluation is conducted to evaluate 
the effect of fixed cost targets and KPIs on the available choices 
for decisions. By defining the total cost of manufacturing to lie 
in the medium (M) state range ($21,897-$43,795), a significant 
change in the probabilities of certain decision choices is 
observed. The likelihood of manufacturing the shell using 
titanium as the raw material sees an increased probability (an 
increase of 38.13% for the shell and 37.43% for titanium). 
Next, setting the build time to the high (H) state range (227-
342 hours) further confirms the manufacturing decisions of 
producing the shell using titanium, but also provides new 
information regarding which manufacturing process to 
consider. The analysis strongly suggests (100% likelihood) that 
EBM should be used for manufacturing the shell; EBM has a 
lower material processing rate (0.2 kg/hr) than WAAM (2.9 
kg/hr) and thus, a high build time, but higher quality. 

Another change observed is that labour cost has an increased 
tendency to lie in the high (H) state range ($3,900-$5,700) due 
to the longer build time. Setting the labour cost to the high state 
range, the model informs us that the manufacturing location 
should be in the USA. Lastly, the manufacturing facility should 
abide to strict delivery policies requiring low order-to-delivery 
lead times. This means that the setup time, build time, and 
transport time must be low. Therefore, we see an increase in 
the likelihood of the raw material supplier to be located in the 
USA and the transportation mode to be rail or road.  

From the foregoing, it can be seen that using the BN model 
would enable industrial decisions makers to understand the 
consequences of the various decision choices on production 
performance metrics and cost targets. It is worth noting that the 
percentages for low, medium, and high ranges do not add up to 
100% in some cases, due to presence of another range, called 
the filtered state. As the name suggests, the values in filtered 
states are outliers, which cannot physically exist in the real 
world. 

 

Fig. 2. Simulated results for fixed product (tailpipe) and manufacturing 
process (WAAM) in Scenario 1. 

 

Fig. 3. Simulated results for fixed supplier location (USA) and manufacturing 
location (China) in Scenario 1. 

For each parent node and its corresponding child nodes, the 
software computes values for all combination of numbers that 
fall in the ranges of the parent nodes, resulting in unfiltered 
ranges in computed values for the child nodes. These unfiltered 
values propagate throughout the model, and as the complexity 
and number of nodes increases in the model, the unfiltered 
ranges also compound. To reduce compounding we introduce 
filtered states to perform filtering. 

 

Fig. 4. Comparison of total production cost for set supplier location (USA) 
and manufacturing location (left - China, right – USA). 
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5. Conclusions 

A Bayesian network (BN) as an interactive multi-criteria 
decision-making tool in manufacturing performance analysis 
was developed and demonstrated for an additive manufacturing 
case to characterize the influence of manufacturing decisions, 
variables, and constraints on manufacturing KPIs and targets. 
This method enables a decision maker to observe the effect of 
their decisions on target performance variables, and vice versa, 
to obtain information about the most probable variable values 
and decision choices. The interactive nature of the model 
makes it an effective tool for stakeholders at different levels of 
the enterprise to visualize the cause-effect relationships 
between their choices for performance targets, design 
constraints, and manufacturing variables.  

The DACM framework enables integration of different 
forms of knowledge (e.g., expert opinion, qualitative models, 
and deterministic models) into a causal graph for developing 
the BN. This paper proposes using the DACM framework as a 
basis to systematically establish causal graphs and governing 
equations among the influencing variables. The BN is then 
established as a means to integrate decisions into the casual 
model and provide interactive analysis to the model. The 
simulated production cost and KPI values reported herein are 
not exact; rather, the model provides estimated ranges in which 
the costs are likely to lie. Hence, system-modelling using a BN 
offers a preliminary screening method to eliminate 
combinations of bad decisions. After narrowing down to a 
select combination of good decisions, real costs and KPI values 
can be estimated using deterministic methods. The 
methodology developed is generic and can be applied to any 
multi-criteria decision making problem supporting multiple 
types of decision processes. 

6. Limitations and Future Work 

Causal graphs of the production system, implemented in 
Bayesian networks (BNs), offer a powerful tool to characterize 
a complex system at different levels of detail and granularity. 
It is interesting to note that all nodes in a BN are linked to one 
another either directly or indirectly for computing the joint 
probability of the modelled system. During simulation, a 
marginal probability distribution of the states of the nodes can 
be displayed. The display shows the mean value for the state of 
a node where the probability of occurrence is maximum. The 
value displayed represents the mean of the entire range of a 
state in a node, and should not be considered to be exact.  

Future research will leverage the ability of a combined 
DACM and BN approach to integrate different forms of 
knowledge/data. With growing concerns of industrial 
sustainability, such efforts can enable translation of 
sustainability reports of different corporations belonging to 
different types of industries into BN graphs (cause-effect 
graphs). The value for such research lies in the ability to 
understand, through visualization (graphs), the sustainability 
performance measures affecting variables specific to an 

industry, those specific to individual departments within an 
enterprise, and those variables with commonalities across 
different industries or departments. Such evaluations can help 
industry implement selective measures that target the impactful 
practices at each level of an organization as well as to 
implement measures that improve the overall sustainability 
performance across industries. It is essential for researchers, 
along with industry partners, to perform inference studies to 
understand which managerial decisions have a positive impact 
towards reaching the goals of the manufacturing enterprise. 
Insights from such inference studies will help in sustainability 
performance-based future sight and decision-making. 
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