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Abstract— The handling of flexible materials is complicated
task in robotics and automation. Due to deformability and fragility
of flexible materials, robots are equipped with the state-of-the-art
sensors and grippers to perform such tasks. Nonetheless, industry
still lacks for approaches and techniques for handling these
materials. Therefore, several industries and mass production
systems require hiring human to perform the deformable
materials-related task. These tasks might include usage of toxic
martials (e.g. carbon fiber sheets) or dangerous tools (e.g. sharp
cutting knives). In this regard, this paper presents an approach for
selecting grasping configuration of objects based on the product’s
properties such as rigidity, surface roughness and shape, and the
required task. Briefly, this research is based on several published
taxonomies for modeling the hand of the human while grasping
different objects. After refining the taxonomy, an ontology model
is populated which will be queried for specifying the gripper’s
properties such as number of fingers and required grasping force
that can perform the selected task on the selected product. Finally,
this research presented a use case form the REMODEL  (Robotic
tEchnologies for the Manipulation of cOmplex DeformablE
Linear objects) project in order to assess and validate the
approach. For the future, this research expected to include the
selection of the grippers, the robotic arm and its approach for
grasping the product.

Keywords— Robotics and automation, Grasping, deformable
materials, Knowledge based systems, Cyber-physical Systems

I. INTRODUCTION
The concept of Cyber-physical Systems (CPS) merges the

reality of physical systems, e.g. velocity of pump or
temperature of a furnace, and the virtuality of data, information
and computer applications to optimally control and monitor the
physical systems [1]. Thanks to the advances  in Information
and Communication Technologies (ICT), CPS are evolving and
reaching maturity that permit their usage in some critical and
sensitive systems. As an example, the application of self-
driving vehicles requires precise modeling and understanding
the physical world, optimization in decision making and

critically applying the control signals to avoid accidents or
sudden changes. Moreover, and as another example, robotics is
considered to be CPS where the physical robot is controlled by
an application that uses sensors’ data to control and manipulate
the physical system. considered to be  critical applications,
medical operations or fragile material handling which requires
precise and critical time response to avoid any accident.

Flexible materials are complicated to be handled by robots
as well. Due to their dynamic changes in shape and dimensions,
flexible materials require special grasping and handling
measures. As an example, a material can be fragile and
deformable like paper sheets or delicate sea food. These
materials require specially designed and modified grippers to
be handled during the production. In addition, the design of the
robot motion requires considering the behavior and material
properties of the handled product.

This paper aims to present an approach for selecting the
proper grasping configuration, based on the product that
expected to be handled and the task  which requires handling
the product. The selection engine is based on ontological-based
system which is populated with human modelling for grasping
objects. This research has been initiated following the initiation
of the REMODEL (Robotic tEchnologies for the Manipulation
of cOmplex DeformablE Linear objects) project  which is
funded by the European Commission [2]. This project targets
the handling of Deformable Linear Objects (DLOs), which
includes cables, wires, harnesses and hoses. Once the grasping
configuration is identified, the selection of grippers, robots and
gripping approach can be designed. However, the scope of this
paper is recognition of the grasping configuration only.

The rest of the document is structured as follows: Section
II presents the related research and state of the art in the field of
Robotics and manipulation and Grasping and Human grasping
modelling. Section III presents the approach of this research.
Section IV provides the implementation of the presented



approach. Finally, Section V concludes the paper and provides
possible future work.

II. THEORETICAL BACKGROUND AND RELATED
WORK

A. Robotics and Manipulations
Contemporary industrial robots are crucial components for

automating various processes involving material handling,
assembling, disassembling, welding, dispensing, etc. The
similarity of the robot’s functionality to humans and the
improved performance efficiency and accuracy of repetitive
tasks have caused their usage to grow exponentially in recent
years. Singh et al. compare their similarity and discussed the
reasons which make them the preferred choice for industries of
all scales [3].

The robots of today, produced by the major manufacturers,
fall under the defined abilities and characteristics made for
CPS, as was categorized by Mikusz and Csiszar [4]. They delve
deeper into avenues where the robots behave like a CPS, but the
perspective of Industrial robots as CPS in the sense of opened
and linked up systems (in contrast to embedded systems), is of
more relevance in this discussion. This essentially deal with the
protocols available for the robot to interface with the external
environment, which is predominantly through the use of
sensors. Mikusz and Csiszar primarily focus on analyzing the
usage of sensor data to predict uncertainties and improve the
smartness of the robot operation, conforming to the theories of
CPS detailed by Geisberger and Broy [5].

Correspondingly, similar protocols could be utilized to
teach the robot, to perform its tasks. The traditional methods of
programming robots used in majority of the industrial
applications are online programming, using a teach pendant and
offline programming, using the CAD based simulation
environment, as evidenced by Rossano et al. [6] and, Ahrens
and Pageau [7]. However, these do not highlight the features of
the robot which makes it a CPS. Additionally, they lack
intuition and require a skilled operator/ programmer who has
experience in handling the proprietary teaching tools. Other
techniques such as lead through programming as explained by
Sang Choi et al. [8] and Leire et al. [9] capitalize on the
developments in sensor technology and provide the user an
intuitive and easier alternative to program their robot on-line.
Lead through programming involves the user to physically hold
and guide the robot manipulator to the desired targets with
effective configurations, and also trace the path to be followed
by the manipulator. And, teaching by demonstration involves
the user to guide the robot (without direct contact), by using a
combination of wearable devices with bendable sensors (smart
glove) and visual sensors to trace the users hand gestures and
position at the system run time.

The usage of intuitive teaching techniques has the benefits
of lower costs due to reduced time and programmer cost,
reduced reliance on proprietary hardware and software, etc.
Additionally, robot trajectories which are too complex to be
defined by traditional methods, could be easily programmed by

these intuitive teaching methods, as highlighted by Schraft et
al. [10]. The incorporation of human driven motions as a form
of programming by means of sensory inputs is one of the
primary attributes of CPS. The effectiveness and the improved
trajectories obtained by emulating human actions is the next
important point to consider. The upcoming sections of this
document would explore this further, with an emphasis on
material handling.

B. Objects Grasping and Human’s Hand Modelling
 Grasping an object with an arbitrary shape is a very simple

task for humans. Human perception and experience make this
task so intuitive, like if it didn’t require any effort to select the
proper grasp for every situation. However, when it comes to
robotics, determining the type of grasp that the robot has to
perform can be really arduous. According to this, we could
describe humans as the perfect robots, hence modelling human
behavior, in this case human grasping, can guide the robot on
how to act in any situation.

Even if we had a perfect model of human grasping, we still
have to face the problem of replicating that behavior on the
robot. Nowadays there are many different robotic gripper
topologies and technologies, some of them are similar to human
hands, whereas in other cases, imitating human grasps is a
challenging labor. Samadikhoshkho et al. [11] provided a
review on robotic grippers classifications. They classified
grippers according to its topology in seven groups: robot
grippers with two fingers; robot grippers with three fingers;
robot grippers with flexible fingers, mainly used for handling
fragile objects; multi-finger and adaptative grippers, that
includes robotic hands; grain-filled flexible ball grippers, where
the gripper deforms its shape to match the shape of the object;
fellow grippers, used to grasp an internal cylindrical surfaces
by expanding its shape, and O-ring grippers, used for grasping
the inside diameter of O-ring seals. From the actuation point of
view, they distinguish among five types of grippers: cable-
driven, vacuum, pneumatic, hydraulic and servo-electric.
Another interesting classification for robotic grippers is by their
application [11], [12], which can help when determining the
suitability of a gripper for a specific task.

Revising literature, we can find many approaches for
human grasping modelling. In 1946, Slocum and Pratt [13]
classified the human grasps into three general types: grasp,
pinch and hook. It was in 1956 when Napier [14] introduced for
the first time the concept of classifying grasps by their need for
precision or power, but this idea wasn’t developed until 1962,
when Landsmeer [15] made the distinction between “power
grip” and “precision grip”. Later, in 1971, Skerik et al. [16]
introduced also a third category, the intermediate grip, a
concept that was later included by many authors like Kamakura
et al. [17] in 1980. In 1982, Kapandji [18] created a taxonomy
including 21 different grasp types, defined in a hierarchical
way. Seven years later, Cutkosky [19] constructed another
hierarchical taxonomy that could distinguish among 15 grasps
according to the task requirements and the shape of the object.
This was a very interesting taxonomy by that time and
nowadays this taxonomy is still been extensively used in



robotics, however Cutkosky didn’t consider the mechanical
properties of the objects for this classification. In 1992, Kang
and Ikeuchi [20] developed a very innovative taxonomy based
on the ‘contact web’, which was defined by them as “a 3D
graphical structure connecting effective points of contact
between the hand and the grasped object”, which provides a
more continuous classification of grasps. Two years later, in
1994, Mackenzie and Iberall [21] introduced also in his
taxonomy an “opposition space classification”, where they
distinguished between three opposition types (pad, palmar and
side opposition) and they also considered the number of virtual
fingers (VF). Each group of fingers that work together as a
functional unit compose a VF.

Already in the 2000s, we can find some good taxonomies,
that took the knowledge from the previous approaches and
expanded it. In 2013, Bullock et al. [22] created a high-level
taxonomy of movements of the human hand for manipulating
objects. This taxonomy also included no contact movements
and non-prehensile grasps. Finally, our literature review
finishes in 2016, when Feix et al. [23] created one of the most
complete human grasping taxonomies that we have nowadays.
They analyzed and compared 22 existing human grasp
taxonomies and synthesize them into a new one, called “The
GRASP Taxonomy”.

The GRASP Taxonomy considers only one hand grasps in
which the object is not in relative movement with the hand and
where the grasp doesn’t depend on gravity, so if a person turns
the hand, the object won’t fall. They used a matrix arrangement
for classifying the grasps. Columns have three levels for
differentiating grasps. The first level divide grasps according to
its power/precision requirements, the next finer differentiation
considers the opposition type, that also defines the VF 1, and
finally the third level classifies the grasps by the number of
virtual fingers involved. Rows just make a distinction by the
position of the thumb. Just considering the already mentioned
divisions they could differentiate 17 different grasps, however
if the size and shape of the object is also considered, the
taxonomy can be extended up to 33 different grasps. Some of
these grasps are shown in Fig 1.

Fig 1. Five samples of the 33 different human grasps types distinguished in
[23].

III. CPS FOR MODELING PRODUCT-BASED GRASPING

A. The Refined Grasping Taxonomi
 After analyzing the evolution of human grasping

modelling during the last 70 years, we could observe that great
advances have been made in this field, achieving very complete
taxonomies that can differentiate a large number of human

grasps. However, most of these taxonomies are focused mainly
on the configuration of the hand when grasping, but not in the
situation that has created the need for that grasp. The aim of
human grasping modelling for robotics is not to imitate the
human grasp, the objective is to understand the relationship
between task requirements and the grasping “solution” adopted
to meet those requirements [19]. Based on this information the
robot will select the proper robotic grasp for each situation. In
order to obtain this knowledge, we have to relate the object
(defined by its shape and mechanical properties) and the task
that we are going to perform with it, with the different human
grasp types.

In this paper, a taxonomy that provides the different human
grasp possibilities for each situation (considering a situation as
the combination of the object to grasp and the task to perform)
is presented. For this taxonomy a simplified version of the grasp
types distinguished in [23] is used, as this is probably the most
complete classification of human grasping that we have
nowadays. We grouped some of these grasps, that were almost
functionally identical, reducing the list from 33 to 25 different
grasp types.

We chose a matrix arrangement for representing this new
taxonomy. Rows are arranged according to the mechanical
properties of the object and they have four levels, considering
the weight (heavyweight, middleweight or lightweight), the
size (big or small), the surface finish (smooth or rough) and the
rigidity (rigid or deformable) of the object, from outer to inner,
so that all the combinations are considered. We selected these
four properties because they are the ones that influence the most
in the selection of the grasp type. The values employed for them
are just descriptive, no threshold values are given to distinguish
between, for instance, smooth or rough objects. This is because
the idea of this taxonomy is to set a starting point for future
researches, where these concepts will be further analyzed,
adjusting the numerical values to be the most representative
possible of reality.

Columns represent both the task and the shape of the object.
A first distinction is made according to the general requirement
of power or precision of the task. The next finer differentiation
depends on the shape of the object. Only primitive shapes are
considered in order to not make the taxonomy very complex,
thus the real object to grasp must be treated as a cylinder,
sphere, cuboid or cone. Moreover, disk shapes can be treated as
flat cylinders and sheet shapes as flat cuboids.

This arrangement contents 192 different combinations and
within each of them, all the considered grasp types that can be
used for that situation are specified. Additionally, some
constrains and specific functionalities are considered within
each combination, for instance the grasp types that can deal
with hot objects (this can be observed in Fig 2).



Fig 2.Graphical representation of the grasp taxonomy. The numbers in these graphs correspond to the numbers used by Feix et al. in [23] for identifying each grasp
type. The color is used to represent the size of the object: red (very big), orange (big), green (medium size), blue (small) and purple (very small). The shape represents
the shape of the objects: cylinder (cylinder), circle (sphere), rectangle (cuboid) and triangle (cone). Regarding to rigidity, rigid objects are filled while deformable
objects only have border. Finally, some symbols are used to set constrains: ‘*’ is for flat objects (a disk in case of cylinders and a sheet in case of cuboids) and ‘^’
for hot objects.

Due to the complexity of this taxonomy it is not possible to
show a table with all its information, hence some representative
samples have been selected and presented in two graphs, for
power and precision grasps (see Fig 2). The numbers in these
graphs correspond to the numbers used by Feix et al. in [23] for
identifying each grasp type. We can observe an unpopulated
zone for very heavy smooth objects, mainly for precision tasks.
This is because only one-hand grasps are considered for this
taxonomy. Another interesting thing than can be detected in the
graphs is the presence of clusters (they are easy to see because
of the color scale representation used for the object size), which
indicates that the taxonomy is coherent. Finally, the differences
between smooth and rough, and rigid and deformable objects,
are highlighted in the precision graph. We can see that the
number of possible grasps is usually reduced when the object is
smooth or deformable.

B. The Ontology Model
After the selection and categorization of the human hand

posture taxonomy, this subsection presents the ontological
model for categorizing the grasping configurations based on
product and its properties and the task which will be executed
on the product. This will allow selection of grippers, robots and
the needed configuration of the working space based on the
grasping configuration. It is important to mention that this paper
focus on the grasping configuration selection.

Fig 3. PTG (Product-Task-GraspingConfiguration) ontology model

The PTG (Product-Task-GraspingConfiguration) ontology
model is shown in Fig 3. The Product class includes the mass
as identifier of the weight of the product. Then, the product is
associated with Material class via builtFrom object property to
link the rigidity and surface of the product. Meanwhile, the
Shape class is associated with the product via object property
hasShape. This link provides the identification of the shape of
the product. After that, the Product class is associated with the
Task class by appliedOnProduct object property. This links the
products with the task. Additionally, the Task class is
associated with the TaskCondition class. In this regard, the
TaskCondition class includes a description data property which
presents the special case of the task. As an example, and as
described in III.A, some of the categorized tasks include special
conditions that affect the grasping configuration such as
handling hot objects. Finally, this Task class is related with the
GraspingConfiguration class via requiresGrapingConfiguration
object property, which contents the numbers of the human grasp
types specified in [23], as well as several properties of each
grasp configuration. Additionally, the selection of the gripper
could be made by associating the Gripper and the
GraspingConfiguration classes via performedBy object
property, but this is out of the scope of this paper and will be
investigated in future research.

C. General Architecture
The designed architecture follows the paradigm of the CPS

concept by controlling the physical systems (i.e. robotic arm
manipulation  and gripper selection) and the executed operation
via applications based on the outcome of the ontology systems.
On one hand, the Manufacturing Execution System (MES)  will
sort the tasks based on scheduling and production optimizations
algorithms. These tasks are stacked in order to be executed. As
shown in Fig 4, the envisioned system will support the robot in
order to grasp objects based on the task and the product
properties. For the focus of this paper, the knowledge engine
will provide only grasping configuration. The required gripper
and the approach for grasping the object will depend on the
object and the required task. As an example, picking a bottle



and then pouring the liquid requires approaching the bottle from
the side to avoid blocking the tip of the bottle.

Fig 4. System high level architecture

IV. IMPLEMENTATION

A. The REMODEL Use Case
The Factories of the Future would experience a further

increase in the implementation of robotic manipulation for an
increasing range of applications, which are currently too
complex and intricate to automate. The surge in the
development of robotic systems, which are capable of
autonomously handling tasks, independent of their material
properties, size, shape and behavior, is bringing about a change
in worker welfare and socio-economic dynamics. The project
REMODEL of the H2020 funding program, is one such
research consortium, which is currently working towards
implementing existing hardware and software technologies to
manipulate complex Deformable Linear Objects (DLOs). This
involves handling and routing DLOs for several use case
scenarios, taking into account their complex behavior, and
concurrently integrating this knowledge with proper
manipulation and perception skills, provided by vision and
tactile sensing systems. A bimanual robot is utilized as the
physical actuator for performing the operations, based on the
inputs from the previous systems in real-time.

This paper presents a practical example of the application
of the aforementioned grasp taxonomy and ontology model for
determining the proper human grasp types in a particular use
case of this project, which deals with wire harness assembly for
the automotive sector. In this use case, several wiring harnesses
are assembled using a platform that includes jigs, each of them
with guides for arranging the different branches of the wiring
harnesses and with spots for taping groups of cables in certain
locations. Thus, this assembly process involves various tasks,
currently done manually, such as placing connectors or routing
cables through certain guides, that require different types of
grasps. The human operator performs a plethora of different
grasps to handle objects of low to medium mass and size, low
surface friction, and varying levels of deformability. All the
observed grasps are included and classified in the taxonomy

presented in section III.A (an example of them is shown Fig 5).
Hence, using the ontology model developed in this paper, we
can check if the grasp types that it suggests match with the
grasps performed by the operator, which would indicate how is
the efficiency of the model for predicting the human behavior.

Fig 5. A worker assembling the harness, picking the cable with the Right hand
using the Palmar Pinch (9) grasp and routes the cable with the Left hand using
the stick (29) type grasp

Next section goes into detail with the population of the
ontology models (with the taxonomy presented in section III.A)
and with the selection queries, that return a suggestion of the
most appropriate grasp types in a specific situation.

B. Populated PTG Model and the selection queries
Following the description of the use case selected to prove

the efficiency of the ontology model, presented in section IV.A,
the knowledge base considered will include two tasks; picking
and placing a connector and routing a cable (or group of cables).
The components handled in both tasks will be categorized as
light weight products and small in size. Then, routing a cable
includes grasping the cable and inserting it into the required
guides. In this task, the grasping occurs on the cable, which has
a smooth surface and a cylindrical shape, is deformable and
requires precision. This condition can be seen in first row in
TABLE 1. Whereas, for picking and placing a connector, the
grasped element is the connector and due to the presence of
different connectors types, both smooth and rough surfaces can
be found. In addition, the connectors are rigid and its shape is
modeled as a cuboid. Regarding the task, it is considered to be
a ‘precision’ task, as the applied force could damage the
connector and positioning the connector requires some degree
of accuracy.

TABLE 1: GRASPING CONFIGURATION OF THE USE CASE

Surface Rigidity Shape Grasp types
Smooth Deformable Cylinder 9, 29
Smooth Deformable Cuboid 9, 14, 27
Smooth Rigid Cylinder 9, 7, 29
Smooth Rigid Cuboid 16*, 9, 14, 27
Rough Deformable Cylinder 9, 29
Rough Deformable Cuboid 25, 9, 14, 27
Rough Rigid Cylinder 9, 7, 20, 23, 29, 32
Rough Rigid Cuboid 16*, 25, 9, 14, 27

It is noticeable that the table does not include mass, size
and the task requirements. This is because the values of these
properties are light, small and precision for all the tasks
analyzed in this use case, so only the grasp types classified



within these values in the developed taxonomy were considered
when populating the ontology model. Finally, the * represents
that special condition of having flat object.

After identifying the needed features and the required
grasping configurations, the ontology model is populated with
the use case description. Firstly, three materials have been
added to the model which include plastic and rubber. The
plastic represents the connector and since there are different
types of connectors, there are two instances of plastic material,
one allows more slipping than the other. For shapes, cuboid and
cylinder have been added to represent the shape of connector
and cable respectively. For the products, five have been added
to represent different cables with different thickness, and two
connectors as described before. Finally, the different grasping
configurations have been added following the refined
taxonomy in III.A.

A query has been designed for each task to retrieve the
proper grasping configurations. As shown in Fig 6 and Fig 7,
the queries consider surface, rigidity and shape as inputs. Then
the knowledge engine will provide which are the grasping
configurations that satisfy the task and object conditions, as
shown in Fig 8.

Fig 6. Query for selecting grasping configuration for routing the cables

The query in Fig 6, represents the grasping on the cable as
it was described as smooth, deformable and cylindrical.
Meanwhile, Fig 7 shows the query for grasping on the
connector, which is described as smooth/rough (in this case a
smooth one is considered), rigid and cuboid.

Fig 7. Query for selecting grasping configuration for picking up cable

The result of these queries is shown in Fig 8. Cable routing
query suggested grasping configurations 9 and 29, while the
connector picking query suggested configurations 9, 14, 16*

and 27. All the grasps performed by operator for both of the
analyzed tasks, are included in these results (an example of this
can be seen in Fig 5, where grasps 9 and 29 are used for routing
cables) which shows the high efficiency of the developed model
for predicting the human behavior.

Fig 8. Results of tasks queries [23].

V. CONCLUSION
Grasping objects is an easy task for humans because of the

high level of flexibility of the human hand and the high level of
intellectual of the human, however implementing this behavior
on a robot requires knowledge of the object and the task that is
required to be performed. This problem can be solved via three
steps including modeling the human behavior for grasping
objects, selecting the proper gripper and designing the grasping
approach for the robot. This paper presented an initial approach
for the modeling the human behavior for grasping object.

The approach uses a modified version of the taxonomy for
grasping objects by T. Feix,. In fact, the created taxonomy
comprise of all the human grasp types that could be used for
each combination of product (defined by its shape and some
mechanical properties: weight, size, surface finish and rigidity)
and task (just considering its general requirements of power or
precision and some specific functionalities and constrains).
Afterwards, an ontology model has been created for linking the
product and the task with the proper human grasps for each
situation. Subsequently, the ontology model has been populated
with the values of the grasping taxonomy, materials and tasks.
Finally, this ontology model was tested in a real use case of the
REMODEL project. The next step, for future research, will be
to improve the accuracy of the taxonomy, considering more
specific tasks and materials. Additionally, the research will
expand the functionality to include the selection of the robot
gripper and the possible approaches that the robot can use for
grasping the object.
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