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Abstract—Condition monitoring and predictive maintenance of
the equipment is an important topic of production environments,
and many equipment manufacturers offer data services and
build service business upon them. To further advance Metso’s
capabilities, the configuration on how the data collected at the
field, and how it is moved to the cloud for further processing
and analysis, needs more advanced solutions. Typical equipment
manufacturer’s customers from all over the world have numerous
pieces of equipment on their sites. In this paper Arrowhead
Framework and dynamic service discovery provided by it, are
evaluated as a potential technology that could help machine and
equipment providers to achieve better configurability of its data
collection devices at the edge of the network.

Index Terms—measurement system, data analytics, cyber-
physical systems, dynamic orchestration, system architecture,
system requirements, edge computing, arrowhead framework

I. INTRODUCTION

Industrial internet builds upon utilization of data, advanced
analytics and more informed decisions as its outcome in all
imaginable sectors. This is also the case for manufacturing
systems and production, Industry4.0, where a wide range of
communication means will be used to collect industrial data
and advanced functionality will be orchestrated across and
between public clouds and local premises [1]. Industrial cyber-
physical systems (CPS) are expected to enable the transforma-
tion to adaptive, networked and knowledge-based industry but
there are key challenges in their integration and collaboration
of industrial CPSs across ecosystems [2]. As these systems
are getting more complex and also form systems of systems
(SoS), more information is available across different domains
and interoperability of both data and system functions becomes
a key concern.

Industrial Internet of Things (IIoT) promises to solve several
of the data acquisition and remote control challenges faced by
the industry. There are, however, a lot of use cases where it
is not feasible or still too expensive to transfer huge amounts
of data to the cloud. In some cases data ownership or privacy
concerns can also limit this. Edge computing, on the other
hand, envisions cloud services and resources close to the
user applications and benefits are expected in areas where
vast amounts of data needs to be processed, near real-time

performance is needed or where security is preferred [3].
Modern software based applications would benefit of being
able to utilize resources on cloud as well as on the edge while
using same system composition and configuration methods as
well as security mechanisms.

Metso Minerals manufactures equipment for the mining and
aggregates industries. In this paper this domain serves as an
example use case where data sources and sensors need to
be connected, data flows configured to analytics components
on different levels of the process, and new edge components
configured and managed in a scalable SoS. One key objective
of open platforms and systems is to reduce dependency of
big public cloud and industrial internet solution vendors, and
instead focus towards open ecosystems.

In this paper a condition monitoring application is designed
and implemented focusing on the use of the Arrowhead Frame-
work (AHF) in composition and management of services. The
research question proposed is how AHF supports configuration
of data flows and management of installations ranging from
edge to cloud. Its main contributions are 1) how to build
such a system using AHF and 2) how AHF is suited and
supports development of these kinds of applications. The main
results presented in this paper are based on the outcomes of
a Master’s thesis [4] which further details and explains the
implementation used to verify the results presented.

Following, section II presents related work for production
environments and condition monitoring. In section III the
example use case is explained along with background of tools
used in the implemented solution that is presented in section
IV. Results and discussion is provided in section V before
concluding the paper in section VI.

II. RELATED WORK

System and software architecture for maintenance services
and condition monitoring applications for CPS have been pre-
sented in [5]–[9], among others. Condition monitoring based
on edge computing, has been studied by, for example, [10]
for distribution transformers and [11] for vibration monitoring
applications.



Previously, a Maintenance4.0 framework was described in
[12] and a concept for integrating condition monitoring to
maintenance operations was introduced in [13].

Monitoring of production assets over the internet, also re-
lated to this paper, has been discussed by [14]. A general data
acquisition and data analytics system software architecture
has been specified in [15]. In the concept, AHF is proposed
to orchestrate and manage the computational services and
information flows.

III. EXAMPLE USE CASE AND BACKGROUND TECHNOLOGY

A. Example environment and test setup

The test system used for the experiments is a condition
monitoring system for vibrating screens that is being devel-
oped in Metso. It comprises a data collection computer and
several accelerometers mounted on a screen, providing data on
its motion and vibration levels. The sensors are self-powered
with energy harvesters for continuous operation when the
screen is running. Several Key Performance Indicators (KPI)
are calculated locally from these data and they need to be
sent to the cloud for analysis and visualisation. The KPI’s are
presented in a PostgreSQL database that the AHF is able to
read from using PostgREST. The system does measurements
and updates the KPI’s every minute.

B. Arrowhead Framework

The core idea of the evaluated framework, AHF, [16],
[17] is introduced in figure 1. The framework has three
mandatory core-systems; the Orchestrator, the Service Reg-
istry and the Authorization. These three form a System-of-
Systems (SoS) by offering the means for so-called application
systems, on service-registration, service-discovery and service-
authorization. The SoS residing under one core is commonly
referred as the Arrowhead local cloud or just local cloud,
this terminology is used also in this paper. The roles of core
systems are specified in more detail below:

• Service Registry - Keeps book on available services,
and offers means for registering and querying them. The
service provider registers it’s services to the register,
when the service are available and unregisters them when
the services become unavailable.

• Ochestrator - The main component within the core sys-
tems. The consumer sends the service discovery requests
to the Orchestrator, which, handles the hassle of deciding

Fig. 1. The core idea of Arrowhead Framework [16].

what service candidates should be sent as a response. Or-
chestrator has two modes 1) static so-called orchestration-
store mode, where the consumers requesting a service are
responded according to predefined rules and availability
of the service in the registry. 2) dynamic mode, where the
responses do not follow the rules and a list of available
services are sent. This list can be reduced with restricting
parameters in a requests body, including, for example,
metadata key-value pairs and a desired provider.

• Authorization - Keeps book on authorization rules. Before
responding to the consumer, the Orchestrator makes sure
that the consumer is allowed to use the service. In so
called secure-mode, in which the communication happens
with HTTPS, the authorization system also generates
access-tokens for the consumers, which are needed when
a service is consumed. This prevents unauthorized access
outside the local cloud, which is possible in so-called
insecure-mode.

Additionally, the core-systems have a dependency on a
MySQL database, which is used to store the information
on systems, services, neighbouring local clouds, authorization
rules and other important bookkeeping needed by the core-
systems.

1) Arrowhead Framework - supporting core-systems: On
top of the core functionality offered by the core-systems,
AHF also provides, so-called, supporting core-systems, which
extend the local clouds capabilities. Multiple supporting core
systems have been developed, such as for onboarding with
device and system registries for a chain of trust from hardware
[18], managing Quality of Service (QoS) [19], but in this paper
the most relevant are the Gatekeeper and the Gateway systems,
which co-operate with Gateway and Gatekeeper systems in
another local cloud to enable so-called inter-cloud service
discovery between them [20], [21].

The so-called inter-cloud negotiations between the Gate-
keepers happen in HTTP 1, in successful negotiations a tunnel
that is used by the application systems is formed. The Gateway
systems, on the other hand, are responsible on offering a proxy
service to this tunnel. All of this happens in the background
and the orchestrator system is the one that initiates the negoti-
ation process, either because service was not found in the local
cloud, or the global discovery was specifically asked by the
consumer. After the tunnel has been formed the orchestrator
sends a response to the consumer where information needed
to communicate via the gateway proxy are specified. This
includes, for example, a reserved port and the address of the
local Gateway system. The tunnel between the Gateways uses
an AMQP broker, while the application system uses HTTP to
communicate with the Gateway.

2) Supporting stack of Arrowhead local cloud: In the
demo-application, each Arrowhead local cloud consists of
Arrowhead-core, Arrowhead Gatekeeper system, Arrowhead
Gateway system and application systems that implement the

1The version 4.1.3 of the framework moves also the inter-cloud negotiations
to the broker. The demo application was developed with version 4.1.2



business logic of the application, which are covered in more
detail later in section IV. On top of this the demo application
also includes a PostgreSQL database and a PostgREST server,
which turns the schema of the database automatically to REST
services. The local cloud instance running on the cloud, also
has a RabbitMQ AMQP broker, used by the Gateway systems.

Since AHF does not provide means for deployment, in a
sense of actually getting the executable running on the target
platform, each artefact enlisted above was containerized, or if
possible, a readily available container was used. Docker and
Docker-compose were used to deploy the containers.

IV. IMPLEMENTATION

The architecture of the demo application and the roles
of various tools presented in section III-B is illustrated in
figure 2. The demo application tries to tackle the problems
faced in configuration of the edge computers. The main goal
is to evaluate AHF’s capability as a provider of dynamic
service discovery. To help the installation required in the
field and commissioning of new equipment to the customer,
ideally, plug-n-play style of installation would be available,
and afterwards, control on the configuration of the devices,
ideally, as a fleet, would be easier to handle. Thus, dynamic
service discovery, through which the data sinks and config-
uration sources could be discovered when new equipment
comes online, offers an evaluation-worthy concept. The actual
condition monitoring, is left outside the scope of the demo
application and the scope is limited to mitigate the problems
in the movement of the condition monitoring data of which,
is produced on the edge computer.

A. The roles of application systems and services provided by
them

The business logic of the demo application is implemented
with four application systems presented in figure 3. The
application systems are divided in two groups; data-path and
control-path. Both groups have two application systems, one
running on the cloud and one running at the edge. The data-
path group is responsible of pushing the data from edge to the
cloud, and the control-path group is responsible of configuring
the interval of pushes and the subset of available data-points
that are pushed. The configuration files that are sent trough
control-path, can also contain arbitrary configuration objects
that can be used, for example, for configuring the edge
computer that the Arrowhead local cloud is running on. The
services provided by the application systems and their roles
are the following:

• Batch - Consumer uses the service to push batches of
condition monitoring data according to the configura-
tion. Configuration stored in the DB must be valid,
each provider can have their own configuration, and the
providers must be discoverable through AHF.

• CMD - Consumer uses the service to push 2 the configu-
ration files to the edge computers, to query the currently

2The current implementation caches the configurations, for a later fetch via
Ctrlpoll service.

DataSystemCloud

DB

RemoteControl

POSTGREST

AH-CORE

GW GK

POSTGREST

DB

DATA 
COLLECTION AND CONDITION 

MONITORING

DataSystemEdge AH-CORE

GW GK

Control

DATA
CTRL

AMQP
BROKER

EDGE COMPUTER

VM INSTANCE IN
PRIVATE CLOUD

Fig. 2. Architecture of the demo application, the application systems form
data and control paths marked with dotted ellipses.

available data-points, and the current configuration of an
particular edge computer. This service has no consumer
systems implemented in demo-setup, but application sys-
tems that try to drive the configuration at the edge to a
certain state, could be developed against this service.

• CtrlPoll - Consumer uses the service to poll the provider
in-case of a need for reconfiguration has emerged, the
providers must be discoverable through AHF.

• CtrlUpdate - Consumer uses the service to notify the
providers of the service on a change on the configuration
or the set of available data-points, the providers must be
discoverable through AHF.

Service discovery functionality of AHF is heavily utilized.
Only services that are not discovered through AHF, are the
REST services allowing access to the database offered by Post-
gREST. The reasoning behind not discovering these services
through AHF as well, is that the location of the database is
assumed to be always known, and therefore, there is no point
in rediscovering these services. In other words, a local cloud
instance in the context of the demo application is assumed to
always have a database running ”right next to it” on the same
physical or virtual machine, available through same port and
network interface.

Since the version 4.1.2 of the framework uses HTTP in
inter-cloud negotiations happening between Gatekeeper sys-
tems, firewalls limit the initiation only to application systems



residing at the edge. In other words, all the service providers
that are providing a service that is meant to be consumed via
the AHF Gateway, through edge - cloud boundary, are running
on the cloud, this is the reason behind the polling scheme that
the services take.

B. Support for multiple local cloud instances at the edge and
on the cloud

The service providers at the cloud level can serve as a
data sink or control source for multiple instances of data
and control application systems residing at the edge. The
data-system at the edge is also capable of pushing data to
multiple sinks, which can reside either on the cloud or at
the edge. This enables collaborative setups where multiple
individual pieces of equipment possibly under the control of
different stakeholders can share data, based on their interests
and permissions. For example, in case of mining, various
OEM’s would be able to share data to improve the overall
performance of the customers process.

An example setup with multiple local clouds at both the
edge and on the cloud is presented in figure 4. The application
systems in the demo-application have support for this kind
of large-scale setup. However, the implementation and design
decisions taken in AHF cause, wide multi local cloud setups to
be hard to maintain. The problems are covered in more detail
in the following section.

V. RESULTS AND DISCUSSION

On a conceptual level, the SoS approach taken by AHF
offers a potential way of implementing applications in the
industry and it offers a clear mental model on how one
would develop IoT applications in general. The way how
the Gatekeeper and Gateway systems can be used to join
local clouds could, at least in theory, enable large System-
of-Systems to be deployed. However, there are problems, that
make the AHF only suitable for small scale test setups, like
the one that was used in the presented demo application.

A. Problems with the Current Authorization Scheme

In table I the system table of MySQL database, which is
internally used as AHF’s main means of persistent storage, is
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Fig. 3. Application systems and the services provided and consumed by them.
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Fig. 4. An example setup with multiple local cloud instances, the arrows
point towards the direction where service consumption is possible. The edge
computers are assumed to be in a same LAN.

presented. The table contains information on what application
systems are present on the local cloud. Port and Address are
both mandatory fields, rest of the fields are voluntary, however,
in practice the name of the system is always needed and in
”secure-mode” where the authorization system generates the
access tokens for the consumer systems, the auth info field is
also in practice mandatory.

TABLE I
SYSTEM TABLE

id address auth info port system name

1 0.0.0.0 - 222 foo

2 0.0.0.0 - 2222 bar

In turn, table II presents the local authorization rules in
the same database. Local authorization table’s columns ”con-
sumer system id” and ”provider system id” refer to rows in
the system table I. The last column specifies the service that
the consumer system is authorized to consume. As can be seen,
the system table does not make any difference between the
consumer and provider roles, which one system can have both
of. This leads to weird, probably unintentional requirements
placed on the application systems.

Firstly, in HTTP the client, or in our case the consumer,
does not have a port in a way that is assumed. However, since
the port column on the system table I is mandatory, the user
has to come up with a bogus port, to get his consumer system
inserted in the system table so he can make an authorization
rule, given that particular system does not also have a role
as a provider, in which case the service registration process
creates a row in the system table, the port however remains
bogus also in this case.



Secondly, the user has to manually wire the authorization
rules, in a similar way to orchestration rules in the static
consumer-store scheme. This takes a toll on dynamism, which
is basically lost, since the requirement in practice means that
every time a new application system is introduced, or the
authorization requirements are changed, the user has to alter
the tables in a way where the most coarsely grained units
are an application system and service, instead of a group of
systems and services or something else more indirect. This
makes the dynamic service discovery unscalable to larger se-
tups, consisting of numerous application-systems and services.
Similar problem also exists in the static orchestration-store
scheme, which requires similar granularity on the rules that
user sets to the database, i.e consumer-system, provider-system
and the provided service, are needed for each rule. If multiple
identical rules, for example, for various consumer systems with
same provider system, are needed, the wiring must be done
individually for each ”connection”.

TABLE II
LOCAL AUTHORIZATION TABLE

id consumer system id provider system id service id

1 1 2 4

2 2 1 5

TABLE III
GLOBAL AUTHORIZATION TABLE

id consumer cloud id provider cloud id

1 3 4

2 4 3

However, if the global authorization scheme is used, where
the consuming system is in a different Arrowhead local cloud,
the authorization works differently. In table III the global
authorization table is presented. As can be seen, the table refers
to rows in a table where all of the known local clouds are
presented, in a similar manner like the systems are presented
in the system table. The global authorization therefore uses the
group of application systems that are residing in a particular
local cloud as it’s main unit. This means that all the consumer
systems can consume any service provided by application
systems in the authorized local cloud. Therefore in this case,
there is grouping.

System level authorization however is missing from the
global authorization, which is problematic, since it is possible
that all of the services provided in a certain local cloud are
not for all consumers in another local cloud. Also, since every
local cloud has it’s own instance of MySQL used for book-
keeping, each of them needs to be configured separately. Since,
even in the case of global-authorization, the table holding the
information on known local clouds needs to be filled or altered
before authorization rules can be issued. In large setups this
will become tedious, and automating the configuration might
be hard.

B. Problems with the registration of services

As the service provider registers its services to the service
registry, it can not register the possible sub resources of the
service’s REST URI, with the same push. This means that if
the system wants the sub-resources to be discoverable through
AHF, it needs to register them separately. In case of local
consumption, the authorization scheme, that forces the user to
specify the authorization in a way that was described above,
means that the user has to do lots of manual labor to make the
discovery happen. This is because each sub-resource needs its
own authorization rule, one per consumer.

In some cases where the REST service has a lots of sub-
resources this leads to an unbearable situation, where the
best option is to assume that consumer knows in advance
what sub-resources a certain service has. Declarative API
documentation schemes like Open-API 3 could help. However,
if the authorization is needed, it can not be achieved if
the service has sub-resources outside AHF’s knowledge, i.e
the sub-resources need to use the access-token of the parent
resource. This adds pressure to design, since things that would
be a natural fit as a sub-resource can not be authorized with
means provided by AHF, if the sub-resources have different
sets of acceptable consumers.

C. Other Problems

Serious thought must also be placed on the overall archi-
tecture decisions taken. One may ask, if the core-systems,
Orchestrator, Authorization and Service Registry are always
mandatory in a local cloud, why would they be separated
in three independent systems? If the three systems were
combined to one, the user would have way more easier job to
manage the System-of-Systems as a whole, especially since
the co-operation between the core systems is not the most
robust one, for example, external start-up scripts with sleep
statements that make sure that the systems are started in a
”correct order” are used.

VI. CONCLUSION

Metso’s role in the Productive4.0 project is to provide an
industrially relevant application use case for AHF orchestrated
and managed service composition. That means not only look-
ing at the specifications but looking at the system and software
composition as a whole. It is obvious that more commercial-
isation is needed as the components, documentation, delivery
and deployment systems etc. are not yet on a mature enough
level. There is a steep learning curve, and given the usefulness
of the framework and the things that you can do with it, the
curve is currently not a particularly rewarding one either.

AHF provides a number of necessary features that any SoS
service composition would need to implement. From an inter-
operability point of view it is essential to promote standard
and acknowledge methods in contrast to many vendor or tools
specific methods, e.g. mechanisms for service composition and

3https://swagger.io/specification/



configuration or uniform authorisation and access management
in dynamic and evolving systems.

Considering the industrial application cases with Metso’s
equipment, almost all deal with having to get the data out
from a control system in the field and moving it into a
central storage. The general problem of data collection from
end devices to the cloud still remains in industry and still
requires a surprising amount of work. In our testing, AHF in
its current form did not meet the requirements of a mature
framework usable in an industrial application, in a sense,
where it could be seriously considered as a platform for
Metso’s condition monitoring applications. The dynamism is
lacking, because of the static authorization scheme and heavy
need for configuration, and despite the promising SoS model,
the scalability needed for a OEM like Metso, with 1000’s
of pieces of equipment of various types out in the field on
customers sites, is not yet there.
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