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Abstract—robot programming and training depends on the
task that needs to be completed, the end-effector properties and
functionalities and the working space. These considerations can
complicate the programming process, which in return, increase
the time that is needed for training the robot. Thus, several
research approaches have been introduced to address training
the robots intuitively. In this regard, this paper presents an
approach for training an under-actuated gripper and the robot
attached to it for grasping shallow objects. The research work
started by detailed analysis of the fingers of human hand during
the grasping process. Then, a modified design of the gripper has
been produced. This modification includes adding an artificial
nail among other hardware-related modifications. Then, a Q-
Learning algorithm has been used for training the gripper on
grasping the shallow object. With two fingers, three actions were
configured, and 625 states were configured for the learning
algorithm. For the validation, a coin has been used for
representing the shallow object. The results showed reduction
in both the grasping time and the number of movements.

Keywords—Reinforcement learning, Robot learning, machine
learning, Grasping

I. INTRODUCTION

Robot training process has been evolving as both software
and hardware technologies advance. The leap in hardware
and software capabilities open the doors for new techniques
and methods for programming robots in general [1], [2].
Traditionally, and still, programming robot using offline
method is the most commonly used in industry. This practice
provides guaranties of accuracy and assurance of the robot
task execution. In this regard, several approaches have been
introduced to simplify or ease the process of the robot
programming [3]. As an example, the usage of force/torque
sensor for online lead-through or teaching by doing or
teaching be demonstration approaches. These approaches
proven to be useful and sometime necessary for i.e. in
medical operations or in human-robot collaboration tasks [4].
Nonetheless, the usage of them is less likely in industrial
cases.

The robot motion programming depends on the end-
effector and the task that the robot is required to achieve. For
instance, a welding end-effector requires the consideration of
the welding point when designing the motion profiles.
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Besides, the welding process forces the robot to adjust the
path and/or the joints’ angles in order to avoid possible
singularities. These possible problem makes the traditional
off-line programming of the robot more complicated which
in return, requires more time and experience to achieve [5].
This type problems may appear in pick /grasping task as well.
For i.e., the shape and the dimensions of the object play
dominant role on how the robot must approach the object for

grasping.

This paper aims at presenting an approach for teaching a
robot to grasp a shallow object. The robot is equipped with
an under-actuated gripper. This gripper was developed based
on the open source Yale Open Hand Project (YOH) from the
Yale GRAB Lab at Yale University [6]. The challenge to
teach the robot to grasp the coin and drop it in a box without
the need to use suction cups. This operation mimics the
human method for grapping object by utilizing the fingertips.

The rest of the document is structured as follows: Section
II presents the related research and state of the art in the field
of Robotics and manipulation and reinforcement learning.
Section III presents the approach of this research. Section IV
provides the implementation of the presented approach.
Meanwhile section V presents the results and discussion.
Finally, Section V concludes the paper and provides possible
future work.

II. THEORETICAL BACKGROUND

A. Robot programming

Traditionally, Robot programming requires a trained
operator with experience in robotics manipulation. Moreover,
the operator must have the needed knowledge about the tasks
that the robot will accomplish, the nature of the process and
the robot work space [5], [7]. These requirements introduce
more complications sometimes. Thus, the online
programming concept have been introduced to simplify and
minimize the needed effort for programming the robot. As in
[8], the definition of the online robot programming includes
the dynamically program the robot motion while it is on run
mode such as lead-through programming using force and
torque sensors to convert the forces the exerted by the human
on the end-effector to translate to the robot variable space.



Another approach is using teaching by demonstration. Thus,
these techniques are potentially used as the robot operator
does not require knowledge on the traditional programming
language of the robot [9]. Nonetheless, these methods
introduce concerns about the safety of the operator as the
operator needs to work behind the fence with the industrial
robot. Other approach tends to provide safer and more reliable
methods for training the robots on achieving the required
tasks. As presented in [10], the robot is trained using
specification-centred generative approach. While [11]
presents an approach for controlling the motion of a robot
using Deep Deterministic Policy Gradient (DDPG). As
showing the presented research, the used method permitted
more flexible approach for programming he robot.
Furthermore, [12] presented an approach for task
generalization using Deep Model Fusion with the support of
Multi-objective Guided Reward technique for increasing the
training efficiency.

B. Reinforcement learning for robotics

Machine learning methods have demonstrated to be
suitable techniques for modelling complex systems with a
wide range of applications such as smart manufacturing and
intelligent transportation systems [13]. Reinforcement
learning (RL) is a part of machine learning that implement
the maximization of cumulative reward. Usually, the
reinforcement learning used in supporting task the at requires
decision making. For robotics, and as presented in [14],
reinforcement learning is considered as a framework that
allows designing tasks and behaviours which are hard to
model. According to the same source, the challenge in
robotics field is the possible of dimensionality of the states
and actions which is reflected as computational cost.
Furthermore, [15] presents an RL techniques called
Bayesian-discrimination-function-based reinforcement
learning (BRL) for generating robot action. This article
claims the automatic generation of the states and the actions
of the robotics motion using segmented learning.

III. THE REINFORCEMENT LEARNING APPROACH FOR
GRASPING SHALLOW OBJECTS

The reinforcement leaning concept in this paper includes
the reward/punishment approach while the application learns
about the grasping task. This means that the reinforcement
learning requires a feedback system to inform the application
and the running algorithm about the achievement after each
epoch. Fig 1 shows the high-level architecture of the
reinforcement learning system as a Cyber-Physical System
(CPS) [16]. As presented in the figure, the reinforcement
learning and the grasping detection system are application
running on devices which can be configured and adjusted to
suit the learning process.
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Fig 1. CPS as reinforcement learning system for grasping shallow objects

The process starts by commanding the robot to grasp the
shallow object. This shallow object is a coin on a flat surface.
The robot approaches the coin and try to grasp it. A detection
system, like a vision system, detect if the coins is picked or
not. Consequently, the detection system informs the
reinforcement learning engine. Finally, the reinforcement
engine updates the learning algorithm parameters by
rewarding or penalizing the learning score.

For solving the problem of grasping a shallow object, a
detailed observation has been conducted in order to analyse
the human hand movement. As Fig 2 shows, the grasping
with two fingers starting by closing the fingers until both
fingers touch the coin (a, b). Then, as shown in (c, d), one nail
slides under the coin while the other finger acts as support for
pivoting the coin. Finally, as shown in (e, f), the needed tilt is
created for grasping the coin. Therefore, the need for a
gripper with 2 fingers at least is required. Additionally, these
fingers have to include some sort of an edge to act as the nail
on one finger and soft grippy padding to act like the other
finger’s end.

**

Fig 2. Steps of grasping a coin done by human

Many of the learning algorithm can be utilized for the
learning task in this research. The selection was towards the
Q-Learning (QL) algorithm. The QL is a reinforcement
learning algorithm which does not use a model of the physical
or behaviour environment of the problem. Rather, it focuses
on selecting the optimal action according to the state and the
score from the previous score, state and action. As equation
1 presents, the current score (Q;,4) depends on the pervious
score (Q;), reward from previous action (r), learning rate («),
discount factor (y) and possible maximum score of the
current state ( max@Q;,1). In this regard, the learning rate
decides the amount of the new score out of the old score.
While the discount factor decides the impact of the possible
current score on the current score.



Qiv1 = 1 —a)Q; + a(r +y maxQ;41) (1)
x ,x < €
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The current action is selected based on the Finite Markov
Decision Process (FMDP). As shown in equation 2, a random
number (x) that is compared with the exploration rate (¢)
decides the current action (a; ). If the result greater or equal
than the exploration rate, then the action will be the action
that scored the maximum score. Otherwise, the action will be
selected randomly.

1: while(episode < episode_max)

2 request coin position from camera

3 if (coin is detected)

4 initialization of episode parameters

5 while (gripper is not closed OR epoch < epoch max)
6: select action randomly

7 make one step in closing the gripper

7 if (gripper is closed or epoch >= epoch max)

8: request coin position from camera

9 if (coin is detected)

107 add the penalty

145 else

125 add the reward

13: end if

14: calculate the probabilities for the next step
15: advance epoch by 1

16: end if

173 end while

18: advance episode by 1

19: end if
20:end while

Fig 3. Pseudo code for the reinforcement learning algorithm

Fig 3 shows the pseudo code for the algorithm for learning
grasping of shallow objects. The learning process start by
looping until the application reach a predefined number of
episodes. A single episode represents one trial of grapping the
shallow object starting form a fully open gripper till fully
closed gripper. In each episode, the application will ask for
the position of the coin. The detection system, which is a
smart camera that is programmed to provide the centre of a
coin. In this regard, the coin is cover with white sticker in
order to enhance the circle detection and therefore finding the
centre accurately.

TABLE I. ACTIONS DESIGN FOR THE UNDER-ACTUATED GRIPPER

Action Action values
code Finger 1 Finger 2
(Position counts) (Position counts)
0 50 0
1 0 50
2 50 50

If a coin is detected, then the application will start a loop
that ends if the gripper is closed or a predefined number of
epochs is reached. In each epoch, the quality score is updated,
and an action is selected. If the gripper is closed and the coin
was picked, then the score will be awarded. Otherwise the
score will be penalized. As the gripper have two under-
actuated fingers, 3 actions are identified as shown in TABLE
I. The actions are either finger 1 closes by 50 counts, figure 2
closes by 50 counts or both figures close by 50 counts for
each one. The selection of the step value is described in the
next sections.

IV. THE IMPLEMENTATION

A. Use case description

For this research, a specific case has been built to proof
the concept of robot self-learning. The case includes an ABB
140 robot with a modified YOH under-actuated gripper build
in house. A National Instruments smart camera is uses for
providing the feedback about the coin presence or coin
location. For running the learning algorithm, a Raspberry Pi
model B is used. The different component uses a local
Ethernet network to communicate between each other. See
Fig 4.

Ethernet

Coin

Serial

Fig 4. Use case environment

The challenge in the grasping of shallow objects is the
ability to repeat the same test with a successful result. This
require addressing the mechanical components as well in
order to reach stable process. In this regard and based on the
observation of the manual procedure depicted in Fig 2, an
artificial nail (marked in red) in Fig 5 was added to one of
the fingers. This addition on the under-actuated gripper forces
the coin to take the same starting tilt. After that the coin start
sliding between the figures until the finger close on each
other.

(b)

Fig 5. Under-actuated gripper with additional artificial nail. a) before
applying the grasp command, b) after applying the grasp command.

It is important to mention that the gripper has been
manufactured in house using 3D printing for the solid parts
and moulding and then resin (PMC-780 for the flexure joints



and Vytaflex-30 for the finger pads) pouring for the flexible
grippy parts as shown in Fig 6.

Fig 6. Fabrication of the gripper fingers. (a) 3D printed parts and (b) after
pouring the risen.

For the smart camera, a simple application has been
developed. The routine contains three states; Read, Nothing
and OK as presented in Fig 7. The state Read occurs when the
camera reading the image and then calculate the presence of
the coin (coin appears as a white circle to enhance the
detection). Once a coin is found, the camera goes to the OK
state then it sends a UDP message to the Raspberry Pi
informing about the coin position and diameter. If the coin
was not detected, the camera sends a UDP message with all
zeros as parameters then goes to the Nothing state. The
routine then restarts after 2 seconds.

Start

Default Default

End

Fig 7. Camera state diagram

B. Testing description and configuration

For conducting the reinforcement learning, several
parameters must be configured including the under-actuated
gripper, the learning algorithm and the camera among other
components. Starting with the fingers’ actions, each of the
fingers is equipped with a tendon that winds around a pulley.
This pulley is connected to the servo that able to measure the
rotation steps using an embedded encoder. As presented in
TABLE II, each of the fingers have 1200 steps as a range
between open and close. Using the trial and error, the range
is divided by 50 steps (50 steps shown reasonable step for a
single epoch) then the state per finger will 25 states. Thus,

having 2 fingers, the total states in the system is 625 which
represents the different state of the two fingers independently.

TABLE II. SETTINGS OF THE COUNTERS OF THE FINGERS

Pose Finger 1 Finger 2
Position Load Position | Load
counts counts counts | counts
Open 2000 0 1850 0
Close 800 140 650 380

The configuration of the RL algorithm include defining
the values of the awards and the penalties which are
summarized in TABLE III. Using trial and error, after each
action, a reward of 1 point is given. Then, if one of the fingers
reaches the close condition, it will receive a penalty of 10.
Following that, if the two fingers close without catching the
coin, then the penalty will be 30. If the coin is successfully
grasped (in the table coin is not detected), the award will be
20 if the fingers reach the close position and 25 if the fingers
do not reach the complete close condition.

TABLE III. REWARD/PENALTY CONFIGURATION

Finger 1or2 | Coin | Reward Description
X X 1 Every action returns a reward of
-1
>1200 X -10 Actions exceeding the limit have
penalty of 10 and the position
remains on 1200 for the finger
intending to exceed 1200
1200 Yes -30 Fingers closed and coin not
extracted, gives penalty of 30
1200 No 20 Fingers closed and coin correctly
extracted gives award of 20
<=1200 No 25 Coin extracted without need to
close completely, gives award of
25

The last configuration in the subsections is the camera
settings. Like the other settings, trial and error is used to
obtain the best coin detections. As TABLE IV shows, the
settings are considered to be high as the exposure is 10-13
ms. This high value selection is due to the condition of the
coin as it stay stationary during the image capturing process.

TABLE IV. CAMERA CONFIGURATION

Step Parameter Value
Acquire Exposure time 10-13 ms
image Gain 100
Geometric Threshold (lower value) 200
Matching Minimum object size 10 mmz
2
Area filter 500 — 800 mm
Minimum number of objects 1
to pass

C. Components’ Interactions

The flow diagram of the reinforcement learning
interaction is illustrated in Fig 8. The activity starts once the
camera sends a UDP message contains the coordinates and
the circle diameter to the Raspberry Pi. Then, the RL at the
Raspberry Pi calculate the position that the robot needs to
move in order to grasp the coin. After moving, the robot
acknowledges about the readiness for starting the training on
grasping the coin. Afterwards, the RL chooses one of the
actions as shown in TABLE I. This selection is done



randomly. Nonetheless, it could be selected as best previous
action as the user can configure the exploration parameter.
Once the action is selected, the application measures the
needed steps to achieve the step. Using the serial connection,
the RL that runs on the Raspberry Pi sends the command to
the gripper to open one of the fingers or both fingers. This
action follows the values as presented in TABLE I. Then the
Raspberry Pi receives the acknowledgement about the action
execution. As seen in the figure, the epoch will continue until
the gripper is fully closed or the RL reaches the maximum
number of the epochs.

After breaking the epochs loop, the RL command the
robot to move away in order to allow the camera to find the
coin. After maximum of 2 seconds, the camera sends the
circle parameters. If all parameters are zeros, the gripper has
successfully picked the coin and the Q score will be rewarded
following TABLE III. Otherwise, it will be penalized
following the same table. Finally, the Raspberry PI will
command the robot to move away and the gripper to open for
starting the next episode.
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Fig 8. Sequence diagram of the reinforcement learning process

V. RESULTS AND DISCUSSION

The tests of the previously described approach took place
in the FAST-Lab (Future Automation Systems and
Technologies Laboratory) premises at the Tampere
University. With several attempts and fine tuning of the
algorithm parameters, the selection of the epochs was 50, the
episodes is 500, 0.3 for the learning rate, 0.7 for the discount
factor and finally, 0.3 for the exploration rate as it is presented
in TABLE V.

TABLE V. REINFORCEMENT LEARNING ALGORITHM

PARAMETERS
Parameter Value
Max. Epochs 50
Max. Episodes 500
Learning Rate (o) 0.3
Discount Factor (y) 0.7
Exploration Rate (g) 0.3

The training process took 3 hours and 10 minutes
approximately. This process resulted in reduction of the
grasping time from 24 seconds to 9 second and with reduction
in movements from 2400 to 42 at show in Fig 9. The
comparison has been done against force monitoring
approach. The force monitoring approach has been used
before for controlling the movements of the fingers.
Generally, the current that is drawn by the servos represented
the applied force. The monitoring was to keep the relative
movement of the figures within an acceptable margin in order
to keep the coin in between the figures during the grasping
process

H Al Q-Learning  ® Force Monitoring

o
o
<
~

o

= <

. .

GRASPING TIME [S]

Fig 9. grasping results

The presented results show potential in using Q-Learning
approach for training the gripper. However, each episode
requires several minutes to be completed. This limited the
possibility of having long tests that run more episodes, e.g.
5000 -7000. To overcome this, the exploration rate was
increased to 0.3 where it is recommended in other research to
be around 0.1. Moreover, the selection of the gripper’s action
was done randomly to balance the usage of both fingers. This
can be more investigated as the fingers’ movement is critical
in this task and the success rate increase as the fingers closing
synchronously as Fig 2 shows from the human behaviour. It
important to mention that this training process has been done
for grasping one type of shallow objects with the same
dimensions. If the object will be changed, another learning
process needs to be done to address the changes int eh
dimensions which will affect the grasping process.
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Fig 10. Evolution of the reward during the training



In addition, the reward evolution, as depicted in Fig 10,
presents a random behaviour with no recognizable trend. This
effect might be a result of using random selection of the
actions. Finally, and as the result shows, the usage of suction
cap can be faster for pick and place tasks. However, the
challenge in this research to mimic the human grasping for
shallow object.

VI. CONCLUSION

This paper presented an approach for training a robot
which is equipped with an under-actuated gripper. The
gripper is a modified version of the YOH open source
gripper. The research started by analysing the relative motion
of the human hand fingers with respect to each other during
the grasping process of a coin. Afterwards, Q-Learning
algorithm was selected to self-train the robot on grasping the
coin by provided score after each attempt of grasping. This
score is subjected to reward if the training was successful or
penalty if the robot fails to grasp the coin. By having two
fingers, the actions were; moving either of the fingers or both
of them which resulted in having 3 actions. Meanwhile the
states were 625 In order to cover all the motion of the fingers
independently. The results of this research showed a potential
in adapting such approach. With reduction of grasping time
and number of movements, the research can be considered as
a successful attempt. For the future work, the selection of the
action can be changed in order to overcome the learning
evolution issues. In addition, the used of different sensing
method like tactile sensors or more advance vision system
can be used.
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